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1. Introduction

1. Introduction

The logic programming language λProlog is an extension of conventional Pro-

log [32] in several different directions: it supports higher-order programming, in-

corporates λ-terms as data structures, includes a notion of polymorphic typing,

and provides mechanisms for defining modules and secure abstract data types.

There have been several proposals in the past for adding features of this sort to

Prolog. The work in the context of λProlog is distinguishable from most of these

proposals in that the first concern has been to examine the essential logical and

proof-theoretic nature of these extensions. The result of this analysis has been the

description of a class of formulas that are called higher-order hereditary Harrop

(hohh) formulas. These formulas play a role in λProlog that is similar to the role

played by first-order positive Horn clauses in Prolog. The hohh formulas signifi-

cantly extend positive Horn clauses, and the new features provided in λProlog are

the result of exploiting the extension found in hohh formulas.

We discuss several aspects of the work on λProlog in this paper. In the next

section we describe the hohh formulas and provide the rationale for considering

them a suitable basis for a logic programming language. Section 3 highlights the

logical features that are new in hohh formulas and explains their use in providing

extensions to logic programming. Finally, we describe an implementation of a

version of this logic in Section 4, dwelling on some of the new problems that were

encountered in its context.

2. Reconsidering the Foundation in Horn Clauses

We initially considered a higher-order extension to Horn clauses because we

were interested in addressing an aspect of incompleteness in theorem provers in

higher-order logic. In logics that permit predicate quantification, new techniques

must be devised for finding appropriate substitutions for predicates variables since

these cannot in general be determined through standard uses of (even higher-

order) unification. This problem appeared to be very difficult to solve for general

higher-order logic [1], and it therefore seemed natural to focus attention on a

sublogic. One possibility was to consider some form of higher-order extension to

Horn clauses. This possibility appeared to be independently interesting since it

also provided a basis for studying higher-order notions in logic programming, an
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2. Reconsidering the Foundation in Horn Clauses

aspect for which an analysis was missing from the literature.

As it turned out, we succeeded in solving the problem of predicate substitu-

tions for higher-order Horn clauses [26]. This solution did not shed much light

on the general theorem proving problem: the Horn clause setting is so weak that

the needed predicate substitutions can be determined solely through higher-order

unification. However, our results did lead to an understanding of the properties

of higher-order Horn clauses and established arguments for their suitability as a

basis for logic programming. Using these results, we described the first version of

λProlog and constructed an interpreter for it [21]. This interpreter extended the

standard interpreter for Prolog essentially by replacing first-order unification with

higher-order unification.

In our analysis of higher-order Horn clauses, we represented proofs using

the sequent calculus [4, 31] instead of the more traditional format of resolution

refutations. This turned out to be rather fortunate because we were able to observe

certain structural properties of sequent proofs involving positive Horn clauses that

appear to capture the proof-theoretic “essence” of logic programming. After these

properties were abstracted out, it was natural to look for extensions to positive

Horn clauses that also satisfied them. One such extension involving the addition

of implications to the body of definite clauses was described in [16, 18]. A further

extension that permitted universal quantification in the body of definite clauses

was described in [17, 23]. This final extension is what we refer to as hereditary

Harrop formulas.

Our criterion for judging the adequacy of a logical theory as the basis for

logic programming may be explained as follows: the theory should permit the

logical connectives to be construed as certain simple search instructions while at

the same time being true to their declarative intent. Consider, for instance, the

logic underlying Prolog. It is possible to construct a complete proof procedure

for this logic that interprets the connectives ∧ and ∨ in a query or the body of a

program clause as specifications of AND and OR nodes in a search space. This

aspect permits a programmer writing in this logic to understand clearly the nature

of the computation being described. In contrast, the connection between logical

connectives and the search that needs to be performed appears to be much too

complex in general logic for this to be considered a medium for programming.
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2. Reconsidering the Foundation in Horn Clauses

The relation between the logical connectives ∨ and ∧ and the search opera-

tions OR and AND can be generalized to other logical connectives, in particular,

implication (⊃), and universal (∀) and existential (∃) quantifiers. The sequent

calculus provides the means to establish a correspondence between the declarative

meaning of these logical connectives and search operations. When the succedent

introduction rule for a particular logical connective is read in a top-down manner, it

supplies the declarative meaning for that connective. Viewing logic programming

as a process for constructing sequential proofs in a bottom-up fashion, the back-

ward reading of the introduction rule supplies the natural search-related meaning

for the logical connective. Adding new logical connectives in this manner actually

results in the addition of new search primitives to logic programming, in contrast

to the approach taken by Lloyd and Topor [13] where the new connectives are

removed by using equivalences in classical logic and by interpreting negation with

negation-by-failure.

The association between logical connectives and search operations is defined

precisely in [24]. This definition is a refinement of the one in [23] and can be

summarized as follows. Let L be a formulation of quantificational logic containing

at least the logical connectives ∧, ∨, ⊃, ∀, and ∃. Let ` be any provability relation

over the formulas in L that has a formulation in terms of a sequent calculus. In

this context, we first define a uniform proof to be a cut-free sequential proof in

which the succedent of each sequent is a single formula and, further, every sequent

whose succedent is a non-atomic formula is the lower sequent of an inference figure

that introduces its top-level connective. Given any two sets of L-formulas, D and

G, we then say that ` is uniform over the pair 〈D,G〉 if for every finite subset P of

D and every G ∈ G there is a uniform proof of G from P whenever it is the case

that P ` G. Members of D are called definite clauses or program clauses while

members of G are called goals or queries.

From this definition it follows that if ` is uniform over 〈D,G〉 and P ` G

where G ∈ G and P is a finite subset of D, then the following conditions hold:

AND If G is B ∧ C then P ` B and P ` C.

OR If G is B ∨ C then P ` B or P ` C.

AUGMENT If G is B ⊃ C then B,P ` C.
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2. Reconsidering the Foundation in Horn Clauses

INSTANCE If G is ∃x B then there exists a term t such that P ` [t/x]B.

GENERIC If G is ∀x B then P ` [c/x]B where c is a constant that does not

appear in P or G.

These conditions provide what we consider to be the search related interpretation

of the various connectives. Using these notions, an abstract logic programming

language is defined to be a quadruple 〈L,D,G,`〉 where D and G are sets of L-

formulas such that ` is uniform over 〈D,G〉.

One example of an abstract logic programming language is provided by the

logic of positive Horn clauses. To be precise, let F be a formulation of first-order

logic and let `C denote classical provability. Let G1 be the set of all first-order

formulas that are the existential closure of formulas of the form A1∧. . .∧An, where

n > 0 and the A’s are atomic. Finally, let D1 be the set of all first-order formulas

that are the universal closure of formulas of either the form [A1 ∧ . . . ∧ An] ⊃ A0

where n > 0 or the form A0: here again, the A’s are atomic. Members of D1

are often referred to as positive Horn clauses, while the negation of member of

G1 are often referred to as negative Horn clauses. It can then be shown that

〈F ,D1,G1,`C〉 is an abstract logic programming language. It should be noted,

however, that this is a weak abstract logic programming language in the sense that

the search operations OR, AUGMENT, INSTANCE, and GENERIC are never

used. A language which uses the OR and INSTANCE search operations can be

obtained easily by adding disjunction and existential quantification to formulas in

G1 and the body of clauses in D1.

As undertaken in [21] and [26], a higher-order extension to the logic of positive

Horn clauses can be described and shown to be an abstract logic programming

language. The latter extension provides many new programming features through

the availability of λ-terms and higher-order unification. However, this language

is still weak in its use of logical connectives since it does not incorporate the

AUGMENT or the GENERIC search operations.

Including the AUGMENT operation requires a shift from the framework of

classical logic. Examining simple extensions that permit implications in goals

reveals why this must be so. Consider, for instance, the formula p ∨ (p ⊃ q).

Although this formula has a proof in classical logic, it has no proof that is consistent
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2. Reconsidering the Foundation in Horn Clauses

with the OR interpretation of ∨: neither p nor p ⊃ q is provable. As another

example, consider the positive Horn clause p(a)∧p(b) ⊃ q and the “goal” ∃x(p(x) ⊃
q). While this goal has a classical proof from the given Horn clause, there is no

proof that is consistent with the INSTANCE interpretation of ∃; there is no single

instance of the goal that is provable from the given Horn clause. Intuitionistic logic

can, however, provide a declarative meaning of implication which is consistent

with the AUGMENT search operation. Intuitionistic provability, denoted here by

`I , is weaker than classical provability, and this weakening enables it to be used

to define stronger abstract logic programming languages. This statement is not

as paradoxical as it may sound since the abstract logic programming languages

〈F ,D1,G1,`C〉 and 〈F ,D1,G1,`I〉 are essentially the same. That is, intuitionistic

logic provides a “tighter” analysis of Horn clauses than classical logic does.

Consider the class of first-order formulas denoted by the following mutually

recursive definition of the syntactic variables D and G:

D := A | G ⊃ A | ∀x D | D1 ∧D2

G := A | G1 ∧G2 | G1 ∨G2 | ∀v G | ∃v G | D ⊃ G.

We assume here that A ranges over atomic formulas. A D formula is called

a hereditary Harrop formula. Let D2 be the set of hereditary Harrop formulas

and let G2 be the set of G-formulas. Using methods described in [18], it can

be shown that 〈F ,D2,G2,`I〉 is an abstract logic programming language. It is,

in fact, a language in which all the search operations are present. The term

“hereditary Harrop formulas” is used since these formulas and all their positive

subformulas satisfy a syntactic restriction described by Harrop [9]: formulas in

D2 are essentially equivalent to those formula that do not contain any positive

occurrences of disjunctions or existential quantifiers.

Finally, it is possible to define a higher-order version of hereditary Harrop

formulas. The top-level structure of these formulas is similar to that of the first-

order ones. One difference is that in the former case quantification is permitted

over variables of all orders and is restricted only in that the top-level symbols

of the formulas denoted by A in the definition of D formulas must be nonlogical

constants. Furthermore, logical constants may appear embedded in terms in the

higher-order versions of both Horn clauses and hereditary Harrop formulas. In the
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former case these constants are limited to ∧,∨, ∃, and in the latter case they are

limited to ∧,∨, ∃, ∀. See [24] for more details.

3. Programming Language Consequences

Higher-order hereditary Harrop formulas extend Horn clauses in two major re-

spects: first, they embed higher-order notions and, second, they provide the prim-

itives for specifying the additional search operations AUGMENT and GENERIC.

These two extensions to the logic are orthogonal in the sense that they can each be

added independently of the other. They are, however, related from a programming

point-of-view in that they both provide the means for realizing certain abstraction

mechanisms that are routinely found in modern programming languages but are

not directly obtainable through the use of first-order Horn clauses. In this respect,

λ-terms and predicate variables provide for notions of higher-order programming;

AUGMENT can be used to realize a notion of modules; GENERIC provides a

mechanism for realizing abstract data types. The presence of λ-terms also leads

to a feature that is novel to the programming realm: they can be used as data

structures for representing objects containing variable bindings. We discuss these

logical extensions in greater detail below and explain how they lend themselves to

the addition of new features at a programming level.

Predicate Variables. Functional programming languages such as Lisp and

ML provide the ability to write functions that can take other functions as argu-

ments. Since the logic programming correspondent to a function is a predicate, the

provision of this feature in logic programming is related to the ability to quantify

over predicates. Such quantification is permitted in hohh formulas and, conse-

quently, several aspects of this kind of higher-order programming can be realized

by using these formulas. For instance, the hohh formulas (written in a notation

borrowed from Prolog)

mappred(P, [], []).

mappred(P, [X|L1], [Y |L2]) :- P (X, Y ),mappred(P, L1, L2).

define a predicate mappred that corresponds to the function maplist in Lisp;

these formulas are higher-order ones because they contain a quantification over a

predicate variable P . Languages like Lisp also permit arbitrary lambda expressions
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to be passed as arguments and later evaluated as programs. Limited aspects

of this feature are provided by hohh formulas as well, since λ-terms containing

embedded logical connectives may appear as arguments of atomic goal formulas.

For example, the predicate mappred above can be “invoked” with its predicate

argument instantiated by a complex goal.

λ-terms as Data Structures. A logic programming language based on hohh

formulas must provide simply typed λ-terms as its data structures with the equal-

ity between these terms being given by λ-conversion. These data structures turn

out to be especially convenient in programming tasks involving the manipulations

of objects containing variable bindings. Although first-order terms can be used

to represent objects that contain internal abstractions, such representations make

it necessary for the programmer to deal with variable names and to implement

the various substitution operations that would be needed. In contrast, λ-terms

capture the higher-order abstract syntax of these objects [30]. Using them as rep-

resentational devices makes the handling of bound variable names, substitutions,

variable capturing, etc., part of the meta theory of the programming language.

Consequently the mechanisms for these are directly supported by the implemen-

tation of the underlying language.

As an illustration, consider formulas of a quantificational logic. For instance,

the formula ∀x[p(x)∨q(x)] can be represented by the λ-term (all λx((p x) or (q x)),

where all and or are constants of the appropriate types: in the case of all, it

has a higher-order type, that is, it maps abstractions over booleans to booleans.

The advantage of this representation is that several useful operations on for-

mulas are supported directly by λ-conversion. Thus, the equivalence of this

formula to ∀y[p(y) ∨ q(y)] is mirrored in the α-convertibility of the two terms

(all λx((p x) or (q x)) and (all λy((p y) or (q y)). Similarly, instantiating the given

formula with the term f(a) is simply expressed by the term (λx((p x) or (q x))(f a);

this term is equal (modulo λ-conversion) to the representation of the desired in-

stance, (p (f a)) or (q (f a)). The richer notion of equality also makes it possible to

perform quite sophisticated pattern matching operations. For instance, the term

(all λx((P x) or (Q x))) in which P and Q are (higher-order) variables can be used

as a template for recognizing formulas containing a top-level universal quantifier

whose scope is a disjunction. Observations such as these have in fact been ex-
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ploited to provide succinct implementations of theorem-provers, interpreters, and

type inference procedures [2, 20, 22, 27, 29].

As another example, λ-terms turn out to be particularly apt for representing

programs that contain formal parameters or local variables. Arguments similar to

those above show that a logic programming language incorporating such terms as

well as higher-order unification provides useful features for the implementation of

program manipulating procedures. See [7, 8, 11, 22] for examples of building such

systems using higher-order logic.

A consequence of incorporating the rules of λ-conversion is that the interpreter

for the logic of hohh formulas must be able to solve equations based on these rules.

Formally, this means building higher-order unification into the interpreter. This

form of unification is considerably more complex than first-order unification: it is

undecidable in general and most general unifiers may not exist even when unifiers

do exist [10]. However, there are several characteristics that a search for a unifier

shares with the search for a proof of goal from first-order Horn clauses, and it

is possible to interleave these two searches in designing an interpreter for the

language under consideration [21, 26]. It is exactly this kind of an interpreter that

is used in the current version of λProlog, as we discuss briefly in the next section.

Meanwhile, we note that despite the complexity of higher-order unification, the

kinds of unification problems that have arisen in applications so far have been

tractable and have had correspondences to conceptual problems that a trained

λProlog programmer can easily recognize.

AUGMENT. This search operation provides logic programming with an aspect

of hypothetical reasoning [3, 14, 15]. It can also be used to realize a mechanism

for supporting modular programming [16, 18]. To achieve the latter, implications

can be used to structure, in a stack disciplined fashion, the environments within

which queries are to be attempted. Consider, for instance, the query

(D1 ⊃ (G1 ∧ (D2 ⊃ G2))) ∧G3

in the context of the program P. In solving this query, three different “environ-

ments” are used for solving the three goals G1, G2, and G3: P ∪ {D1} for G1,

P ∪ {D1, D2} for G2 and P for G3. By exploiting the possibility of nesting im-

plications, a notion of “importing” modules of code can also be supported. It
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is important to note that the notion of modules implemented via AUGMENT

is slightly different from that in conventional programming languages. In such

languages, the meaning of a procedure defined in a module is determined in a

completely local manner. In contrast, there is an “openness” in the context of

modules described here that is in harmony with the interpretation of procedures

in logic programming. For instance, if D1 and D2 are two modules that contain

clauses defining the same procedure, then the meaning of this procedure in an

environment that imports both D1 and D2 is obtained by combining the sets of

clauses in these two modules.

GENERIC. This search operation attempts to verify a universal goal by trying

to prove the result of instantiating the goal with a new object. This is actually

an intensional interpretation of the universal quantifier that is to be contrasted

with the extensional interpretation often used in Prolog systems; the latter inter-

pretation attempts to satisfy a universal goal by trying to verify that it holds for

every element in a given domain. For example, let the predicates P (x) and Q(x)

stand for “x is a president of the USA” and “x is born in the USA” respectively.

Then the intensional reading of ∀x(P (x) ⊃ Q(x)) corresponds to the question of

whether a president of the USA must necessarily be born in the USA, whereas the

extensional reading corresponds to the question of whether all the known pres-

idents of the USA have in fact been born in the USA. Clearly the intensional

interpretation is logically stronger since it implies the extensional interpretation.

There are applications where both of these interpretation are useful.

The condition for “newness” in the GENERIC search operation can be used

to provide a kind of security in unification. Consider, for example, the goal

∃x∀y P (x, y). To solve this, the interpreter might introduce a free variable, say

X, for the top-level existential quantifier thus reducing the query to ∀y P (X, y).

At this stage, the interpreter must choose a constant, say c, that does not occur in

the current program clauses and the goal, and then establish P (X, c). In doing so

it must ensure that X is at no stage instantiated to a term that contains c. This

ability to restrict substitutions can be used to provide a local construct in program

modules. For instance, the query ∃x∀y(D(x, y) ⊃ G(x)) requires a substitution to

be found for x that does not contain the parameter substituted for y. Assuming

that G does not contain y free, it can be seen that ∃x∀y(D(x, y) ⊃ G(x)) is equiv-
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alent to ∃x(∃y D(x, y) ⊃ G(x)) in intuitionistic logic. Thus, constants that are

declared to be local to a module can formally be thought of as variables that are

existentially quantified over program clauses in the module. The mechanism for

“hiding” these constants is then implemented directly by the GENERIC search

operation.

Types. One other difference between hohh formulas and first-order Horn

clauses is that the former are actually typed formulas. The essential role of types

here is to impose a functional hierarchy on terms. From a programming perspec-

tive, these types provide an ML-like typing discipline [25] to Prolog. Such types

add an element of documentation to programs, and type errors detected at parsing

time identify goals that will never succeed. The typing scheme (which initially uses

only primitive and functional types) can be embellished with type constructors.

For instance, it is possible to define list as a type constructor that maps the type

int to the new “primitive” type (list int) corresponding to lists of integers. Some

form of polymorphic typing appears to be necessary for the convenient construc-

tion of typed programs, and so our current implementation of the logic permits

variables as types. Such types, however, are not supported by the theory of hohh

formulas and they turn out to be computationally expensive in certain instances;

we discuss this issue in the next section.

4. Implementing the Extended Logic

The λProlog system in its current form is an implementation of, roughly,

the logic of hohh formulas; the main deviations are that implications in goals

is incompletely implemented and that a form of polymorphic typing has been

incorporated. A version of this system comprising roughly 4100 lines of Prolog

code has been in existence since August 1987 and has been distributed to about 40

sites in North America, Europe, and Asia. The performance of this system leaves

much to be desired, partly because of the underlying implementation language

and to a greater extent because efficiency has not been a major concern in this

experimental implementation. Despite this drawback, the system has been used

for serious experimentation and prototype implementations [2, 7, 8, 20, 22, 29]

with two ongoing Ph.D. theses using it as their primary implementation vehicle.

We describe this system briefly in this section, focussing on the solutions adopted
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to the new problems encountered in implementing the logic.

From the user’s perspective, programming in λProlog consists largely of writ-

ing a collection of type declarations and program clauses. The following declara-

tion, which identifies int → (list int) → (list int) as the type of cons, illustrates

the format of type declarations.

type cons int → (list int) → (list int).

In this type expression, int is intended as a primitive type and list as a type

constructor, and there are provisions for the user to declare these as such. Type

expressions can also contain variables: thus, the type of cons could also have been

defined to be A → (list A) → (list A), where A (and, in general, any token

beginning with an upper-case letter) is a variable.

When writing program clauses in λProlog, we have retained the symbols of

Prolog, embellishing these as needed by the richer syntax of the underlying logic.

Several syntactic conventions have also been retained, with the exception that a

curried notation has been adopted. This is exemplified by the two clauses below

that define a predicate mapfun of three arguments:

mapfun F [] [].

mapfun F [X|L1] [(F X)|L2] :- mapfun F L1 L2.

The types of the symbols that appear in clauses can be defined by type declara-

tions. They can also be inferred by techniques similar to those used in ML [5].

For instance, from the clauses above, the type of mapfun can be inferred to be

(A → B) → (list A) → (list B) → o, where o is the type for propositions in

λProlog.

Type declarations and program clauses can be organized into named collec-

tions called modules. Modules also provide a notion of scope that is useful in type

inferencing: when the code in a module is being type checked and the type of a

constant has not been declared, all occurrences of that constant in a module are

assumed to be of the same type while all occurrences of that constant outside of

the module are assumed to be instances of its inferred type. Modules can also be

imported into other modules. From the perspective of program clauses, importing

is explained by means of the AUGMENT search operation [16, 18]. In under-
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standing it operationally, the notion of “current module list” is useful. Suppose

the current module list contains M1 and M2 and that M1 imports module M3.

Given an atomic goal, A, a search is made only in the current modules for a clause

whose head unifies with A: the module M3 is not accessed. Suppose such a clause

is found in M1. In attempting to solve the body of this clause, the current module

list is extended with the modules imported into M1, in this case, M3. That is,

clauses in M3, M1 and M2, in that order, can be used in attempting to solve

this body. The current implementation of λProlog does not support the notion of

parametric modules found in [16, 18].

The interpreter for λProlog is essentially a procedure that attempts to con-

struct proofs for goal formulas from given sets of hohh formulas. The search space

that such a procedure must deal with can be characterized by graphs whose nodes

are pairs, the first element of which is a list of goal formulas and the second ele-

ment is a list of disagreement pairs. For the initial state, the goal set contains only

the goal formula for which a proof has to be found and the set of disagreement

pairs is empty. The objective, then, is to reduce the goal set to an empty set and

the disagreement set to one for which unifiers can easily be provided. In order

to “solve” a compound goal, the search operations corresponding to each logical

connectives can be used with the following exception: the choice of instantiation

in the case of INSTANCE is delayed by substituting a variable whose value may be

determined later through unification. In solving an atomic goal A whose top-level

predicate symbol is a constant, clauses in the current modules must be considered.

Thus, an attempt to use such a clause, say A′ :- G, would lead to the addition

of the pair 〈A, A′〉 to the disagreement set. The goal set is changed by removing

A and adding G, if this is present. The overall structure of the search is quite

similar to that in the context of first-order definite clauses. There are, however,

the following differences: it is higher-order unification that must now be used, and

the unification process must carefully deal with the special constants introduced

by the GENERIC search operation.

The interpreter for λProlog performs a depth-first backtracking search, al-

ways trying to solve any unification problem first by using the search procedure

described in [10]. It is thus quite similar to the standard Prolog interpreter. One

difference is that unification problems may now involve a branching search, and

– 13 –



4. Implementing the Extended Logic

may therefore introduce backtracking points. For instance, assume that g is a

constant and F is a free variable, and consider the task of solving the following

goal given the definition of mapfun earlier in this section:

mapfun F [1, 1] [(g 1 1), (g 1 2)].

This gives rise to the problem of finding a unifier for the disagreement pair

〈(F 1), (g 1 1)〉. There are four incomparable substitutions for F , namely λx(g x x),

λx(g x 1), λx(g 1 x), and λx(g 1 1), that will unify these terms. Of these, only

the third will also unify the pair 〈(F 2), (g 1 2)〉. Thus if the interpreter picks any

other substitution, it would have to backtrack over this choice.

The behavior of the interpreter can be improved by having it recognize special

kinds of unification problems. As an example, consider a disagreement pair of the

form 〈X,F 〉 where X is a variable and F is a term in which X does not appear free.

As noted in [10], the substitution {〈X,F 〉} is a most general unifier for this pair.

This special case can be strengthened in the presence of the η-rule [26], and the this

strengthened version is incorporated in our current interpreter. Similarly, there

is a suitably modified version of the occurs check (see the discussion about rigid

paths in [10]) that can in certain instances be used to determine non-unifiability of

higher-order terms. Incorporating these two special cases into the interpreter has

the effect of handling first-order unification in a complete fashion. Finally, there

are certain disagreement sets, the flexible-flexible sets, for which unifiers are known

to exist but attempting to compute them might lead to an extremely redundant

search. Our interpreter retains these sets as constraints instead of attempting to

solve them. If they persist to the end of a computation, they are printed out along

with the answer substitution. These sets can often be simplified to the extent

that the user can actually read them and understand the manner in which they

constrain the answer substitution [19]. This aspect of unification is in some sense

reminiscent of the approach used in Constraint Logic Programming [12].

As noted earlier, a straightforward implementation of GENERIC requires the

unification procedure to be modified to deal with the special constants correctly.

An alternative approach, incorporated in our interpreter, is to modify the imple-

mentation of INSTANCE and GENERIC so that the unification procedure can

be used unchanged. To understand the mechanics of this approach, let us assume
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4. Implementing the Extended Logic

initially that the program consists of only the quantified atomic formula ∀u Au

and that the goal is ∃x∀y∃z(G x y z), where G is a constant. Assuming that x, y,

h, and f are variables that do not appear in A, it can be seen that the given goal

has a solution if and only if the pair 〈λy.A (h y), λy.G x y (f y)〉 has a unifier.

Further, for any given constant c it is possible to obtain two terms t and s from

a unifier for this pair such that c does not appear in t and (G t c s) is provable

from ∀u Au. Generalizing on this observation, the interpreter behaves as follows.

It maintains a list of “universal variables” as part of its state. This list is initially

empty. Whenever a universally quantified goal is encountered, the quantifier is

dropped from the goal and the variable is added to the list; renaming is necessary

here if the variable already appears in the list. When an existential quantifier

is encountered in the goal, it is instantiated by a term of the form (f x1 . . . xn)

where f is a new variable and the list of universal variables is x1, . . . , xn. Fi-

nally, assume that an atomic goal A is encountered, with the list of universal

variables once again being x1, . . . , xn. To determine whether a particular clause

in the program can be backchained upon in order to solve this goal, an instance

of the clause is created by replacing its universal variables with terms of the form

(f x1 . . . xn), where f is a new variable. Let A′ be the head of the resulting in-

stance, and let G be the body. An attempt is then made to solve the disagreement

pair 〈λx1 . . . λxnA, λx1 . . . λxnA′〉. If this succeeds, the resulting unifier is used to

determine the instance of G that must be solved next.

The approach to dealing with universal quantification outlined above is sim-

ilar to a technique called ∀-lifting in [28]. There is an alternative scheme that

essentially preserves the naive implementation of INSTANCE and GENERIC,

and modifies the unification process instead. The basic idea here is to use an

environment that remembers the scope of various quantifiers. This environment

can then be used within the unification procedure of [10] to eliminate illegitimate

substitutions; an analysis of how this might be done appears in [19]. Nadathur

and Pfenning have implemented a version of λProlog that uses this approach to

GENERIC. There appear to be certain computational payoffs in using this ap-

proach.

There are certain issues that need to be dealt with in a more complete fashion

than is done in the current implementation of λProlog. The first of these concerns
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5. Conclusion

the provision of programming primitives for controlling the unification process.

Some preliminary devices for this are incorporated in our interpreter [26], but

there is room for much more experimentation in this respect. Another aspect con-

cerns the polymorphic typing scheme that we have included in the language. This

feature provides several programming conveniences that have been discussed in

the context of functional programming languages. As one example, it permits the

clauses for mapfun provided earlier in this section to define a generic procedure

that can be used by instantiating the variable F using function terms of several

different types. Unlike the functional programming context, types in λProlog play

an important role at runtime since they are referred to by higher-order unifica-

tion. As a result, instantiations for type variables often need to be determined

at run-time. There are techniques that can be used for either determining these

instantiations uniquely or for delaying their determination in the hope that the de-

sired instantiation can later become apparent [26]. However, there are times when

none of these techniques apply and only fully enumerating all type instantiations

is complete. Our interpreter does not perform such an enumeration, preferring to

indicate a run-time error instead. This is clearly unsatisfactory.

5. Conclusion

This paper has discussed the design philosophy, the possible applications, and

some aspects of an implementation of the λProlog system. The design of this sys-

tem has been based entirely on proof-theoretical considerations. Also, the theory

of hereditary Harrop formulas contains several features that are found in logics

proposed by other researchers. The AUGMENT search operation is considered by

Gabbay because it helps capture some aspects of the meta theory of Horn clauses

[3]. Instances of both AUGMENT and GENERIC are added to Horn clauses by

McCarty to provide inference mechanisms needed in certain AI reasoning tasks [14,

15]. Hallnäs and Schroeder-Heister generalize Horn clause logic with the ability

to assume and discharge Horn clauses [6], and embedded implications overlap in

functionality with their “rules of higher-level”. Finally, Paulson’s theorem prover

Isabelle specifies inference rules using a subset of higher-order hereditary Harrop

formulas. Isabelle contains not only higher-order unification but also operations

closely related to the AUGMENT and GENERIC search operations [28].
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5. Conclusion

The focus on proof-theoretic techniques in our study of logic programming

has led to our ignoring programming aspects not captured directly by proof the-

ory. These include notions of control, negation-by-failure, and side-effects. Clearly

these issues are important in a practical programming language, and future theo-

retical work needs to address them.

Much work also needs to be done towards providing a serious implementation

of either λProlog or a language that captures some of its extended functionality.

One major task in this regard is to find a satisfactory representation for λ-terms.

Such a representation must be one that enables an easy examination of the struc-

ture of these terms and also permits λ-conversion to be done efficiently. Further,

it should be possible to undo the effects of λ-conversions rapidly; this is necessi-

tated by the fundamental role of backtracking in the logic programming paradigm,

and the fact that the application of a substitution in our context corresponds to

λ-conversion. An important question to be answered is whether an interpreter for

λProlog can be made to be as efficient on first-order Horn clauses as standard Pro-

log interpreters. Our current implementation is unfortunately too naive to shed

any light on this question.

Along a different direction, there is a need to remove the mystery surrounding

higher-order unification. Initially, it was very difficult for us to write programs that

made significant use of this operation: it is a very different way of thinking about

computations. With some practice it has become an easy matter for us to discern

when we can gain from using this operation. However, there is as yet no general

account of “computing with higher-order unification”, our experiences and those

of our colleagues being contained mainly in a list of example programs. Providing

such an account so that programmers can learn when to use this operation appears

to be worthwhile. Another aspect, which we are only beginning to understand, is

that of knowing when a simple depth-first interpreter for unification will terminate

and with how many different unifiers. Most of the unification problems that we

have encountered in practice are solvable by this simple interpreter, but we have

not yet formalized this experimental observation.

Finally there is the issue, raised in the last section, of how to deal with the

interplay of higher-order unification and polymorphic types. It appears necessary

to consider an analogue of hereditary Harrop formulas within a logic that contains
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