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1. Introduction

A meta programming language must be able to represent and manipulate such syn-

tactic structures as programs, formulas, types, and proofs. A common characteristic of

all these structures is that they involve notions of abstractions, scope, bound and free

variables, substitution instances, and equality up to alphabetic changes of bound vari-

ables. Although the data types available in most computer programming languages are

rich enough to represent all these kinds of structures, such data types do not have direct

support of these other notions. For example, although it is trivial for Lisp to represent

first-order formulas, it is a more complex matter to write Lisp programs that correctly

substitute a term into a formulas (being careful not to capture bound variables), to test

for the equivalence of formulas up to alphabetic variation, and to determine if a certain

variable’s occurrence is free or bound. This situation is the same when structures like

programs or (natural deduction) proofs are to be manipulated and if other programming

languages, such as Pascal, Prolog, and ML, replace Lisp.

It is desirable for a meta programming language to have language-level support for

these various aspects of formulas, proofs, types, and programs. What is a common frame-

work for representing these structures? Early papers by Church, Curry, Howard, Martin-

Löf, Scott, Strachey, Tait, and others conclude that typed and untyped λ-calculi provide a

common syntactic representation for all these structures. Thus a meta programming lan-

guage that is able to represent terms in such λ-calculi directly could be used to represent

these structures using the techniques described by these authors.

One problem of designing a data type for λ-terms is that methods for destructuring

them should be invariant under the intended notions of equality of λ-terms, which usually

includes α-conversion. Thus, destructuring the λ-term λx.fxx into its bound variable x
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and body fxx is not invariant under α-conversion: this term is α-convertible to λy.fyy

but the results of destructuring this equal term does not yield equal answers. Although

the use of deBruijn’s representation of terms (deBruijn, 1972), where both of these terms

would be represented by the same structure λ(f11), can help simplify this one problem,

that representation still requires fairly complex manipulations to represent the full range

of desired operations on λ-terms. A more high-level approach to the manipulation of

λ-terms modulo α and β-conversion was the use of unification of simply typed λ-terms

[Pietrzykowski & Jensen, 1976; Huet 1975]. Huet and Lang (1978) describe how such

a technique, when restricted to second-order matching, could be used to analyze and

manipulate simple functional and imperative programs. Their reliance on unification,

which solved equations up to α, β, and η-conversion, made their meta programs elegant,

simple to write, and easy to prove correct. They choose second-order matching because

it was strong enough to implement a certain collection of template matching program

transformations and it was decidable. The general problem of the unification of simply

typed λ-terms of order 2 is undecidable (Goldfarb, 1981).

This use of unification on λ-terms has been extended in several recent papers. In

Miller and Nadathur (1987), Felty and Miller (1988), and Miller and Hannan (1988a,

1988b), various meta programs, including theorem provers and program transformers,

were written in the logic programming λProlog (Nadathur & Miller, 1988) that contains

an implementation of such unification. Paulson (1986, 1988) exploits such unification

in the theorem proving system Isabelle. All of these papers used unification in simply

typed systems. Pfenning and Elliot (1988) argue that product types are also of use.

Elliot (1989) has studied unification in a dependent type framework and Pfenning (1989)

developed a logic programming language, Elf, that incorporates that unification process.

That programming language can be used to provide direct implementation of signatures

written in the LF type specification language (Harper, Honsel, & Plotkin, 1987).

In this paper, we shall focus on a particularly simple logic programming language,

called Lλ, that is completely contained within λProlog and Elf, that admits a very natural

implementation of the data type of λ-terms. The term language of Lλ is the simply

typed λ-calculus with equality modulo α, β, and η-conversion. The “β-aspects” of Lλ

are, however, greatly restricted and as a result, unification in this language will resemble

first-order unification – the main difference being that λ-abstractions are handled directly.

In Section 2 we present a simple class of second-order unification problems that are at

the core of Lλ. In Section 3 we generalize this unification problem slightly and in Section

4 we define Lλ. Finally, in Section 5 we present several examples of Lλ programs and show

how to write arbitrary second-order unification problems as simple Lλ programs.

In this paper we shall explore only certain aspects of second-order quantification in

logic programming. Much of what is presented here can be extended to third and higher-

order. See the sequel to this paper for details. Although Lλ only marginally extends

the first-order quantification nature of such logic programming languages as first-order
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Horn clauses, Lλ has a much richer propositional nature than Horn clauses. This richer

propositional aspects of the language make it possible to provide the logic programming

paradigm with notions of modular programming (Miller, 1989a) and lexical scoping (Miller,

1989b), both of which are not supported directly by Horn clause programs.

2. A Simple Class of Second-Order Unification Problems

We assume that the reader is familiar with the basic properties of λ-terms and λ-

conversion. Below we review some definitions and properties. See (Hindley & Seldin,

1986) for a more complete presentation.

Let S be a fixed, finite set of primitive types (also called sorts). The set of types is

the smallest set of expressions that contains the primitive types and is closed under the

construction of function types, denoted by the binary, infix symbol →, which associates to

the right: read τ1 → τ2 → τ3 as τ1 → (τ2 → τ3). The Greek letters τ and σ are used as

syntactic variables ranging over types.

Let τ be the type τ1 → · · · → τn → τ0 where τ0 ∈ S and n ≥ 0. (By convention, if

n = 0 then τ is simply the type τ0.) The types τ1, . . . , τn are the argument types of τ while

the type τ0 is the target type of τ . The order of a type τ is defined as follows: If τ ∈ S

then τ has order 0; otherwise, the order of τ is one greater than the maximum order of the

argument types of τ . Thus, τ has order 1 exactly when τ is of the form τ1 → · · · → τn → τ0

where n ≥ 1 and {τ0, τ1, . . . , τn} ⊆ S.

For each type τ , we assume that there are denumerably many constants and variables

of that type. Constants and variables do not overlap and if two constants (or variables)

have different types, they are different constants (or variables).

If x and s are terms of the same type then [x 7→ s] denotes the operation of substituting

s for all free occurrences of x, systematically changing bound variables in order to avoid

variable capture.

The rules of α, β, and η conversion are defined as usual. The binary relation conv,

denoting λ-conversion, is defined so that t conv s if there is a list of terms t1, . . . , tn, with

n ≥ 1, t equal to t1, s equal to tn, and for i = 1, . . . , n − 1, either ti converts to ti+1 or

ti+1 converts to ti by α, β, or η. Expressions of the form λx (t x) are called η-redexes

(provide x is not free in t) while expressions of the form (λx t)s are called β-redexes. A

term is in λ-normal form if it contains no β or η-redexes. Every term can be converted to

a λ-normal term, and that normal term is unique up to the name of bound variables.

A signature (over S) is a finite set Σ of constants. We often enumerate signatures

by listing their members as pairs, written a: τ , where a is a constant of type τ . Although

attaching a type in this way is redundant, it makes reading signatures easier. A signature

is second-order if all its constants have type 0, 1, or 2. A term is a Σ-term if all of its

constants are members of Σ.

Let Σ be a second-order signature. A second-order unification problem (over Σ) is a
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finite list of disagreement pairs, pairs of λ-normal terms of the same type, such that each

λ-term in each disagreement pair is a Σ-term and the free variables of each of those terms

are of order 0 or 1.

2.1. Example. Let S be the set of primitive types {i}. Let Σ be the signature

{a: i, b: i, f : i → i, g: i → i → i}. The following are second-order unification problems

(assuming that the type for the free variables F, G, H are first-order):

[〈Fa, gab〉, 〈Fb, gbb〉] (1)

[〈λx.Fxx, λy.Gy〉] (2)

[〈λx.g(Hx)(f(Fx)), λy.g(fy)(fy)〉] (3)

[〈λxλy.f(gxy), λuλv.Huu〉] (4)

Standard operations on substitutions are assumed: that they can be represented as

finite association lists between variables and terms of the same types, they can be consid-

ered as functions from terms to terms, that application of a substitution ϕ to a term t is

denoted by ϕt, substitutions can be composed, and they can be ordered by subsumption

(deriving the notion of more general than).

A solution (also, unifier) for a given unification problem P over signature Σ is a

substitution ϕ that has all the free variables of P as a domain and closed Σ-terms as a

range and is such that ϕt λ-converts to ϕs for every disagreement pair 〈t, s〉 in P .

2.2. Example. In the example above, (4) does not have a solution. Solutions for the

other unification problems there are:

{〈F, λw.gwb〉} (1)

{〈F, λuλv.g(fu)v〉, 〈G, λw.g(fw)w〉} (2)

{〈F, λuλv.a〉, 〈G, λw.a〉} (2)

{〈F, λu.u〉, 〈H, f〉} (3)

Notice, that for examples (1) and (3), all solutions are equal (up to λ-conversion) to the

displayed solutions. For example (2), there are an infinite number of solutions, all of which

are the result of composing with the substitution {〈G, λw.Fww〉}. For technical reasons,

we desire that this substitution, which has an open term in its range is not actually a

solution to (2), although all its closed instances are.

A second-order unification problem is variable-defining if it satisfies the following two

restrictions: (1) every occurrence of a subformula of the form (Ft1 . . . tn), where F is a

free variables and n ≥ 0, is such that the terms t1 . . . tn are distinct λ-bound variables, and

(2) all internally bound variables are of primitive type. In the examples above, only (3) is
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a variable-defining unification problem. All first-order unification problems are variable-

defining.

We have the following theorem regarding this class of unification problems.

2.3. Theorem. Let P be a variable-defining unification problem. It is decidable

whether or not P has a solution. Furthermore, if P has a solution, it is possible to find

a substitution θ such that all solutions to P are instances of θ. (The substitution θ plays

the role of a most general unifier.)

Outline of Proof: We shall write a bar over a letter, for example, x̄, to denote the

(possibly empty) list of distinct variables and will write λx̄ to denote the abstraction of

those variables. By using α and η-conversions, all disagreement pairs can be put into the

form

〈λx̄.ht1 . . . tn, λx̄.ks1 . . . sm〉,

where m, n ≥ 0 and h and k are either constants or variables. Such a disagreement

pair is simplified if h and k are distinct and a unification problem is simplified if all its

disagreement pairs are simplified. Every unification problem can be put into an equivalent

(i.e., set of solutions is the same) simplified unification problem by the following process:

repeatedly replace a disagreement pair of the form 〈λx̄.ht1 . . . tn, λx̄.hs1 . . . sn〉 with the n

disagreement pairs

〈λx̄.t1, λx̄.s1〉, . . . , 〈λx̄.tn, λx̄.sn〉.

Unification problems have essentially unique simplified forms. A terms in a simplified

disagreement pair is of one of the following forms:

(i) λx̄.ht1 . . . tn where h is a constant in the signature Σ,

(ii) λx̄.y where y is some variable in the list x̄, or

(iii) λx̄.F ȳ where ȳ is a list of distinct variables in the list x̄ and F is free.

We now present a non-deterministic procedure that takes a simplified unification prob-

lem and either signals an failure or completes the construction of a sequence of unification

problems in which the last one is empty. In that case, a substitution θ can be extracted

from the construction of this sequence. It will then be the case that a substitution is a

solution to P if and only if it is a closed instance of θ.

Pick some disagreement pair from the given unification problem P . If both terms of

this pair are of the form (i) or (ii), then signal an error: P cannot have a solution. Thus,

assume that one of the terms is of form (iii), namely, of the form λx1 . . . λxn.Fy1 . . . ym.

Consider the following three case depending on the structure of the other term in the

selected pair.

Case 1: Let the other term be λx̄.kt1 . . . tp. If F occurs free in this term, then signal

a failure and stop. Otherwise, apply to the entire unification problem the substitution

{〈F, λw1 . . . λwn.k(H1w̄) . . . (Hpw̄)〉} and call this process again on the simplified form of

the resulting unification problem. Here, the variables H1, . . .Hp are “new” (possessing no
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occurrences in this or previous unification problems or substitutions) and of appropriate

types.

Case 2: Let the other term be λx̄.y. If y is not in the list y1 . . . ym then signal

an error and stop. Otherwise, apply to the entire unification problem the substitution

{〈F, λy1 . . . λym.y〉} and call this process again on the simplified form of the resulting

unification problem.

Case 3: Otherwise the given disagreement must be of the form

〈λx1 . . . λxn.Fy1 . . . ym, λx1 . . . λxn.Gz1 . . . zp〉.

If F and G are distinct then let w1, . . . , wq be an enumeration of the intersection of the

lists y1 . . . ym and z1 . . . zp. If F and G are the same, then let w1, . . . , wq be an enumeration

of the set {yi | yi = zi, i = 1, . . . , m}. In either case, apply the substitution

{〈F, λy1 . . . λym.Hw1 . . . wq)〉, 〈G, λz1 . . . λzp.Hw1 . . .wq)〉},

and call this process again on the simplified form of the resulting unification problem.

Here, the variable H is new and of appropriate type.

If this process does not signal an error, it will terminate only with an empty unification

problem. At that point, let θ be the composite substitution that records the substitutions

applied at each step in this procedure. A simple induction now establishes the desired

property of θ: the set of all solutions to the original problem is the set of closed instances

of θ.

3. Being Explicit and More Flexible with Quantification

Unification problems can naturally be considered closed formulas if disagreement pairs,

written as equations, are conjoined together and if its free variables are existentially quanti-

fied. (Empty conjunctions will be written as ⊤.) Similarly, it is possible to replace top-level

λ-abstractions in disagreement pairs with universal quantification: the disagreement pair

〈λx̄.t, λx̄.s〉 can be written as the formula ∀x̄.t = s. For example, the unification problem

[〈λx.g(Hx)(f(Fx)), λy.g(fy)(fy)〉, 〈λx.gxL, λx.gLL〉]

can be written as the quantified formula

∃F∃H∃L∀x∀y.g(Hx)(f(Fx)) = g(fx)(fx)∧ (gyL) = (gLL).

Thus, all unification problems can be written as prenex normal conjunctions of equations

in which the quantifier prefix is of the form ∃∀. Clearly, the unification process implicit in

the proof of Theorem 2.3 can be generalized to this representation of unification problems.
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Here, existentially quantified variables are of order 0 or 1 while universally quantified

variables of order 0.

To define Lλ most naturally in the next section, it will be useful to generalize unifica-

tion problems from having simple ∃∀-prefixes to having richer quantifier alternation in the

prefix. Given our second-order setting, this generalization is very easy to accommodate

because the existence of second-order variables permits any quantifier prefix to be simpli-

fied to a ∃∀-prefix. This is achieved by using raising, a process that is essentially the dual

of Skolemization. In particular, let P be a unification problem of the form Q1∀x∃hQ2D,

where Q1 and Q2 are strings of quantifiers, x is a variable of some primitive type τ and h

is some variable of type τ1 → . . . → τn → τ0 (n ≥ 0) where τ0, . . . , τn are primitive types.

The the result of raising P at ∃h is the unification problem

Q1∃h′∀xQ2θD

where θ is the substitution {〈h, h′x〉} and h′ is a variable or type τ → τ1 → · · · → τn → τ0

that does not occur in P . By repeatedly raising a unification problem on all existential

variables that are to the right of a universal variable, the problem can be simplified to a

unification problem with a ∃∀ prefix.

Provability of such quantified formulas in classical or intuitionistic settings where

equality is interpreted by βη-conversion can be completely characterized as follows. Let

P be such a formula all of whose non-logical constants are from Σ. P is provable if and

only if there is a substitution for all the quantified variables in the prefix of P that has the

following properties: first, the image of the universal variables are distinct constants that

are not members of Σ, and second, the image of an existentially quantified variable x is a

Σ∪Σ′-term where Σ′ is the set of constants instantiating universal variables quantified to

the left of x in the prefix of P . (Actually, to get an exact match with certain versions of

classical or intuitionistic logics, it is necessary to ensure that all types in S are inhabited,

an assumption not enforced here.)

3.1. Example. Consider the quantified formula

∀x∃F.Fx = gxx

over the signature {g : i → i → i}. This formula can be raised at ∃F to yield the formula

∃F ′∀x.F ′xx = gxx.

This is the formula version of the unification problem [〈λx.F ′xx, λx.gxx〉]. This uni-

fication problem has four solutions, namely, {〈F ′, λuλv.guv〉}, {〈F ′, λuλv.guu〉}, {〈F ′,

λuλv.gvv〉}, and {〈F ′, λuλv.gvu〉}. These four solutions yield the four solutions to the

original, unraised problem: {〈x, a〉, 〈F, λv.gav〉}, {〈x, a〉, 〈F, λv.gaa〉}, {〈x, a〉, 〈F, λv.gvv〉},

and {〈x, a〉, 〈F, λv.gva〉}.
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In order to lift the definition of variable-defining to this more general setting, we

introduce a binary judgment ⊢T between quantifier prefixes and λ-terms. This judgment

is defined by the provability rules given in Figure 1. The three rules have the following

provisos.

α The terms t and t′ are related by α-conversion.

† The variable x does not occur in Q. Otherwise, use the rule of α-conversion to change

the bound variable.

‡ The symbol h is either a constant or a universally quantified variable in Q.

♯ The variable F is existentially quantified to the left of where the distinct variables

x1, . . . , xn are universally quantified.

Now, we shall consider a quantified conjunctions of equation QD to be a variable-

defining unification problem if for every term t in each of its equations, it is the case that

the judgement Q ⊢T t is provable from the rules in Figure 1. The justification for this

extension to the definition of variable-defining is that the result of completely raising any

such formula results in a formula that can be identified with such unification problems as

defined in the previous section.

Q ⊢T t
α

Q ⊢T t′

Q∀x ⊢T t
†

Q ⊢T λx.t

Q ⊢T t1 . . . Q ⊢T tn
‡

Q ⊢T ht1 · · · tn

Q ⊢T Fx1 · · ·xn
♯

Figure 1: Term syntax rules

The procedure of taking a quantified conjunction of equations from this now extended

class of variable-defining unification problems, raising to get a ∃∀ prefix, and applying

the procedure of Theorem 2.3 to the result, is a complete and sound theorem proving

method for such quantified formulas. Obviously, since raising is such a simple device, it is

straightforward to describe a unification procedure that can handle quantifier alternation

directly without using raising as a preprocessing step.

4. The Logic Programming Language Lλ

We shall now present a logic programming language whose implementation only re-

quires considering variable-defining unification problems under a mixed prefix. In order

to introduce formulas we use the technique of Church (1940) of assuming that the type

symbol o is a primitive symbol, that is, is always a member of S. The logical constants are

given the following types: ∧,⊃ are all of type o → o → o; ⊤ is of type o; and ∀ is of type
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(τ → o) → o, for all types τ that are of order 1 or 0 and do not contain the type symbol

o. The binary constants ∧,⊃ will be written with infix notation and the expression ∀λx.B

will be abbreviated to ∀x.B. A formula will be identified as a term of type o. The fact

that type o is not permitted in the types of quantified variables means that this language is

higher-order in a very weak sense: predicate quantification, the difficult aspect of higher-

order logics, is not permitted in this version of Lλ. Inclusion of predicate quantification

can be accommodated along the lines that have been studied for higher-order Horn clauses

(Nadathur & Miller, TA) and higher-order hereditary Harrop formulas (Miller, Nadathur,

Pfenning, & Scedrov, TA).

Following the lines outlined in (Miller, 1989a) and (Miller, Nadathur, Pfenning, &

Scedrov, TA), a logic programming language is a specification of a set of goal formulas, a

set of program or definite clauses, and a provability relation that satisfies a goal directed

interpretations of logical constants in non-atomic goals. Intuitionistic or minimal logic will

serve as the provability relation for Lλ. We shall define both the class of goal formulas and

definite clauses by a proof system which extends the one for terms that was presented in

Figure 1. That is done by introducing two new binary judgments, ⊢G and ⊢D that relate

quantifier strings with formulas. The inference rules for these two judgments are given in

Figure 2. Several examples of goals and definite clauses are given in the next section. For

now, note that first-order Horn clauses can be identified with subsets of both goal formulas

and definite clauses.

Q∀x ⊢G G
†, ♯

Q ⊢G ∀x.G

Q ⊢G G1 Q ⊢G G2

Q ⊢G G1 ∧ G2

Q ⊢D D Q ⊢G G

Q ⊢G D ⊃ G

Q ⊢T A
‡

Q ⊢G A

Q∃x ⊢D D
†

Q ⊢D ∀x.D

Q ⊢D D1 Q ⊢D D2

Q ⊢D D1 ∧ D2

Q ⊢G G Q ⊢D D

Q ⊢D G ⊃ D

Q ⊢T A
‡

Q ⊢D A

Figure 2: Goal and clause syntax rules

The inference rules in Figure 2 have the following provisos:

† The variable x is does not occur in Q. Otherwise, use the rule of α-conversion to

change the bound variable (assuming that there is an α-rule for both ⊢G and ⊢D just

as there is one for ⊢T ).

‡ The formula A is atomic, that is, its top-level symbol is not a logical connective.

♯ The quantified variable x is of primitive, non-propositional type.

In the rest of this section we outline how intuitionistic theorem proving of goal formulas

from finite sets of definite clauses can be implemented. From this sketch, it will be clear

that only variable-defining unification problems need to be solved.

Unification problems contain one primitive proposition, that of equality. To specify
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a theorem prover, we introduce a second judgment =⇒ to denote sequent provability. A

sequent judgment will be between lists of formulas and formulas. Lists will be built by

using two new constants, @ for “cons” and nil. Both @ and =⇒ will be written with infix

notation and @ associates to the right. An equality proposition is any expression of the form

t = s. A sequent proposition is any expression of the form P =⇒ L. A deduction problem is

a quantified conjunction of equality and sequent judgments P . Thus, a deduction problem

without any sequent propositions is a unification problem. Let G be a goal formula. The

deduction problem for G is the formula Q[nil =⇒ G′] where G′ is the λ-normal form of G

and Q is the purely existential quantifier prefix with a quantifier for each free variable in

G′.

Let P be a deduction problem with prefix Q and some sequent proposition. Below are

five rewriting rules for such deduction problems. The first three do not change the prefix

of a deduction problem while the last two add an innermost quantifier to the prefix. In

all five cases, a sequent proposition is replaced by either an equality proposition or one or

two sequent propositions.

init: Replace P =⇒ A in P with A = A′ provided A′ is a member of P and A and A′ are

atomic.

⊃ -R: Replace P =⇒ D ⊃ G with D @P =⇒ G.

⊃ -L: Replace P =⇒ G1 with (D @P =⇒ G1)∧ (P =⇒ G2) provided G2 ⊃ D is member

of P.

∀-R: Replace P =⇒ ∀x.G with P =⇒ G and x is a variable not present in Q (otherwise,

change its name first). The new prefix is Q∀x.

∀-L: Replace P =⇒ G with D @P =⇒ G where ∀x.D is a member of P and x is a

variable not present in Q (otherwise, change its name first). The new prefix is Q∃x.

A deduction problem P can be rewritten to a deduction problem P ′ if there is a

sequence of zero or more deductions problems P = P1, . . . , Pn = P ′ such that for i =

1, . . . , n − 1, Pi+1 results from Pi by one of the above five rules.

A proof of the following theorem can be found in (Miller, drafts).

4.1. Theorem. Let P be a list of closed definite clauses and let G be a goal formula

all of whose free variables are in the list x̄. The deduction problem ∃x̄[P =⇒ G] can be

rewritten to a solvable unification problem if and only if there is some instance of G which

is intuitionistically entailed by P.

The theorem proving process implicit in this theorem places all the work of unification

at the end of the search for a proof. This is clearly undesirable for most practical con-

siderations. Fortunately, it is easy to describe a modificated deduction rewriting scheme

which attempts to solve equations when they first appear. Since all these equations are

variable-defining, it is possible to completely solve them.

For the sake of presenting examples in the next section, we provide an operational

description of a non-deterministic interpreter.
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Let A be a syntactic variable for atomic formulas, G be a syntactic variable for goal

formulas, and D a syntactic variable for definite clauses. Let P be a finite set of definite

clauses. We define PΣ to be the smallest set of pairs 〈D,G〉 where D is a closed definite

formula and G is a finite set of closed goal formulas satisfying the following conditions.

(i) If D ∈ P then 〈D, ∅〉 ∈ PΣ.

(ii) If 〈D1 ∧ D2,G〉 ∈ PΣ then 〈D1,G〉 ∈ PΣ and 〈D2,G〉 ∈ PΣ.

(iii) If 〈∀x.D,G〉 ∈ PΣ then 〈[x 7→ t]D,G〉 ∈ PΣ for every closed term t over signature Σ.

(iv) If 〈G ⊃ D,G〉 ∈ PΣ then 〈D, {G} ∪ G〉 ∈ PΣ.

We can now describe a nondeterministic interpreter for Lλ. Let Σ be a given second-

order signature and let P be a finite set of closed definite clauses and let G be a closed

goal formula, both over Σ. Intuitionistic provability of G from P, written as Σ;P ⊢I G

can be characterized as follows:

AND: Σ;P ⊢I G1 ∧ G2 if and only if Σ;P ⊢I G1 and Σ;P ⊢I G2.

AUGMENT: Σ;P ⊢I D ⊃ G if and only if Σ;P ∪ {D} ⊢I G.

GENERIC: Σ;P ⊢I ∀x.G if and only if Σ ∪ {c};P ⊢I [x 7→ c]G, provided that c is a

constant of the same type as x and that c does not occur in Σ.

BACKCHAIN: Σ;P ⊢I A if and only if there is a pair 〈A,G〉 ∈ PΣ such that for all

G ∈ G, Σ;P ⊢I G.

In this description of a theorem prover, details of unification have been suppressed.

When free variables are allowed in the formulas of P and in G, the condition that c be a

“new” constant in GENERIC must mean that any variables free when c was introduced

must be restricted so that future instantiations of them cannot be to terms containing c.

This restriction is enforced in our earlier unification-based description of theorem proving

in Lλ by the alternation of quantifiers.

5. Examples of Lλ programs

We have used prefixed conjunctions over equations and sequents as a meta language

for Lλ. We shall now use Lλ as a meta language for a few simple applications. The hope

is that since we have addressed the nature of α-conversion and scope in the meta theory

of Lλ, the applications written in Lλ need not address these issues directly.

For our first example, we show how to code a predicate that will determine if its

one argument represents a tail recursive procedure in a simple functional programming

language. To this end, we shall assume that we have the following signature available.

Here we list types and the constants that are of that type.

i : 0, 1, 2, . . .

i → i → i : app, equal, plus, times, minus

i → i → i → i : if

(i → i) → i : abs, fix

– 11 –



Terms of type i will be identified with the representation of simple functional programs.

The constant app is used to form curried function application, abs forms abstractions, and

fix forms recursive definitions from abstractions. An example of a program (term of type

i) is

(fixλf(absλx(absλy(if (equal 0 x) y (app (app f (minus x 1)) (times x y))))))

which defines a tail recursive form of the factorial program: the value of (fact n 1) is

intended to be n! where fact denotes the displayed formulas above.

Before presenting the tail recursion example, consider specifying the one place predi-

cate vacuous of type i → o such that (vacuous B) is provable if and only if B is a vacuously

defined recursive function. In Lλ, specifying this predicate is trivial and is given by the

following universally quantified clause:

∀H.vacuous (fix λF.H).

Any atom of the form (vacuous B) that is provable from this clause must be a term that

is a top-level fix which is applied to a vacuous abstraction.

Now consider adding the following predicate constants to the signature displayed

above:
i → o : trfun

(i → i) → o : trabs, trcond, tratom

To make the specification of these predicates easier to read and more in line with standard

logic programming conventions, when displaying definite clauses we shall use :- as the

converse of ⊃ and assume that free variables are universally quantified around the scope

of each clause. Consider the following definite clauses.

trfun (fix B) :- trabs B.

trabs λf(abs (B f)) :- ∀x.trabs λf(Bfx).

trabs C :- trcond C.

trcond λf(if C (B1 f) (B2 f)) :- trcond B1 ∧ trcond B2.

trcond B :- tratom B.

tratom λf H.

tratom λf f.

tratom λf(app (H f) T ) :- tratom H.

In the three predicates trabs, trcond, and tratom, a fragment of the programs is analyzed.

In each of these cases, the recursive function abstraction is maintained around that program

fragment. This permits unification to determine whether or not that recursive call occurs

in parts of the recursion, a key part of the analysis of tail recursion.
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For our final example of Lλ programs, we show how to reduce arbitrary second-

order unification problems to simple Lλ programs for computing such unifiers. First, by

a second-order unification problem we mean one with free variables of order 0 or 1 and

internal abstractions of order 0. Second, we need to fix a signature Σ over which we plan

to encode second-order unification. For this example, we choose Σ to be

i : a, b

i → i : f

i → i → i : g

(i → i) → i : h

Given this signature, we develop the following copying program.

copy a a.

copy b b.

copy (f X) (f Y ) :- copy X Y.

copy (g X Y ) (g U V ) :- copy X U ∧ copy Y V.

copy (h F ) (h G) :- ∀x∀y(copy x y ⊃ copy (F x) (G y)).

A closed goal (copy t s) is provable if t and s are the same term. (Calling this identity

predicate “copy” suits its operational behavior.) Clearly, copy has type i → i → o. We

shall also need a have the denumerable class of programs, of which we present only the

first two.

subst1 T1 M P :- ∀x1 (copy x1 T1 ⊃ copy (M x1) P ).

subst2 T1 T2 M P :- ∀x1 (copy x1 T1 ⊃ ∀x2(copy x2 T2 ⊃ copy (M x1 x2) P )).

The type of subst1 is i → (i → i) → i → o and the type of subst2 is i → i → (i →

i → i) → i → o. In general, substn describes how to simultaneously substitute n terms

for n abstractions. Given any one second-order unification problem, only a finite number

of these substn programs are needed. Since Lλ does not permit interesting β-redexes,

substitutions of this kind are not done at the meta level.

5.1. Example. Consider the problem of find a closed term to substitute for the variable

F so that (Fa) λ-converts to (g a a). The redex (Fa) is not variable-restricted. The

β-reduction that would substitution a into F can be transferred to the program subst1.

That is, the closed terms that solve this unification program are exactly the closed terms

that solve the open goal (subst1 a F (g a a)).

More complex unification problems can be encoded using this technique. New free

variables may have to be introduced, however.
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5.2. Example. Consider the problem of finding closed Σ-terms to substitute for F and

X so that the two terms (F (F a)) and (f (f X)) are λ-convertible. This can be encoded

into Lλ as the open goal

subst1 a F H ∧ subst1 H F (f (f X)).

These two problems share the same closed instances of F and X . For another example,

consider the unifying λx(G x x) with λx(f x). This can be translated into the problem of

solving the open Lλ goal

∀x.copy x x ⊃ subst2 x x G (f x).

The general translation procedure can be described as follows: Take an initial second-

order unification problem t = s and set that equal to the goal G0. Now, given Gi, if it is

not an Lλ goal then we construct Gi+1 as follows. Gi is of the form t′ = s′ ∧ G′ where G′

is an Lλ goal containing calls to subst1, subst2, etc. Since Gi is not an Lλ goal, select an

innermost subterm of t′ = s′ that is of the form (Ft1 · · · tm) where F is a free (existential)

variable and were this subterm is not variable-defining. This subterm may appear in the

scope of λ-abstractions. Say that those variables are the list x̄ = x1, . . . , xn. Then replace

the occurrence (Ft1 · · · tm) with the expression (Gx̄) for a new free variable G of suitable

type. This replacement yields a new equation t′′ = s′′ (only one of the terms will actually

be modified). The goal Gi+1 is then set equal to

t′′ = s′′ ∧ G′ ∧ ∀x̄[copy x1 x1 ⊃ · · · ⊃ copy xn xn ⊃ substm t1 · · · tm F (G x1 · · ·xn)].

The resulting goal has one fewer non-variable-restricted subterms so this process will ter-

minate with an Lλ goal. Since solutions to each successive goal is are equivalent on the

variables that they share, the final Lλ goal does correctly represent the original unification

problem.
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