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Proof-as-message; proof-as-certificate

A proof can serve the didactic purpose of explaining the “why”
behind a theorem. A proof has a message.

We shall not consider further the role of proof-as-message here.

A proof can serve as a certificate that a formula is, in fact, true.

Premise for this talk: Both structural proof theory and computer
automation have matured sufficiently to provide a flexible and
universal approach to proof-as-certificate.
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Proof as certification

Proofs are documents that are used to communicate trust
within a community of agents.

Agents can be machines and humans. Communities can be spread
across time and space.
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Societies of agents: both humans and machines

• A sole mathematician writes an argument that convinces herself
and she then moves to address new problems.

• A collection of mathematician colleagues searches for beautiful
and deep mathematical concepts.

• An author of a mathematics text and his readers is a
community in which communications is generally one-way .

• Programmers, who write code for an OS, and users of that OS
have a goal of producing useful and secure computer systems.

• A group of programmers, users, mobile computers, and servers
can form a society that exchanges money for various services
(eg, email, news, backups, and cloud computing).

Dale Miller A foundational approach to proof certificates



Narrow our focus
Four desiderata for proof certificates

The sequent calculus via examples

Informal proofs

Informal proofs are readable by humans and are (usually) didactic.

We also expect that they lack some details and that they may have
errors.

Informal proofs are circulated within societies of humans where
they can be evaluated in a number of ways:
• Is the proof proving something interesting?
• Are the assumptions the right ones?
• Are the proof methods appropriate?
• Is this situation an example or a counterexample?

Making an informal proof more formal allows it to communicate
across greater distances (in space and time).
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Our project starts here: Formal proofs

Our focus:
computer agents communicating and checking proofs

A formal proof is a document with a precise syntax that is machine
generated and machine checkable.

We do not assume that formal proofs are human-readable.

In principle, an algorithm should make it possible to “perform” the
proof described in the document.

Trusted computer tools are used to check proofs so that other
human or machine agents come to trust the truth of a formula.
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Provers: computer agents that produce proofs

There is a wide range of provers.
• automated and interactive theorem provers
• computer algebra systems
• model checkers, SAT solvers
• type inference, static analysis
• testers

There is a wide range of “evidence” of proof.
• proof scripts: steer a theorem prover to a proof
• resolution refutations, natural deduction, tableaux, etc
• winning strategies, simulations

It is the exception when one prover’s evidence is shared with or
trusted by another prover.
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Require provers to publish their proofs

Since provers do not currently communicate proofs, the trend is to
unifying various theorem proving activities into existing
frameworks, eg, Isabelle or Coq.

Separate proofs from provenance: insist that provers output their
proofs so others can check them.

We shall use the term “proof certificate” for those documents
denoting proofs that are circulated between provers.
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Goal: A sea change is needed in formal methods

Sun Microsystems (1984): The network is the computer

The formal methods community
uses many isolated provers
technologies: proof assistants
(Coq, Isabelle, HOL, PVS, etc),
model checkers, SAT solvers, etc.

Goal: Permit the formal methods community to become a network
of communicating and trusting provers.
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D1: A simple checker can, in principle, check if a proof
certificate denotes a proof.

D2: The proof certificate format supports a broad spectrum of
proof systems.

These two desiderata enable the creation of both marketplaces
and libraries of proofs.
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D3: A proof certificate is intended to denote a proof in the
sense of structural proof theory.

Structural proof theory is a mature field that deals with deep
aspects of proofs and their properties.

For example: given certificates for

∀x(A(x) ⊃ ∃y B(x , y)) and A(10),

can we extract from them a witness t such that B(10, t) holds?
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D4: A proof certificate can simply leave out details of the
intended proof.

Formal proofs are often huge. All means to reduce their size need
to be available.
• Allow abstractions and lemma.
• Separate computation from deduction and leave computation

traces out of the certificate.
• Permit holes in proofs: we now have a trade-offs between proof

size and proof reconstruction via (bounded) proof search.

Proof checking may involve significant computation in order to
reconstruct missing proof details.
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Which logic?

First-order or higher-order?

Both!

Higher-order (à la Church 1940) seems a good choice since it
includes propositional and first-order.

Classical or intuitionistic logic? Both!

Imagine that these two logics fit together in one larger logic.
Following Gentzen (LK/LJ), Girard (LU), Liang & M (LKU, PIL).

Modal, temporal, spatial?

I leave these out for now. There is likely to always be a frontier
that does not (immediately) fit.
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Which proof system?

There are numerous, well studied proof systems: natural deduction,
sequent, tableaux, resolution, Herbrand disjunctions, etc.

Many others are clearly proof-like: tables (in model checking),
winning strategies (in game playing), etc.

Other: certificates for primality, etc.

We wish to capture all such proof evidence.

Of course, handling so many proof formats might make for a
terribly complex proof checker.
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Earliest notion of formal proof

Frege, Hilbert, Church, Gödel, etc, made extensive use of the
following notion of proof:

A proof is a list of formulas, each one of which is either
an axiom or the conclusion of an inference rule whose
premises come earlier in the list.

While granting us trust, there is little structure here.
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The first programmable proof checker

LCF/ML (1979) viewed proofs as
such lists.

ML provided types, abstract
datatypes, and higher-order
programming in order to increase
confidence in proof checking.

Many provers today (HOL, Coq,
Isabelle) are built on LCF.
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Atoms and molecules of inference

We outline how all these demands on certificates can be addressed
using what we know of the theory of proof structures.

There are atoms of inference.

• Gentzen’s sequent calculus first provided these: introduction
and structural rules.

• Girard’s linear logic refined our understanding of these further.

• To account for first-order structure, we also need fixed points
and equality.

There are molecules of inference.

• There are “rules of chemistry” for assembling atoms of inference
into molecules of inference (“synthetic inference rules”).
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Satisfying the desiderata

D1: Simple checkers.
Only the atoms of inference and the rules of chemistry (both small
and closed sets) need to be implemented in the checker.

D2: Certificates supports a wide range of proof systems.
The molecules of inference can be engineered into a wide range of
existing inference rules.

D3: Certificates are based on proof theory.
Immediate by design.

D4: Details can be elided.
Search using atoms will match search in the space of molecules,
ie., don’t invent new molecules in the checker.
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Safe proof reconstruction via logic programming

Logic programming can check proofs in
sequent calculus.

Proof reconstruction requires
unification and (bounded) proof search.

The λProlog programming language
[M & Nadathur, 1986, 2012] also
include types, abstract datatypes, and
higher-order programming.
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Invertibility of inference rules

Consider a one-side sequent calculus system for classical logic.

Some introduction rules are invertible.

` ∆,B[y/x ]

` ∆,∀xB

` ∆,B1,B2

` ∆,B1 ∨ B2

` ∆,B1 ` ∆,B2

` ∆,B1 ∧ B2

Some introduction rules are not invertible.

` ∆,B[t/x ]

` ∆, ∃xB

` ∆,Bi

` ∆,B1 ∨ B2
i ∈ {1, 2}

Theorem proving researcher often use the invertible inference rules.
But invertibility comes with a high cost in copying.
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A certificates for propositional logic: compute CNF

Consider only invertible introduction rules for these connectives.

A proof of formula B has a single, huge invertible part.

. . . ` L1, . . . , Ln
closed

. . .
...

` B

A premise is closed if Li = ¬Lj for {i , j} ⊆ {1, . . . , n}.

The proof certificate can specify these complementary literals for
each premise or it can ask the checker to search for them.

Proof certificates can be tiny but require exponential time for
checking.
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Non-invertible rules allow for inserting information

Let B be a large propositional formula and let

C = (p ∨ B) ∨ ¬p

for propositional variable p. Using non-invertible rules allows for
“cleverness” to be injected into the proof.

` (p ∨ B) ∨ ¬p,¬p, p
closed

` (p ∨ B) ∨ ¬p,¬p, (p ∨ B) ∨ ¬p
∗

` (p ∨ B) ∨ ¬p,¬p

` (p ∨ B) ∨ ¬p, (p ∨ B) ∨ ¬p
∗

` (p ∨ B) ∨ ¬p

Clever choices ∗ are injected twice. The subformula B is avoided.
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LKF : a focused proof systems for classical logic

` Θ ⇑ Γ, t−
` Θ ⇑ Γ,A ` Θ ⇑ Γ,B

` Θ ⇑ Γ,A ∧− B

` Θ ⇑ Γ

` Θ ⇑ Γ, f −
` Θ ⇑ Γ,A,B

` Θ ⇑ Γ,A ∨− B

` Θ ⇓ t+

` Θ ⇓ Γ1,B1 ` Θ ⇓ Γ2,B2

` Θ ⇓ Γ1, Γ2,B1 ∧+ B2

` Θ ⇓ Γ,Bi

` Θ ⇓ Γ,B1 ∨+ B2

Init

` ¬Pa,Θ ⇓ Pa

Store

` Θ,C ⇑ Γ

` Θ ⇑ Γ,C

Release

` Θ ⇑ N
` Θ ⇓ N

Decide

` P,Θ ⇓ P
` P,Θ ⇑ ·

P multiset of positives; N multiset of negatives;
Pa positive literal; C positive formula or negative literal
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Results about LKF

Let B be a propositional logic formula and let B̂ result from B by
placing + or − on t, f , ∧, and ∨ (there are exponentially many
such placements).

Theorem. B is a tautology if and only if B̂ has an LKF proof.
[Liang & M, TCS 2009]

Thus the different polarizations do not change provability but can
radically change the proofs.

Also:
• Negative (non-atomic) formulas are treated linearly (never

weakened nor contracted).
• Only positive formulas are contracted (in the Decide rule).
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An example

Assume that Θ contains the formula a ∧+ b ∧+ ¬c and that we
have a derivation that Decides on this formula.

` Θ ⇓ a
Init ` Θ ⇓ b

Init

` Θ,¬c ⇑ ·
` Θ ⇑ ¬c

` Θ ⇓ ¬c
Release

` Θ ⇓ a ∧+ b ∧+ ¬c
and

` Θ ⇑ · Decide

This derivation is possible iff Θ is of the form ¬a,¬b,Θ′. Thus,
the “macro-rule” is

` ¬a,¬b,¬c ,Θ′ ⇑ ·
` ¬a,¬b,Θ′ ⇑ ·
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Example: Resolution as a proof certificate

A clause: ∀x1 . . . ∀xn[L1 ∨ · · · ∨ Lm]
A negated clause: ∃x1 . . . ∃xn[L1 ∧ · · · ∧ Lm]

1 A clause C is trivial if it contains complementary literals.

2 A clause C1 subsumes C2 if there is a substitution instance of
the literals in C1 which is a subset of the literals in C2.

3 C3 is a resolution of C1 and C2 if we chose the mgu of two
complementary literals, one from each of C1 and C2, etc.

Polarize using ∨− and ∧+ (multiplicative connectives).

Let `d Θ ⇑ Γ mean that ` Θ ⇑ Γ has a proof with decide depth d .

• If C is trivial then `1 · ⇑ C .
• If C1 subsumes a non-trivial clause C2 then `2 ¬C1 ⇑ C2.
• If C3 is a resolvent of C1 and C2 then `3 ¬C1,¬C2 ⇑ C3.
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Example: Resolution as a proof certificate (cont)

Translate a refutation of C1, . . . ,Cn into an LKF proof with small
holes as follows: assume that {i , j} ⊆ {1, . . . , n} and that a
resolvent of Ci and Cj is Cn+1.

Ξ
` ¬Ci ,¬Cj ⇑ Cn+1

...
` ¬C1, . . . ,¬Cn,¬Cn+1 ⇑ ·
` ¬C1, . . . ,¬Cn ⇑ ¬Cn+1

Store

` ¬C1, . . . ,¬Cn ⇑ ·
Cutp

Here, Ξ can be replaced with a “hole” annotated with decide
depth bound 3.

Dale Miller A foundational approach to proof certificates



Narrow our focus
Four desiderata for proof certificates

The sequent calculus via examples

Future directions

Define many more proof certificate for first-order logic.
• We need to provide for their modular construction.

Improve performance of checking.

Develop focused proof systems for fixed points (recursive
definitions).
• This will allow model checkers and inductive theorem provers to

share proofs.
• What is a good proof search mechanism to check these?
λProlog will not work.

Generalize “proof certificates” to include both partial proofs and
counter-examples. Both have economic and didactic value.

Get certificates adopted. Start with prover competitions?
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First-order terms and their structure

` Θ ⇑ Γ,A[y/x ]

` Θ ⇑ Γ,∀x A
§

` Θ ⇓ Γ,A[t/x ]

` Θ ⇓ Γ,∃x A

§ y is not free in the lower sequent

` Θ ⇓ t = t ` Θ ⇑ Γ, s 6= t
‡ ` Θσ ⇑ Γσ

` Θ ⇑ Γ, s 6= t
†

‡ s and t are not unifiable. † s and t have mgu σ.

` Θ ⇑ Γ,B(νB)t̄

` Θ ⇑ Γ, νBt̄

` Θ ⇓ Γ,B(µB)t̄

` Θ ⇓ Γ, µBt̄

B is a formula with n ≥ 0 variables abstracted; t̄ is a list of n
terms.

Here, µ and ν denotes some fixed point. Least and greatest require
induction and co-induction.
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Examples of fixed points

Natural numbers: terms over 0 for zero and s for successor. Two
ways to define predicates over numbers.

nat 0 :- true.

nat (s X ) :- nat X .

leq 0 Y :- true.

leq (s X ) (s Y ) :- leq X Y .

Above, as a logic program and below, as fixed points.

nat = µ(λpλx .(x = 0) ∨+ ∃y .(s y) = x ∧+ p y)

leq = µ(λqλxλy .(x = 0)∨+∃u∃v .(s u) = x ∧+ (s v) = y ∧+ q u v).

Horn clauses can be made into fixed point specifications.
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The engineering of proof systems

Consider proving the down-arrow focused sequent

` Θ ⇓ (leq m n ∧+ N1) ∨+ (leq n m ∧+ N2),

where m, n are natural numbers and N1,N2 are negative formulas.
There are exactly two possible macro rules:

` Θ ⇓ N1

` Θ ⇓ (leq m n ∧+ N1) ∨+ (leq n m ∧+ N2)
for m ≤ n

` Θ ⇓ N2

` Θ ⇓ (leq m n ∧+ N1) ∨+ (leq n m ∧+ N2)
for n ≤ m

A macro inference rule can contain an entire Prolog-style
computation.
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The engineering of proof systems (cont)

Consider proofs involving simulation.

sim P Q ≡ ∀P ′∀A[ P
A−→ P ′ ⊃ ∃Q ′ [Q

A−→ Q ′ ∧ sim P ′ Q ′]].

Typically, P
A−→ P ′ is given as a table or as a recursion on syntax

(e.g., CCS): hence, as a fixed point.

The body of this expression is exactly two “macro connectives”.

• ∀P ′∀A[P
A−→ P ′ ⊃ · ] is a negative “macro connective”. There

are no choices in expanding this macro rule.

• ∃Q ′[Q
A−→ Q ′ ∧+ · ] is a positive “macro connective”. There

can be choices for continuation Q ′.

These macro-rules now match exactly the sense of simulation from
model theory / concurrency theory.
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