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Propositional classical logic

Let us start some place very familiar.

The only connectives: ∧, ∨, t, f.

B⊥ denotes the negation normal form of the negation of B.

We have no atomic formulas (in the entire talk!). Atoms are
undefined formulas. We give recursive definitions to everything.

We first present a proof system using one-sided sequents ` ∆,
where ∆ is a multiset of formulas.

The proof system contains:
• two structural rules (weakening and contraction),
• two identity rules (initial and cut),
• the multiplicative introduction rules, and
• the additive introduction rules.



A unfocused proof system for classical logic

Structural:
` B ,B ,∆
` B ,∆ contract ` ∆

` B ,∆ weaken

Identity: ` B ,B⊥
initial

` ∆1,B ` B⊥,∆2

` ∆1,∆2
cut

Multiplicative:
` B1,∆1 ` B2,∆2

` B1 ∧ B2,∆1,∆2
∧

` B1,B2,∆
` B1 ∨ B2,∆

∨∗

` t t
` ∆
` f,∆ f ∗

Additive:
` B1,∆ ` B2,∆
` B1 ∧ B2,∆

∧∗
` Bi ,∆

` B1 ∨ B2,∆
∨i

` t,∆ t ∗ —

Both identity rules can be eliminated! The ∗ rules are invertible.



Two versions of the connectives

Given the structural rules, the additive rule and the multiplicative
rule for the same connective are inter-admissible.

Annotate the connectives of the invertible rules as negative (∧−

and ∨−) and annotate the connectives in not-necessarily-invertible
rules as positive (∧+ and ∨+).

Similarly, annotate their units (t−, f−, t+, f+).

An annotated formula is negative if its top-level logical connective
is annotated negatively: likewise for positive.

Given a formula B let B̂ be any polarization of B in which every
logical connectives in B is given either a plus or a minus
annotation. Then:

B is provable (in the unannotated proof system) if and
only if B̂ is provable (in the annotated proof system).



Proof search with unfocused proof search

... is simply ridiculous. There are just too many ways to build
proofs and most of them differ in truly minor ways.

One wants a tight correspondence between the application of
inference rules and “actions” within a computation.

An early taming of the sequent calculus used uniform proofs [Miller
et.al, 91] which contained the two “phases” of goal-reduction and
backchaining (a proof-theoretic foundation for logic programming).

Andreoli’s focused proof system [1992] generalize that earlier work
to a full, rich logic (linear logic).

An important message of this talk: Focused proof systems are
an essential normal form for the application of sequent calculus.



The LKF focused proof system

We present a focused proof system for annotated propositional
classical logic that is derived from the LKF proof system of Liang
and Miller [2007].

Let P denote a positive formula, N a negative formula, and Θ a
multiset of positive formulas, and Γ is a list of formulas.

Sequents in the focused proof system are of the form
• ` Θ ⇑ Γ (negative or asynchronous phase)
• ` Θ ⇓ B (positive or synchronous phase)

The inference rules used in the negative phase are invertible.



The LKF focused proof system

Structural:
` Θ,P ⇑ Γ
` Θ ⇑ Γ,P Store

` Θ ⇑ N
` Θ ⇓ N Release

` P,Θ ⇓ P
` P,Θ ⇑ · Focus

Neg phase: ` Θ ⇑ Γ, t−
` Θ ⇑ Γ,A ` Θ ⇑ Γ,B
` Θ ⇑ Γ,A ∧− B

` Θ ⇑ Γ

` Θ ⇑ Γ, f−
` Θ ⇑ Γ,A ,B
` Θ ⇑ Γ,A ∨− B

Pos phase: ` Θ ⇓ t+
` Θ ⇓ A ` Θ ⇓ B
` Θ ⇓ A ∧+ B

−

` Θ ⇓ Ai

` Θ ⇓ A1 ∨
+ A2

Contraction occurs only in the Focus rule and only on positives.
Negatives are treated linearly !



LKF is sound and complete for classical logic

Theorem
Let B be a propositional formula and let B̂ be a polarization of B.
Then B is provable in classical logic if and only if there is an LKF
proof of ` · ⇑ B̂.

Notice that polarization does not affect provability but it does affect
the shape of possible LKF proofs.

If one uses only negative connectives, then
• most of the proof is one ⇑ phase, and
• the proof is exponential in size.

Invertibility can be expensive. If one uses positive connectives,
some “cleverness” can be inserted into the proof and you might
find much smaller proofs.



Macro-rules vs Micro-rules
Focused proof allow us to change the size of inference rules.
Micro-rule: an introduction rule
Macro-rule: an entire phase (collect all adjacent ⇑ or ⇓).

The following is a positive macro-rule:

` Θ,P ⇑ N1 · · · ` Θ,P ⇑ Nn

· · · only ⇓ sequents here · · ·
` Θ,P ⇓ P
` Θ,P ⇑ ·

Specifically: the macro-rule is has conclusion ` Θ,P ⇑ · and n ≥ 0
premises ` Θ,P ⇑ N1, . . . , ` Θ,P ⇑ Nn.

Similarly, there are negative macro-rules with conclusion, say,
` Θ,P ⇑ Ni , and with m ≥ 0 premises of the form ` Θ,P,C ⇑ ·,
where C is a multiset of positive formulas.

Macro-rules automatically satisfy cut and initial elimination.



Breaking macro-rules with delays

Large macro rules can easily be broken up, if desired, by the use
of delays, which can be defined as follows:

∂+(B) = B ∧+ t+ and ∂−(B) = B ∧− t−.

Clearly, B, ∂−(B), and ∂+(B) are all logically equivalent but ∂−(B)
is always negative and ∂+(B) is always positive.

Insert ∂−(·) into a formula to break a positive phase. Insert ∂+(·)
into a formula to break a negative phase.

By inserting many delay operators, a focused proof can be made
to emulate an unfocused proof.



Fixed points and first-order structure

We now add to propositional classical logic
• the fixed point constructors µ and ν,
• the first-order quantifiers ∀ and ∃, and
• the equality / in-equality relations on first-order terms = and ,.

Each pair of these connectives are de Morgan duals.

The connectives µ and ν are really a collection {µn}n≥0 and {νn}n≥0

such that the simple type of µn and of νn is τn → τn, where τn is
i → . . .→ i → o (n occurrences of the type i).

All six of these constants are logical connectives: they all have
introduction rules and the cut and initial rules can be eliminated.



Inference rules for quantifiers, equality, fixed points

Fixed points:
` B(νB)ū,∆
` νBū,∆

` B(µB)ū,∆
` µBū,∆

Quantifiers:
` B[t/x],∆

` ∃x.B ,∆
` B[y/x],∆

` ∀x.B ,∆

Equality:
` ∆σ

` u , v ,∆
†

` u , v ,∆
‡

` u = u

Provisos: †: u and v have mgu σ ‡: u and v are not unifiable

` Θ ⇑ Γ,B(νB)ū
` Θ ⇑ Γ, νBū

` Θ ⇓ B(µB)ū
` Θ ⇓ µBū

` Θ ⇓ B[t/x]

` Θ ⇓ ∃x.B
` Θ ⇑ Γ,B[y/x]

` Θ ⇑ Γ,∀x.B

` Θσ ⇑ Γσ
` Θ ⇑ Γ, u , v

†
` Θ ⇑ Γ, u , v

‡
` Θ ⇓ u = u



Inference rules for quantifiers, equality, fixed points

Fixed points:
` B(νB)ū,∆
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` µBū,∆
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` B[t/x],∆

` ∃x.B ,∆
` B[y/x],∆

` ∀x.B ,∆

Equality:
` ∆σ

` u , v ,∆
†

` u , v ,∆
‡

` u = u

Provisos: †: u and v have mgu σ ‡: u and v are not unifiable

` Θ ⇑ Γ,B(νB)ū
` Θ ⇑ Γ, νBū

` Θ ⇓ B(µB)ū
` Θ ⇓ µBū

` Θ ⇓ B[t/x]

` Θ ⇓ ∃x.B
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†
` Θ ⇑ Γ, u , v

‡
` Θ ⇓ u = u



Least and Greatest Fixed points?

The two fixed points constructors have identical rules: unfolding.
Hence, they are equivalent and self-dual:

(µλpλx̄.(Bpx̄))⊥ ≡ (µλpλx̄.(Bpx̄)⊥)

(νλpλx̄.(Bpx̄))⊥ ≡ (νλpλx̄.(Bpx̄)⊥)

Such equivalences are only provable if all unfoldings terminate.

We arbitrarily classify µ as positive and ν as negative.

We separate these constructor later when we introduce the
(higher-order) rules for induction and co-induction.



Examples

The following Horn clauses (Prolog program) defines two
predicates on natural numbers.

true ⊃ nat 0.
nat X ⊃ nat (s X).

true ⊃ leq 0 Y .
leq X Y ⊃ leq (s X) (s Y).

The predicate nat can be written as the fixed point

µ(λpλx.(x = 0) ∨+ ∃y.(s y) = x ∧+ p y)

and leq (less-than-or-equal) can be written as the fixed point

µ(λqλxλy.(x = 0) ∨+ ∃u∃v .(s u) = x ∧+ (s v) = y ∧+ q u v).

Horn clause specification can be made into purely positive fixed
point specifications.



Engineering of inference rules

Consider proving the positive focused sequent

` Θ ⇓ (leq m n ∧+ N1) ∨+ (leq n m ∧+ N2),

where m and n are natural numbers and where both N1 and N2 are
negative formulas.

There are exactly two possible macro rules with this conclusion:

` Θ ⇑ N1

` Θ ⇓ (leq m n ∧+ N1) ∨+ (leq n m ∧+ N2)
for m ≤ n

` Θ ⇑ N2

` Θ ⇓ (leq m n ∧+ N1) ∨+ (leq n m ∧+ N2)
for n ≤ m

A macro rule can contain an entire Prolog-style computation.



The inference rules for labeled transitions
One step transitions P

A
−→ Q are often given as

• a table to encode finite state machines, or
• a collection of syntax-directed SOS inference rules, such as

Pi
A
−→ R

P1 + P2
A
−→ R

i=1,2

a.P
a
−→ P

· · ·

In either case, Horn clauses can describe P
A
−→ Q . For example,

∀P1,P2,A ,R [ P1
A
−→ R ⊃ P1 + P2

A
−→ R ]

∀P1,P2,A ,R [ P2
A
−→ R ⊃ P1 + P2

A
−→ R ]

∀P,A [ t ⊃ A .P
A
−→ P ]

Hence, ·
·
−→ · can be defined as a purely positive fixed point.

Formally, ·
·
−→ · is not a predicate and P

A
−→ Q is not an atomic

formula.



The inference rules for simulation

sim P Q ≡ ∀P′∀A [ P
A
−→ P′ ⊃ ∃Q ′ [Q

A
−→ Q ′ ∧ sim P′ Q ′]].

Here, the implication B ⊃ C is an abbreviation for B⊥ ∨− C.
As a fixed point expression, sim relation is:

νλsλPλQ .∀P′∀A [P
A
−→ P′ ⊃ ∃Q ′[Q

A
−→ Q ′ ∧ s P′ Q ′]]

The body of this expression is exactly two “macro connectives”.

• ∀P′∀A [P
A
−→ P′ ⊃ · ] is a negative “macro connective”. There

are no choices in expanding this macro rule.

• ∃Q ′[Q
A
−→ Q ′ ∧+ · ] is a positive “macro connective”. There can

be choices for continuation Q ′.
The resulting focused proof system (using the macro-rules) is
aligned directly with the structure of the actual (model-checking)
problem.



Rules for Induction and co-induction

Unfolding is limited: we cannot prove ∀n.nat n ⊃ nat n. We need
rules for induction / co-induction.

` Γ,B(µB)ū
` Γ, µBū

µ
` Γ,Sū ` BSx, (Sx)⊥

` Γ, νBū
ν

` µBū, νB̄ū
µν

S ranges over closed term of type τn. x is an eigenvariable.

With these rules, µ and ν are different: µ builds the least fixed point
and ν builds the greatest fixed point.

The negation B of a body B is defined as λp.λ~x.(B(λ~x.(p~x)⊥)~x)⊥.

We shall assume that all bodies are monotonic: the expression
Bpt̄ does not contain any negated instance of p.



Induction and co-induction in two-sided sequents

If we write these rules as two-sided, single-conclusion sequents,
they might look more familiar.

Γ ` B(µB)ū
Γ ` µBū

BS~x ` S~x Γ,S~t ` G

Γ, µB~t ` G
µL

µBū ` µBū

Γ,B(νB)ū ` G
Γ, νBū ` G

S~x ` BS~x Γ ` S~t
Γ ` νB~t

νR
νBū ` νBū

The µν rule is the only form of the initial rule that we shall need in
this proof system.

Informally: when trying to prove ∀n.nat(n) ⊃ B(n) by induction,
one tries to reduce B(j + 1) to the inductive assumption B(j).
Thus, you need to know if your current reduction equals B(j).



Focused version of the induction and co-induction rules

` Γ ⇑ St̄ ,∆ ` ⇑BS~x,S~x⊥

` Γ ⇑ νBt̄ ,∆
~x new

` Γ, νBt̄ ⇑∆

` Γ ⇑ νBt̄ ,∆

` Γ ⇓ B(µB)~x
` Γ ⇓ µB~x ` νB~x ⇓ µB~x

Unfolding of ν is easily proved from the co-induction rule.

` Γ ⇑ B(νB)~x
` Γ ⇑ νB~x

Notice that in the negative (invertible) phase, there is a choice in
the treatment of ν. One either
• does a co-induction (includes unfolding) or
• freezes it (store it to eventually match in the µν rule.



Linear logic: add exponentials or fixed points?

The logic above has two forms of “unbounded” behaviors built-in:
contraction and fixed points. Do we need both?

MALL (multiplicative-additive linear logic) is the result of removing
weakening and contraction from propositional classical logic.

The positive and negative version of connectives are now different.
Write ⊗, &, ⊕, M instead of ∧+, ∧−, ∨+, ∨−.

MALL is a wonderful but weak logic.

• Girard added exponentials (!, ?) to get full linear logic. The
exponentials reintroduces weakening and contraction. Elegant
but not perfect solution: exponentials are not canonical, etc.
• Baelde added fixed points instead. µMALL=.

If B is purely positive, then `!B ≡ B. Thus, it is possible to model
some of intuitionistic logic directly within µMALL=.



Model checking: µLJ= and Bedwyr

Let µLJ= be the subset of intuitionistic logic described using the
two syntactic variables G and H :

G ::= G ∧ G | G ∨ G | s = t | µ(λp~x.Gp~x)~t | ∃x.Gx

| ∀x.Gx | H ⊃ G | ν(λp~x.Gp~x)~t

H ::= H ∧H | H ∨H | s = t | µ(λp~x.Hp~x)~t | ∃x.Hx

Translated to µMALL= by using positive connectives where
possible (∨+, ∧+) and translating ⊃ to the ( .

The focused proof system for µMALL= on this fragment of
intuitionistic provides the “operational semantics” of the Bedwyr
model checker [Baelde, Gacek, Miller, Nadathur, Tiu. CADE 2007].

Bedwyr uses unfolding of fixed points, except for justifying tabling,
which requires induction.



Theorem proving: Tac

Consider searching for only “simple” focused proofs.
• Limit the depth of proofs to only 2 or 3 macro-inference rules.
• Attempt to only use the “obvious” invariant in the induction and

co-induction inference rules (use the context)

Σ; Γ,S~t ` G ~x ; BS~x ` S~x

Σ; Γ, µB~t ` G
with S := λ~x. ∀Σ. ~x = ~t ⊃ (

∧
Γ) ⊃ G.

Σ; Γ ` S~t ~x ; S~x ` BS~x

Σ; Γ ` νB~t
with S := λ~x. ∃Σ. ~x = ~t ∧ (

∧
Γ).

The first premise is trivially provable.

Such trivial (co)inductions suffice for many examples [Baelde,
Miller, Snow; IJCAR 2010].



Conclusions

Focused proof systems are important technical tools in the
application of proof theory to computation.

Fixed points are an interesting alternative to exponentials for
adding unbounded behaviors to MALL.

The focused proof system including induction and co-induction is
an important formal tool in itself. It yields an appealing and flexible
normal form theorem.

Connections to game semantics and cyclic proofs should be
further developed.

Focused proofs are highly customizable. They might serve well as
a broad spectrum proof certificate.
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