
Logic Programming in a

Fragment of Intuitionistic Linear Logic ∗

Joshua S. Hodas
Computer Science Department

Harvey Mudd College
Claremont, CA 91711-5990 USA

hodas@cs.hmc.edu

Dale Miller
Computer Science Department

University of Pennsylvania
Philadelphia, PA 19104-6389 USA

dale@saul.cis.upenn.edu

Abstract

When logic programming is based on the proof theory of intuitionistic logic, it is natural
to allow implications in goals and in the bodies of clauses. Attempting to prove a goal of
the form D ⊃ G from the context (set of formulas) Γ leads to an attempt to prove the goal
G in the extended context Γ ∪ {D}. Thus during the bottom-up search for a cut-free proof
contexts, represented as the left-hand side of intuitionistic sequents, grow as stacks. While such
an intuitionistic notion of context provides for elegant specifications of many computations,
contexts can be made more expressive and flexible if they are based on linear logic. After
presenting two equivalent formulations of a fragment of linear logic, we show that the fragment
has a goal-directed interpretation, thereby partially justifying calling it a logic programming
language. Logic programs based on the intuitionistic theory of hereditary Harrop formulas can be
modularly embedded into this linear logic setting. Programming examples taken from theorem
proving, natural language parsing, and data base programming are presented: each example
requires a linear, rather than intuitionistic, notion of context to be modeled adequately. An
interpreter for this logic programming language must address the problem of splitting contexts;
that is, when attempting to prove a multiplicative conjunction (tensor), say G1 ⊗G2, from the
context ∆, the latter must be split into disjoint contexts ∆1 and ∆2 for which G1 follows from
∆1 and G2 follows from ∆2. Since there is an exponential number of such splits, it is important
to delay the choice of a split as much as possible. A mechanism for the lazy splitting of contexts
is presented based on viewing proof search as a process that takes a context, consumes part of
it, and returns the rest (to be consumed elsewhere). In addition, we use collections of Kripke
interpretations indexed by a commutative monoid to provide models for this logic programming
language and show that logic programs admit a canonical model.

1 Introduction

Fragments of intuitionistic first-order and higher-order logics are commonly used as specification
languages and logic programming languages. For example, first-order and higher-order versions
of hereditary Harrop formulas (formulas with no positive occurrences of disjunctions or existential
quantifiers) have been used both as specification languages for proof systems (Felty, 1993; Felty
and Miller, 1988; Paulson, 1990; Pfenning, 1988) and as the basis of logic programming languages
(Gabbay and Reyle, 1984; Hallnäs and Schroeder-Heister, 1990; McCarty, 1988; Miller, 1990; Miller,
Nadathur, Pfenning, and Scedrov, 1991). Part of the expressiveness of such systems derives from

∗This paper will appear in a special issue of Journal of Information and Computation in mid 1994.

1



the proof rule that states that in order to prove an implication D ⊃ G from the context (set of
assumptions) Γ, first augment the context with D and attempt a proof of G in the new context.
That is, the sequent Γ −→ D ⊃ G has a proof if and only if Γ ∪ {D} −→ G has a proof.

The stack-like left-hand side of sequents in intuitionistic sequent proofs can be exploited by
programs in many ways. In theorem provers, they can be used to store the current assumptions
and eigen-variables of a proof; in natural language parsers, they can be used to store assumed gaps
when parsing relative clauses; in data base programs, they can be used to store the state of the
data base; in logic programs, they can be used to provide a basis for modular programming, local
declarations, and abstract data types.

While intuitionistic contexts naturally address computing concerns in a large number of ap-
plications, in others they are too limiting. One problem that appears frequently is that, speaking
operationally, once an item is placed into a context, it is not possible to remove it, short of stopping
the process that created the context. Since the contraction rule is freely available in intuitionistic
logic, contexts can always be assumed to grow as the proof is developed from the bottom up. Such
monotonicity is problematic in numerous settings.

• When using an intuitionistic meta-logic to design theorem provers it is natural to use the
meta-logic’s context to manage object-level hypotheses and eigen-variables (Felty and Miller,
1988; Paulson, 1990). With such an approach, however, there is no logical way to specify any
variations of the contraction rule for the object logic: arbitrary contraction on all hypotheses
is imposed by the meta-logic.

• A proposed technique for parsing relative clauses is to first assume the existence of a noun
phrase (a gap) and then attempt to parse a sentence (Pareschi, 1989). Intuitionistic contexts
do not naturally enforce the constraint that the assumed gap must be used while parsing
the relative clause and that the gap cannot appear in certain positions (“island constraints”
(Pereira and Shieber, 1987)).

• Intuitionistic contexts can be used to manage a data base. While adding facts, querying facts,
and performing hypothetical reasoning (“if I pass CS121, will I graduate”) are easy to model
using intuitionistic contexts, updating and retracting facts cannot be modeled straightfor-
wardly (Bonner, McCarty, and Vadaparty, 1989; Gabbay and Reyle, 1984; Miller, 1989b).

• A notion of state encapsulation (as in object-oriented programming) can be approximated
using intuitionistic logic (Hodas and Miller, 1990) by representing an object’s state with
assumptions in a context. Updating that state, however, means changing those representative
assumptions, and the only change allowed with intuitionistic contexts is augmentation. Thus,
as computation progresses, an object’s state becomes progressively more non-deterministic:
seldom the desired notion of state.

Each of these problems can be addressed by adopting a more refined notion of context. In this
paper, which is a revision and extension of a paper given at the 1991 Logic in Computer Science
Symposium (Hodas and Miller, 1991), we present a fragment of linear logic that makes a suitable
logic programming language and permits very natural solutions to all of the above problems.

For the purposes of this paper we will characterize logic programming languages by concentrat-
ing only on logical connectives and quantifiers of first-order logic. We will not address notions of
control: in particular, we will equate the “execution” of logic programs with the non-deterministic
bottom-up search for certain kinds of proofs. We shall mostly ignore the large number of issues
that are involved in converting specifications of computations, of the sort given here, to real com-
putations. These issues are currently being studied by the authors.

2



2 Logic programming language design

Not all logics appear to be appropriate as the foundation of a logic programming language: while
a weak logic such as Horn clauses clearly is appropriate for such a use, many richer logics do not
seem to be. In a sense, logic programming should be based as much on a notion of “goal-directed
search” as on the fact that it makes use of the syntax and semantics of logic. Full first-order logic,
for example, does not support this notion of goal-directed search. In previous work goal-directed
search was formalized using the concept of uniform sequent proof (Miller, 1989b; Miller et al.,
1991). In this section we review the definition of uniform proofs and present a logic programming
language based on intuitionistic (actually minimal) logic that significantly extends Horn clauses.
It is this logic programming language that we shall refine with linear logic connectives in the next
section.

It has been argued in various places, for example (Miller, 1989b; Miller et al., 1991), that
evaluation in logic programming is the search for certain simple, cut-free, sequent proofs. In
such a view, a sequent Γ −→ G denotes the state of an interpreter that is attempting to determine
whether the goal G follows from the program Γ. Goal-directed search is characterized operationally
by the bottom-up construction of proofs in which right-introduction rules are applied first and left-
introduction rules are applied only when the right-hand side is atomic. This is equivalent to
saying that the logical connectives in a goal are decomposed uniformly and independently from the
program: the program is only considered when the goal has a non-logical constant for its head —
that is, when it is atomic. This idea is formalized for single conclusion sequent systems with the
following definitions.

Definition 1 A cut-free sequent proof is a uniform proof if for every occurrence in the proof of a
sequent whose right-hand side is not atomic, that sequent is the conclusion of a right-introduction
rule.

Definition 2 Let D and G be (possibly infinite) sets of formulas. The triple 〈D,G,`〉 is an (ab-
stract) logic programming language if for every finite subset Γ ⊆ D and for every G ∈ G, the
sequent Γ −→ G has a proof in the proof system ` if and only if it has a uniform proof in `.
The set D represents those formulas that are taken to be program clauses and the set G are those
formulas that are taken to be goals.

Clearly, full first-order classical and intuitionistic logics are not logic programming languages.
That is, ifN is taken to be all first-order formulas and ` is taken to be either classical or intuitionistic
provability, then the triple 〈N ,N ,`〉 is not a logic programming language, since in each case there
are provable sequents, such as p ∨ q −→ q ∨ p, that have no uniform proofs.

An intuitionistic sequent calculus I for the logical connectives true,∧,⊃, and ∀ is given in
Figure 1. Here, the left-hand side of a sequent is intended to be a set: thus the structural rules of
exchange and contraction are not needed. This follows from the fact that the pattern Γ, a (denoting
the set union of Γ and {a}) matches the set {a, b, c} in two ways: one assigns Γ to {a, b, c} and the
other to {b, c}. Because of the form of the identity inference, the structural rule for weakening is
also not required. It should be noted that it is possible to formulate this logic with multisets of
formulas (rather than sets), in which case the structural rules (except for exchange) would need to
be made explicit. That formulation is relevant to the first formulation of linear logic in the next
section.

The expression Γ `I G denotes the proposition that there is an I-proof of the sequent Γ −→ G.
Gentzen’s proof of cut-elimination (Gentzen, 1969) can be used to show that the cut rule in Figure 2
is admissible in I. Although it is possible to require Γ = Γ′ in the cut rule, the more general form

3



Γ, B −→ B
identity

Γ −→ true
trueR

Γ, B1, B2 −→ C

Γ, B1 ∧B2 −→ C
∧ L

Γ −→ B Γ −→ C

Γ −→ B ∧ C
∧R

Γ −→ B Γ, C −→ E

Γ, B ⊃ C −→ E
⊃ L

Γ, B −→ C

Γ −→ B ⊃ C
⊃ R

Γ, B[t/x] −→ C

Γ, ∀x.B −→ C
∀L Γ −→ B[y/x]

Γ −→ ∀x.B
∀R,

provided that y is not free in the lower sequent.

Figure 1: The proof system I for a fragment of intuitionistic logic.

Γ′ −→ B Γ, B −→ C

Γ′ −→ C
cut, provided Γ ⊆ Γ′.

Figure 2: The cut-rule for I.

given is useful in showing certain model-theoretic results. Cut will be stated in a similar form for
the proof system given in Figure 7 and that form of cut will be used to advantage in Section 6
where a semantic result is presented.

Proposition 1 The triple 〈N0,N0,`I〉, where N0 is the set of all formulas built from the logi-
cal constants true,∧,⊃, and ∀, and where `I is intuitionistic provability, is a logic programming
language.

This proposition is proved by showing that given an I-proof it is always possible to permute
enough inference rules to make it uniform. For a closely related proof see (Miller, 1989b). The
main proof in (Miller et al., 1991) is concerned with a much stronger language that includes some
forms of function and predicate quantification.

It is possible to constrain uniform proofs in this logic even more and still not lose completeness.
In particular, it is apparent from the proof of the last proposition that left-introduction rules are
only needed to support backchaining. This observation involves two parts: first, backchaining is
a composition of several left-introduction rules and second, when an atomic goal is to be proved,
there must be some particular formula on the left that can be processed completely to provide a
subproof of that atomic goal. By extending this observation, Andreoli has developed an interesting
generalization of backchaining, called focusing (Andreoli, 1992).

These observations about backchaining are captured in the following proof system. Let B be a
formula over the logical constants true,∧,⊃, and ∀, and define |B| to be the smallest set of pairs
such that

1. 〈∅, B〉 ∈ |B|,
2. if 〈∆, B1 ∧B2〉 ∈ |B| then both 〈∆, B1〉 ∈ |B| and 〈∆, B2〉 ∈ |B|,
3. if 〈∆, ∀x.B′〉 ∈ |B| then for all closed terms t, 〈∆, B′[t/x]〉 ∈ |B|, and

4. if 〈∆, G ⊃ B′〉 ∈ |B| then 〈∆ ∪ {G}, B′〉 ∈ |B|.

4



Γ −→ G1 . . . Γ −→ Gn

Γ −→ A
BC,

provided n ≥ 0, A is atomic, B ∈ Γ, and 〈{G1, . . . , Gn}, A〉 ∈ |B|.

Figure 3: Backchaining for I.

Informally, if 〈∆, A〉 ∈ |B| then the formula B can be used to establish the formula A if each of
the formulas in the set ∆ can be established; that is, A might be proved by backchaining over B.
Furthermore, backchaining can be limited to the case where the formula A is atomic. Let I ′ be the
proof system that results from replacing the identity, ⊃ L,∧L, and ∀L rules in Figure 1 with the
backchaining inference rule in Figure 3.

Proposition 2 Let Γ∪{B} be a set of formulas over true,∧,⊃, and ∀. Then, the sequent Γ −→ B
has a proof in I if and only if it has a proof in I ′.

Again, the proof of this follows from the permutability inference rules. Note that there is only
one left-rule in I ′, namely BC, and proofs in I ′ are necessarily uniform since BC applies only to
sequents with atomic right-hand sides. The I ′ proof system provides a useful starting point for the
implementation of an interpreter for this logic programming language.

Since it is only the impermutability of the left-hand rules for disjunction and existential quan-
tification that keep uniform proofs from being complete for full first-order intuitionistic logic, it
is possible to introduce disjunctions and existential quantifiers as long as they never need to be
introduced on the left. This is possible if they have only positive occurrences in (cut-free) proofs:
that is, if they appear only positively in formulas on the right of sequents and negatively in formulas
on the left of sequents. There are at least two ways that such a restriction can be maintained.

First, define the sets D0 and G0 to be the D and G-formulas given by the following mutual
recursion:

D := true | A | D1 ∧D2 | G ⊃ D | ∀x.D
G := true | A | G1 ∧G2 | G1 ∨G2 | ∃x.G | D ⊃ G | ∀x.G.

If the I-proof system is extended with the introduction rules for ∨ and ∃, the triple 〈D0,G0,`I〉
is a logic programming language. The proof of this does not differ significantly from the proof
of Proposition 1. It is, in fact, this language that is referred to as first-order hereditary Harrop
formulas in (Miller et al., 1991).

Alternately, we can use a slightly higher-order variant of the logic over just true,∧,⊃, and ∀ to
“define” part of the meaning of disjunctions and existential quantifiers. In particular, consider the
three higher-order Horn clauses (see Nadathur and Miller, 1990, for a treatment of such clauses):

∀P∀Q[P ⊃ (P ∨Q)] ∀P∀Q[Q ⊃ (P ∨Q)] ∀B∀T [(B T ) ⊃ ∃B]

Here, ∨ and ∃ are treated as non-logical symbols that have the types (as in Church’s Simple
Theory of Types (Church, 1940)) o → o → o and (i → o) → o, respectively, where o is the type
of propositions and i is the type of individuals. These clauses encode the right-introduction rules
for disjunctions and existential quantifiers. In order to enforce the fact that these three clauses
are to act as definitions, it is necessary to restrict occurrences of the non-logical constants ∨ and
∃ as in the paragraph above: ∨ and ∃ can have no negative occurrences in a goal and no positive
occurrences in program clauses other than the three clauses displayed above. This ensures that

5



the only clauses that can be used to prove a disjunctive or existential goal are those given above.
These two approaches amount to a description of the same logic programming language.

Throughout this discussion, the cut-elimination theorem has not played a major role, since
computation in logic programming has been identified with the search for cut-free proofs. As we
shall show in Section 6, the cut-elimination theorem plays the important “external” role of providing
canonical models for logic programming languages.

3 A linear logic programming language

It is possible to assume, without loss of generality, that I ′-proofs have the following property: if the
sequents Γ −→ B and Γ′ −→ B′ have occurrences on the same path in a proof, with Γ −→ B being
closer to the endsequent, then Γ ⊆ Γ′. Thus, as a computation builds a proof from the bottom
up, the left-hand sides of sequents do not decrease. This limitation on the sort of changes that
are allowed means that intuitionistic contexts are too simplistic for many desired uses of contexts
in logic programming. Since contexts can be assumed to be non-decreasing, formulas in them
are available for backchaining on any number of times; they represent unbounded resources for
constructing proofs. Linear logic offers a natural setting where notions of bounded and unbounded
resource can be developed.

In order to refine the logic programming language described in Section 2, we consider the linear
logic connectives >,&,⊗,−◦, !, and ∀. Proof rules for these connectives are given in Figure 4 and a
cut rule for this proof system is given in Figure 5. Here, the left-hand side of sequents are multisets
of formulas. As a result, the structural rule for exchange need not be explicitly stated. The
structural rules of contraction and weakening are given as the inference rules !C (for contraction)
and !W (for weakening), but they are only available for formulas of the form !B. The syntactic
variable ! ∆ denotes the multiset {! C | C ∈ ∆}. We write ∆ `LL B if the sequent ∆ −→ B has
a proof in the proof system of Figure 4. Because all sequents in Figure 4 are single conclusion
sequents, we shall be working completely within the “intuitionistic” fragment of linear logic.

It is easy to see that linear logic, even over just the logical connectives considered here, is not
an abstract logic programming language. For example, the sequents a⊗ b −→ b⊗ a, ! a −→ ! a⊗!a,
! a & b −→ ! a, and b ⊗ (b −◦ ! a) −→ ! a are all provable in intuitionistic linear logic but do not
have uniform LL-proofs. The problem here is that ⊗R and ! R do not permute down over all the
left-introduction rules. For this reason, we consider, instead, a fragment of linear logic that contains
neither ! nor ⊗ as connectives, although it retains some of their functionality. We do this by making
two changes to the formulation of linear logic given in Figure 4. First, sequents will be of the form
Γ;∆ −→ B where B is a formula, Γ is a set of formulas, and ∆ is a multiset of formulas. Such
sequents have their context divided into two parts: the unbounded part, Γ, that corresponds to the
left-hand side of intuitionistic sequents, and the bounded part, ∆, which corresponds to left-hand
side of sequents of the purely linear fragment of linear logic (no !’s). Contraction and weakening
are allowed in the unbounded part of the context, but not in the bounded part. As we show below,
the sequent B1, . . . , Bn; C1, . . . , Cm −→ B can be mapped to the linear logic sequent

! B1, . . . , !Bn, C1, . . . , Cm −→ B.

Given this style of sequent, it is natural to make a second modification to linear logic by introducing
two kinds of implications: the linear implication, for which the right-introduction rule adds its
assumption to the bounded part of a context, and the intuitionistic implication (written ⇒), for
which the right-introduction rule adds its assumption to the unbounded part of a context. Of
course, the intended meaning of B ⇒ C is (! B)−◦ C.

6



B −→ B
identity

∆ −→ > >R

∆, Bi −→ C

∆, B1 & B2 −→ C
&L (i = 1, 2)

∆ −→ B ∆ −→ C

∆ −→ B & C
&R

∆1 −→ B ∆2, C −→ E

∆1, ∆2, B −◦ C −→ E
−◦ L

∆, B −→ C

∆ −→ B −◦ C
−◦R

∆, B1, B2 −→ C

∆, B1 ⊗B2 −→ C
⊗ L

∆1 −→ B ∆2 −→ C

∆1, ∆2 −→ B ⊗ C
⊗R

∆ −→ C

∆, ! B −→ C
! W

∆, !B, ! B −→ C

∆, ! B −→ C
! C

∆, B −→ C

∆, ! B −→ C
! D

!∆ −→ B

!∆ −→ ! B
! R

∆, B[t/x] −→ C

∆, ∀x.B −→ C
∀L ∆ −→ B[y/x]

∆ −→ ∀x.B
∀R,

provided that y is not free in the lower sequent.

Figure 4: The proof system LL for a fragment of linear logic

∆ −→ B ∆′, B −→ C

∆, ∆′ −→ C
cut

Figure 5: A cut-rule for LL.

So far, only the logical connectives −◦ and ⇒ have been motivated. Consider a sequent in
which the bounded formulas are atomic. If the only logical connectives are −◦ and ⇒ then every
formula in the bounded part of the context must be used exactly once: that is, they must be
accounted for in some identity inference rule by matching them with the same formula on the right
of a sequent. Such rigid control of resources is limiting for most uses. For example, if a data base is
held in the bounded part of a context, then querying the data base about an item makes that item
unavailable elsewhere. Also, before a computation on the data base can be finished, it is necessary
to “read” all items in this way. If, however, we add the connectives > and &, we have the ability to
erase parts of the bounded context (using >) and to duplicate bounded contexts (using &). Thus,
non-destructively reading a value from a data base can be achieved by first making a copy of the
data base from which we destructively read one item and delete the rest: the original data base is
untouched. See Section 5.6 for an example of this kind of data base program specification.

Figure 6 presents a proof system L for the logic connectives >,&,−◦,⇒, and ∀. We write
Γ;∆ `L B if the sequent Γ; ∆ −→ B has a proof in L. Notice that the bounded part of the left
premise of the ⇒ L inference rule is empty: this follows from the structure of an LL-proof with an
application of −◦L to a formula of the form !B −◦ C. Notice as well that we assume without loss
of generality that the identity inference of this system applies only where the right-hand side is an
atomic formula. This technical restriction is used in the proof of Proposition 4 below.

Figure 7 presents the two cut rules for L. Girard’s proof of the cut-elimination theorem for
linear logic (Girard, 1987a) can be adjusted to show that these two cut rules are admissible over
`L. A direct proof of cut elimination for this system can be found in the first author’s dissertation,
which also includes complete proofs of the other proof-theoretic propositions in this paper (Hodas,

7



Γ; A −→ A
identity

Γ, B;∆, B −→ C

Γ, B;∆ −→ C
absorb

Γ;∆ −→ > >R

Γ;∆, Bi −→ C

Γ;∆, B1 & B2 −→ C
& L

Γ;∆ −→ B Γ;∆ −→ C

Γ;∆ −→ B & C
& R

Γ;∆1 −→ B Γ; ∆2, C −→ E

Γ;∆1, ∆2, B −◦ C −→ E
−◦ L

Γ;∆, B −→ C

Γ;∆ −→ B −◦ C
−◦R

Γ; ∅ −→ B Γ;∆, C −→ E

Γ;∆, B ⇒ C −→ E
⇒ L

Γ, B;∆ −→ C

Γ; ∆ −→ B ⇒ C
⇒ R

Γ;∆, B[t/x] −→ C

Γ;∆, ∀x.B −→ C
∀L Γ;∆ −→ B[y/x]

Γ;∆ −→ ∀x.B
∀R

provided that y is not free in the lower sequent.

Figure 6: L: A proof system for the connectives >, &, −◦, ⇒, and ∀. The formula A in the identity
rule is restricted, for convenience only, to be atomic.

Γ′;∆1 −→ B Γ;∆2, B −→ C

Γ′;∆1,∆2 −→ C
cut

Γ′; ∅ −→ B Γ, B;∆ −→ C

Γ′;∆ −→ C
cut!

Figure 7: Two forms of the cut rule for L. Both rules have the proviso that Γ ⊆ Γ′.

1993). This particular presentation of the cut-rules will be useful in Section 6 when we characterize
their admissibility in Proposition 9.

Proposition 3 Let B be a formula, Γ a set of formulas, and ∆ a multiset of formulas, all over the
logical constants >, &,−◦,⇒, and ∀. Let B¦ be the result of repeatedly replacing all occurrences of
C1 ⇒ C2 in B with (!C1)−◦C2. (Applying ¦ to a set or multiset of formulas results in the multiset
of ¦ applied to each member.) Then Γ;∆ `L B if and only if !(Γ¦), ∆¦ `LL B¦.

The proof in each direction can be shown by presenting a simple transformation between proofs in
the two proof systems.

Proposition 4 Let B be a formula, Γ a set formulas, and ∆ a multiset of formulas all over the
logical connectives >, &,−◦,⇒, and ∀. The sequent Γ;∆ −→ B has a proof in L if and only if it
has a uniform proof in L.

Proof. In the reverse direction, the proof is immediate, since a uniform L-proof is certainly an L-
proof. In the forward direction we provide a non-deterministic algorithm that converts an arbitrary
L-proof to a uniform L-proof of the same endsequent. We define a non-uniform rule occurrence
as any occurrence of a left-rule in which the right-hand side of the conclusion is not an atomic
formula. We also note that the absorb rule is considered a left-rule. The rank of a non-uniform
rule occurrence is the height of the subproof of the right-hand premise if the rule occurrence is
either −◦L or ⇒ L or is the height of the subproof of the sole premise for any other left-hand rule
occurrence. The algorithm is given as follows:

1. If the proof is uniform, terminate; otherwise, go to the next step.

8



2. Select a non-uniform rule occurrence with the property that the sub-proof(s) rooted at
premise(s) of the rule are uniform. (That such a choice can be made is immediate given
the assumption that identity inferences have only atomic right-hand sides.) Let C be the
non-atomic right-hand side of the conclusion of this non-uniform rule occurrence.

3. One premise of the rule selected will be the conclusion of a right-rule that introduces the logical
constant for C. There are only 25 such combinations of left-rules below right-introduction
rules possible in an L-proof. For all of these cases, it can be checked that the left-rule permutes
up through the right rule. We will only illustrate one case, where an instance of −◦L occurs
below an instance of &R, as displayed below:

Ξ1
Γ;∆1 −→ B1

Ξ2
Γ;∆2, B2 −→ C1

Ξ3
Γ;∆2, B2 −→ C2

Γ;∆2, B2 −→ C1 & C2
&R

Γ;∆1,∆2, B1 −◦B2 −→ C1 & C2
−◦L

where we assume Ξ1, Ξ2, and Ξ3 are uniform proofs of their respective endsequents. This
proof structure is converted to one of the form:

Ξ1
Γ;∆1 −→ B1

Ξ2
Γ;∆2, B2 −→ C1

Γ;∆1, ∆2, B1 −◦B2 −→ C1
−◦L

Ξ1
Γ;∆1 −→ B1

Ξ3
Γ;∆2, B2 −→ C2

Γ;∆1,∆2, B1 −◦B2 −→ C2
−◦L.

Γ;∆1, ∆2, B1 −◦B2 −→ C1 & C2
&R

At this point, it is necessary to call this procedure recursively on the sub-proofs rooted at the
premises of the new final rule, since new non-uniform rule occurrences may have been created
immediately above. Fortunately, since such new occurrences of non-uniform rules will have
strictly smaller ranks, this recursion will terminate. With the termination of the recursion(s),
the number of non-uniform rule occurrences in the overall proof has been reduced by one.

4. Go to step 1.

Since each pass through the outer-loop of this algorithm reduces by one the number of non-uniform
rule occurrences, the algorithm yields a uniform proof when it terminates. Thus, any sequent
provable in L can be proved by a uniform L-proof.

Let N1 be the set of all first-order formulas over the logical connectives >,&,−◦,⇒, and ∀. It
follows immediately from Proposition 4 that the triple 〈N1,N1,`L〉 is an abstract logic programming
language. (Here, we assume that formulas in N1 can occur in both the bounded and unbounded
parts of a sequent’s left-hand side.)

As with system I ′ it is possible to restrict uniform proofs even further in the sense that the use
of left-hand rules can be restricted to a form of backchaining. Consider the following definition. Let
the syntactic variable B range over the logical formulas containing just the connectives >, &,−◦,⇒,
and ∀. Then ‖B‖ is the smallest set of triples of the form 〈Γ, ∆, B′〉 where Γ is a set of formulas
and ∆ is a multiset of formulas, such that

1. 〈∅, ∅, B〉 ∈ ‖B‖,
2. if 〈Γ, ∆, B1 & B2〉 ∈ ‖B‖ then both 〈Γ, ∆, B1〉 ∈ ‖B‖ and 〈Γ, ∆, B2〉 ∈ ‖B‖,
3. if 〈Γ, ∆,∀x.B′〉 ∈ ‖B‖ then for all closed terms t, 〈Γ, ∆, B′[t/x]〉 ∈ ‖B‖,

9



Γ; ∅ −→ B1 . . . Γ; ∅ −→ Bn Γ;∆1 −→ C1 . . . Γ;∆m −→ Cm

Γ;∆1, . . . ,∆m, B −→ A
BC

provided n,m ≥ 0, A is atomic, and 〈{B1, . . . , Bn}, {C1, . . . , Cm}, A〉 ∈ ‖B‖.

Figure 8: Backchaining for the proof system L.

4. if 〈Γ, ∆, B1 ⇒ B2〉 ∈ ‖B‖ then 〈Γ ∪ {B1}, ∆, B2〉 ∈ ‖B‖, and

5. if 〈Γ, ∆, B1 −◦B2〉 ∈ ‖B‖ then 〈Γ, ∆ ] {B1}, B2〉 ∈ ‖B‖. (Here, ] denotes multiset union.)

Let L′ be the proof system that results from replacing the identity, −◦L,⇒ L,&L, and ∀L rules
in Figure 6 with the backchaining inference rule in Figure 8.

Proposition 5 Let B be a formula, Γ a set of formulas, and ∆ a multiset of formulas, all over
the logical constants >, &,−◦,⇒, and ∀. The sequent Γ;∆ −→ B has a proof in L if and only if it
has a proof in L′.

Proof. In the reverse direction it is easy to show that each occurrence of a BC rule in L′ can be
converted to (possibly) several occurrences of the &L, −◦L, ⇒ L, ∀L, and identity rules in L. The
proof in the forward direction is more involved.

Let Ξ be an L-proof of Γ; ∆ −→ B. Mark certain occurrences of formulas in the bounded part
of some sequents in Ξ as follows. The unique formula in the bounded part of the conclusion of
every identity rule is marked. By referring to Figure 6 we then mark additional formula occurrences
using induction on the structure of proofs as follows:

• If the Bi formula occurrence in the &L rule is marked, then mark the occurrence of B1 & B2

in its conclusion.

• If the B[t/x] formula occurrence in the ∀L rule is marked, then mark the occurrence of ∀x.B
in its conclusion.

• If the C formula occurrence in the right-hand premise of the −◦L rule is marked, then mark
the occurrence of B −◦ C in its conclusion

• If the C formula occurrence in the right-hand premise of the ⇒ L rule is marked, then mark
the occurrence of B ⇒ C in its conclusion.

As in (Miller, 1989b), an occurrence of a left-introduction rule is called simple if the occurrence of
the formula containing the logical connective introduced is marked. A uniform proof in which all
occurrences of left-introduction rules are simple is called a simple proof.

Now observe two facts about simple proofs. First, if Ξ is simple, then Ξ can be transformed
directly into an L′-proof: simply collapse all chains of left-introduction rules (following the marking
process) into one BC inference rule. Second, by permuting inference rules, any uniform L-proof can
be transformed into a simple proof. The proof of this is similar to the proof of Proposition 4. Find
a non-simple occurrence of a left-introduction rule for which the subproofs of its premise(s) are
simple proofs. One of the premises of this non-simple occurrence of a left-introduction rule must
also be a left-introduction rule. Permute these two left-introduction rules. Consider, for example,

10



the following case where these two left-introduction rules are −◦L.

Ξ1
Γ;∆1 −→ B1

Ξ2
Γ;∆2, B2 −→ C1

Ξ3
Γ; ∆3, C2 −→ E

Γ;∆2, ∆3, B2, C1 −◦ C2 −→ E
−◦L

Γ;∆1, ∆2, ∆3, B1 −◦B2, C1 −◦ C2 −→ E
−◦L

Here we assume Ξ1, Ξ2, and Ξ3 are simple proofs. This proof structure is then converted to the
following proof by permuting these two inference rule occurrences.

Ξ1
Γ;∆1 −→ B1

Ξ2
Γ;∆2, B2 −→ C1

Γ;∆1, ∆2, B1 −◦B2 −→ C1
−◦L Ξ3

Γ;∆3, C2 −→ E

Γ;∆1, ∆2, ∆3, B1 −◦B2, C1 −◦ C2 −→ E
−◦L

It may be necessary to continue permuting inference rules in this fashion since, in this case, the
subproof of the sequent Γ; ∆1,∆2, B1 −◦ B2 −→ C1 may not be simple. The result of continuing
this process is then a simple proof of the sequent Γ; ∆1, ∆2, ∆3, B1 −◦ B2, C1 −◦ C2 −→ E. In this
way, all non-simple occurrences of left-introduction rules can be eliminated, giving rise to a simple
proof, which can, as noted, be converted to an L′ proof.

Note that, unlike the system I ′, proofs in L′ are not necessarily uniform due to the presence
of the absorb rule, which may act on sequents with non-atomic right-hand sides. Nevertheless,
it is easy to see that all uses of this rule can be pushed up a proof tree so that they occur only
immediately below instances of BC. Such L′ proofs are then uniform.

As was noticed in Section 2, since we are only interested in cut-free proofs, it is possible to
permit different sets of formulas to occur on the left and right of the sequent arrow. As in Section 2,
there are at least two ways to do this. We can expand the logic by allowing some occurrences of
additional logical constants, or we can use higher-order quantification with respect to the given
logic to “define” the additional constants.

Using the first approach, consider the following definition of two classes of formulas over the
logical constants >,1, &,⊗,⊕,−◦,⇒, !, ∀, and ∃.

R := > | A | R1 & R2 | G−◦R | G ⇒ R | ∀x.R
G := > | A | G1 & G2 | R−◦G | R ⇒ G | ∀x.G | G1 ⊕G2 | 1 | G1 ⊗G2 | ! G | ∃x.G

Here, R-formulas, called resource formulas, can appear in either part of the proof context (on the
left of a sequent) while G-formulas, called goal formulas, can appear on the right of sequents. Given
this extension, it is necessary to add to the proof system L′ right-introduction rules for 1,⊕,⊗, !
and ∃. Let L′′ be the proof system that results from adding the right-introduction rules in Figure 9
to L′. (Notice that since 1 is logically equivalent to !>, it could be dropped from this definition.)
In this same setting, it is also possible to use a more restrictive definition for resource formulas
(R-formulas):

R := > | A | R1 & R2 | G−◦A | G ⇒ A | ∀x.R. (∗)
Although such a simplification does not change the expressiveness of the logic much, it makes the
presentation of an interpreter for the logic simpler, as will be seen in Section 7.

The second approach does not extend the logic by adding these logical constants directly but
instead axiomatizes their right-introduction rules using higher-order quantification. The following
clauses are appropriate definitions for these constants:

11



Γ; ∅ −→ 1
1R

Γ; ∅ −→ B

Γ; ∅ −→ ! B
! R

Γ; ∆ −→ Bi

Γ;∆ −→ B1 ⊕B2
⊕R (i = 1, 2)

Γ;∆ −→ B[x/t]
Γ;∆ −→ ∃x.B

∃R Γ; ∆1 −→ B1 Γ;∆2 −→ B2

Γ;∆1, ∆2 −→ B1 ⊗B2
⊗R

Figure 9: Additional rules for positive occurrences of 1,⊗,⊕, !, and ∃.

∀P∀Q[P −◦ (P ⊕Q)]
∀P∀Q[Q−◦ (P ⊕Q)]
∀B∀T [(B T )−◦ (∃B)]

> ⇒ 1
∀P∀Q[P −◦Q−◦ (P ⊗Q)]

∀P [P ⇒ ! P ]

If we assume that there are no negative occurrences of any of these constants within a proof (except
in these defining formulas) then this amounts to the same restriction as in the first approach.

4 An embedding of hereditary Harrop formulas

Girard has presented a mapping of intuitionistic logic into linear logic that preserves not only
provability but also proofs (Girard, 1987a). On the fragment of intuitionistic logic containing true,
∧, ⊃, and ∀, the translation is given by:

(A)0 = A, where A is atomic,
(true)0 = 1,

(B1 ∧B2)0 = (B1)0 & (B2)0,
(B1 ⊃ B2)0 = !(B1)0 −◦ (B2)0,

(∀x.B)0 = ∀x.(B)0.

However, if we are willing to focus attention on only cut-free proofs in I ′ and L′′, it is possible to
define a “tighter” translation. Consider the following two translation functions.

(A)+ = (A)− = A, where A is atomic
(true)+ = 1
(true)− = >

(B1 ∧B2)+ = (B1)+ ⊗ (B2)+

(B1 ∧B2)− = (B1)− & (B2)−

(B1 ⊃ B2)+ = (B1)− ⇒ (B2)+

(B1 ⊃ B2)− = (B1)+ −◦ (B2)−

(∀x.B)+ = ∀x.(B)+

(∀x.B)− = ∀x.(B)−

If we allow positive occurrences of ∨ and ∃ within cut-free proofs, as in proofs involving the
hereditary Harrop formulas, we would also need the following two clauses.

(B1 ∨B2)+ = (B1)+ ⊕ (B2)+

(∃x.B)+ = ∃x.(B)+

12



Proposition 6 Let B be a formula and Γ a set of formulas, all over the logical constants true,∧,⊃,
and ∀. Define Γ− = {C− | C ∈ Γ}. Then, Γ `I B if and only if the sequent Γ−; ∅ −→ B+ has a
cut-free proof in L′′.

Proof. First observe that if B is a formula over the logical constants true,∧,⊃, and ∀ then
〈∆, A〉 ∈ |B| if and only if 〈∅, ∆+, A〉 ∈ ‖B−‖. Let Ξ be an I ′-proof of Γ −→ B. This proof can
be converted to a proof Ξo of Γ−; ∅ −→ B+ by converting the inference rules trueR, ∧R, ⊃ R, and
∀R to the L′′ inference rules 1R, ⊗R, ⇒ R, and ∀R. Furthermore, instances of the BC rule of I ′
need to be converted to BC paired with absorb in L′′. For the converse, let Ξo be an L′′-proof of
Γ−; ∅ −→ B+. As was mentioned in the last section, we can assume that the only occurrences of
the absorb rule are such that their premise is the conclusion of an instance of the BC rule. Such a
proof can be converted to a proof in L′′ by reversing the conversion mentioned for the first case.
(Girard has pointed out to us that this proposition should be provable directly within his LU proof
system (Girard, 1991).)

A consequence of this proposition is that I ′-proofs involving Horn clauses or hereditary Harrop
formulas are essentially the same as the L′′-proofs of their translations. This suggests how to design
the concrete syntax of a linear logic programming language so that the interpretation of Prolog
and λProlog programs remains unchanged when embedded into this new setting. For example, the
Prolog syntax

A0 : − A1, . . . , An

is traditionally intended to denote (the universal closure of) the formula

(A1 ∧ . . . ∧An) ⊃ A0.

Given the negative translation above, such a Horn clause would then be translated to the linear
logic formula

(A1 ⊗ . . .⊗An)−◦A0.

Thus, the comma in Prolog denotes ⊗ and : − denotes the converse of −◦.
For another example, the natural deduction rule for implication-introduction, often expressed

using the diagram
(A)
...
B

A ⊃ B,

can be written as the following first-order formula for axiomatizing a truth predicate (see Felty,
1993; Felty and Miller, 1988; Paulson, 1990):

∀A∀B((true(A) ⊃ true(B)) ⊃ true(A imp B)),

where the domain of quantification is over propositional formulas of the object-language and imp
is the object-level implication. This formula is written in λProlog using the syntax

true (A imp B) :- true A => true B.

Given the above proposition, this formula can be translated to the formula

∀A∀B((true A ⇒ true B)−◦ true (A imp B)),

13



which means that the λProlog symbol => should denote ⇒. Thus, in the implication introduction
rule displayed above, the meta-level implication represented as three vertical dots can be interpreted
as an intuitionistic implication while the meta-level implication represented as the horizontal bar
can be interpreted as a linear implication.

Notice that when building L′′-proofs of sequents translated from intuitionistic logic, the bounded
part of sequents is non-empty only at the point that the backchaining rule is applied. If we relate
this observation to the construction of normal λ-terms, where backchaining corresponds to the
application of a typed constant or variable, we draw the (obvious) conclusion that every normal
λ-term has exactly one head symbol.

In order to present several examples in the next section, we shall make use of the following
syntactic conventions for specifying resource formulas and goal formulas. These conventions are
motivated by the last proposition so that the syntax of Prolog and λProlog embed naturally into
the extended language. The symbols , (comma), true, =>, and :- of Prolog and λProlog will be
used here to represent ⊗, 1, ⇒, and the converse of −◦, respectively. In addition, we allow formulas
to have occurrences of &, bang, erase, -o, and <=, which denote, respectively, &, !, >, −◦, and
the converse of ⇒. We shall also adopt the standard convention that a token with an initial upper
case letter that is not explicitly quantified in a formula is intended to be universally quantified
(respectively, existentially quantified) around a resource formula (goal formula) with outermost
scope. Finally, the clauses of a program are assumed to reside in the unbounded portion of an
initial proof context.

5 Some example programs

5.1 Context management in theorem provers

Intuitionistic logic is a useful meta-logic for the specification of provability in various object-logics.
For example, consider axiomatizing provability in propositional, intuitionistic logic over the logi-
cal symbols imp, and, or, and false (denoting object-level implication, conjunction, disjunction,
and absurdity). A reasonable specification of the natural deduction inference rule for implication
introduction is:

pv (A imp B) :- hyp A => pv B.

where pv and hyp are meta-level predicates denoting provability and hypothesis. (This specification
of implication introduction is similar to that given in the preceding section.) Operationally, this
formula states that one way to prove A imp B is to add the object-level hypothesis A to the context
and attempt a proof of B. In the same setting, conjunction elimination can be expressed by the
formula

pv G :- hyp (A and B), (hyp A => hyp B => pv G).

This formula states that in order to prove some object-level formula G, first check to see if there is
a conjunctive hypothesis, say (A and B), in the context and, if so, attempt a proof of G from the
context extended with the two hypotheses A and B. Other introduction and elimination rules can
be specified similarly. Finally, the formula

pv G :- hyp G.

is needed to actually complete a proof. With the complete specification, it is easy to prove that
there is a proof of (pv G) from the assumptions (hyp H1), . . ., (hyp Hi) in the meta-logic if and
only if there is a proof of G from the assumptions H1, . . ., Hi in the object-logic.

14



pv (A and B) :- pv A & pv B.
pv (A imp B) :- hyp A -o pv B.
pv (A or B) :- pv A.
pv (A or B) :- pv B.
pv G :- hyp (A and B), (hyp A -o hyp B -o pv G).
pv G :- hyp (A or B), ((hyp A -o pv G) & (hyp B -o pv G)).
pv G :- hyp (C imp B), ((hyp (C imp B) -o pv C) &

(hyp B -o pv G)).
pv G :- hyp false, erase.
pv G :- hyp G, erase.

Figure 10: A specification of an intuitionistic propositional object-logic

Unfortunately, an intuitionistic meta-logic does not permit the natural specification of provabil-
ity in logics that have restricted contraction rules — such as linear logic itself — because hypotheses
are maintained in intuitionistic logic contexts and hence can be used zero or more times. Even in
describing provability for propositional intuitionistic logic there are some drawbacks. For instance,
it is not possible to logically express the fact that a conjunctive or disjunctive formula in the proof
context needs to be eliminated at most once. So, for example, in the specification of conjunction
elimination, once the context is augmented with the two conjuncts, the conjunction itself is no
longer needed in the context.

If, however, we replace the intuitionistic meta-logic with our refinement based on linear logic,
these observations about use and re-use in intuitionistic logic can be specified elegantly, as is done
in Figure 10. In that specification, a hypothesis is both “read from” and “written into” a context
during the elimination of implications. All other elimination rules simply “read from” the context;
they do not “write back.” The formulas represented by the last two clauses in Figure 10 use a ⊗
with >: this allows for all unused hypotheses to be erased, since the object logic has no restrictions
on weakening.

It should be noted that this specification cannot be used effectively with a depth-first interpreter
because if the implication left rule can be used once, it can be used any number of times, thereby
causing the interpreter to loop. Fortunately, improvements in the implication left-introduction rule
are known. For example, the proof system given by Dyckhoff in (Dyckhoff, 1992) can be expressed
directly in this setting by replacing the one formula specifying implication elimination in Figure 10
with the five clauses for implication elimination and the (partial) axiomatization of object-level
atomic formulas in Figure 11. Executing this linear logic program in a depth-first interpreter yields
a decision procedure for propositional intuitionistic logic.

5.2 Toggling a switch

If we assume that the state of a switch is stored in the bounded part of the proof context using one
of the atomic formulas on or off, then the following two clauses specify a higher-order predicate
toggle that is provable of any formula G in a given context if G is provable when the switch is set
to the opposite setting.

toggle G :- on, (off -o G).
toggle G :- off, (on -o G).

While this example involves a quantification over propositions (the variable G), and as such is
not strictly a first-order specification, the intended meaning of the specification should be clear.

15



pv G :- hyp ((C imp D) imp B),
((hyp (D imp B) -o pv (C imp D)) & (hyp B -o pv G)).

pv G :- hyp ((C and D) imp B), (hyp (C imp (D imp B)) -o pv G).
pv G :- hyp ((C or D) imp B), (hyp (C imp B) -o hyp (D imp B) -o pv G).
pv G :- hyp (false imp B), pv G.
pv G :- hyp (A imp B), isatom A, hyp A, (hyp B -o hyp A -o pv G).

isatom p.
isatom q.
isatom r.

Figure 11: A contraction-free formulation of ⊃ L

Γ; off −→ off

....
Γ; ∆, on −→ G

Γ;∆ −→ on−◦ G
Γ;∆, off −→ off⊗ (on−◦ G)

Γ;∆, off −→ toggle G

Figure 12: Proof search for toggling a switch

Figure 12 (in which the set Γ is assumed to contain the above two clauses for toggle) shows how
a bottom-up search using these clauses might progress.

This example illustrates an approach which has previously been used by the authors to provide
a notion of object state in object-oriented logic programming (Hodas and Miller, 1990). The linear
refinement of hereditary Harrop formulas provides a straightforward declarative treatment of state
update in that setting.

5.3 Permuting a list

Since the bounded part of contexts in L-proofs are intended to be multisets and not lists, it is
a simple matter to permute a list by first loading the list’s members into the bounded part of a
context and then unloading them. The latter operation is nondeterministic and can succeed once
for each permutation of the loaded list. Consider the following simple program:

load nil K :- unload K.
load (X::L) K :- (item X -o load L K).
unload nil.
unload (X::L) :- item X, unload L.

Here, nil denotes the empty list and :: the list constructor. The meaning of load and unload is
dependent on the contents of the bounded part of the context, so the correctness of these clauses
must be stated relative to a context. Let Γ be a set of formulas containing the four formulas
displayed above and any other formulas that do not contain either item, load, or unload as their
head symbol. (The head symbol of a formula of the form A or G−◦A is the predicate symbol that
is the head of the atom A.) Let ∆ be the multiset containing exactly the atomic formulas

item a1, . . ., item an.

16



We shall say that such a context encodes the multiset {a1, . . . , an}. It is now an easy matter to
prove the following two assertions about load and unload:

• The goal (unload K) is provable from Γ; ∆ if and only if K is a list containing the same
elements with the same multiplicity as the multiset encoded in ∆.

• The goal (load L K) is provable from Γ; ∆ if and only if K is a list containing the same
elements with the same multiplicity as in the list L together with the multiset encoded in the
context ∆.

In order for load and unload to correctly permute the elements of a list, we must guarantee
two things about the context: first, the predicates item, load, and unload cannot be used as head
symbols in any part of the context except as specified above and, second, the bounded part of a
context must be empty at the start of the computation of a permutation. It is possible to handle
the first condition by making use of appropriate universal quantifiers over the predicate names
item, load, and unload. Such an approach to the lexical scoping of names has been addressed in
depth in previous papers (Miller, 1989a, 1990) and will not be taken up here. The second condition
— that the unbounded part of a context is empty — can be managed by making use of the modal
nature of !, which we now discuss in more detail.

5.4 The modality of !

One extension to logic programming languages that has been studied for several years is the demo-
predicate (Bowen and Kowalski, 1982). The intended meaning of attempting a query of the form
demo(R, G) in context Γ is simply attempting the query G in the context containing only R; that
is, the main context is forgotten during the scope of the demo-predicate. The use of a !’ed goal has
a related meaning.

Consider proving the sequent Γ; ∆ −→ ! G1 ⊗ G2, where Γ and ∆ are composed of resource
formulas and G1 and G2 are goal formulas. Given the completeness of uniform proofs for the
system L′′, this is provable if and only if the two sequents Γ; ∅ −→ G1 and Γ; ∆ −→ G2 are
provable. In other words, the use of the “of-course” operator forces G1 to be proved with an
empty bounded context. Thus, with respect to bounded resources, the goal !(R −◦ G) behaves
similarly to demo(R,G). In a sense, since bounded resources can come and go within contexts
during a computation, they can be viewed as “contingent” resources, whereas unbounded resources
are “necessary”. The of-course operator attached to a goal ensures that the provability of the goal
depends only on the necessary and not the contingent resources of the context.

It is now clear how to define the permutation of two lists given the example program above:
add either the formula

perm L K :- bang(load L K).

or, equivalently, the formula

perm L K <= load L K.

to those defining load and unload. Thus attempting to prove (perm L K) will result in an attempt
to prove (load L K) with an empty bounded context. From the description of load above, L and
K must be permutations of each other.

17



5.5 Multiset rewriting

The ideas presented in the permutation example can easily be expanded upon to show how the
bounded part of a context can be employed to do multiset rewriting. Let H be the multiset rewriting
system {〈Li, Ri〉 | i ∈ I} where for each i ∈ I (a finite index set), Li and Ri are finite multisets.
Define the relation M ;H N on finite multisets to hold if there is some i ∈ I and some multiset C
such that M is C ] Li and N is C ]Ri. Let ;∗

H be the reflexive and transitive closure of ;H .
Given a rewriting system H, we wish to specify a binary predicate rewrite such that (rewrite

L K) is provable if and only if the multisets encoded by L and K stand in the ;∗
H relation. Let Γ0

be the following set of formulas (these are independent of H):

rewrite L K <= load L K.

load (X::L) K :- (item X -o load L K).
load nil K :- rew K

rew K :- unload K.

unload (X::L) :- item X, unload L.
unload nil.

Taken alone, these clauses give a slightly different version of the permute program of the last
example. The only addition is the binary predicate rew, which will be used as a socket into which
we can plug a particular rewrite system.

In order to encode a rewrite system H, each rewrite rule in H is given by a formula specifying an
additional clause for the rew predicate as follows: If H contains the pair 〈{a1, . . . , an}, {b1, . . . , bm}〉
then this pair is encoded as the clause:

rew K :- item a1, . . ., item an, (item b1 -o (. . . -o (item bm -o rew K)...)).

If either n or m is zero, the appropriate portion of the formula is deleted. Operationally, this clause
reads the ai’s out of the bounded context, loads the bi’s, and then attempts another rewrite. Let
ΓH be the set resulting from encoding each pair in H. As an example, if H is the set of pairs
{〈{a, b}, {b, c}〉, 〈{a, a}, {a}〉} then ΓH is the set of clauses:

rew K :- item a, item b, (item b -o (item c -o rew K)).
rew K :- item a, item a, (item a -o rew K).

The following claim is easy to prove about this specification: if M and N are multisets repre-
sented as the lists L and K, respectively, then M ;∗

H N if and only if the goal (rewrite L K) is
provable from the context Γ0, ΓH ; ∅.

One drawback of this example is that rewrite is a predicate on lists, though its arguments are
intended to represent multi-sets, and are operated on as such. Therefore, for each M , N pair this
program generates a factor of at least n! more proofs than the corresponding rewriting proofs, where
n is the cardinality of the multiset N . This redundancy could be addressed either by implementing
a data type for multi-sets or, perhaps, by investigating a non-commutative variant of linear logic.

5.6 A data base query language

A program that implements a simple data base query language is displayed in Figure 13. To make
this example interesting, we have augmented the language with the read, write, and nl (new line)

18



db :- write "Command: ", read Command, do Command.
db :- write "Try again.", nl, db.

do (enter Entry) :- entry Entry -o db.
do (commit Entry) :- entry Entry => db.
do (retract Entry) :- entry Entry, db.
do (upd Old New) :- entry Old, (entry New -o db).
do (check Q) :- (entry Q, erase, write Q, write " is an entry.", nl) &

db.
do (necessary Q) :- (bang (entry Q), erase, write Q,

write " is a necessary entry", nl) & db.
do quit :- erase.

Figure 13: A simple data base query program

input/output commands. We shall also assume that the sub-goals of a conjunction are attempted
in a left-to-right order. The data base is stored in both the bounded and unbounded parts of the
context using the unary predicate entry. Entries in the bounded part can be retracted or updated;
entries in the unbounded context are permanent and cannot be updated or retracted. A session
using this program might proceed as follows:

Command: enter (enroll jane cs1).
Command: check (enroll jane X).
(enroll jane cs1) is an entry.
Command: upd (enroll jane cs1) (enroll jane cs2).
Command: check (enroll jane X).
(enroll jane cs2) is an entry.
Command: commit (student jane).
Command: enter (student bob).
Command: necessary(student X).
(student jane) is a necessary entry
Command: retract (student jane).
Command: necessary (student X).
(student jane) is a necessary entry
Command: necessary (student bob).
Try again.
Command: quit.

This example shows some limitations of linear contexts in this data base setting. For example,
it does not seem possible to query a context to find out if an entry is contingent and not necessary
(although accommodating negation-as-failure would make this possible). Thus it is not possible
(with just this logic) to check if a command is attempting to retract a necessary (committed) entry:
as seen in the sample session, such an operation is accepted but ineffective.

5.7 A gap-threading parser for English relative clauses

Our final example is a simple natural language parser which demonstrates how linear logic can
be used to implement a technique known as gap threading (Pereira and Shieber, 1987). Intuition-
istic contexts have been proposed as a means of managing the introduction and scoping of gaps

19



sent P1 P2 :- bang (np P1 P0), vp P0 P2.
vp P1 P2 :- tv P1 P0, np P0 P2.
vp P1 P2 :- stv P1 P0, sbar P0 P2.
sbar (that::P1) P2 :- sent P1 P2.
np P1 P2 :- pn P1 P2.
rel (whom::X) Y :- all z\(np z z) -o sent X Y.
pn (mary::L) L.
pn (bob::L) L.
pn (ann::L) L.
tv (loves::L) L.
tv (married::L) L.
stv (believes::L) L.

Figure 14: A simple parser for gaps in English

(Pareschi, 1989; Pareschi and Miller, 1990). This approach, although modeling various aspects of
gap-threading correctly, is unsatisfactory for at least two reasons. First, the restriction that a gap,
once introduced, must be used is not easy to enforce using an intuitionistic context. Therefore,
the phrase “whom Bob married Ann” would parse incorrectly as a valid relative clause. Second,
various restrictions on where gaps may occur are not explained using intuitionistic contexts. For
example, gaps introduced by “whom” can occur in object but not nominal positions. Thus the
phrase “whom Ann believes that Bob married” is correct (the gap is the object of “married”)
while “whom Ann believes that married Bob” is incorrect (the gap is the subject of “married”).
The “modal” distinction between these two kinds of noun phrases is not addressed naturally using
intuitionistic logic.

The small logic program in Figure 14 is a simple parser based on definite clause grammars
(DCG) (Pereira and Warren, 1980) extended with some uses of linear logic. Each category of the
grammar, such as sent for sentence, vp for verb phrase, sbar for complement clauses, etc., is given
two arguments, denoting a difference list of words. The rule for relative clauses (rel) introduces a
gap by loading the formula all z\(np z z) (which denotes the logical expression ∀z.(np z z)) into
the bounded context. This formula represents a contingent resource: a noun phrase of zero length.
Because of the restrictions placed on the management of the bounded context, the requirement
that introduced gaps be consumed is handled by the logic.

The ! operator provides a simple mechanism for declaring that gaps cannot be consumed during
the parsing of certain occurrences of parts of speech: for example, the subject noun phrase in the
formula specifying sent is protected by a !. This blocks any contingent resources from being used
in its proof. Thus, an introduced gap can be used to prove the noun phrase mentioned in the vp
clause but not the one in the sent clause. Therefore, the two goals

rel (whom::ann::believes::that::bob::married::nil) nil.
rel (whom::bob::married::nil) nil.

are provable but the two goals

rel (whom::ann::believes::that::married::bob::nil) nil.
rel (whom::bob::married::ann::nil) nil.

are not. As this parser rules out subject extraction, sentences that require such extractions must
be handled with additional specialized grammar rules. Several similar types of “island constraints”

20



occur in natural language parsing problems (Pereira and Shieber, 1987). The use of !’ed formulas
may aid in handling these constraints as well.

The duplication of gaps across conjunctions in such phrases as “the doctor whom Bob married
and Jane knew” can be explained well using a & to copy gaps. To this end, the following formula
can be add to the grammar above to handle the conjunction of sentences:

sent P1 P2 :- sent P1 (and::P3) & sent P3 P2.

The first author has extended this application of linear logic to natural language processing
(Hodas, 1992). His dissertation also includes a set of extended examples along the lines of those
given here (Hodas, 1993).

6 A model theoretic semantics

Besides the fact that logic programming languages can be characterized by their use of goal-directed
search, they also generally share the characteristic that given a program, there exists a single model
such that validity in that model is equivalent to provability from the program. Thus when designing
a program (a proof context), a programmer can think of the meaning of a query operationally, as
the search for uniform, cut-free proofs of the query in that context, or declaratively, as truth in the
particular canonical model that the program represents.

The canonical model for first-order Horn clauses is well known (Apt and van Emden, 1982). A
Kripke-like model construction was proposed in (Miller, 1989b) as the canonical model for a subset
of first-order hereditary Harrop formulas, but unfortunately the construction given there was not
shown to be an actual model in the sense of possible-world semantics. A canonical model was
given in (Miller, 1992) for the logic programming language described in Section 2. We shall use the
approach given in (Miller, 1992) to develop a canonical model for the logic programming language
based on >, &, −◦, and ⇒. We shall only consider the propositional case here since most of the
aspects of the model are illustrated in just that simple setting. The analysis of the quantificational
case (including higher-type quantification) given in (Miller, 1992) applies equally well here.

Let 〈R, +, 0〉 be a commutative monoid and let 〈W,≤〉 be a partially ordered set. We shall
call R the monoid of bounded resources and W the set of possible worlds. A (propositional) Kripke
interpretation is an order preserving mapping from 〈W,≤〉 to the powerset of the set of atomic
formulas (here, propositional letters). A resource indexed model M is an R-indexed set of Kripke
interpretations, {Kr | r ∈ R}. Thus the set Kr(w) is intended to denote the set of propositional
formulas that are true at world w ∈ W in interpretation Kr.

Satisfaction in a structure M = {Kr | r ∈ R} is defined by the following induction on the
structure of propositional formulas.

• Kr, w |= >.

• Kr, w |= A if A is atomic and A ∈ Kr(w).

• Kr, w |= B1 & B2 if Kr, w |= B1 and Kr, w |= B2.

• Kr, w |= B1 −◦B2 if ∀r′ ∈ R, ∀w′ ∈ W if w ≤ w′ and Kr′ , w
′ |= B1 then Kr+r′ , w

′ |= B2.

• Kr, w |= B1 ⇒ B2 if ∀w′ ∈ W if w ≤ w′ and K0, w
′ |= B1 then Kr, w

′ |= B2.

Finally, we write M |= B if ∀w ∈ W, K0, w |= B. In a sense, the Kripke interpretation K0

models truth in the usual intuitionistic sense while Kr models truth that has been moved out-of-
phase (borrowing an image from Girard (Girard, 1987a)) by the presence of the resource r ∈ R.
The following lemma is proved by a simple induction on the structure of propositional formulas.

21



Lemma 7 Let r ∈ R and w,w′ ∈ W. If w ≤ w′ and Kr, w |= B then Kr, w
′ |= B.

To aid in describing the satisfaction of sequents, we add the following rules for determining
the satisfaction of 1 and ⊗. If we were investigating models for a logic that allowed unrestricted
occurrences of 1 and ⊗, these satisfaction rules would need to be replaced by stronger rules.

• K0, w |= 1.

• Kr, w |= B1 ⊗ B2 if there are r1, r2 ∈ R such that r = r1 + r2 and Kr1 , w |= B1 and
Kr2 , w |= B2.

We will need the following constructions. If Γ is the set {C1, . . . , Cn} (n ≥ 0) then let &Γ be
the formula C1 & · · ·& Cn (or > if Γ is empty). If ∆ is the multiset {B1, . . . , Bn} (n ≥ 0) then let
⊗∆ be the formula B1⊗ · · ·⊗Bn (or 1 if ∆ is empty). Then we say an L-style sequent Γ; ∆ −→ B
is valid in the model M if ∀w ∈ W, ∀r ∈ R, if K0, w |= &Γ and Kr, w |= ⊗∆ then Kr, w |= B.

Proposition 8 (Soundness Theorem) If Γ; ∆ −→ B has an L-proof then Γ;∆ −→ B is valid
in any resource indexed model.

Proof. Let M = {Kr | r ∈ R} be a resource indexed model. The proof is by induction on the
structure of an L-proof (possibly with occurrences of the cut rules): there are two base cases and
nine inductive cases (we include here the two cut-rules for L).

identity: Given K0, w |= &Γ and Kr, w |= B it follows that Kr, w |= B. Thus, the sequent
Γ;B −→ B is valid in M.

>R: Immediate.

absorb: By the inductive hypothesis, Γ, B;∆, B −→ C is provable, and hence valid in M. Assume
now that K0, w |= (&Γ) & B and Kr, w |= ⊗∆. Thus, K0, w |= B and Kr+0, w |= (⊗∆)⊗B.
By the inductive hypothesis, Kr, w |= C and, hence, Γ, B;∆ −→ C is valid in M.

&R: Immediate.

&L: By the inductive hypothesis, Γ; ∆, Bi −→ C is valid in M for i = 1 or 2. Assume now that
K0, w |= &Γ and Kr, w |= (⊗∆)⊗ (B1 &B2). Thus, there are r1, r2 ∈ R such that r = r1 + r2

and Kr1 , w |= ⊗∆ and Kr2 , w |= B1 & B2. But then Kr2 , w |= Bi and Kr, w |= (⊗∆) ⊗ Bi.
By the inductive hypothesis, Kr, w |= C and, hence, Γ;∆, B1 & B2 −→ C is valid in M.

−◦R: By the inductive hypothesis, Γ; ∆, B −→ C is valid in M. Assume now that K0, w |= &Γ
and Kr, w |= ⊗∆. We need to show that Kr, w |= B −◦ C. Assume that w ≤ w′ and r′ ∈ R
and that Kr′ , w

′ |= B. By Lemma 7 and the definition of the satisfiability of ⊗, we have
K0, w

′ |= &Γ and Kr+r′ , w
′ |= (⊗∆)⊗B. By the inductive hypothesis, Kr+r′ , w

′ |= C. Thus
we have shown that Kr, w |= B −◦ C and also that the sequent Γ;∆ −→ B −◦ C is valid.

−◦L: By the inductive hypothesis, both Γ; ∆1 −→ B and Γ; ∆2, C −→ E are valid in M. Assume
that K0, w |= &Γ and Kr, w |= (⊗∆1) ⊗ (⊗∆2) ⊗ (B −◦ C). Thus there are r1, r2, r3 ∈ R
such that r = r1 + r2 + r3 and Kr1 , w |= ⊗∆1, Kr2 , w |= ⊗∆2, and Kr3 , w |= B −◦ C. By
the validity of the first sequent, Kr1 , w |= B. By the definition of the satisfiability of −◦, we
know Kr1+r3 , w |= C. By the validity of the second sequent, Kr1+r2+r3 , w |= E. Thus, we
have shown that Kr, w |= E and that Γ;∆1, ∆2, B −◦ C −→ E is valid in M.

22



⇒ R: By the inductive hypothesis, Γ, B;∆ −→ C is valid in M. Assume now that K0, w |= &Γ
and Kr, w |= ⊗∆. We need to show that Kr, w |= B ⇒ C. Assume that w ≤ w′ and that
K0, w

′ |= B. By Lemma 7 and the definition of the satisfiability of &, we have K0, w
′ |=

(&Γ) & B and Kr, w
′ |= ⊗∆. By the inductive hypothesis, Kr, w

′ |= C. Thus we have shown
that Kr, w |= B ⇒ C and also that the sequent Γ; ∆ −→ B ⇒ C is valid in M.

⇒ L: By the inductive hypothesis, both Γ; ∅ −→ B and Γ;∆, C −→ E are valid in M. Assume
that K0, w |= &Γ and Kr, w |= (⊗∆)⊗(B ⇒ C). Thus there are r1, r2 ∈ R so that r = r1 +r2

and Kr1 , w |= ⊗∆ and Kr2 , w |= B ⇒ C. By the validity of the first sequent, K0, w |= B. By
the definition of the satisfiability of ⇒, we know Kr2 , w |= C. By the validity of the second
sequent, Kr1+r2 , w |= E. Thus, we have shown that Kr, w |= E and that Γ;∆, B ⇒ C −→ E
is valid in M.

cut: By the inductive hypothesis, both Γ′;∆1 −→ B and Γ;∆2, B −→ C are valid in M. Assume
that K0, w |= &Γ′ and Kr, w |= (⊗∆1)⊗ (⊗∆2). Thus K0, w |= &Γ and there are r1, r2 ∈ R
so that r = r1+r2 and Kr1 , w |= ⊗∆1 and Kr2 , w |= ⊗∆2. By the validity of the first sequent,
Kr1 , w |= B and by the validity of the second sequent, Kr1+r2 , w |= C. Thus, we have shown
that Kr, w |= C and that Γ′;∆1,∆2 −→ C is valid in M.

cut!: By the inductive hypothesis, both Γ′; ∅ −→ B and Γ, B; ∆ −→ C are valid in M. Assume
that K0, w |= &Γ′ and Kr, w |= ⊗∆. By the validity of the first sequent, K0, w |= B and by
the validity of the second sequent, Kr, w |= C. Thus Γ′;∆ −→ C is valid in M.

The following proposition describes how the canonical model for our logic programming language
is built and shows that it has the desired properties.

Proposition 9 (Canonical Model Theorem) Let W be the set of all sets of formulas (over >,
&, −◦, and ⇒) and let ≤ be set inclusion. Let R be the set of all multisets of such formulas and
let + be multiset union and 0 be the empty multiset. Define M = {Kr | r ∈ R} by

Kr(w) = {A | A is atomic and w; r `L A}.

Then the equivalence ∀w ∈ W ∀r ∈ R(w; r `L B if and only if Kr, w |= B) holds if and only if the
two cut rules are admissible in L.

Proof. First, assume that the two cut rules are admissible in L. We proceed by induction on the
structure of the formula B. In the base cases where B is atomic or >, the conclusion is immediate.
Similarly, in the inductive case where B is B1 & B2, the conclusion also follows immediately. This
leaves us with only the following two inductive cases to consider.

B = B1 −◦B2: Assume that w; r −→ B1−◦B2 has a cut-free proof. By Proposition 4, the sequent
w; r,B1 −→ B2 has a cut-free proof. To show Kr, w |= B1 −◦ B2, assume that w ≤ w′

and r′ ∈ R and Kr′ , w
′ |= B1. By the inductive hypothesis, w′; r′ −→ B1 has a cut-free

proof. Using the cut rule and the admissibility of cut, the sequent w′; r + r′ −→ B2 has
a cut-free proof. By induction again, we have Kr+r′ , w

′ |= B2. Thus, Kr, w |= B1 −◦ B2.
To show the converse, assume that Kr, w |= B1 −◦ B2. Since w; B1 −→ B1 has a cut-free
proof, K{B1}, w |= B1 (by induction). Thus, Kr+{B1}, w |= B2 and again by the inductive
hypothesis, the sequent w; r + {B1} −→ B2 has a cut-free proof; thus, w; r −→ B1 −◦B2 has
a cut-free proof.

23



B = B1 ⇒ B2: Assume that w; r −→ B1 ⇒ B2 has a cut-free proof. By Proposition 4, the sequent
w, B1; r −→ B2 has a cut-free proof. To show Kr, w |= B1 ⇒ B2, assume that w ≤ w′ and
K0, w

′ |= B1. By the inductive hypothesis, w′; 0 −→ B1 has a cut-free proof. Using the cut!
rule and the admissibility of cut!, the sequent w′; r −→ B2 has a cut-free proof. By induction
again, we have Kr, w

′ |= B2. Thus, Kr, w |= B1 ⇒ B2. To show the converse, assume that
Kr, w |= B1 ⇒ B2. Since w,B1; 0 −→ B1 has a cut-free proof, K0, w + {B1} |= B1 (by
induction). Thus, Kr+0, w + {B1} |= B2 and again by the inductive hypothesis, the sequent
w, B1; r −→ B2 has a cut-free proof; thus, w; r −→ B1 ⇒ B2 has a cut-free proof.

Finally, we assume that the equivalence holds and use it to show that the two cut rules for L are
admissible. Let Ξ be a proof of the sequent Γ; ∆ −→ B possibly containing occurrences of the cut
and cut! rules. We show that there is a cut-free proof of the sequent Γ; ∆ −→ B by induction on
the number of occurrences of cut and cut! rules. If Ξ has no such occurrences, then we are finished.
Otherwise, pick an occurrence of a cut or cut! rule so that the two subproofs Ξ1 and Ξ2, whose
endsequents are the premises of that cut-rule occurrence, are cut-free. We distinguish two cases.
In both cases, Γ ⊆ Γ′

Case 1. The proof Ξ1 proves Γ′;∆1 −→ B and Ξ2 proves Γ;∆2, B −→ C. Thus the conclusion of
the cut rule is Γ′;∆1,∆2 −→ C. Thus, Γ;∆2 −→ B−◦C has a cut-free proof. By the assumed
equivalence, K∆1 ,Γ

′ |= B and K∆2 , Γ |= B −◦ C. By the definition of the satisfiability of −◦,
K∆1+∆2 , Γ

′ |= C and by the equivalence again Γ′; ∆1, ∆2 −→ C has a cut-free proof, say Ξ3.
Thus, if we replace the subproofs Ξ1 and Ξ2 and the cut rule with Ξ3 in Ξ, we have reduced
the number of cuts by one.

Case 2. The proof Ξ1 proves Γ′; ∅ −→ B and Ξ2 proves Γ, B;∆ −→ C. Thus the conclusion of
the cut! rule is Γ′;∆ −→ C. Thus, Γ; ∆ −→ B ⇒ C has a cut-free proof. By the assumed
equivalence, K0,Γ′ |= B and K∆,Γ |= B ⇒ C. By the definition of the satisfiability of ⇒,
K∆, Γ′ |= C and by the equivalence again Γ′;∆ −→ C has a cut-free proof, say Ξ3. Thus,
if we replace the subproofs Ξ1 and Ξ2 and the cut! rule with Ξ3 in Ξ, we have reduced the
number of cuts by one.

The following is, of course, an immediate corollary of the canonical model theorem.

Proposition 10 (Completeness Theorem) If a sequent Γ;∆ −→ B is valid in all resource-
indexed models, then it has an L-proof.

7 A model of resource consumption

While we have shown several programming examples that demonstrate the usefulness of this logic
programming language, we have said nothing about the practicality of implementing the language.
Given the rather simple structure of proofs in L′ and L′′, it is an easy matter to build a prototype
interpreter for this logic programming language. For example, delaying the choice of universal
instances of formulas on which to backchain using logic variables and unification as in other logic
programming languages is an obvious option in this setting.

However, a serious computational issue that does not arise in traditional logic programming
languages must be addressed. Nothing in the analysis made in Section 3 provides any guidance
to an interpreter that is forced to divide up the multiset of bounded resource formulas in a proof
context during the bottom-up application of the ⊗-R rule or the backchaining rule. For example,
the sequent Γ;∆ −→ G1⊗G2 is provable if and only if there is a partitioning of the multiset ∆ into

24



the two multisets ∆1 and ∆2 so that Γ; ∆1 −→ G1 and Γ; ∆2 −→ G2 are provable. So, if ∆ has
cardinality n there are 2n such partitions of ∆. While it can be the case that for everyone of these
partitions, the corresponding sequents are provable, it is much more likely (as in the examples of
Section 5) that only very few of the partitions actually lead to proofs.

Clearly, a better strategy than trying each possible partition in sequence is needed if this is to
be a usable logic programming language. Fortunately, given the restricted form of proof contexts,
it is possible to view the process of proof building as one in which resource formulas get used and, if
they are in the bounded part of the context, deleted. Thus, attempting to prove Γ; ∆ −→ G1⊗G2

first results in an attempt to prove, say G1, and as formulas in ∆ are used in backchaining inference
rules in this proof, they are deleted. The resources deleted determine lazily the multiset ∆1. If the
search for a proof of G1 is successful, the remaining multiset of formulas, implicitly equal to ∆2,
is then used to prove the second goal G2. If the correct resources are left to prove G2, then the
compound goal G1 ⊗G2 will have been proved without splitting the context artificially.

Assume that R-formulas are defined as in Section 3. An IO-context is a list made up of R-
formulas, !’ed R-formulas, or the special symbol del used to denote a place where an R formula has
been deleted. The three-place proposition I{G}O will denote the fact that it is possible to find
a proof of G given the input I so that the resources in O remain. To make this informal notion
precise, we need the following definitions regarding IO-contexts. The ternary relation pickR(I,O, R)
holds if R occurs in the IO-context I, and O results from replacing that occurrence of R in I with
the new constant del (this achieves deletion). The relation also holds if !R occurs in I, and I and
O are equal (!’ed formulas are not deleted). An IO-context O is a subcontext of I, denoted by the
predicate subcontext(O, I) if O arises from replacing zero or more non-!’ed components of I with
del.

Figure 15 provides a specification of the predicate I{G}O for the propositional fragment of this
logic that uses the clause (∗) of Section 3 to define R-formulas. The specification of I{G}O and
of the other predicates for the full range of R-formula syntax is given using Prolog in Figure 16.
In that presentation, I{G}O is written using the syntax prove(I,O,G), ⊗ is written as x, −◦ as
-o, ⇒ as =>, > as erase, and !G as bang(G). (Infix declarations for x, -o, =>, and & are missing
from Figure 16, as are Horn clauses defining the atomic formulas of the object-logic via the isA
predicate.)

The Prolog code given implements only the propositional part of this logic since Prolog has no
natural representation of object-level quantification. If λProlog (Nadathur and Miller, 1988) were
used for the specification, such quantifiers could be implemented directly using λ-abstractions. The
resulting specification would be identical to the one given in Figure 16 except that two more clauses
— one for proving a universal quantifier and one for backchaining over a universal quantifier —
would need to be added.

In order to state the correctness of these specifications for I{G}O, we need the notion of the
difference, I −O, of two IO-contexts, whenever it is the case that subcontext(O, I) holds: I −O is
the pair 〈Γ,∆〉 where Γ is the set of all formulas R such that !R is an element of the list I (and
hence O), and ∆ is the multiset of all formulas R which occur in I and where the corresponding
position in O is the symbol del. Thus, ∆ is the multiset of formulas deleted in moving from I to O.

Proposition 11 Let I and O be IO-contexts where O is a subcontext of I. Let I − O be the pair
〈Γ,∆〉 and let G be a goal formula. The proposition I{G}O is provable if and only if Γ;∆ −→ G
has an L′′-proof.
Proof. For simplicity, we show this proof only for the case where R-formulas are defined using
the simpler form (∗) in Section 3. Notice that if I −O is the pair 〈Γ, ∆〉, then pickR(I, O, R) holds
if and only if either ∆ is {R} or ∆ is empty and R ∈ Γ.

25



I{1}I
subcontext(O, I)

I{>}O
I{G}I
I{!G}I

I{G1}M M{G2}O
I{G1 ⊗G2}O

I{G1}O I{G2}O
I{G1 & G2}O

R::I{G}del::O

I{R−◦G}O
! R::I{G} ! R::O

I{R ⇒ G}O
pickR(I,O, A)

I{A}O
pickR(I, M, G−◦A) M{G}O

I{A}O
pickR(I,O, G ⇒ A) O{G}O

I{A}O

Figure 15: Specification of an interpreter for the propositional language

We first show by induction on a proof using the inference rules in Figure 15 that if I{G}O is
provable then Γ;∆ −→ G has an L′′-proof. The two base cases of proving the goals 1 and > are
trivial. The inductive cases are considered below.

I{! G}I follows from I{G}I: Since ∆ is ∅ in this case and since (by induction hypothesis) Γ; ∅ −→ G
has an L′′-proof, so too does Γ; ∅ −→ ! G.

I{G1 ⊗G2}O follows from I{G1}M and M{G2}O: Let I−M be 〈Γ, ∆1〉 and let M−O be 〈Γ, ∆2〉.
Thus, I − O is 〈Γ, ∆1 ] ∆2〉. By the inductive hypothesis, Γ; ∆1 −→ G1 and Γ; ∆2 −→ G2

have L′′-proofs. Thus, so too does Γ; ∆1, ∆2 −→ G1 ⊗G2.

I{G1 & G2}O follows from I{G1}O and I{G1}O: Let I−O be 〈Γ,∆〉. By the inductive hypothesis,
Γ;∆ −→ G1 and Γ;∆ −→ G2 have L′′-proofs. Thus, so too does Γ; ∆ −→ G1 & G2.

I{R−◦G}O follows from R :: I{G}del :: O: Let I − O be 〈Γ, ∆〉. Since, by induction hypothesis,
Γ;∆, R −→ G has an L′′-proof, so too does Γ; ∆ −→ R−◦G.

I{R ⇒ G}O follows from !R :: I{G} !R :: O: Let I −O be 〈Γ,∆〉. Since, by induction hypothesis,
Γ, R; ∆ −→ G has an L′′-proof, so too does Γ; ∆ −→ R ⇒ G.

The three remaining cases involve the pickR predicate. Assume that pickR(I, O,R) holds and that
I −O is the pair 〈Γ, ∆〉.
I{A}O follows from pickR(I,O, A): If ∆ is {A} then Γ; ∆ −→ A is proved by the degenerate form

of the BC rule with no premises. Otherwise, ∆ is empty, I = O, and !A occurs in I. Then
that same sequent is proved using the BC rule as above followed by the absorb rule.

I{A}O follows from pickR(I,M,G−◦A) and M{G}O: By the inductive hypothesis, Γ; ∆′ −→ G
has an L′′-proof, Ξ, where M − O is 〈Γ, ∆′〉. If ∆ is {G −◦ A} then Γ; ∆, ∆′ −→ A has an
L′′-proof built from Ξ using the BC rule. Otherwise, ∆ is empty and the absorb inference
rule must also be used.

I{A}O follows from pickR(I,O, G ⇒ A) and O{G}O: By the inductive hypothesis, Γ; ∅ −→ G has
an L′′-proof, Ξ, where O − O is 〈Γ, ∅〉. If ∆ is {G ⇒ A} then Γ;∆ −→ A has an L′′-proof
built from Ξ using the BC inference rule. Otherwise, ∆ is empty and the absorb inference
rule must also be used.

26



The reverse implication of this proposition follows by simply reversing the constructions described
above.

Consider the behavior of a Prolog interpreter attempting to prove I{G1 ⊗ G2}O. First the
interpreter tries to prove I{G1}M , for some IO-context M . If this succeeds, then M{G2}O is
attempted. If this second attempt fails, the interpreter retries I{G1}M looking for some different
pattern of consumption to find, hopefully, a new value for M , before re-attempting a proof of
M{G2}O. By using unification to delay the choice of the value used for the context M , that choice
is made entirely lazily.

8 Related Work

There are many ways in which linear logic can be fruitfully exploited to address aspects of logic
programming. Girard suggested how linear logic can be used to model the difference between the
classical, “external” logic of Horn clauses and the “internal” logic of Prolog that arises from the use
of depth-first search (Girard, 1987b). His suggestions were worked out in detail by Cerrito (Cerrito,
1992) to provide a logical specification of Prolog evaluation for propositional Horn clauses. Cerrito
has also used classical linear logic to provide a formalization of the Clark completion theory that
is sound and complete for SLDNF on allowed logic programs (Cerrito, 1990). Gabbay has used
the ideas that arise from linear logic to isolate different computational aspects of proof search in
a variety of systems in an attempt to identify complete yet efficient search techniques (Gabbay,
1991). In particular, he was interested in those languages in which search may be restricted to
using formulas linearly. This work is conceptually related to, though somewhat broader than, the
recent work in linearizing intuitionistic implication by Lincoln, Scedrov, and Shankar (Lincoln et al.,
1991).

Besides our work described here, at least three proposals for new logic programming languages
have been made recently that use linear logic (or, more precisely, substructural logics) for their
foundation.

Andreoli and Pareschi have extended Horn clauses so that programs in the resulting language
make use of the multiple conclusion nature of full linear logic (Andreoli, 1992; Andreoli and Pareschi,
1991). In the logic programming language that results, the availability of context on the right-hand
side of a sequent combined with the use of the ‘par’ operator in the heads of clauses makes it
possible to naturally support various aspects of concurrent and object-oriented programming.

Harland and Pym have proposed a fragment of linear logic as a logic programming language
(Harland and Pym, 1991). As was done here, their fragment is chosen so that uniform proofs remain
complete. Since having !’s in right-hand side of sequents stops several inference rule permutations
from holding, their proposal disallows such right-hand sides. Thus, goal formulas are weaker than
those presented here, but contexts are richer. The loss of !’ed goals, however, means that several
of the examples in this paper cannot be coded directly. The authors also describe a multiple-
conclusion variant of their system which captures some of the features of Andreoli and Pareschi’s
system.

Finally, Bollen has proposed a system which extends Prolog by adding relevant implication
(Bollen, 1991). In his system, assumptions added using an embedded implication can be duplicated
but cannot be discarded. The main application discussed is to expert systems. As with this
work, Bollen proposes a restriction of Gentzen systems to one in which goal-directed provability
is complete. His restriction is based on the notion of invertibility, rather than permutability,
however, which leads to a somewhat more restricted logical language than the one presented here.
In particular, arbitrary nesting of quantifiers with implications is disallowed. In the end, Bollen’s

27



isR(erase).
isR(B) :- isA(B).
isR(B1 & B2) :- isR(B1), isR(B2).
isR(B1 -o B2) :- isG(B1), isR(B2).
isR(B1 => B2) :- isG(B1), isR(B2).

isG(1).
isG(erase).
isG(B) :- isA(B).
isG(B1 -o B2) :- isR(B1), isG(B2).
isG(B1 => B2) :- isR(B1), isG(B2).
isG(B1 & B2) :- isG(B1), isG(B2).
isG(B1 x B2) :- isG(B1), isG(B2).
isG(bang(B)) :- isG(B).

prove(I,I, 1).
prove(I,O, erase) :- subcontext(O,I).
prove(I,O, G1 & G2) :- prove(I,O,G1), prove(I,O,G2).
prove(I,O, R -o G) :- prove(R :: I, del :: O,G).
prove(I,O, R => G) :- prove(bang(R) :: I, bang(R) :: O,G).
prove(I,O, G1 x G2) :- prove(I,M,G1), prove(M,O,G2).
prove(I,I, bang(G)) :- prove(I,I,G).
prove(I,O, A) :- isA(A), pickR(I,M,R), bc(M,O,A,R).

bc(I,I,A, A).
bc(I,O,A, G -o R) :- bc(I,M,A,R), prove(M,O,G).
bc(I,O,A, G => R) :- bc(I,O,A,R), prove(O,O,G).
bc(I,O,A, R1 & R2) :- bc(I,O,A,R1); bc(I,O,A,R2).

pickR(bang(R)::I, bang(R)::I, R).
pickR(R::I, del::I, R) :- isR(R).
pickR(S::I, S::O, R) :- pickR(I,O,R).

subcontext(del::O, R ::I) :- isR(R), subcontext(O,I).
subcontext(S::O, S::I) :- subcontext(O,I).
subcontext(nil, nil).

Figure 16: A Prolog implementation of the IO-interpreter

28



system can be seen as a proper sublanguage of L, with his relevant implication A → B being
mapping into A −◦ (A ⇒ B). The first (linear) implication assures the assumption must be used,
while the second adds another copy of the assumption which can be used as many additional times
as is needed. The relationship between L and Bollen’s system is discussed in greater depth in the
first author’s dissertation, where an extension of L allowing direct representation of relevant and
affine implication is also presented (Hodas, 1993).

In the area of natural language parsing, Lambek (Lambek, 1958, 1987) has used a logic that
can be identified with a non-commutative variant of linear logic to infer the syntactic categories
of phrases. Recently, Pereira described how the semantics of gaps could be computed using a
linear logic-like context mechanism (Pereira, 1990): his approach can be formalized using the logic
described here.

9 Conclusion

There have been several examples in print of the need to refine the notion of intuitionistic context
found in programs written using hereditary Harrop formulas (Felty and Miller, 1988; Hodas and
Miller, 1990; Pareschi and Miller, 1990; Pereira, 1990). In this paper, we proposed a refinement
to hereditary Harrop formulas using a fragment of linear logic. We argued that this fragment is
a sensible logic programming language by showing that interpreting it in a goal-directed fashion
did not lead to incompleteness and that it has a model theory that admits canonical models. We
presented an interpreter for this language that views proof construction as a process that takes in
a context, deletes bounded formulas as they are used in backchaining and returns the remaining
context to be consumed elsewhere. This interpreter splits contexts lazily when attempting a proof of
a tensor. Finally, we presented several examples demonstrating the utility of this logic programming
language.

A prototype interpreter, written in Standard ML, of the full logic programming language de-
scribed here is available from the first author.

Acknowledgements

We are grateful to Jean-Marc Andreoli, Gianluigi Bellin, Jawahar Chirimar, Remo Pareschi, and
Fernando Pereira for helpful conversations regarding this work. The Journal reviewers provide
useful comments on an earlier draft of this paper. Both authors have been funded by ONR N00014-
88-K-0633, NSF CCR-87-05596, NSF CCR-91-02753, and DARPA N00014-85-K-0018 through the
University of Pennsylvania. Miller has also been supported by SERC Grant No. GR/E 78487 “The
Logical Framework” and ESPRIT Basic Research Action No. 3245 “Logical Frameworks: Design
Implementation and Experiment” while he was visiting the University of Edinburgh.

References

Andreoli, J.-M. (1992). Logic Programming with Focusing Proofs in Linear Logic. Journal of Logic
and Computation, 2 (3).

Andreoli, J., and Pareschi, R. (1991). Linear Objects: Logical Processes with Built-in Inheritance.
New Generation Computing, 9:3-4. (Special issue of papers selected from ICLP’90).

Apt, K. R., and van Emden, M. H. (1982). Contributions to the theory of logic programming.
Journal of the ACM, 29 (3), 841 – 862.

29



Bollen, A. W. (1991). Relevant Logic Programming. Journal of Automated Reasoning, 7 (4), 563–
586.

Bonner, A. J., McCarty, L. T., and Vadaparty, K. (1989). Expressing Database Queries with
Intuitionistic Logic. In Logic Programming: Proceeding of the North American Conference,
pp. 831–850.

Bowen, K. A., and Kowalski, R. A. (1982). Amalgamating Language and Metalanguage in Logic
Programming. In Clark, K., and Tarnlund, S.-A. (Eds.), Logic programming, Vol. 16 of APIC
studies in data processing, pp. 153 – 172. Academic Press.

Cerrito, S. (1990). A Linear Semantics for Allowed Logic Programs. In Mitchell, J. (Ed.), Proceed-
ings of the Fifth Annual Symposium on Logic in Computer Science, Philadelphia, PA, pp.
219 – 227.

Cerrito, S. (1992). A Linear Axiomatization of Negation as Failure. Journal of Logic Programming,
12 (1 & 2), 1 – 24.

Church, A. (1940). A Formulation of the Simple Theory of Types. Journal of Symbolic Logic, 5,
56–68.

Dyckhoff, R. (1992). Contraction-free sequent calculi for intuitionistic logic. Journal of Symbolic
Logic, 57 (3).

Felty, A. (1993). Implementing Tactics and Tacticals in a Higher-Order Logic Programming Lan-
guage. Journal of Automated Reasoning, 11 (1), 43–81.

Felty, A., and Miller, D. (1988). Specifying theorem provers in a higher-order logic programming
language. In Ninth International Conference on Automated Deduction, pp. 61 – 80 Argonne,
IL. Springer-Verlag.

Gabbay, D. M., and Reyle, U. (1984). N-Prolog: An Extension of Prolog with Hypothetical Impli-
cations. I. Journal of Logic Programming, 1, 319 – 355.

Gabbay, D. M. (1991). Algorithmic Proof with Diminishing Resources, Part 1. In Börger, E. (Ed.),
CSL’90. Fourth Workshop on Computer Science Logic, No. 533 in Lecture Notes in Computer
Science. Springer-Verlag.

Gentzen, G. (1969). Investigations into Logical Deductions, 1935. In Szabo, M. E. (Ed.), The
Collected Papers of Gerhard Gentzen, pp. 68–131. North-Holland Publishing Co., Amsterdam.

Girard, J.-Y. (1987a). Linear Logic. Theoretical Computer Science, 50, 1–102.

Girard, J.-Y. (1987b). Towards a Geometry of Interaction. In Categories in Computer Science,
Vol. 92 of Contemporary Mathematics, pp. 69 – 108. AMS.

Girard, J.-Y. (1991). On the unity of logic. Tech. rep. 26, Université Paris VII.

Hallnäs, L., and Schroeder-Heister, P. (1990). A Proof-Theoretic Approach to Logic Programming.
1. Clauses as rules. Journal of Logic and Computation, 261–283.

Harland, J., and Pym, D. (1991). The Uniform Proof-Theoretic Foundation of Linear Logic Pro-
gramming (Extended Abstract). In Saraswat, V., and Ueda, K. (Eds.), Proceedings of the
1991 International Logic Programming Symposium, San Diego, pp. 304 – 318 San Diego. MIT
Press.

30



Hodas, J. (1992). Specifying Filler-Gap Dependency Parsers in a Linear-Logic Programming Lan-
guage. In Apt, K. (Ed.), Proceedings of the Joint International Conference and Symposium
on Logic Programming, pp. 622 – 636.

Hodas, J. (1993). Logic Programming in Intuitionistic Linear Logic: Theory, Design, and Imple-
mentation. Ph.D. thesis, University of Pennsylvania, Department of Computer and Informa-
tion Science.

Hodas, J., and Miller, D. (1990). Representing Objects in a Logic Programming Language with
Scoping Constructs. In Warren, D. H. D., and Szeredi, P. (Eds.), 1990 International Confer-
ence in Logic Programming, pp. 511 – 526. MIT Press.

Hodas, J., and Miller, D. (1991). Logic Programming in a Fragment of Intuitionistic Linear Logic:
Extended Abstract. In Kahn, G. (Ed.), Sixth Annual Symposium on Logic in Computer
Science, pp. 32 – 42 Amsterdam.

Lambek, J. (1958). The mathematics of sentence structure. American Mathematical Monthly, 65,
154 – 169.

Lambek, J. (1987). Multicategories Revisited. In Categories in Computer Science, Vol. 92 of
Contemporary Mathematics, pp. 217 – 239. AMS.

Lincoln, P., Scedrov, A., and Shankar, N. (1991). Linearizing Intuitionistic Implication. In Kahn,
G. (Ed.), Sixth Annual Symposium on Logic in Computer Science, pp. 51–62.

McCarty, L. T. (1988). Clausal Intuitionistic Logic I. Fixed Point Semantics. Journal of Logic
Programming, 5, 1 – 31.

Miller, D. (1989a). Lexical Scoping as Universal Quantification. In Sixth International Logic
Programming Conference, pp. 268–283 Lisbon, Portugal. MIT Press.

Miller, D. (1989b). A logical analysis of modules in logic programming. Journal of Logic Program-
ming, 6, 79 – 108.

Miller, D. (1990). Abstractions in logic programming. In Odifreddi, P. (Ed.), Logic and Computer
Science, pp. 329 – 359. Academic Press.

Miller, D. (1992). Abstract Syntax and Logic Programming. In Logic Programming: Proceedings of
the First and Second Russian Conferences on Logic Programming, No. 592 in Lecture Notes
in Artificial Intelligence, pp. 322–337. Springer-Verlag. Also available as technical report
MS-CIS-91-72, UPenn.

Miller, D., Nadathur, G., Pfenning, F., and Scedrov, A. (1991). Uniform Proofs as a Foundation
for Logic Programming. Annals of Pure and Applied Logic, 51, 125–157.

Nadathur, G., and Miller, D. (1988). An Overview of λProlog. In Fifth International Logic Pro-
gramming Conference, pp. 810–827 Seattle, Washington. MIT Press.

Nadathur, G., and Miller, D. (1990). Higher-order Horn Clauses. Journal of the ACM, 37 (4), 777
– 814.

Pareschi, R. (1989). Type-driven Natural Language Analysis. Ph.D. thesis, University of Edinburgh.

31



Pareschi, R., and Miller, D. (1990). Extending Definite Clause Grammars with Scoping Con-
structs. In Warren, D. H. D., and Szeredi, P. (Eds.), 1990 International Conference in Logic
Programming, pp. 373–389. MIT Press.

Paulson, L. C. (1990). Isabelle: The Next 700 Theorem Provers. In Odifreddi, P. (Ed.), Logic and
Computer Science, pp. 361 – 386. Academic Press.

Pereira, F. C. N. (1990). Semantic Interpretation as Higher-Order Deduction. In Proceedings of
the Second European Workshop on Logics and AI. Springer-Verlag.

Pereira, F. C. N., and Shieber, S. M. (1987). Prolog and Natural-Language Analysis, Vol. 10. CLSI,
Stanford, CA.

Pereira, F. C. N., and Warren, D. H. D. (1980). Definite Clauses for Language Analysis. Artificial
Intelligence, 13, 231 – 278.

Pfenning, F. (1988). Partial Polymorphic Type Inference and Higher-Order Unification. In Pro-
ceedings of the ACM Lisp and Functional Programming Conference.

32


