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The Abella theorem prover is based on a logic in which relations, and not functions, are defined by
induction (and coinduction). Of course, many relations do, in fact, define functions and there is real
value in separating functional computation (marked by determinism) from more general deduction
(marked by nondeterminism and backtracking). Recent work on focused proof systems for the logic
underlying Abella is used in this paper to motivate the design of various extensions to the Abella
system. With these extensions to the system (which do not extend the logic), it is possible to fully
automate functional computations within the relational setting as soon as a proof is provided that
a given relation does, in fact, capture a total function. In this way, we can use Abella to compute
functions even when data structures contain bindings.

1 Introduction

Currently, the Abella proof assistant has rather limited forms of automation. An interesting framework
for exploring possible means of adding more automation to Abella is to take inspiration from focus-
ing [1, 2, 9]. The basic idea of focusing is to control and reduce the non-determinism in proof search in
Gentzen-style sequent calculi. This is achieved by composing the ordinary sequent rules that operate on
single connectives at a time into compound rules that work on a collection of connectives, called syn-
thetic connectives, that have similar properties. In the presence of inductive and coinductive definitions,
such synthetic connectives can involve the unbounded unfolding of fixed points, thereby incorporating
arbitrary deterministic and nondeterministic computation within synthetic inference rules.

Full focused proof search as a broad basis for the automation of Abella is an interesting project, but
in this paper we explore a limited application of focusing to recover computation. It has been argued [8],
that focusing in an intuitionistic logic with fixed points (essentially, Heyting arithmetic) can be used to
turn relational specifications into functional computations. We present a concrete proposal for a slight
and orthogonal extension of Abella that allows it to perform such computations without any change to
its underlying logical basis.

2 Background

In this section we will present the logic and the proof system used to perform inductive and coinductive
relational reasoning. It is a summary of the more expansive description that can be found in a sequence
of papers published over the last decade [6, 7, 3].

2.1 The G Logic and the Abella Implementation

The Abella system implements two logics. The specification logic is a simple fragment intuitionistic
logic that is rich enough to specify many λProlog logic programs. This aspect of Abella is not the major
concern of this progress report and we ignore it here. In this paper we concentrate on the reasoning logic
of Abella, known as G [6], which is an extension of intuitionistic first-order logic with: (1) higher-order
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λ -terms together with the equational theory induced by αβη-equivalence, (2) inductive and coinductive
fixed point definitions, and (3) nominals, nominal abstraction, and generic (∇) quantification. We give a
brief introduction to G using the concrete syntax of Abella [3].

The terms in G are well-typed terms of Church’s simple theory of types [5], where a given type
signature declares a collection of basic types and constants that are interpreted as constructors for these
declared basic types. For instance, the following is a declaration of two basic types, nat and bool, that
are both declared to be types using the Kind keyword, and their constructors are indicated with Type

declarations.

Kind bool type.

Type tt , ff bool.

Kind nat type.

Type z nat.

Type s nat → nat.

Formulas of G are terms of type prop, built from the constructors ∧ (for conjunction), ∨ (for disjunc-
tion), and→ (for implication), all of type prop → prop → prop and written as infix; true and false
of type prop for the constants; and forall, exists, and nabla of type (α → prop) → prop (for
every type α not containing prop). The term abstraction λx.t is written, concretely as x\ t, and quan-
tified formulas are written in a more natural style rather than using abstractions, i.e., as (forall x, f)

instead of forall(x\ f).
Atomic formulas can be created from predicates of target type prop that may be declared with a

Type declaration. More interestingly, G also allows atomic formulas to be built using inductively or
coinductively defined fixed points. For instance, the following inductive definition characterizes all terms
of type nat built from z and s:

Define nat : nat → prop by

nat z ;

nat (s X) := nat X.

Such definitions consist of a list of clauses where each clause begins with a head and is optionally
followed by a body separated by :=. (An omitted body is understood to stand for true.) The head is
always atomic using the predicate being defined, but the body can be any arbitrary formula; moreover,
the head and body can share variables that are universally quantified over the entire clause and written
using capital letters. Thus, the way to read the second clause above is: for every X, the atom nat (s X)

holds if and only if nat X holds.
Note that in G and Abella the only form of induction or coinduction is with such defined predicates.

There is no induction principle for the types – indeed, there is no reasoning principle of any kind for
the types. Types are just used to enforce syntactic categories. As a consequence, we cannot prove
the formula forall (X:nat), nat X: when we want to prove a theorem by structural induction on
natural numbers, we need to explicitly use the nat predicate as corresponding assumption. To illustrate
this, let us introduce the predicate plus that relates two numbers to their sum and proceeds by structural
induction on its first argument.

Define plus : nat → nat → nat → prop by

plus z X X ;

plus (s X) Y (s Z) := plus X Y Z.

Here is a simple theorem that would need to be proved by structural induction on the first argument.

Theorem plus_z2 : forall X, nat X → plus X z X.
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Such a theorem would be proved by means of the induction tactic. In this case, we would proceed
by induction on 1, i.e., on the first antecedent of the chain of implications in the theorem. This would
generate an inductive hypothesis IH:1

IH : forall X, (nat X)* → plus X z X

This is apparently the same as the theorem itself, except the inductive argument is marked with a size
restriction *. The meaning of (nat X)* is that it can be applied to any derivation of (nat X) that is
strictly smaller than that of the (nat X) we started the induction on originally. That original derivation
is itself indicated with (nat X)@, which is to say that the result of the induction tactic is to change the
goal to the following after assuming the IH.

forall X, (nat X)@ → plus X z X

This goal is proved by means of ordinary logical reasoning, together with the case tactic that explores
all the ways in which an inductively defined assumption may have been derived, i.e., it performs an
inversion on its definition. This case step in turn changes the @ annotation to a * to indicate that it
has strictly reduced the size of the derivation; this reduction makes the IH applicable. More precisely,
inverting (nat X)@ produces two subgoals; in the first, X is instantiated to z, and in the other X is
instantiated to s X1 for a new variable X1, and we get the additional assumption (nat X1)*. Abella
also has a collection of lower level tactics such as unfold, witness, split, apply, etc. for ordinary
logical reasoning.

2.2 Focusing: Synchronous and Asynchronous Rules

The search tactic of Abella tries to find a derivation for a given formula as a goal, unfolding the defi-
nitions of defined atoms as needed and guessing existential witnesses using unification. By default this
tactic only applies rules on the goal (“below the line”) and limits searches using a strict bound. This
is clearly far from complete and is done primarily because the unconstrained search space for proofs is
wild and unpredictable, particularly in the presence of induction. Nevertheless, it is possible to identify
conditions where automated search can be improved without negatively affecting the structure of proofs.
One well known technique is focusing, which states that the search for proofs can be organized into al-
ternations of synchronous and asynchronous phases. The proof-theoretic basis for focusing can be found
in a number of places [1, 2, 9] and will not be elaborated on further in this work. Instead, we will explain
focusing in terms of the Abella implementation.

Roughly speaking, the asynchronous phase corresponds to invertible rules of the sequent calculus,
which are rule applications that are guaranteed not to affect the derivability of the goal. Examples of such
rules in the goal include the intros tactic that introduces variables and assumptions, the split tactic
that divides a conjunctive goal into a collection of subgoals, one per conjunct. Asynchronous rules can
also exist on formulas in the context: for examples, equality assumptions that can be fully solved may
be eagerly inverted by instantiating eigenvariables using the most general solutions, recursively defined
predicates can be unfolded, existential assumptions can be simplified by introducing a new eigenvariable,
and disjunctive assumptions can be simplified by generating additional subgoals for each disjunct. In
particular, the Abella tactic case performs only such invertible rules on a designate hypothesis.

A synchronous phase, in contrast, requires the user to indicate choices in the proof. Such choices
include selection a particular disjunct in a disjunctive goal, giving the witness terms for an existential
goal, showing how to instantiate the variables of a universally quantified assumption, or inventing and

1The parentheses we use here for didactic reasons are omitted by Abella, i.e., Abella writes nat X* instead of (nat X)*.
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using lemmas. Another important example of a synchronous rule is unfolding of definitions for defined
atoms in the goal, which generally involves a choice of definitional clause. The crucial feature of the
synchronous phase is that once the phase is entered, the proof is focused on a particular formula which is
then used to indicate followup synchronous rules, maintaining focus as long as possible. This drastically
reduces the choice points in the proof, since after a focus has been decided the choices are constrained
to those relevant to the focused formula. From the perspective of Abella, the synchronous phase is
mainly relevant for indicating expressive bounds for search: instead of considering the search depth
one connective at a time, we can use a bound on the number of times a focus can be decided on, usually
called the decide depth.

An important feature of phases is that they can encompass entire computations for inductive defini-
tions whose definitional clauses use only connectives of a single polarity. For instance, if a definition
uses only positive connectives (=, ∧ , ∨ , true, false, and exists), then whenever it appears as ground
assumption it can be completely discharged within a single asynchronous phase. Dually, if it uses only
negative connectives (∧ , true, →, and forall) and appears as a goal, it can be similarly discharged
within a single asynchronous phase.2

Consider, for example, the definition of plus from Section 2.1. It contains only positive connectives.
As a result, a closes plus-atom as an assumption can be discharged completely within one asynchronous
phase. For example, the assumption (plus (s z) (s z) (s (s z))) can be removed since it is
recognized as trivially true and the assumption (plus (s z) (s (s z)) (s z)) would lead to a
complete proof of the goal since it is recognized as false. Similarly, the assumption (plus (s z) (s

z) X), for an eigenvariable X, can be solved—i.e., removed and the variable X instantiated—because the
only thing that X can be is (s (s z)).

3 Proposal: Computation and Suspension

Our first proposed extension if Abella is rather simple: the addition of a compute tactic that performs
unfolding and subsequent asynchronous steps for assumptions involving predicates with a fully positive
definition. Thus, for instance, if we have an assumption

H : plus (s z) (s z) X

then the invocation compute H would repeatedly unfold the definition of plus and handle the resulting
subgoals eagerly if it can using purely asynchronous steps. In this particular case the effect will be the
removal of H entirely and the instantiation of X with (s (s z)). The compute tactic is allowed to
produce multiple branches. For instance, in the following case:

H : plus X Y (s (s z))

the invocation compute H would produce three subgoals, one each for the three ways there are to divide
2 into two natural numbers.

This kind of feature has long been recognized as an important need in Abella.3 A very common
form is encountered in meta-theoretic proofs involving memberships in contexts, which are represented
as lists in Abella, where we have an assumption such as:

H : member X (E1 :: E2 :: Rest)

2Interestingly, ∧ and true can be seen as both positive and negative.
3See, for instance, https://github.com/abella-prover/abella/issues/35.

https://github.com/abella-prover/abella/issues/35
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In this case we would like compute H to yield three subgoals: the first with X = E1, the second with
X = E2, and the last with member X Rest.

A more interesting scenario is when the compute tactic is used on a purely positive predicate that
cannot be fully solved. For instance, given:

H : nat (s (s X))

where X is an eigenvariable, it can be asynchronously simplified to (nat X) by just using the second
clause of the definition of nat. However, to go further we would need to consider the cases where X = z

and the case for X = s X1, and we would be left with a further assumption nat X1. We can repeat
this process now with X1 and so on. This eager treatment of nat not only leads to non-terminating
search (which will eventually be forcefully terminating because it reaches a depth bound), but may be
unwarranted before we know anything else about X. In this case, it would be useful to suspend the eager
unfolding of nat.

To account for this premature unfolding of definitions when the inductive structure is already a vari-
able, we add a new kind of Suspend declaration that will make Abella stop the asynchronous phase
prematurely. The following declaration declares that (nat X) should not be unfolded if X is a variable;
we call this a suspension condition.

Suspend nat X on X.

A suspension condition can list more than one argument: unfolding is suspended if any of the indicated
arguments is a variable. For example:

Suspend plus X Y _ on X, Y.

Note this declaration means that compute would terminate early even on a situation such as:

H : plus (s z) Y Z

even though we could have finished the phase with Z instantiated with (s Y), even though Y isn’t ground.
This is fine because we could have left out the Y from the suspension conditions. Also note that that al-
though the suspension condition mentions variables, the suspension declaration itself can be any arbitrary
pattern. For instance:

Suspend plus (s X) _ _ on X.

suspends unfolding on plus before its first argument is a variable. The pattern can also have repetitions
such as:

Suspend plus X X _ on X.

Finally, a given predicate can have multiple suspension declarations: unfolding is suspended if any
suspension declaration matches or if the predicate has no suspension declarations at all. The following
pair is equivalent to the first Suspend declaration above.

Suspend plus X _ _ on X.

Suspend plus _ Y _ on Y.

The compute tactic has been implemented in prototype form already in Abella—which in fact led
to the discovery of the need for Suspend—but the full proposal is still being debated. One obvious
extension would be to perform the asynchronous phase on all assumptions instead of a specific one.
Another issue to consider is whether we should allow compute to operate on goals as well. What would
be the equivalent notion of Suspend for goals? Another open question is if the Suspend declarations
can be inferred from the form of the definition itself.
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4 Proposal: Deterministic Computation using Singleton Predicates

A monadic predicate p that holds for exactly one argument is a singleton. Singletons are interesting from
the perspective of focusing. The formula forall x, p x → Q x and exists x, p x ∧ Q x are
equivalent if and only if p is a singleton. That is, the following is a theorem of higher-order logic:

(forall q, (( forall x, p x → q x) ≡ (exists x, p x ∧ q x)))

≡ singleton p

where singleton has the following definition:

Define singleton : (A → prop) → prop by

singleton P :=

(exists X, P X)

∧ (forall X Y, P X → P Y → X = Y).

As a consequence, the formulas forall x, p x → Q x and exists x, p x ∧ Q x may be freely
converted into each other in the course of proof search.

Now, since Abella is a first-order logic, the definition and theorem above are not acceptable. The
theorem is explicitly ruled out because Abella does not allow universal quantification over terms whose
types contain prop. The definition is accepted with a stratification warning, because the higher-order
parameter P is used in a negative position, to the left of→. Such definitions can be used in trivial ways
to prove false and hence for consistency Abella refuses to certify developments using such definitions.

Both the proof theory of sequent calculus and the tactics of Abella require that to make progress on
proving exists x, p x ∧ Q x, we must first supply a witness term t such that (p t) is true, and
then the goal can become (Q t). If we know that p is a singleton, then this requirement is unfortunate
since one might hope that we could use Abella to actually compute this witness term t by means of the
compute tactic in the previous section. It is tempting to extend Abella with logic variables or placeholder
variables such as ?X so that we can change the query to p ?X ∧ Q ?X, and then in the course of proving
the first conjunct p ?X we would replace the variable with the witness term. Such variables have been
a part of Isabelle and Agda from the very beginning and have also been introduced to Coq (see, for
example, [12]).

We propose here a more lightweight treatment by admitting the definition singleton to Abella (and
syntactically preventing its abuse such as applying singleton to itself). Then, the issue of computing
the witness term t is no different from transforming the goal exists x, p x ∧ Q x to forall x,

p x → Q x, introducing the variable and its hypothesis (using intros), and then using compute on
that hypothesis. Thus, we switch from “guess t and check (p t)” to “compute the t for which (p t).”

Singleton predicates arise whenever a relation is actually a function. In particular, the fact that an
n-ary predicate R actually specifies a function from its, say, first n−1 arguments to its nth argument can
be captured by:

forall x1 x2 . . . xn−1, singleton (x\ R x1 x2 · · · xn−1 x)

Note that we could have η-contracted the argument to singleton above to just (R x1 · · · xn−1). More
generally, the relation R may be a singleton only under certain conditions on its “input” arguments, in
which case we would add them as antecedents in an implication chain. For example, consider the plus
relation from before; its third argument is always uniquely determined by its first two, assuming that they
are natural numbers. Hence, we can prove the following theorem.

Theorem plus_funct: forall X Y, nat X → nat Y → singleton (plus X Y).
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This is an ordinary Abella theorem that can be readily proved by induction on 1. As another illus-
tration, consider the partial relation pred for predecessors that relates natural numbers greater than 0 to
their predecessor.

Define pred : nat → nat → prop by

pred (s X) X.

To show that it is a function, we have to supply the precondition that its first argument is a natural number
greater than z, which we can do as follows.

Define nat_gt : nat → nat → prop by

nat_gt (s X) z := nat X ;

nat_gt (s X) (s Y) := nat_gt X Y.

Theorem pred_funct: forall X, nat_gt X z → singleton (pred X).

To make use of singleton to convert between the two exists and forall forms, we add new
tactic forms to witness and apply. When the goal has the form:

========================================

exists X, P X ∧ Q X

then the invocation witness compute first attempts to prove singleton P from the same context, and
then continues with modified goals of the form:

H : P X

========================================

Q X

and follows up with compute H. Dually, whenever we have a hypothesis of the form:

H : forall X, P X → Q X

then an invocation apply compute H has the effect of first trying to prove (singleton P) and then
continuing with the modified hypotheses

H1 : P X

H : Q X

following up with compute H1.
In both these cases, the proof of (singleton P) must be trivial: the way it will be implemented is

that the proved lemmas such as plus_funct will be searched for a predicate that matches P, and if so the
antecedents of that lemma will be attempted to be proved with simple proofs. An important consideration
in these simple proofs is that assumptions on predicates such as nat or nat_gt are attempted eagerly first
to reduce them to their simplest forms. This will be done with the compute tactic as defined in Section 3.
Note that it is important to supply suitable Suspend declarations for such antecedents to prevent infinite
loops in the implicitly invoked compute invocations.

The above could have been done with a weaker assumption than singleton; it would have sufficed
for the predicate p to be non-empty, which is just the first conjunct in the definition of singleton. The
real power of the singleton assumption comes from the fact that it makes the computations determinis-
tic. This means that whenever we perform compute on a singleton predicate, we never need to consider
any but a single possibility. In other words, conjunctive branches in the search space caused by unfolding
the singleton predicate can be pruned eagerly. To illustrate this, suppose we had the following variant
definition of plus:
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Define plus : nat → nat → nat → prop by

plus z X X ;

plus (s X) Y (s Z) := plus X Y Z ;

plus X Y Z := plus Y X Z.

It is still a function from its first two to its third argument, but unfolding the definition of plus is not
unitary: the third clause overlaps with the first two. The compute tactic should be satisfied with the first
unfolding sequence it finds, and not get distracted computing variants that have different numbers of uses
of the third clause.

5 Perspectives

We have proposed a small extension to Abella’s tactics to enable it to perform deterministic computation
without step-by-step guidance by the user. We leave the kernel and the core tactics of Abella untouched,
but add a new compute tactic that is designed to perform the asynchronous phase of focused proof search
for inductively defined predicates whose definitions are fully positive. Together with this mechanism is
a new declaration that allows eager unfolding of definitions to be suspended when it is premature to
continue unfolding, for instance where the arguments involve variables in “input” positions. Finally, we
propose to allow Abella to express specific lemmas that prove that a given relation on a given collection
of inputs determines a singleton on its output, meaning that the output both exists and is uniquely deter-
mined. Such lemmas can be used to transform an existential goal to a universal goal and move from a
guess and check to a compute and use paradigm. A crucial feature of this use of singletons is that it treats
computations as deterministic, meaning that any answer is as good as any other.

There are a few ways in which these proposals can be generalized further. First, the notion of single-
ton can be relaxed to a notion of singleton up to equivalence. For instance, we can say:

Define singleton_upto : (A → A → prop) → (A → prop) → prop by

singleton_upto Eq P :=

(exists X, P X)

∧ (forall X Y, P X → P Y → Eq X Y).

As long as Eq is an equivalence relation, we get all of the benefits of the singleton definition, such
as the free conversion of exists goals into forall goals. This more general definition can be very
useful in meta-theoretic proofs that reason about contexts: ordinarily they are represented as lists, but
two contexts-as-lists that are merely permutations are considered to represent the same context. It has
been observed in [4] that a majority of the effort in formalizing standard meta-theorems such as cut-
elimination is due to the complications resulting from reasoning about lists up to permutations.

A second obvious extension has to do with data defined by higher-order type signatures, such as terms
represented using λ -tree syntax (sometimes known as higher-order abstract syntax). Many common
relations that are defined on such higher-order data can be seen as functions, but it takes a bit more care
to use the singleton relations. In particular, with higher-order representations the “typing relation”
such as nat are no longer a natural fit for the reasoning logic; in this case, it is much simpler to write
these relations using the specification logic, using the two-level logic approach [7]. Recent extensions
of Abella to handle the full hereditary Harrop specification language [11] have allowed the expression
of arbitrary higher-order (and even dependently typed) relations in terms of the specification language
(see, e.g.,[10] for the LF dependent type theory). In these cases, not only the antecedents but also the
argument to the singleton relation may well be a specification-language sequent.
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