
LEXICAL SCOPING
AS UNIVERSAL QUANTIFICATION

Dale Miller
Department of Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104–6389 USA

Abstract: A universally quantified goal can be interpreted intension-
ally, that is, the goal ∀x.G(x) succeeds if for some new constant c,
the goal G(c) succeeds. The constant c is, in a sense, given a scope:
it is introduced to solve this goal and is “discharged” after the goal
succeeds or fails. This interpretation is similar to the interpretation
of implicational goals: the goal D ⊃ G should succeed if when D is
assumed, the goal G succeeds. The assumption D is discharged after
G succeeds or fails. An interpreter for a logic programming language
containing both universal quantifiers and implications in goals and
the body of clauses is described. In its non-deterministic form, this
interpreter is sound and complete for intuitionistic logic. Universal
quantification can provide lexical scoping of individual, function, and
predicate constants. Several examples are presented to show how such
scoping can be used to provide a Prolog-like language with facilities
for local definition of programs, local declarations in modules, abstract
data types, and encapsulation of state.

Appears in the Proceedings of the Sixth International Conference on
Logic Programming, Lisboa, Portugal, 19–23 June 1989. Address cor-
respondence to Miller at “dale@linc.cis.upenn.edu” or at the address
above.

1. Introduction 14 May 1997

1. Introduction

In [9], first-order Horn clause programs were extended by allow-
ing implications in the body of clauses and in goals (queries). That
extended logic was used to provide a simple and dynamic notion of
modular logic programming. This paper extends the logic presented
in that paper by permitting universal quantification as well as implica-
tions in goals and the body of clauses. The addition of such universal
quantifiers strengthen the modular program constructions described in
[9] since it makes it possible to provide scope to individual, function,
and predicate constants.

The logic described in this paper is related to logics considered by
many researchers in logic programming and, most recently, in theorem
proving and type theory. See [3, 5, 7, 8, 14] for the description of
closely logics applied to logic programming. Similar logics, especially
higher-order versions, have been used as meta languages in specifying
and implementing theorem provers [2, 18, 19]. The logic presented here
is most closely related to the first-order hereditary Harrop formulas
presented in [14]: it differs only in that we shall provide for more liberal
forms of universal quantification in the body of program clauses. This
logic, as well as several other extension to Horn clauses, are part of the
experimental logic programming language λProlog [17]. The examples
in this paper were developed and tested using the LP2.7 [13] and the
eLP [1] implementations of λProlog.

Although the scoping concepts described in this paper follow nat-
urally from simple proof-theoretical considerations, the resulting no-
tions of “module” and “abstract datatype” differ significantly from
those notions found in other programming languages. In our setting,
logic programs defined in a given modules are not necessarily closed:
the meaning of the programs defined in them may depend on the con-
text in which they are used. Similarly, the mechanism for supplying
security in abstract datatypes is described as a “runtime check”; it
cannot, in general, be done at compile time. For proposals of more
static notions of modules and abstract datatypes for logic programs,
see [4, 15, 20, 21].

2. The logic programming language L
Consider a logic that contains constants and variables for indi-

viduals, functions, and predicates. Let A,D, G be syntactic variables
that range over the following classes of formulas.

A := atomic formula

2. The logic programming language L 14 May 1997

D := A | G ⊃ A | D1 ∧D2 | ∀x D
G := A | D ⊃ G | G1 ∧G2 | ∀y G

The universal quantifier ∀xD is over individuals only, while the univer-
sal quantifier ∀yG is over individuals, functions, and predicates. Let
D be the set of D-formulas and let G be the set of G-formulas that,
in both cases, do not contain free function or predicate variables. The
role of free function and predicate variables is restricted only to the
construction of D-formulas and G-formulas. During the interpreta-
tion of this logic (see Section 4) the only free variables that need to be
considered are those that are individual variables. A formula in G is a
goal or query. A formula in P is a definite clause or program clauses,
and a finite subset of P is a program.

While this language is not, strictly speaking, first-order, it is far
from having the complex meta theory or theorem proving problems
associated with higher-order logics and logic programming languages
(accounts of which are in [12, 14, 16]). As we shall show, a constrained
form of first-order unification makes it possible to implement complete
theorem provers and interpreters for L.

Simple modifications of the proof theory discussions in [9] show
that P `I G (where `I denote intuitionistic provability) if and only
if the sequent P −→ G has a cut-free proof in which every sequent
in the proof has an antecedent that is a subset of D and a succedent
that is a member of G. Furthermore, cut-free proofs for P −→ G can
be searched for in a goal-directed fashion (see [14] for a more formal
treatment of the relation between logic programming and goal-directed
search). Since intuitionistic provability admits goal-directed theorem
provers in this setting, we shall refer to the triple L = 〈D,G,`I〉 as a
logic programming language.

In presenting example programs and goals of L, we shall use a
slightly extended version of usual Prolog syntax [22]. In particular,
we use the symbol => for implications at the top-level of goals. Thus,
we have two notations for implication: => is the converse of :-. When
denoting Horn clauses, explicit quantifiers are generally not needed,
while in L, quantifiers in both D- and G-formulas must often be made
explicit. In these cases, we use the syntax all x,y,z\ to denote uni-
versal quantification (of the three variables x, y, and z). We will use
the following convention on naming bound variables: if the quantifi-
cation occurs positively in a G-formula or negatively in a D-formula,
we shall use a token with a lower case initial letter for the name of
the quantified variable, otherwise we use a token with an upper case
initial letter. This convention is only to aid readability: there is no

3. Two simple examples 14 May 1997

logical status for the names of bound variables. When a token with an
upper case initial letter is not explicitly quantified, it will be assumed
to be universally quantified at the top of the formula it occurs in.

There are at least two different ways to interpret the goal ∀x.G(x).
The extensional interpretation is motivated by the semantics of uni-
versal quantification: ∀x.G(x) is true of P if for all terms t, G(t) is
true of P. (Often an additional predicate is supplied to restrict the
domain of t). This interpretation of universal quantification is used
often in database applications. See [6] for a formal treatment of this
interpretation of universal quantification.

In this paper, we shall, however, use an intensional interpretation
of universal quantification that is motivated by proof theory: ∀x.G(x)
follows from P if G(c) follows from P for some constant c that does
not occurs in G or P. That is, ∀x.G(x) follows if it follows generically.
This interpretation of universal quantification in goals is similar to
the interpretation of implications in goals used in this paper: the goal
D ⊃ G follows from program P if G follows for the augmented program
P ∪ {D}.

3. Two simple examples

For a simple example, consider the familiar sterile jar problem.
Assume that a jar is sterile if every germ in it is dead, that a germ
in a heated jar is dead, and that a given jar has been heated. What
reasoning is necessary to establish that the given jar is sterile? The
intensional interpretation of the quantification will work here. Let P
be the following program:

sterile(Y) :- all x\ (germ(x) => in(x,Y) => dead(x)).
dead(X) :- heated(Y), in(X,Y), germ(X).
heated(j).

Consider proving the goal ?- sterile(j). Backchaining on the first
clause above yields the goal

?- all x\ (germ(x) => in(x,j) => dead(x)).

Given the intensional interpretation of universal quantification, we
proceed by selecting a constant, say g, that does not occur in P or in
the goal. We now attempt to prove the goal

?- germ(g) => in(g,j) => dead(g).

4. An interpreter for L 14 May 1997

This goal succeeds if the goal dead(g) follows from the augmented
program P ∪ {germ(g), in(g,j)}. It is easy to see that this in fact
follows by simple backchaining steps. After this goal succeeds, the two
clauses germ(g) and in(g,j) are removed from the current program:
the constant g is similarly removed (discharged).

Interpreters for L must use unification and free variables carefully.
For example, there is no substitution for X such that the goal

?- all y\(p(f(y)) => p(X)).

would succeed from the empty program. If we naively simplify this
goal using the motivation above, we would first generate a new con-
stants, say c, and then try to prove p(X) from p(f(c)). But this
reducted problem is satisfied with the substitution of f(c) for X. No-
tice, however, that the result of applying this substitution to the goal
above, namely

?- all y\(p(f(y)) => p(f(c))).

does not yield a provable goal. The unsoundness arise from the fact
that when c was selected, the future instantiations of X must be re-
stricted to be terms that cannot contain the constant c. This restric-
tion, which blocks the only route to a proof of the above goal, is central
to most of the uses made of universals in goal in this paper.

In general, whenever a new constant is used to instantiate a uni-
versal goal, all free variables, in the goal and the program, must be
restricted so that the substitution terms that will eventually instanti-
ate them will not contain that new constant. Free variables generated
by subsequent backchaining steps, however, may be instantiated with
terms containing this new constant. An interpreter that restricts sub-
stitution variables for free variables as motivated above is described in
the next section.

4. An interpreter for L
In order to interprete logic programs in L, it is necessary, in some

fashion, to keep track of notions such as the “current goal,” the “cur-
rent program,” the “current set of constants,” and restrictions on free
variables. Interpreters for Horn clauses only need to keep track of the
first of these: there the current program and set of constants remains
unchanged during a computation, and the restriction on free variables
do not need to be made. In the description of an interpreter for L
given below, a signature is used to denote the current set of constants,

4. An interpreter for L 14 May 1997

an assignment is used to encode the restrictions on free variables, and
a sequent is used to connect a program to a goal.

A signature is a (possibly infinite) non-empty set of individual,
function, and predicate constants such that there are denumerably
many individual, denumerably many function, and denumerably many
predicate constants of our logic that are not in the signature. The in-
terpreter described below will need to select constants that are not
already mentioned in a given signature: this last restriction on signa-
tures makes this possible. Let Σ be a signature. A Σ-assignment is a
finite list A = 〈t1: Σ1, . . . , tn: Σn〉 where Σ1 ⊆ . . . ⊆ Σn ⊆ Σ and for
i = 1, . . . , n, ti is a first-order term or atom all of whose individual,
function, and predicate constants are members of Σi. If for some i =
1, . . . , n, x occurs free in ti then x is assigned by A. If σ is a substitu-
tion, then σ〈t1: Σ1, . . . , tn: Σn〉 is the structure 〈σt1: Σ1, . . . , σtn: Σn〉.
If this structure is also a Σ-assignment, σ is A-feasible (the value of
Σ is not needed to determine A-feasible). The expression A+A′ de-
notes the concatenation of the two lists A and A′, and the expression
A+ t: Σ′ denotes A+ 〈t: Σ′〉. The concatenation of two assignments is
not necessarily another assignment.

The restrictions on free variables described in the previous section
was given in a negative sense: a free variable is restricted to not be
instantiated with terms containing certain constants. Σ-assignments
express this restriction in an equivalent but positive fashion: if x is
free in t and the pair t: Σ′ is a member of a Σ-assignment A, then x
can be instantiated with an term whose constants are from the set Σ′.
The restriction on variables comes from the fact that only A-feasible
subsitutions will be used in the interpreter (see the BACKCHAIN
transition below) and the fact that Σ′ may be a proper subset of Σ.

A Σ,A-sequent is a pair P −→ G where G ∈ G, P is a finite
subset of D, all constants in formulas of P ∪ {G} are members of Σ,
and all free variables of those formulas are assigned by A. A state
(of the interpreter) is a triple 〈Σ,A,S〉 where Σ is a signature, A is a
Σ-assignment, and S is a finite set of Σ,A-sequents. These sequents
specify what remains to be proved. A success state is a state in which
the set of sequents is empty.

We assume the usual notions of substitution into first-order (quan-
tified) formulas, first-order unification, and most general unifiers (see,
for example, [22]). Simultaneous substitutions are denoted as [x1 7→
t1, . . . , xn 7→ tn].

A simple elaboration function elab that maps D to finite subsets
of D is defined using the equations

4. An interpreter for L 14 May 1997

◦ elab(A) = {A},
◦ elab(G ⊃ A) = {G ⊃ A},
◦ elab(D1 ∧D2) = elab(D1) ∪ elab(D2),
◦ elab(∀x(D1 ∧D2)) = elab(∀x.D1) ∪ elab(∀x.D2), and
◦ elab(∀x.D) = {∀x.D′ | D′ ∈ elab(D)} (provided D is not con-

junctive).
Elaboration simply breaks a D-formula into its conjuncts, mini-scoping
outermost universal quantifiers if possible. The logical consequences
of D and elab(D) are the same, and a proof involving D differs in
trivial ways from a proof involving elab(D).

The following transition rules, indicated by =⇒, describe the
heart of a non-deterministic interpreter.] denotes disjoint union.
AND: 〈Σ,A, {P −→ G1 ∧ G2}] S〉 =⇒ 〈Σ,A, {P −→ G1,P −→

G2} ∪ S〉.
This transition simply translates the logical connective ∧ into an AND-
node in the interpreter’s search space.
AUGMENT: 〈Σ,A, {P −→ D ⊃ G}]S〉 =⇒ 〈Σ,A, {elab(D)∪P −→

G} ∪ S〉.
A implication in a goal is thus an instruction to augment the program
with the antecedent of the implication. To simplify the presentation
of backchaining below, we augment the programs clauses in elab(D)
instead of D.
GENERIC: 〈Σ,A, {P −→ ∀x.G}] S〉 =⇒ 〈Σ ∪ {c},A, {P −→ [x 7→

c]G} ∪ S〉, provided that c /∈ Σ.
A universal quantifier in a goal causes a new constant to be added to
the current signature. Notice that the assignment A does not change;
that is, the range for substitution terms for free variables does not
change with this addition.
BACKCHAIN: Consider the state 〈Σ,A,S〉 where S is the set

{{∀x1 . . . ∀xn(G1 ∧ . . . ∧Gm) ⊃ A} ∪ P −→ A′}] S ′

for some set S ′ and for n,m ≥ 0. Let z1, . . . , zn be new individual
variables (that is, variables not assigned by A) and let θ be the
renaming substitution [x1 7→ z1, . . . , xn 7→ zn]. If θA and A′ are
unifiable, let σ be their most general unifier. Then the state

〈Σ, σ(A+z1: Σ+. . .+zn: Σ), σ({P −→ θG1, . . . ,P −→ θGm}∪S ′)〉

arises from 〈Σ,A,S〉 provided that σ is A-feasible. If m = 0 then
the set of sequents has diminished by one. (The application of σ

4. An interpreter for L 14 May 1997

to a set of sequents, say S, is the set of sequents resulting from
applying σ to all formulas in all the sequents of S.)

Backchaining in L is essentially the same as it is with Horn clauses.
The main difference is that the new variables z1, . . . , zn must be as-
signed: they are allowed to be instantiated with any term involving
constants in the current signature.

No transition can be applied to a success state. The following
theorem is stated without proof.
Theorem. Let G be a member of G, P be a finite subset of D, Σ a
signature that contains at least the individual, function, and predicate
constants occurring in G and in formulas of P, and let x1, . . . , xn be
a list of individual variables occurring free in G and in formulas of P.
There is a substitution σ such σG is intuitionistically derivable from
σP if and only if there is a series of transitions that carries the state
〈Σ, 〈x1: Σ, . . . , xn: Σ〉, {P −→ G}〉 to the success state

〈Σ′, 〈t1: Σ, . . . , tn: Σ〉+A, ∅〉
such that the substitution [x1 7→ t1, . . . , xn 7→ tn] is more general than
σ.

The intuitionistic logic used in this theorem is higher-order, al-
though the higher-order aspects of that logic that are used are very
weak.

We can now describe a simple, depth-first, deterministic inter-
preter for L. First, we must consider the third component of a state
and the antecedent of sequents as lists instead of sets. AUGMENT
concatenates elaborated clauses to the front of an antecedent. When
given a non-success state, the first sequent is used to determine which
transition to consider. If the succedent of that sequent is an impli-
cation, apply AUGMENT; if it is a conjunction, apply AND; if it is
universally quantified, apply GENERIC. The choice of constant used
in GENERIC is immaterial (as long as it is not in the current signa-
ture). Finally, if the succedent is an atom, then we need to backchain.
Here, we select a D-formula from the antecedent in a left-to-right or-
der. The only backtrack points we must store are those involved with
the selection of a clause: these backtrack points will be returned to
following the depth-first discipline.

Notice that first-order unification does not need to be modified,
although before a unifier is used in BACKCHAIN, it must be checked
for A-feasibility. This check, which provides the security used to im-
plement data abstraction describe later, is done at runtime. Although
there may be static, comile-time checks that might tell us that in cer-
tain programs feasibility of substitutions do not need to be checked,

5. Local declaration of programs 14 May 1997

runtime checks would be necessary, in general. Also the cost of check-
ing feasibility of substitutions is similar to the cost of doing the occur
check in unification: the entire terms involved in a unifier must be
transversed in order to determine that certain constants do not occur
with them. It is, of course, possible to modify first-order unification
so that only A-feasible substitutions are produced. See [10, 11] for an
account of how this can be accomplished. Skolem functions provide
only one of several implementation techniques.

5. Local declaration of programs

A standard way to write the reverse(L,K) program in Prolog
is to first write a tail recursive auxiliary function rev(L,K,Acc). Al-
though this second program is intended to be used only locally in the
definition of reverse, there is no way in simple Horn clause logic or
in most Prolog implementations for the scope of rev to be localized to
just the definition of reverse. Making use of the universal quantifica-
tion of predicates and of implications in goals, we can write a version
of reverse where rev is given local scope. Consider the following
D-formula.

reverse(L,K) :-
all rev\(

(all L\ (rev([],L,L)),
all X,L,K,M\(rev([X|L],K,M) :- rev(L,K,[X|M])))

=> rev(L,K,[]))

(Notice that the variables L and K are bound with different scopes in
this clause.) In attempting to prove the goal reverse([1,2,3],K)
from this clause, an interpreter would first generate a new predicate
symbol, say c, then add the Horn clauses

c([],L,L).
c([X|L],K,M) :- c(L,K,[X|M]).

to the current program, and then try to prove c([1,2,3],K,[]). Af-
ter the answer substitution K = [3,2,1] is discovered, both c and the
new clauses pertaining to c would be discharged.

Given this style of programming, there is another way that re-
verse can be written. One way to reverse a list, say [a,b,c], is to
start with the atom rv([],[a,b,c]) and forwardchain over the clause

rv([X|N],M) :- rv(N,[X|M]).

5. Local declaration of programs 14 May 1997

The goal rv([c,b,a],[]) is provable in this way. Obviously, for any
list L, if we start with the atomic fact rv([],L) and forwardchain
over the above clause, we can prove the atomic goal rv(K,[]) where
L and K are reverses of each other. While this is a natural approach to
specifying reverse, it is not possible to code it directly in Horn clauses
since it describes the reverse predicate as relating a list contained in
a program and one contained in a goal. Using L, this algorithm can
be specified directly as follows.

reverse(L,K) :-
all rv\ (

(rv([],K),
all X,N,M\(rv([X|N],M) :- rv(N,[X|M])))

=> rv(L,[]))

In attempting to prove the goal reverse([1,2,3],K) from this clause,
an interpreter will again generate a new predicate symbol, say c, then
add the Horn clauses (where quantification is made explicit)

c([],K).
all X,N,M\(c([X|N],M) :-c(N,[X|M])))

to the current program, and then try to prove goal c([1,2,3],[]).
Notice here that the goal is closed while the program is open: the free
variable in the program, the variable K in the first clause of c, will
be instantiated to the list [3,2,1] by the interpreter in the process
of establishing the goal c([1,2,3],[]). In the first clause above, K
should not be assumed to be universally quantified: that clause is,
instead, an open atomic formula.

For two more simple examples, consider how to specify goals that
fail in all program contexts or that succeed only once in all program
contexts. A predicate, say fail, will fail if there are no clauses defining
it. In a dynamic setting where implications allow new clauses to be
added, there is no guarantee that clauses defining fail are not added
during some computation. The goal all p\ p, however, will fail in
all programming contexts: when the interpreter encounters this goal,
it must select a new null-ary predicate, say c, and then attempt to
prove c, an attempt that must fail since c is new. Similarly, the goal
all p\(p => p) will succeed exactly once in all programming context:
again the interpreter will need to select a new null-ary predicate, say
c, then assume c and then attempt to prove c, which will, of course,
have exactly one proof in all programming contexts.

6. A mechanism for abstract data types 14 May 1997

6. A mechanism for abstract data types

Universals in goals can provide a scope for constants within goal
formulas. It would, of course, be useful to have a similar scoping
mechanism that works over program clauses. A notion of “local” dec-
laration for constants in a collection of program clauses is presented
below.

Assume that the variable y is free in the formula D but not in the
formulas G. The interpreter attempting to prove ∀y(D ⊃ G) will then
introduce a new constant for y, say k, and restrict all the current free
variables so that they cannot be instantiated with terms containing
k. The program code [y 7→ k]D can use the constant k to build data
structures but any answer substitutions for this compound goal cannot
make reference to k. It is in this sense that data abstraction can be
accomodated in L.

Before presenting some examples, it is helpful to simplify a prob-
lem of scoping. In the discussions above, the scope of y is, in a sense,
only over D while we needed to use the universal quantifier ∀y over the
compound formula D ⊃ G even though y is not free in G. To provide
for a more natural scoping mechanism, we shall allow limited forms of
existential quantification over D formulas. This example could thus
be written more naturally as (∃y D) ⊃ G. This use of existential
quantification is also justified by the intuitionistic equivalence

(∃x D) ⊃ G ≡ ∀x(D ⊃ G),

provided x is not free in G.
To be precise, let E be a syntactic formula variable whose range

is determined by
E := D | ∃y E,

where the quantifier ∃y is over individuals, functions, and predicates.
The phrase “program clause” will now refer to any E formula all of
whose free variables are individual variables. The interpreter would
also need to make the following transition:
LOCAL: 〈Σ,A, {P −→ (∃x.E) ⊃ G}] S〉 =⇒ 〈Σ ∪ {c},A, {P −→

([x 7→ c]E) ⊃ G} ∪ S〉, provided that c /∈ Σ.
The following existentially quantified set of Horn clauses provide

an implementation of the stack data type in which the constructors
for stacks are not available to programs making use of this implemen-
tation.

exists emp, stk\(

7. Encapsulation of state 14 May 1997

empty(emp),
all S,X\(enter(X,S,stk(X,S))),
all S,X\(remove(X,stk(X,S),S))
).

Let this E-formula be denoted by the symbol stack. In a sense, stack
represents a module with a local declaration. The only “exportables”
constants of this module are the three predicates empty, enter, and
remove.

A goal of the form stack => G is attempted by introducing two
new constants that will play the role of the stack constructors, disallow
the current free variables of G (and of the current program) to contain
these constructors, and introduce three atomic clauses to implement
empty, enter, and remove. After this point, any new free variables (in-
troduced by subsequent backchaining steps) can be instantiated with
stack objects: this is how stacks would be used in computations.

This approach to programming is, of course, very desirable since
it can be used to guarantee that a client program of stack does not
examine and manipulate stacks in any way other than those supplied
by the predicates empty, enter, and remove. This allows different
implementations of those predicates to be substituted for the module
stack. For example, those operations could be implemented as a
queue by the following code (the term qu(L,K) is a difference list
construction):

exists qu\(
all L\(empty(qu(L,L))),

all X,L,K\(enter(X,qu(L,[X|K]),qu(L,K))),
all X,L,K\(remove(X,qu([X|L],K),qu(L,K)))
).

A search program written in L that uses enter and remove for storing
and retrieving choice points could switch between a depth-first and
breadth-first search by switching between these two implementations
of those predicates.

7. Encapsulation of state

In this section, we shall make our logic language slightly higher-
order in the sense that we shall allow quantification over propositional
variables in D-formulas and permit predicate constants to appear
within terms. Operationally speaking, we are making this extension

7. Encapsulation of state 14 May 1997

to allow goal formulas to be passed around as arguments and to be
dynamically called. Various higher-order extensions to logic program-
ming have been analyzed in the papers [12, 14, 16]. The extension
mentioned above is part of the much more general theory of higher-
order hereditary Harrop formulas described in [14]. Although there
is not sufficient space here to present details, it suffices to say that
when propositional variables are not permitted as the head of definite
clauses and when there are no logical constants embedded inside the
terms of the logic (both cases are true of the examples below), then the
straightforward operational meaning of these extended definite clauses
can be given a proof theoretic semantics.

The following is an implementation of a switch data type where
a switch’s value has a scope. Consider the following program clauses:

exists sw\(
sw(off),

all G\(set_on(G) :- sw(on) => G),
all G\(set_off(G) :- sw(off) => G),
all V\(status(V) :- sw(V))

).

The value for this switch is stored as the argument for the local, one-
place predicate sw. The switch is initially set off by the first line. The
predicates set_on and set_off take a goal formula as their argument
(hence, the need for the higher-order extensions), set the switch either
on or off by extending the program, and then call their arguments.
Propositional variables allow a kind of “continuation passing” style of
programming.

Notice that as a series of set_on and set_off predicates are
called, there is an accumulation of all the previous settings of the
switch. In a sense, when the switch gets set, it becomes more non-
deterministic. In order to get the more deterministic and coventional
notion of a switch we must consider various schemes for reducing non-
determinism. There seems to be two natural choices for doing this.
First, implication could be interpreted as redefining instead of aug-
menting. Many of the previous examples still have interesting meaning
under such a reinterpretation of implication. The other choice, used
here, is to provide the deterministic version of the intepreter with such
control primitives as the “deterministic” declaration or cut (!).

As it is implemented above, the status predicate is the only way
the value of the current switch can be determined. If the goal ?-
status(U) is called, U will be bound to the most recent setting of the
switch. Notice, however, that the call ?- status(on) succeeds if the

7. Encapsulation of state 14 May 1997

switch had been set on at some point. If status were reimplemented
using cut as

all U,V\(status(V) :- sw(U), !, U = V)

only the last value of the switch could ever be retrieved (by the deter-
ministic interpreter).

Notice that, in general, the entire history of how this switch is
set must be maintained since completing a goal such as set_on(G)
requires a previous switch value to be reinstated. If the deterministic
version of status is used and it is known that the goals called as
continuations in set_on and set_off never fail, then previous settings
of the switch are not needed. In this case, set_on and set_off could
be implemented using a side-effect to change the argument of the local
predicate sw.

For a final example, consider the following simple exercise in using
a similar form of encapsulation.

make_account(Acc,Amt,G) :- all reg\ (
(reg(Amt),

all Inc, H, Val, Tmp\(
add_money(Acc,Inc,H) :-

reg(Val), Tmp is (Val + Inc), reg(Tmp) => H),
all Dec, H, Val, Tmp\(

wd_money(Acc,Dec,H) :-
reg(Val), Tmp is (Val - Dec), reg(Tmp) => H),

all H, Val\(
print_amt(Acc,H) :-

reg(Val), write(Val), nl, H)
=> G).

The goal make_account(john,100,G) would call the goal G in an en-
vironment where there is an “account” named john that is initialized
with the amount 100. This account is stored as a local predicate,
which stores the balance (or state) of the account, and three “methods”
for adding to, subtracting from, and printing that account’s balance.
The continuation G is given access to the three predicates add_money,
wd_money, and print_amt. If G itself calls make_account, a new local
predicate and three new “methods” are created to implement the new
account.
The following is a very simple interpreter for treating the named ac-
counts used as objects. In this example, the only continuation called

8. References 14 May 1997

is the predicate transact.

transact :-
write(">>- "), read(Entry), do(Entry).

do(mk_acc(Name,Amt)) :- make_account(Name,Amt,transact).
do(add(Name,Amt)) :- ad_money(Name,Amt,transact).
do(wd(Name,Amt)) :- wd_money(Name,Amt,transact).
do(print(Name)) :- print_amt(Name,transact).
do(quit).

The following is a simple interaction with this transaction program.

?- transact.
>>- mk_acc(john,10).
>>- mk_acc(mary,20).
>>- add(john,5).
>>- print(john).
15
>>- wd(mary,10).
>>- print(mary).
10
>>- quit.
?-

Again, if the continuation transact never fails (that is, the user only
types in correct information), then only the most recent state of an
account is examined.

Acknowledgements. I would like to thank John Hannan, Frank
Pfenning, and several of the attendees of the GULP Advanced School
on Foundations of Logic Programming, September 1988 for their help-
ful comments and criticism of the work described in this paper. This
work is supported in part by grants ONR N00014-88-K-0633, NSF
CCR-87-05596, and DARPA N00014-85-K-0018.

8. References

[1] C. Elliott and F. Pfenning, eLP, a Common Lisp implementation
of λProlog, January 1989.

[2] A. Felty and D. Miller, Specifying Theorem Provers in a Higher-
Order Logic Programming Language, Proceedings of the Ninth
International Conference on Automated Deduction, Argonne, IL,
23 – 26 May 1988.

8. References 14 May 1997

[3] D. Gabbay and U. Reyle, N-Prolog: An Extension to Prolog with
Hypothetical Implications. I, Journal of Logic Programming 1,
1984, 319 – 355.

[4] L. Giordano, A. Martelli, and G. Rossi, Local Definitions with
Static Scope Rules in Logic Programming, Proceedings of the
FGCS International Conference, Tokyo, 1988, pp. 389-396.

[5] L. Hallnäs and P. Schroeder-Heister, A Proof-Theoretic Approach
to Logic Programming. I: Generalized Horn Clauses (unpub-
lished).

[6] J. Lloyd and R. Topor, Making Prolog More Expressive, Journal
of Logic Programming 1(3), October 1984, 225 – 240.

[7] L. McCarty, Clausal Intuitionistic Logic I. Fixed Point Semantics,
Journal of Logic Programming 5(1), March 1988, 1 – 31.

[8] L. McCarty, Clausal Intuitionistic Logic II. Tableau Proof Proce-
dure, Journal of Logic Programming 5, 93 – 132, 1988.

[9] D. Miller, A Logical Analysis of Modules in Logic Programming,
Journal of Logic Programming 6 (1989), 79 – 108.

[10] D. Miller, Solutions to λ-term equations under a mixed prefix
(submitted, January 1989).

[11] D. Miller, Unification under a mixed prefix (unpublished, Decem-
ber 1988).

[12] D. Miller and G. Nadathur, Higher-order Logic Programming,
Proceedings of the Third International Logic Programming Con-
ference, London, June 1986, 448 – 462.

[13] D. Miller and G. Nadathur, LP2.7, a C-Prolog and Quintus Prolog
implementation of λProlog (July 1988).

[14] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov, Uniform
Proofs as a Foundations for Logic Programming, Annals of Pure
and Applied Logic (to appear).

[15] L. Monteiro and A. Porto, Contextual Logic Programming, Pro-
ceedings of the Sixth International Logic Programming Confer-
ence, Lisbon Portugal, June 1989.

[16] G. Nadathur, A Higher-Order Logic as the Basis for Logic Pro-
gramming, Ph.D. dissertation, University of Pennsylvania, May
1987.

[17] G. Nadathur and D. Miller, An Overview of λProlog, Fifth Inter-
national Conference on Logic Programming, MIT Press, 1988.

[18] L. Pauslon, The Foundation of a Generic Theorem Prover, Journal
of Automated Reasoning (to appear).

[19] F. Pfenning, Partial Polymorphic Type Inference and Higher-
Order Unification, Proceedings of the 1988 ACM Conference on

8. References 14 May 1997

Lisp and Functional Programming.
[20] D. Sannella and L. Wallen, A Calculus for the Construction of

Modular Prolog Programs, Proceedings of the 1987 Symposium
on Logic Programming, San Francisco, 1987.

[21] G. Smolka, TEL (Version 0.9), Report and Unser Manula. SEKI
Report SR-87-11, FB Informatik, Universität Kaiserslautern, W.
Germany, 1987.

[22] L. Sterling and E. Shapiro, The art of Prolog: advanced program-
ming techniques, MIT Press, Cambridge MA, 1986.

