
Proof and refutation in MALL as a game

Olivier Delandea, Dale Millera, Alexis Saurinb,a

aINRIA Saclay - Île-de-France and LIX/École Polytechnique, Route de Saclay, 91128
Palaiseau Cedex, France

bUniversità degli Studi di Torino, Corso Svizzera 185, 10149 Torino, Italy

Abstract

We present a setting in which the search for a proof of B or a refutation of
B (i.e., a proof of ¬B) can be carried out simultaneously: in contrast, the
usual approach in automated deduction views proving B or proving ¬B as
two, possibly unrelated, activities. Our approach to proof and refutation is
described as a two-player game in which each player follows the same rules. A
winning strategy translates to a proof of the formula and a counter-winning
strategy translates to a refutation of the formula. The game is described for
multiplicative and additive linear logic (MALL). A game theoretic treatment
of the multiplicative connectives is intricate and our approach to it involves
two important ingredients. First, labeled graph structures are used to represent
positions in a game and, second, the game playing must deal with the failure of a
given player and with an appropriate resumption of play. This latter ingredient
accounts for the fact that neither player might win (that is, neither B nor ¬B
might be provable).

Key words: proof theory, game semantics, linear logic

1. Introduction

The connections between games and logic are numerous. For example, in
the general area of the semantics of logic, games have played a significant
role: descriptive set theorists make use of Banach-Mazur (forcing) games to
build infinite structures with prescribed organization and model theorists use
Ehrenfeucht-Fräıssé (back-and-forth) games to compare infinite structures. In
the area of proof theory, proofs are occasionally used as winning strategies in
“dialog games”: for example, if one has a proof of a formula, one should be
able to defend against an opponent who might be skeptical of the truth of that
formula.

Another possible connection between logic and games can be motivated by
considering a common approach to proving the completeness of first-order logic,

Email addresses: delande at lix.polytechnique.fr (Olivier Delande), dale at

lix.polytechnique.fr (Dale Miller), saurin at lix.polytechnique.fr (Alexis Saurin)

Preprint submitted to Annals of Pure and Applied Logic August 17, 2009

following, say, Smullyan [1]. To prove completeness, one attempts to build a
tableau or sequent calculus proof of a given formula, say B, trying to complete an
incomplete proof. Such an attempt grows the incomplete derivation by adding
inference rules at any unfinished leaf of the derivation. If one does so in a
systematic fashion, one either succeeds to prove all remaining incomplete leaves
or one is left with a tree of inferences with a (possibility infinite) branch that
was never closed. In the first case, there is a proof of B and in the second
case, the never-closed branch provides a falsifying model of B. This process
can be viewed as the interaction of two agents working on this derivation tree.
One agent attempts to finish the incomplete proof tree and the another agent
attempts to find a path that is not completed. Clearly, only one of these agents
eventually succeeds at their task.

Consider now two aspects of this outline. First, this completeness result
relates, of course, provability and truth: a semantic notion of truth here seems
forced since a set-theoretic model is a convincing means of structuring the infor-
mation in an infinite path. If we restrict ourselves to a decidable logic (such as
a propositional logic), then such non-closed paths can be expected to be always
finite. In that case, one might be able to convert an open path into a proof of
¬B (that is, a refutation of B) instead of a counter-model. In that case, both
agents are attempting to construct proofs. Notice also that if we can view both
agents as attempting to build proofs (one for B and the other for ¬B), the steps
taken by these two agents appear to be rather different and there is no obvious
reason to expect the kinds of proofs to be built by these two agents to be of the
same style. One proof would be based on a tree and the other on a path.

In this paper, we describe a two-player game in which both players play by
exactly the same rules. If a player has a winning strategy, that player is able to
construct a proof: for one of the players, this would be a proof of B while dually
for the other player, this would be a proof of ¬B. Furthermore, the resulting
proofs for both players are described using the same, simple sequent calculus
proof system.

An interesting, degenerate version of such a game can be seen in the behavior
of an idealized Prolog interpreter given a noetherian logic program ∆ and query
G. Here, the interpreter loads the program ∆ and then becomes the first and
only player to actually make moves: that is, the rules of the game will allow
the interpreter to move repeatedly. The restriction that ∆ is a Horn clause
program means that there is no need to switch players (equivalent to switching
phases in a later proof system) and the restriction that ∆ is noetherian means
that the interpreter will either end in a finite success or a finite failure: recall
that a Prolog-like interpreter will explore all of the finitely many, finitely long,
branches required to build a possible proof of G by repeatedly backtracking. In
the first case, there is a proof of G from ∆ and in the second case, there is a
proof of ¬G from (the if-and-only-if completion of) ∆ [2, 3]. In either case, the
first step is all that needs to be considered in order to determine the winner of
the game.

In this paper, we present a two-person game in which one player is attempt-
ing to prove and the other is attempting to refute a formula from multiplica-

2

tive and additive linear logic (MALL). The logic MALL is decidable (in fact,
PSPACE-complete [4, 5]) and not complete in the sense that there are formulas
B such that neither B nor ¬B are provable (consider, for example, the pair of de
Morgan dual formulas ⊥ ⊗ ⊥ and 1 O 1). This incompleteness makes games in
this setting non-determinate (neither player might win) and, as a result, games
in this setting need to be able to continue play after one player has failed. Posi-
tions in a game are graphs involving “neutral expressions”: the graph structure
accounts for the multiplicative aspects of MALL while the neutral expressions
are mapped into MALL formulas using either a positive or negative transla-
tion. Winning strategies yield proofs: depending on which player has a winning
strategy, either the positive or the negative translation of the graph into logical
formulas and sequents has a proof.

Games have been successfully used to study programming languages. In par-
ticular, in functional programming games allowed to solve long-standing prob-
lems such as the full-abstraction problem for PCF [6, 7]. This approach also
provides models for logics capturing the dynamics of cut-elimination [8, 9].

Game-theoretical studies of logic programming are less common. Interest-
ingly, those works can also be classified into two groups: (i) games modeling
Prolog engines and (ii) games used to model the proof-theoretical foundations
of logic programming, namely proof-search. In the first line of research, van Em-
den [10] provided the first game-theoretic interpretation of logic programming,
connecting Prolog computations and two-person games using the αβ-algorithm.
Loddo et al. [11, 12] developed this approach and considered constraint logic
programming [13]. Recently, Galanaki et al. [14] generalized van Emden’s games
for logic programs with (well-founded) negation. In the second direction, Pym
and Ritter [15] proposed games for uniform proofs and backtracking by relating
intuitionistic and classical provability. Our present work can also be connected
to recent research by the third author [16, 17] on modeling of proof-search in
Ludics [18] as a process of interacting with tests. Compared to these works, the
present paper and our previous works [19, 20] are guided by the so called “neu-
tral approach.” In particular, while [17] deliberately chooses one player to be
opposed to tests, we develop a framework in which both players have the same
status, both attempting to prove a formula and to refute its negation. However,
both approaches are inspired by the monistic program introduced in [21].

The title of the present paper is inspired by Lakatos’s Proofs and Refutations
[22] because the neutral approach to logic described here is possibly related to
Lakatos’s conviction that the history (and logic) of mathematical discovery is
structured by a complex interaction of phases of proving and of refuting, both
propelling the search for mathematical truths. Here we illustrate how proofs
and refutations can be developed together and how their interaction can result
in a better understanding of the structure of proofs, at least for MALL.

The contributions of this paper are the following.
(1) We present the neutral approach to proof and refutation and use it to

describe a new game that can be seen as an attempt to simultaneously prove
and refute a MALL formula.

(2) In order to deal with the fact that there are formulas B such that neither

3

B nor ¬B are provable, the game we describe resumes play after one player loses
so that one can determine whether or not the game is a win for the other player
or a loss for both.

(3) This neutral setting provides an answer to why it is that invertibility/non-
invertibility (asynchrony/synchrony) are de Morgan duals of each other: these
two qualities are two sides of the same process. In our game, both players
follow identical rules of play. Invertibility (asynchrony) occurs when a player
needs to consider all possible moves of the opponent: one is forced to consider all
moves and no choices are considered. Non-invertibility (synchrony) occurs when
the opponent picks her responding move: here, genuine information is injected
into the game and this is expressed in proofs as a path though non-invertible
inference rules in a proof.

(4) It is a common observation within the proof theory of sequent calculus
that one can explain variations of logics by varying the structural rules. A
similar observation is true for focusing proof systems [23]. Across a range of
focusing proof systems for, say, MALL, the introduction rules remain the same
while the structural rules can vary. For example, one can have systems that
focus on a unique formula or on multiple formulas [24]. One can insist that
an asynchronous phase terminates when all asynchronous formulas are removed
but one can also allow for the phase to end before they are all removed. We
have found that our use of games implies a particular set of choices that are
natural and different from those in, say, Andreoli’s original set of rules [23].

This paper is the result of merging and extending two previous conference
papers by the authors [20, 19].

2. Logical Preliminaries

The formulas of MALL are built from literals (i.e., atoms or negated atoms),
the binary connectives ⊗, ⊕, O, N, and their respective units 1, 0, ⊥, ⊤. Figure 1
contains the rules for (cut-free) proofs in MALL. The connectives and units ⊗,
O, 1, ⊥ are multiplicative, while ⊕, N, 0, ⊤ are additive. The exponentials ! and
? of linear logic and the quantifiers ∀ and ∃ of first-order or second-order logics
are not considered in this paper.

The additive fragment of MALL is composed of those formulas that do not
contain multiplicative connectives. Notice that if an additive formula has a
proof Ξ using the proof rules in Figure 1 then all sequents in Ξ contain exactly
one formula. Thus, Ξ does not contain any instances of the initial rule and, as
a result, no role is played by atomic formulas in such formulas. Thus, we shall
identify the purely additive fragment of linear logic as those formulas containing
the additive connectives only (with no occurrences of atomic formulas).

Based on the invertibility of introduction rules in Figure 1, we introduce a
second classification of the logical connectives. An introduction rule is invertible
when its conclusion is provable if and only if its premises are. The connectives
O, N, ⊥, ⊤ are called asynchronous: these are the connectives for which the
corresponding introduction rules in Figure 1 are invertible. The connectives

4

⊢ ∆

⊢ ∆,⊥

⊢ ∆, F, G

⊢ ∆, F O G ⊢ ∆,⊤

⊢ ∆, F ⊢ ∆, G

⊢ ∆, F N G

⊢ 1

⊢ ∆1, F ⊢ ∆2, G

⊢ ∆1, ∆2, F ⊗ G

⊢ ∆, F1

⊢ ∆, F1 ⊕ F2

⊢ ∆, F2

⊢ ∆, F1 ⊕ F2 ⊢ F⊥, F

Figure 1: A proof system for MALL. The last rule is called the initial rule and can be restricted
so that F is atomic.

⊗, ⊕, 1, 0 are called synchronous: these are the connectives for which the
corresponding introduction rules in Figure 1 are not necessarily invertible.

The proof system in Figure 2 is a restriction of the focusing proof system of
Andreoli [23] to MALL. This focusing proof system is organized around group-
ings of introduction rules for asynchronous and for synchronous connectives. A
stronger grouping is possible if we also classify literals as belonging to either the
“asynchronous phase” or the “synchronous phase”. Since literals do not have
introduction rules it seems better to introduce yet another dichotomy of logical
formulas. A formula is positive if it is either synchronous or an atom and is
negative if it is either asynchronous or the negation of an atom. The sequents
used in Figure 2 are of two kinds. The asynchronous sequent ∆ ⇑ Γ contains two
multiset contexts ∆ and Γ, where ∆ contains only positive formulas or negated
atoms. The synchronous sequent ∆ ⇓ F contains one multiset context ∆ con-
taining only positive formulas or negated atoms. In this sequent, the formula F
is called the focus of the sequent: this proof system provides a positive sequent
with a unique focus. Later it will be natural to consider a generalization to
this focusing proof systems that allows for multiple foci (see Figure 5). Notice
that all the introduction rules from Figure 1 now have all their premises and
conclusions labeled either with ⇑ or with ⇓. The initial rule is classified as part
of the positive phase since it is annotated with a ⇓. To describe the remaining
three “structural” rules, we read them bottom-up. For example, the [R ⇑] rule
moves a positive formula or a negated atom out of the right context since they
are not addressed in the asynchronous phase. The [R ⇓] stops the focusing
(synchronous) phase when the focused formula becomes negative. Finally, the
decide rule [D] picks a positive formula on which to focus once the right context
is empty (that is, all asynchronous connectives have been decomposed).

It is worth noting that if we limit ourselves to the purely additive fragment
of MALL, then any cut-free MALL proof of it is already focused. To show
this, simply annotate the unique formula in all sequents of a MALL proof as
follows: if the top-level connective is ⊤ or N then use the arrow ⇑ and if the
top-level connective is ⊕ then use the ⇓. Extra inference rules must be added to
switch between these two arrows: use either [R ⇓] to switch from a synchronous
conclusion to an asynchronous premise or [R ⇑] and [D] to switch from an asyn-
chronous conclusion to a synchronous premise. In Section 3, we shall consider
“additive games” that are based on purely additive formulas: in that discussion,
there is little need to mention focusing since the focused and unfocused proofs

5

⊢ ∆ ⇑ Γ

⊢ ∆ ⇑ ⊥,Γ
[⊥]

⊢ ∆ ⇑ F, G, Γ

⊢ ∆ ⇑ F O G, Γ
[O]

⊢ ∆ ⇑ ⊤, Γ
[⊤]

⊢ ∆ ⇑ F, Γ ⊢ ∆ ⇑ G, Γ

⊢ ∆ ⇑ F N G, Γ
[N]

⊢ · ⇓ 1
[1]

⊢ ∆1 ⇓ F ⊢ ∆2 ⇓ G

⊢ ∆1, ∆2 ⇓ F ⊗ G
[⊗]

⊢ ∆ ⇓ F1

⊢ ∆ ⇓ F1 ⊕ F2

[⊕l]
⊢ ∆ ⇓ F2

⊢ ∆ ⇓ F1 ⊕ F2

[⊕r]

⊢ A⊥ ⇓ A
[I]

⊢ ∆ ⇓ P

⊢ ∆, P ⇑ ·
[D]

⊢ ∆, Pa ⇑ L

⊢ ∆ ⇑ Pa, L
[R ⇑]

⊢ ∆ ⇑ N

⊢ ∆ ⇓ N
[R ⇓]

Figure 2: A focused proof system for MALL. Here, A is an atomic formula, P is positive, Pa

is positive or a negative atom, and N is negative.

systems are isomorphic. In Section 4, we consider “simple games”: these games
correspond the situation where the sequents in the decide rule [D] have a unique
formula (that is, ∆ is empty). In such situations, the decide rule is forced in its
selection of what formula to consider next. In Section 5, we finally deal with
full MALL logic (including atomic formulas).

3. Additive games

Hintikka (see, for example, [25]) defined a simple game to determine the truth
of a formula as follows (the game can also work for quantificational formulas).
Two players, A and E, play with a single formula. The player A tries to falsify
the formula while E tries to validate the formula. If the formula is a conjunction
(N), A must move by choosing one of the conjuncts: in particular, if the formula
is the empty conjunction (⊤), then A can pick nothing and she loses. If the
formula is a disjunction (⊕), E must move by choosing one of the disjuncts: in
particular, if the formula is the empty disjunction (0), then E can pick nothing
and she loses. This game is determinate in the sense that one player always has
a winning strategy. If A has a winning strategy starting with φ then φ is false;
conversely if E has a winning strategy starting with φ then φ is true.

This same game can be used to provide a neutral approach to proof and
refutation for the additive fragment of linear logic based on just 0,⊕,⊤, N.
We describe this game in some detail here as an introduction to the neutral
approach.

3.1. Neutral expressions

In the game presented above, each logical connective is assigned to a player
who decomposes it, and the main connective of a formula determines whose
turn it is. The game is symmetric in the sense that A treats a conjunction in
the same way that E treats a disjunction. In our neutral approach, we make
this observation clearer by introducing neutral expressions : these expressions
represents a pair of dual formulas. In particular, the syntax of neutral expres-
sions contains a single constructor for each pair of dual connectives and units.
Since two dual connectives may appear in a single formula, we need a way to

6

[00]
+

= 0 [00]
−

= ⊤
[E + F]

+
= [E]+ ⊕ [F]+ [E + F]

−
= [E]− N [F]−

[lE]+ = [E]− [lE]− = [E]+

Figure 3: Translations of additive neutral expressions into formulas

switch to the other translation when translating a neutral expression. We use
the special unary operator l to this end.

Definition 3.1. The (additive) neutral expressions E and guarded neutral ex-
pressions G are defined as follows:

G ::= 00 | E + E E ::= G | lG

A guarded neutral expression is therefore a neutral expression which does not
begin with l. Notice that l(lE) is not a subexpression of a neutral expression.

We define two translations (functions) that map a neutral expression into
the dual formulas it represents.

Definition 3.2. The positive and negative translations of neutral expressions
into formulas of the additive fragment of linear logic are defined in Figure 3.
Notice that if E is a neutral expression, then [E]+ and [E]− are de Morgan
duals of each other. If E is guarded, then [E]+ is synchronous and [E]− is
asynchronous.

3.2. A game based on neutral expressions

For determinate games, a simple notion of game and arena is appropriate.
For this section, we take an arena to be a directed graph (P , ρ), where P is a set
of positions and ρ ⊆ P ×P is the move relation. A final position is a sink, i.e.,
a position with no ρ-successor. A play from a position P is a (finite or infinite)
sequence of ρ-related positions starting in P , that is, a sequence (P = P0, P1, . . .)
such that for every i ≥ 0, Pi ρ Pi+1. We will suppose that ρ is noetherian, i.e.,
that there are no infinite plays. The length of a play (P0, . . . , Pn) is n.

A winning strategy S from a position P is a set of plays from P with the
following properties:

• (P) ∈ S;

• S is prefix closed: that is, for every π ∈ S and every prefix π′ of π, π′ ∈ S;

• for every play (P0, . . . , Pn) ∈ S such that n is even, there exists Pn+1 ∈ P
such that Pn ρ Pn+1 and (P0, . . . , Pn+1) ∈ S;

• for every play (P0, . . . , Pn) ∈ S such that n is odd, for every Pn+1 ∈ P
such that Pn ρ Pn+1, we have (P0, . . . , Pn+1) ∈ S;

7

The definition of a winning counter-strategy S from a position P is obtained
by swapping the words “even” and “odd” in the two last properties.

In order to define the arena of the particular game we present here, we first
introduce a rewriting relation on neutral expressions:

E1 + E2 → E1 E1 + E2 → E2

Expressions of the form 00 and lE do not rewrite. The reflective and transitive
closure of → is written as →∗.

In our game the positions are the guarded neutral expressions and a move
from E to F takes place exactly when E →∗ lF . To establish a correspondence
between winning strategies and proofs, we first need the following lemma.

Lemma 3.3. Let E be a neutral expression. Let S = {lF : E →∗ lF}.

• For every F ∈ S, the sequent ⊢ [E]+ derives from ⊢ [F]+.

• The sequent ⊢ [E]− derives from the sequents {⊢ [F]− : F ∈ S}.

Proof. Let us show these properties by induction on E.
If E = 00, then S is empty and the first property is true. The second property

expresses that ⊢ [E]− (i.e., ⊢ ⊤) is provable, which immediately follows from
the introduction rule for ⊤.

If E is of the form lF , then S = {E} and the two properties are trivial.
Suppose now that E is of the form E1 + E2. Then S = S1 ∪ S2, where

Si = {lF : Ei →∗ lF} for every i ∈ {1, 2}. By induction hypothesis, the
properties hold for Ei with respect to Si, for every i ∈ {1, 2}. Let us prove
the first property. Let F ∈ S. There is some i ∈ {1, 2} such that F ∈ Si and,
hence, ⊢ [Ei]

+ derives from ⊢ [F]+. All we have to do is show that ⊢ [E]+ (i.e.,
⊢ [E1]

+ ⊕ [E2]
+) derives from ⊢ [Ei]

+, which is easily seen by applying the
introduction rule for ⊕. Let us now prove the second property. The sequents
⊢ [E1]

− and ⊢ [E2]
− derive from {⊢ [F]− : F ∈ S1} and {⊢ [F]− : F ∈ S2},

respectively, therefore both derive from {⊢ [F]− : F ∈ S}. All we need to do
is show that ⊢ [E]− (i.e., ⊢ [E1]

−
N [E2]

−) derives from ⊢ [E1]
− and ⊢ [E2]

−,
which follows by applying the introduction rule for N.

There is a converse to this lemma. Namely, every cut-free proof of ⊢ [E]+

derives its conclusion from ⊢ [F]+, for some F ∈ S; and every cut-free proof of
⊢ [E]− derives its conclusion from the sequents in {⊢ [F]− : F ∈ S}. We do not
give the proof here for the sake of brevity, but it is easily obtained by reversing
the above arguments.

We can now prove the following theorem, which establishes the correspon-
dence between winning strategies and proofs in this purely additive setting.

Theorem 3.4. Let E be a guarded neutral expression. There exists a winning
strategy from E iff ⊢ [E]+ is provable. There exists a winning counter-strategy
from E iff ⊢ [E]− is provable. In either case, the winning strategy or counter-
winning strategy provides the corresponding proof.

8

Proof. We know that ⊢ [E]+ and ⊢ [E]− cannot be both provable and that
there cannot exist both a winning strategy and a winning counter-strategy from
E. It is therefore enough to show that either ⊢ [E]+ is provable and there exists
a winning strategy from E, or that ⊢ [E]− is provable and there exists a winning
counter-strategy from E.

The length of a play from E is bounded by the maximal number of nested l
in E. Let us prove our claim by induction on the maximal length of a play n(E).
If n(E) = 0, then E is a final position and there is a winning counter-strategy.
In the above lemma S is empty and there is a proof of ⊢ [E]−. Suppose now that
n(E) > 0. In the above lemma S is not empty. We consider two cases. First
case: there exists a ρ-successor F of E such that there is a winning counter-
strategy from F . Then there is a winning strategy from E (just prepend E to
all plays). We have E →∗ lF and n(F) < n(E). By the induction hypothesis,
⊢ [F]− is provable. By the previous lemma ⊢ [E]+ derives from ⊢ [lF]+, which
is ⊢ [F]−. Therefore ⊢ [E]+ is provable. Second case: there is a winning strategy
from every ρ-successor F of E. Then there is a winning counter-strategy from E
(just take the union of those strategies and prepend E to all plays). Define S as
in the above lemma. For every lF ∈ S, n(F) < n(E); therefore, by induction
hypothesis, ⊢ [F]+ (i.e., ⊢ [lF]−) is provable. By the previous lemma ⊢ [E]−

derives from those sequents, hence it is provable.

In Hintikka’s game, the same player might move several times in a row, as
long as the principal connective of the formula remains the same. In our game
these moves correspond to individual rewrite steps and a move is a maximal
sequence of such steps, which ensures a strict alternation of players. From
the point of view of the proof objects, a rewrite step (a.k.a. a micro-move)
corresponds to the introduction of an individual connective or unit, while a
move (a.k.a. a macro-move) corresponds to a full phase. The games considered
in the next sections are more complex but their moves still have those two levels.

Another important remark is that this game may be seen as a process ac-
counting for the simultaneous development of two dual derivations: starting
from a neutral expression E, the player who begins sees the game as an at-
tempt to derive ⊢⇓ [E]+, while her opponent sees it as an attempt to derive
⊢⇑ [E]−. With this in mind, each player develops what she sees as synchronous
phases during her turn and leaves it to her opponent to decompose asynchronous
phases.

4. Simple games

In this section we present an extension of the additive games that incor-
porates some multiplicative behavior. This first extension yields the so-called
simple games: as we shall see, these games are too “simple” to properly handle
the full range of multiplicative connectives. As a result, the simple games help
to illustrate the need for the more sophisticated neutral graph structures pre-
sented in Section 5.3. There are, however, a number of examples of games that
are “simple-like”: see [19] for examples of simple games related to computing

9

[00]
+

= 0 [00]
−

= ⊤
[1]

+
= 1 [1]

−
= ⊥

[E + F]+ = [E]+ ⊕ [F]+ [E + F]− = [E]− N [F]−

[E × F]
+

= [E]+ ⊗ [F]+ [E × F]
−

= [E]− O [F]−

[lE]+ = [E]− [lE]− = [E]+

Figure 4: Translations of neutral expressions into MALL

on finite sets and with determining bisimulation in labeled transition systems.
We do not present those examples here since they involve adding operators for
quantification and fixed points to neutral expressions and these extensions are
a significant departure from MALL.

Definition 4.1 (Neutral expressions). We extend the language of neutral ex-
pressions by introducing a multiplicative connective and its unit.

G ::= 00 | 1 | E + E | E × E E ::= G | lG

Micro-dynamics of neutral expressions.. Multisets of neutral expressions can be
rewritten non-deterministically as follows:

Definition 4.2 (Rewriting for neutral expressions). The binary relation 7→
between finite multisets of neutral expressions is given as follows:

1, Γ 7→ Γ E × F, Γ 7→ E, F, Γ

E + F, Γ 7→ E, Γ E + F, Γ 7→ F, Γ

Let 7→∗ be the reflective and transitive closure of 7→.

If we consider the size of a multiset of neutral expressions to be the total
number of occurrences of constructors in expressions in that multiset, then the
size of multisets decreases as they are rewritten. As a result, rewriting always
terminates. Notice that an expression of the form lE is not rewritten: it
represents a formula that is left by one player for the other player.

. We shall be interested in whether or not an expression E (considered as a
singleton multiset) rewrites (via 7→∗) to {lE1, . . . , lEn} (n ≥ 0). This last
type of multiset will be written lΓ if Γ is the multiset {E1, . . . , En} Notice that
if 00 ∈ Γ, then Γ cannot reduce to lΓ′.

In Figure 4, the updated positive and negative translations of neutral expres-
sions into MALL are provided. As before, layers of neutral connectives between
l translate to phases.

A useful measure of a neutral expression is the maximum number of expres-
sions beginning with l that it can yield on some non-deterministic rewriting.

Definition 4.3 (♮(E)). ♮(·) is defined to assign a natural number to a neutral
expression in the following way:

10

• ♮(00) = ♮(1) = 0;

• ♮(lE) = 1;

• ♮(E1 + E2) = max(♮(E1), ♮(E2)) and

• ♮(E1 × E2) = ♮(E1) + ♮(E2).

Clearly, for any neutral expression E, ♮(E) = 0 if and only if E does not
contain a l.

Proposition 4.4. Let E be a neutral expression containing no l. If E 7→∗ {}
then ⊢⇓ [E]+. If E cannot be rewritten to {} then ⊢⇑ [E]−.

Proof. Let k ≥ 0 and define 7→k to be the k-fold join of 7→ (in particu-
lar, 7→0 is multiset equality). We prove by induction on k that if n ≥ 0
and {E1, . . . , En} 7→k {} then for all j ∈ {1, . . . , n}, ⊢⇓ [Ej]

+. If k = 0
then n = 0 then the conclusion is immediate. Assume that k > 0 and that
{E1, . . . , En} 7→k {}. Consider the cases for the first step of this rewriting. The
result follows easily by noticing that the rewriting rules for neutral expressions
correspond to introduction rules for their positive translations.

Next we show that by induction on the size of multisets of neutral expressions
(where one counts the number of occurrences of constructors of such expressions
as their size) that if {E1, . . . , En} is a multiset of neutral expressions which
does not rewrite to {} then the sequent ⊢⇑ [E1]

−, . . . , [En]− is provable. It is
clearly the case if n = 0. If n > 0, then it can be easily seen by examining
the cases for En that ⊢⇑ [E1]

−, . . . , [En]− is either immediately provable (case
En = 00) or that rewriting the multiset by decomposing En corresponds exactly
to introducing the principal connective of [En]−.

A class of neutral expressions that will be of particular interest in the rest
of this section is the class of simple expressions:

Definition 4.5 (Simple expression). An expression E is simple if ♮(E) ≤ 1 and
for every subexpression lE′ of E, E′ is simple.

A multiset {E1, . . . , Ek} (where k ≥ 0) of expressions is simple if E1×· · ·×Ek

is simple.

Simple expressions can alternatively be defined by the following grammar:

Z ::= 00 | 1 | Z + Z | Z × Z
S ::= Z | S + S | Z × S | S × Z | lS,

where S and Z are syntactic variables ranging over simple expressions and
expressions without occurrences of l, respectively.

We now describe the arena of games involving simple expressions. Let the
set of positions be the set of neutral expressions. The move relation, ρ, is
defined as the smallest relation such that E ρ 00 if E 7→∗ {} and E ρ F if
E 7→∗ {lF}. The fact that there are only these two cases possible is the key

11

feature of simple games: that is, if we restrict E to be a simple expression,
then it is not possible for E 7→∗ {lF1, . . . , lFn} and for n > 1. That is, while
multiplicative expressions can be treated internally to one player, the multiset
of expressions must degenerate to leave at most a single expression: thus, when
the players switch, the game must appear to be, essentially, additive.

We now consider the nature of winning strategies and winning counter-
strategies based on this move relation.

If E does not contain l then there is either no move from E or the only move
possible is to 00. In the first case, there exists a winning counter-strategy for E.
In the second case, there is a winning strategy for E (since the second player
can make no move from 00).

Since all plays are finite and all final positions for a game are classified as a
win for one player or the other, games for simple expressions are determinate:
that is, given a simple expression E, there is either a winning strategy or a
winning counter-strategy for E.

Proposition 4.6. Let E be a simple expression. There is a winning strategy
for E iff ⊢⇓ [E]+. There is a winning counter-strategy for E iff ⊢⇑ [E]−.

Proof. Given a winning (counter-)strategy we build by induction a proof for
either ⊢⇓ [E]+ or ⊢⇑ [E]− depending on the sort of strategy we have. Notice
that in winning strategies all the branches have the same parity. We thus reason
on the length of the largest branch in the strategy, which we refer to as the size
of the strategy.

Base case: strategy σ has size 0. We are trying to build a proof for ⊢⇑ [E]−

given that σ is a winning counter-strategy. Thus E is such that E 67→∗ lF
nor E 67→∗ {}, that is any maximal internal derivation from E ends up with
a multiset of expressions that contains some expressions not beginning with l
and which cannot be rewritten (by maximality). These multisets are made of
possibly one expression beginning with l (but not more because E is simple)
and of at least one 00: they are the only kind of multiset that cannot be rewritten
and that are not legal positions: {(lF), 00, . . . , 00}.

Since ⊢⇑ [E]− is a negative sequent, it is possible to generate part of a proof
tree by applying negative logical rules in any order up to a point where no
negative rule can be applied (with the additional constraint that the ⊤ rule is
applied only when all the negative formulas have been decomposed). Such a
tree is actually a proof. Indeed if any branch of the tree leads to a non justified
sequent, that means that either a sequent made of exactly one positive formula
or an empty sequent is reached. In any other situation, the branch would be
extendable. These two situations contradict the fact that no internal derivation
from E can lead to a legal position: it is straightforward to see that any branch
of the proof tree from ⊢⇑ [E]− to one of the two kinds of sequents just mentioned
can be transformed into an internal derivation from E to a legal position. Thus
the negative tree is a proof.

Base case: strategy σ has size 1. We are now building a proof for ⊢⇓ [E]+

given that σ is a winning strategy. Thus σ starts with a move: E ρ F . There are

12

two cases: either F is 00 and E 7→∗ {} or F is any expression and E 7→∗ lF : in
this case, the move is extended by a winning counter-strategy σ′ of length 0 for
F . In both cases we pick any internal derivation justifying the move and use it
to inductively build a proof for ⊢⇓ [E]+. In the second case we will additionally
refer to the base case for size 0 in order to have a proof of ⊢⇑ [F]−.

We reason by induction on the length of the considered internal derivation
maintaining the following invariant: if the derivation starts with E1, . . . , Ek

then the sequents ⊢⇓ [E1]
+, . . . ,⊢⇓ [Ek]+ are all provable. The invariant is

true for empty derivations: by hypothesis, we have either an empty multiset,
and the assertion is trivial, or the multiset consists in a singleton lF and the
invariant requires ⊢⇓ [lF]+ to be provable and the base case for size 0 on
σ′ tells us that ⊢⇑ [F]− is provable. If the induction hypothesis is true for a
derivation of length n it is also true for a derivation of length n + 1. Indeed
let ρ be an internal derivation of length n + 1 from multiset E1, . . . , Ek that is
ρ : E1, . . . , Ek 7→r E′

1, . . . , E
′
l 7→∗ Induction hypothesis for the derivation

starting with E′
1, . . . , E

′
l ensures that ⊢⇓ [E′

1]
+, . . . ,⊢⇓ [E′

l]
+ are all provable.

Finally, r corresponds to introducing the main connective of [Ei]
+, where Ei is

the neutral expression of the multiset being decomposed by r.
Induction case. Two cases need to be considered: σ has even size n + 1 (it

is winning counter-strategy) or σ has odd size n + 1 (it is a winning strategy).

1. σ is of odd size. This case is similar to the base case for strategies of size
1 when σ starts with a move E ρ F and yields σ′ as a winning counter-
strategy for F . Using the induction hypothesis on σ′ we obtain a proof

Π
⊢⇑ [F]−

and by picking some internal derivation ρ : E 7→∗
ρ lF we build an open

positive derivation rooted in ⊢⇓ [E]+:

⊢⇑ [F]−

⊢⇓ [lF]+

...
⊢⇓ [E]+

that we can close with Π.

2. σ is of even size. Once more, the proof is close to the base case. Consid-
ering a negative tree built thanks to the same process as the one described
previously, the same three cases might occur: either the branch is closed,
that is the corresponding internal derivation does not lead to a legal posi-
tion (ls appear in the multiset and on the proof-theoretical side a ⊤ rule is
used), or we get to a sequent made of a positive formula A (there is a move
E ρ F with [F]+ = A, the induction hypothesis allows us to proceed), or
we get to an empty sequent (but this case is impossible for parity reasons
on the length of the strategy which is required to be winning).

13

We give only a sketch of the proof for the second part of the proposition which
essentially relies on the completeness of focused proofs [23]. We additionally
require that the rule for ⊤ is used when no other rule can be applied. We use
such a proof to build a winning strategy. Each positive layer of the proof results
in a first move of a winning strategy (the detail of this positive part of the proof
can be mapped to an internal derivation justifying the move). Each negative
layer of the proof results in a ∀-branching in the strategy. More precisely an
additive slice of a negative layer results in a move of a counter-strategy (or
the absence of a move, see below). It is easy to check that all these moves are
justified by internal derivations and that the branching is complete. Concerning
the parity condition, it is due to the fact that the proof can end with either a
1 rule or a ⊤ rule. In the first case, the corresponding position in the game is
an empty position ({} also denoted by 00) immediately following a move by the
player, that is a position from which no move is possible. In the second case
the last multiset of a maximal internal derivation corresponding to this branch
of the proof contains a 00 so that it cannot justify a move (it cannot be of the
form lΓ).

Since all terminal positions for a game are classified as a win for one player or
the other, games for simple expressions are determinate: that is, given a simple
expression E, there is either a winning strategy or a winning counter-strategy
for E. Thus, the excluded middle ⊢ [E]− ⊕ [E]+ is provable for all E. The next
corollary actually follows immediately from the preceding Proposition:

Corollary 4.7. Let E be a simple expression. Either ⊢ [E]− or ⊢ [E]+ is
provable.

Interests and limitations of the simple fragment

Before moving to the more general case of games for MALL, let us restate
the main characteristics of simple games, emphasizing both what is interesting
in these games and why a more elaborate framework is required:

• simple games provide a simple, though expressive framework. As already
mentioned at the beginning of this section, we emphasize that despite
being very simple, the fragment of simple expressions is already fairly
expressive. We show in [19] that a large number of games are actually
“simple”. Moreover, this fragment is flexible enough to allow for an easy
extension with quantification and fixed points;

• simple games characterize a complete fragment of MALL. Simple games
are determinate. As a consequence, corollary 4.7 states that simple ex-
pressions characterize a complete fragment of MALL. Other complete frag-
ments of logic might be looked for by building corresponding determinate
games;

• simple games are too restricted to capture MALL. For the very reason
they are determinate, there is no hope that simple games can capture

14

MALL. Moreover, no determinate game can achieve this. Extending our
game-theoretical framework to capture MALL will thus require to modify
significantly the structure of our games, in order to lose determinacy for
instance.

5. Games for MALL

In this section, we finally develop a game for full MALL by allowing both non-
simple neutral expressions as well as allowing atomic formulas (propositional
variables).

5.1. Two-player games with ties

The fragments of MALL considered in the previous sections were complete
(the games were determinate). The full logic of MALL is no longer complete so
we must modify the description of games to account for the possibility of ties.

Name two-players 0 and 1. For σ ∈ {0, 1}, set σ = 1 − σ. We still base our
game on an arena (P , ρ). A position from which no move is possible is called
final. All final positions are classified as 0-wins, 1-wins, and ties, and the non-
final positions as 0-positions and 1-positions. If P is a position, a play from P
is a path in the arena starting with P . We usually assume ρ to be noetherian,
so that all plays are finite. A play is won by player σ iff its last position is a
σ-win, and is a tie iff its last position is a tie.

Informally, we choose a starting position P and put a token on it. A play
from P is a finite sequence of moves of the token starting in P . If the current
position of the token is final, then the play ends and we conclude that either
player 0 wins the play, player 1 wins the play, or nobody wins the play. If it is
a 0-position (resp. 1-position), then player 0 (resp. 1) chooses a ρ-successor of
P , moves the token there, and the play continues.

A σ-strategy for P is a prefixed closed set S of plays from P containing (P)
and is such that for every (P0, . . . , Pn) ∈ S

• if Pn is a σ-position, there exists Pn+1 s.t. Pn ρ Pn+1, (P0, . . . , Pn+1) ∈ S,

• if Pn is a σ-position, for every Pn+1 s.t. Pn ρ Pn+1, (P0, . . . , Pn+1) ∈ S.

A winning σ-strategy for P is a σ-strategy for P such that every play in it that
ends in a final position is won by player σ.

5.2. Proof system

In our neutral approach, a single (neutral) object accounts for two dual
derivations being developed simultaneously, each player “viewing” one of them.
As we saw in section 4, focalization plays an important role and brings some
symmetry. However, the proof system used in the previous games lacks some
important features and this motivates a change. Specifically, we need to address
two main shortcomings.

15

1. In the previous games, a play would end as soon as the current player
could not develop her derivation any more, making her opponent win
immediately. We now have games based on neutral expressions E such
that neither [E]+ nor [E]− are provable. When a player σ fails to develop
her derivation, we cannot conclude that σ wins as we did before. The play
must continue until σ completes her derivation (thus winning the play) or
fails as well (thus ending the play in a tie). The derivations must therefore
be richer objects which leave some room for failure. For example, consider
the following dual derivations:

⊢⇑ A ⊢⇑ ⊤

⊢⇓ A ⊗ ⊤

⊢ A⊥ ⇓ 0

⊢ A⊥, 0 ⇑

⊢⇑ A⊥
O 0

The second derivation may not be developed, but we still need a way to
challenge the first derivation, which may or may not be completed into a
proof, depending on A. This is done by adding a special inference rule
called “daimon” (by analogy with Ludics [18]) to the proof system. A
proof is now a closed derivation which does not use the daimon rule. A
player who uses daimon cannot win, but may try to make her opponent
fail as well.

2. In Andreoli’s Σ3 [23], one formula is selected and decomposed in a syn-
chronous phase, while all formulas are decomposed in an asynchronous
phase. This asymmetry does not fit well in our neutral setting, which
forces formulas to be decomposed simultaneously in two dual derivations.
We recover some of the symmetry by allowing several foci to be selected in
a synchronous phase, and some, not necessarily all, asynchronous formulas
to be decomposed in an asynchronous phase.

Figure 5 shows our proof system. Sequents are of the form ⊢ L;P ;N ⇓ F
or ⊢ L;P ;N ⇑ F , where L is a multiset of literals, P is a multiset of positive
formulas, N is a multiset of negative formulas, and F is a multiset of formulas.
The sequents ⊢ L;P ;N ⇓ · and ⊢ L;P ;N ⇑ · are identified and also denoted to
by ⊢ L;P ;N .

5.3. Neutral expressions

Definition 5.1. We extend the syntax of neutral expressions and guarded neu-
tral expressions as follows:

G ::= k | 00 | 1 | E + E | E × E E ::= G | lG

where k denotes a neutral atom. There is one neutral atom for each pair of dual
literals in the logic.

In the rest of the paper, the set of the neutral expressions is denoted by E .

Definition 5.2. The updated positive and negative translations of neutral ex-
pressions into MALL formulas are defined in Figure 6.

16

Additives

⊢ L;P ;N ⇓ Fi,F

⊢ L;P ;N ⇓ F1 ⊕ F2,F
[⊕i]

⊢ L;P ;N ⇑ F1,F ⊢ L;P ;N ⇑ F2,F

⊢ L;P ;N ⇑ F1 N F2,F
[N]

⊢ L;P ;N ⇑ ⊤,F
[⊤]

Multiplicatives

⊢ L1;P1;N1 ⇓ F1,F1 ⊢ L2;P2;N2 ⇓ F2,F2

⊢ L1,L2;P1,P2;N1,N2 ⇓ F1 ⊗ F2,F1,F2
[⊗]

⊢ ·; ·; · ⇓ 1
[1]

⊢ L;P ;N ⇑ F1, F2,F

⊢ L;P ;N ⇑ F1 O F2,F
[O]

⊢ L;P ;N ⇑ F

⊢ L;P ;N ⇑ ⊥,F
[⊥]

Literals

⊢ K⊥; ·; · ⇓ K
[init]

⊢ K⊥,L;P ;N ⇑ F

⊢ L;P ;N ⇑ K⊥,F
[R ⇑ atomic]

Daimon

Σ
[z] Σ′

Σ
[z]

Phase changes

⊢ L;P ; N,N ⇓ F

⊢ L;P ;N ⇓ N,F
[R ⇓]

⊢ L; P,P ;N ⇑ F

⊢ L;P ;N ⇑ P,F
[R ⇑]

⊢ L;P1; · ⇓ P2

⊢ L;P1,P2; ·
[D ⇓]

⊢ L;P ;N1 ⇑ N2,F

⊢ L;P ;N1,N2 ⇑ F
[D ⇑]

K denotes a positive literal, N a negative formula and P a positive formula. In
[D ⇓] (resp. [D ⇑]), P2 (resp. N2) is not empty. A proof is a closed derivation
which does not use [z].

Figure 5: The proof system used in the game for MALL

[k]
+

= K [k]
−

= K⊥

[00]
+

= 0 [00]
−

= ⊤
[1]

+
= 1 [1]

−
= ⊥

[E + F]
+

= [E]+ ⊕ [F]+ [E + F]
−

= [E]− N [F]−

[E × F]+ = [E]+ ⊗ [F]+ [E × F]− = [E]− O [F]−

[lE]
+

= [E]− [lE]
−

= [E]+

Figure 6: Translations of neutral expressions

17

⊢ A, B ⇑

⊢⇑ A, B
[R ⇑]

⊢⇑ A O B
[O]

⊢⇓ A O B
[R ⇓]

⊢⇑ C⊥

⊢⇓ C⊥
[R ⇓]

⊢⇓ (A O B) ⊗ C⊥
[⊗]

⊢ (A O B) ⊗ C⊥ ⇑
[D]

(1)

⊢ C ⇑ A⊥

⊢ C ⇓ A⊥
[R ⇓]

⊢⇑ B⊥

⊢⇓ B⊥
[R ⇓]

⊢ C ⇓ A⊥ ⊗ B⊥
[⊗]

⊢ A⊥ ⊗ B⊥, C ⇑
[D]

⊢⇑ A⊥ ⊗ B⊥, C
[R ⇑]

⊢⇑ (A⊥ ⊗ B⊥) O C
[O]

(2)

A, B and C are synchronous formulas.

Figure 7: Two dual derivations in Andreoli’s Σ3.

5.4. Neutral graphs

In order to account for the complexity and intensional behavior of the mul-
tiplicative connectives and atoms of MALL, we shall not enrich the structure
of arenas and plays (for example, we do not attempt concurrent player games,
etc). Instead, we enrich the notion of position by moving from being just simple
neutral expressions (as was used in previous games) to labeled graph structures,
which we describe next.

Figure 7 shows an example of two dual derivations in Andreoli’s Σ3. It
should be noted that at any point in the simultaneous development of those
derivations, there are strong relationships between their frontiers. Each formula
present in a frontier has its dual in the other frontier. Moreover this is a one-to-
one correspondence. For example at the bottom of the derivations the frontier
of (1) consists of the sequent ⊢ (A O B) ⊗ C⊥ ⇑ and the frontier of (2) consists
of ⊢⇑ (A⊥ ⊗ B⊥) O C. Clearly there is exactly one formula in each frontier
and they are dual. At the top of the two derivations, the frontiers are ⊢ A, B ⇑
and ⊢⇑ C⊥ for (1), and ⊢ C ⇑ A⊥ and ⊢⇑ B⊥ for (2). Here, the corresponding
pairs are A/A⊥, B/B⊥, and C⊥/C.

This tight correspondence is best seen by cutting two dual derivations to-
gether and applying the cut elimination procedure. At each step, the current
state consists of an upper layer of subderivations of the original derivations,
whose conclusions are fed to a lower layer of cuts inferring the empty sequent.
Each cut effectively pairs two dual formulas from those conclusions. The or-
der in which those cuts are applied is irrelevant. One way to abstract away
from this order it to pack the full layer of cuts in a synthetic “multicut” infer-
ence rule. Another way is to consider proof structures and cut links between

18

them [26, 27] or cut-net as introduced in Ludics [18]. The state of our game
will be a representation of those cut-nets by means of a graph structure called
a neutral graph.

This approach is inspired by [28], in which Danos and Regnier analyze the
geometry of generalized multiplicative rules and express the duality of two gen-
eralized multiplicatives through a graph structure. Following this idea, we define
neutral graphs to represent cut links between two (slices of) frontiers as pre-
sented above. The vertices represent the sequents of the slices. There are two
colors of vertices (one for each frontier). The arc

u v
E

labeled with a guarded neutral expression E means that the formula [E]+ occurs
in the sequent represented by u and that the formula [E]− occurs in the sequent
represented by v. A neutral graph is bipartite: recall that we have a color for
each frontier and that we do not pair two formulas in the same frontier. For
example, two frontiers

⊢ ·; [E]+, [F]+; · ⊢ ·; ·; [G]− | ⊢ ·; [G]+; [E]− ⊢ ·; ·; [F]−

will be represented by the neutral graph

EF G

where the black (resp. white) vertices represent the sequents of the left (resp.
right) frontier. In the examples given so far, all the sequents are of the form
⊢ ·;P ;N , but we also need to represent sequents of the forms ⊢ L;P ;N ⇑ F
and ⊢ L;P ;N ⇓ F . We will use several types of arcs to this end.

It should be noted that the graphs themselves are not proof structures.
They merely represent cut links between goals for the players to prove, which
are placeholders for proof structures.

Definition 5.3. A neutral graph G is a tuple (V, A, p, t, ǫ), where V is a finite
set (possibly empty) of vertices, A ⊆ V × V is a set of arcs, p : V 7→ {0, 1} as-
sociates a player to each vertex, t : A 7→ {atomic, normal, focused} associates
a type to each arc, and ǫ : A 7→ E associates a neutral expression to each arc.
In addition, the following must hold:

• The undirected graph based on (V, A) is a set of trees none of which are
the degenerate (one-vertex) tree.

• The graph is bipartite, i.e., for every (u, v) ∈ A, p(u) 6= p(v).

• For every normal arc a ∈ A, ǫ(a) is guarded.

• For every atomic arc a ∈ A, ǫ(a) is an atom.

• The origins of the focused arcs all belong to the same player (and similarly
for the ends, since the graph is bipartite).

19

Notice that the definition requires that no vertex be isolated (i.e., without
neighbors). A vertex with player σ is said to belong to σ or to be a σ-vertex.

Let us now relate neutral graphs to frontiers. Each vertex has an associated
sequent, whose formulas are the translations of the neutral expressions labeling
the arcs connected to it. The direction of an arc determines which translation
(positive or negative) to consider, while its type (atomic, normal or focused)
determines in which part of the sequent the formula occurs.

Definition 5.4 (Sequent associated with a vertex). Let G = (V, A, p, t, ǫ) be a
neutral graph and v ∈ V . Let

• L+ = {[ǫ(v, w)]+ : (v, w) ∈ A, t(v, w) = atomic},

• L− = {[ǫ(u, v)]− : (u, v) ∈ A, t(u, v) = atomic},

• U+ = {[ǫ(v, w)]+ : (v, w) ∈ A, t(v, w) = normal},

• U− = {[ǫ(u, v)]− : (u, v) ∈ A, t(u, v) = normal},

• F+ = {[ǫ(v, w)]+ : (v, w) ∈ A, t(v, w) = focused},

• F− = {[ǫ(u, v)]− : (u, v) ∈ A, t(u, v) = focused}.

Since G is a neutral graph, at least one of F+ and F− is empty. The se-
quent ΣG,v associated with v is ⊢ L+,L−;U+;U− ⇑ F− if F+ is empty, and
⊢ L+,L−;U+;U− ⇓ F+ otherwise.

Definition 5.5 (Source). A source of a neutral graph is a vertex which is not
the end of a normal or focused arc, but is the origin of some normal arc.

Sources play a significant role, because they are precisely the vertices asso-
ciated with sequents of the form ⊢ L;P ; · with P 6= ∅, i.e., those which may
appear as the conclusion of the [D ⇓] rule, which marks the beginning of a
synchronous phase.

5.5. Positions and moves

5.5.1. Positions

As in the previous games, we define positions and moves on two levels. A
first level is made of micro-positions and micro-moves between them. A second
level is made of macro-positions and macro-moves between them.

We first introduce a basic notion which will be used to define micro-positions
and macro-positions.

Definition 5.6 (Position). A position is a triple (G, f0, f1) where G is a neutral
graph and f0 and f1 are Boolean values, satisfying the two following properties:

• if G is empty, then at least one of f0 and f1 is true;

• if there is some atomic arc (u, v) in G, then fσ must be true, where σ is
the player associated with u.

20

Informally, the flag f0 (resp. f1) indicates whether player 0 (resp. 1) has
failed and cannot win the play. If G is empty, the play ends, and at least one
of the players must have failed. The origin of an atomic arc has an associated
sequent which will only be obtained through an application of the daimon [z].
Consequently, the corresponding player will have failed.

Definition 5.7 (Macro-position). A macro-position is a position (G, f0, f1)
such that G has no focused arc and all its sources (possibly zero) belong to the
same player.

Informally, a macro-move is seen as a synchronous phase by the player and
as an asynchronous phase by the opponent. At a macro-position, there must be
at most one player ready to start a synchronous phase, i.e., ready to move.

Definition 5.8 (Final macro-position, σ-macro-position). Let P = (G, f0, f1)
be a macro-position. If G has no source, then P is final. Otherwise, the sources
of G belong to some player σ and P is a σ-macro-position.

Definition 5.9 (Tie, σ-win). Let P = (G, f0, f1) be a final macro-position.
Then at least one of f0 and f1 is true. If they are both true, P is a tie. Otherwise
P is a σ-win, where σ ∈ {0, 1} is such that fσ is false.

Proof. By definition 5.7, G has no focused arc. Since G is acyclic and has no
sources, G has no normal arc. All the arcs of G are therefore atomic. Whether
G is empty or not, one of f0 and f1 is true by definition 5.6.

The arena of the game consists of the macro-positions and the macro-moves,
which will be defined later. Player σ plays at a σ-macro-position and wins at a
σ-win.

Definition 5.10 (σ-micro-position). A σ-micro-position is a position (G, f0, f1)
such that all the origins of the focused arcs of G belong to player σ.

Informally, a σ-micro-position is an intermediate step which may appear
during player σ’s macro-moves. The origins of the focused arcs are the vertices
associated to sequents in the middle of a synchronous phase.

Definition 5.11 (Playable σ-micro-position). A σ-micro-position (G, f0, f1) is
playable if G has at least one focused arc or one source belonging to player σ.

Informally, a player continues her turn as long as some of her sequents are in
the middle of a synchronous phase (origins of focused arcs) or are ready to start
one (sources). Note that every σ-macro-position is a playable σ-micro-position.
Informally, player σ can always play at a σ-macro-position.

5.5.2. Micro-moves

This section describes the transitions on neutral graphs that are the basis of
the game. We first introduce six of them, the aforementioned “micro-moves”,
that should be interpreted as the simultaneous applications of two dual single

21

Transition Sync reading Async reading

p
D
7→ p′ [D ⇓] [D ⇑]

p
R
7→ p′ [R ⇓] [R ⇑]

p
+
7→ p′ [⊕] [N]

p
×
7→ p′ [⊗] [O]

p
00
7→ p′ [z] [⊤]

p
1
7→ p′ [1] or [z] [⊥] or [z]

p
at
7→ p′ [init] or [z] [R ⇑ atomic] or [z]

Table 1: Neutral moves and their two readings

rules of the proof system. Table 1 lists them along with their interpretations. We
subsequently build another transition, which packs a maximal sequence of micro-
moves together and should be read as the simultaneous development of two dual
phases. Essentially, micro-moves are cut reduction rules for proof structures,
with focalization. A notable difference is that cut reduction operates on readily
available proof structures, while our micro-moves can be seen as an attempt
to develop those structures as cut reduction goes. It is not always possible to
develop them. As a result, failures may arise in some of these transitions; in
that case the transition makes the relevant flags f0 and/or f1 true.

In the following description of the micro-moves we use figures to illustrate
the formal definitions. Each micro-move rewrites a playable σ-micro-position
p = (G, f0, f1). σ- (resp. σ-) vertices are represented in black (resp. white).
We also refer to player σ (resp. σ) as the black (resp. white) player. Arcs are
represented using the following convention:

atomic normal focused any type

To describe the transitions, let G = (V, A, p, t, ǫ).

Decision: Assume G has a σ-source v. Let F be a non empty subset of {(v, w) :
(v, w) ∈ A}. If we then let G′ = (V, A, p, t′, ǫ), where t′ is the same as t except

that t′(a) = focused if a ∈ F , we have the labeled transition (G, f0, f1)
D
7→

(G′, f0, f1).

v

D
7→

v

Let us give an informal description of this transition. Recall the decision rules
([D ⇓] and [D ⇑] in Figure 5). [D ⇓] is applied to a sequent of the form
⊢ L;P ; ·. In G, these sequents exactly correspond to the sources, and the

22

transition corresponds exactly to applying [D ⇓] to one of them, while applying
[D ⇑] to some of its neighbors.

To describe the next five labeled transitions, assume G has a focused arc
a = (v, w). Since p is a σ-micro-position, v belongs to player σ and w belongs
to player σ.

Reaction: If ǫ(a) is of the form lE, then one can remove the leading l, reverse
the arc, and unfocus it. Formally, let a = (w, v) be the opposite arc to a and let

G′ = (V, (A \ {a}) ∪ {a}, p, t|A\{a} ∪ {(a, normal)}, ǫ|A\{a} ∪ {(a, E)}).

Then we have the transition (G, f0, f1)
R
7→ (G′, f0, f1).

v w
lE R

7→
v w

E

In both interpretations, a formula of the wrong polarity is reclassified.

Additives: If ǫ(a) is of the form E1 + E2, then one can replace this expression
with one of the operands. Formally, let G′ = (V, A, p, t, ǫ′) where ǫ′ is the same
as ǫ except that ǫ′(a) = Ei for some i ∈ {1, 2}. We then have the labeled

transition (G, f0, f1)
+
7→ (G′, f0, f1).

v w
E1 + E2

+
7→

v w
Ei

This treatment of + is essentially the same as in the additive game presented
before. It corresponds exactly to the reduction of a cut link between two MALL
proof structures with boxes with conclusions [E1]

+ ⊕ [E2]
+ and [E1]

−
N [E2]

−:
the black player’s choice between E1 and E2 corresponds to that between [E1]

+

and [E2]
+.

If ǫ(a) = 00 (the 0-ary additive), then one can remove w and all its adjacent
arcs. Formally, let G′ = G|A∩(V \{w})2 and let f0

′ and f1
′ be the Boolean values

defined as follows: fσ
′ = ⊤ and fσ

′ = fσ. Then we have the labeled transition

(G, f0, f1)
00
7→ (G′, f0

′, f1
′).

v w
00 00

7→
v

(in the second graph, any isolated vertex shall be removed.) This last transition
is particular: on the white player’s side we simply remove a sequent of the form

23

⊢ L;P ;N ⇑ ⊤,F , in other words we apply [⊤]; on the black player’s side we
face an unprovable sequent of the form ⊢ L;P ;N ⇓ 0,F and we must apply [z].
Consequently the black player fails (fσ

′ = ⊤).

Multiplicatives: If ǫ(a) is of the form E1 × E2, then one can split v into
two vertices and a into two arcs, labeling each one with an operand. Formally,
define two new vertices v1 and v2 and for every b = (t, u) ∈ A \ {a}, define an
arc b′ as follows: if t 6= v and u 6= v, then b′ = b; if t = v, then b′ = (vi, u)
for some i ∈ {1, 2}; and if u = v, then b′ = (t, vi) for some i ∈ {1, 2}. Now let
G′ = (V ′, A′, p′, t′, ǫ′) where

• V ′ = (V \ {v}) ⊎ {v1, v2},

• A′ = {(v1, w), (v2, w)} ∪ {b′ : b ∈ A \ {a}},

• p′ = p|V \{v} ∪ {(v1, σ), (v2, σ)},

• t′(v1, w) = t′(v2, w) = focused, and for every b ∈ A \ {a}, t′(b′) = t(b),

• ǫ′(v1, w) = E1 and ǫ′(v2, w) = E2, and for every b ∈ A \ {a}, ǫ′(b′) = ǫ(b),

We then have the labeled transition (G, f0, f1)
×
7→ (G′, f0

′, f1
′).

v w
E1 × E2

×
7→

v1

v2

w

E1

E2

On the black player’s side, the splitting corresponds to that of the [⊗] rule.
On the white player’s side the invertible [O] rule is applied. Here again, this
transition is exactly the reduction of a cut link between two proof structures
with conclusions [E1]

+ ⊗ [E2]
+ and [E1]

−
O [E2]

−.
If ǫ(a) = 1 (the 0-ary multiplicative), then one can remove a. Formally, let

G′ = G|A\{a} and f0
′ and f1

′ be Boolean values defined as follows:

fσ
′ =

{

⊤ if v is a vertex of G′

fσ otherwise
fσ

′ =

{

fσ if w is a vertex of G′

⊤ otherwise

Then we have the labeled transition (G, f0, f1)
1
7→ (G′, f0

′, f1
′).

v w
1

1
7→

v w

(in the second graph, any isolated vertex shall be removed.) In this transition
both players may fail. On the black player’s side the transition corresponds to

24

applying [1]. The sequent associated to v should thus be ⊢ ·; ·; · ⇓ 1, therefore the
player fails (fσ

′ = ⊤) if 1 is not the only formula of the sequent. On the white
player’s side [⊥] is applied, and if w is only connected to v then its associated
sequent becomes ⊢ ·; ·; · ⇑ ⊥ which is unprovable, and the player fails (fσ

′ = ⊤).
If ǫ(a) is an atom k, then the sequent associated to v is of the form ⊢

L;P ;N ⇓ K,F . There are two cases, depending on whether the rule [init] may
be applied or not.

First case: if there is exactly one arc b connected to v beside a, and b is
of the form (u, v), with t(b) = atomic and ǫ(b) = k, then one may remove v,
a and b. Formally, let G′ = G|A\{a,b}. Then we have the labeled transition

(G, f0, f1)
at
7→ (G′, f0, f1).

u v w
k k at

7→
u w

(in the second graph, any isolated vertex shall be removed.) In this case the
sequent associated to v is ⊢ K⊥; ·; · ⇓ K and [init] may be applied, which is
reflected by the transition. On the white player’s side the transition corresponds
to applying [z] to the sequents associated with u and w. This can be done safely
as the white player has already failed (fσ = ⊤) since u is the origin of an atomic
arc.

Second case: if the first case does not apply, then one may make a atomic
and make the player fail in the process. Formally, let G′ = (V, A, p, t′, ǫ), where
t′ is the same as t except that t′(a) = atomic, and f0

′ and f1
′ be Boolean values

defined as follows: fσ
′ = ⊤ and fσ

′ = fσ. Then we have the labeled transition

(G, f0, f1)
at
7→ (G′, f0, f1).

v w
k at

7→
v w

k

In this case the sequent associated to v is not ⊢ K⊥; ·; · ⇓ K, [init] may not
be applied, and the player applies [z] and fails. On the white player’s side the
transition corresponds to applying [R ⇑ atomic] to the sequent associated with
w.

Definition 5.12 (σ-micro-move). Let p, p′ be σ-micro-positions. There is a
σ-micro-move from p to p′ (notation p 7→σ p′) iff one of the following holds:

p
D
7→ p′, p

R
7→ p′, p

+
7→ p′, p

00
7→ p′, p

×
7→ p′, p

1
7→ p′, or p

at
7→ p′.

Proposition 5.13. There is a σ-micro-move from a σ-micro-position iff it is
playable.

25

Proof. A σ-micro-position is playable iff its neutral graph has a source or a

focused arc. A σ-micro-move
D
7→ is possible iff the neutral graph has a source.

A σ-micro-move
R
7→,

+
7→,

00
7→,

×
7→,

1
7→, or

at
7→ is possible iff the neutral graph has a

focused arc (those moves cover all the cases for the neutral expression labeling
the arc).

5.5.3. Macro-moves

We proceed to define the macro-moves, which are the actual moves of the
game, as maximal sequences of micro-moves.

Proposition 5.14. The length of the sequences of micro-moves starting in a
fixed micro-position is bounded.

Proof. Associate a triple (s, n, f) with each micro-position (G, f0, f1), where
s is the total number of symbols of the neutral expressions labeling the arcs of
G, n is the number of normal arcs of G, and f is the number of focused arcs
of G. Every micro-move decreases this triple for the lexicographical ordering.
Moreover, these triples verify n ≤ s and f ≤ s.

Definition 5.15 (Macro-move). Let p be a σ-macro-position and p 7→∗
σ p′

a maximal sequence of σ-micro-moves from p. Then p′ is either a σ-macro-
position or a final macro-position. We say that there is a macro-move from p
to p′ and denote it by p ρ p′.

Proof. p′ is a σ-micro-position, but it is not playable by Proposition 5.13. p′

has no focused arcs and all its sources belong to player σ, which makes it a
σ-macro-position or a final macro-position.

Note that there is a macro-move from every non-final macro-position.

Proposition 5.16. The length of the plays starting in a fixed macro-position
is bounded.

Proof. Every macro-move expands to a sequence of micro-moves which is non-
empty since every non-final σ-macro-position is a playable σ-micro-position.
The result thus follows from Proposition 5.14.

5.6. Winning strategies as cut-free proofs

In this section we relate cut-free proofs (in the proof system) to winning
strategies (in the game). Our theorems state the equivalence between provabil-
ity and the existence of a winning strategy. Our proofs effectively show how
to construct a winning strategy from a proof. They also show how to con-
struct a proof from a winning strategy, but this construction is not unique in
general. To recover unicity, thus having a one-to-one correspondence between
winning strategies and proofs, we would need to impose a uniformity condition
on strategies like innocence. We leave this as future work.

26

The operators [·]+ and [·]− are applied to multisets of neutral expressions in
the obvious way. Two focused proofs of the same sequent are equivalent iff they
differ by the order in which asynchronous rules are applied within asynchronous
phases. This is indeed an equivalence relation.

We begin by formally defining a central notion relating concepts of the game
to concepts of the proof system: that of σ-provability (for σ ∈ {0, 1}).

Definition 5.17 (σ-provability). Let G be a neutral graph and σ ∈ {0, 1}. G
is σ-provable iff the sequents associated with its σ-vertices are all provable. A
triple (G, f0, f1) where G is a neutral graph and f0, f1 are Boolean values is
σ-provable iff fσ = ⊥ and G is σ-provable.

We relate game moves to derivations by proceeding gradually from small
steps (micro-moves and inference rules) to large objects (winning strategies and
proofs).

Proposition 5.18. Let P be a playable σ-micro-position. Let S = {P ′ : P 7→σ

P ′}. P is σ-provable iff there exists P ′ ∈ S which is σ-provable.

Proof. Let us write P = (G, f0, f1) and G = (V, A, p, t, ǫ). We prove this result
in two parts: (1) the “if” part, (2) the “only if” part.

(1) Suppose that there exists P ′ = (G′, f0
′, f1

′) ∈ S which is σ-provable. Let
us show that P is σ-provable. We have fσ

′ = ⊥ and G′ is σ-provable. Let us
write G′ = (V ′, A′, p′, t′, ǫ′). We examine the cases for P 7→σ P ′.

Case P
D
7→ P ′. Thus fσ = fσ

′ = ⊥ and, moreover, the only σ-sequent affected
by the move is the one associated with the source v selected for the move. In
G′, this sequent is of the form ⊢ L;P1; · ⇓ P2, and in G it is ⊢ L;P1,P2; ·. The
result follows from the derivation

⊢ L;P1; · ⇓ P2

⊢ L;P1,P2; ·
[D ⇓]

In each one of the other cases we consider the focused arc a = (v, w) from

the definition of the corresponding transition. First of all, the case P
00
7→ P ′

does not happen, since fσ
′ = ⊥. In the other cases v is the only σ-vertex of G

affected by the transition, hence all we need to show is that fσ = ⊥ and ΣG,v

is provable. For the latter, showing that ΣG,v derives from σ-sequents of G′

(which are provable) is enough.

Case P
R
7→ P ′. Thus fσ = fσ

′ = ⊥ and, moreover, ΣG,v is of the form
⊢ L;P ;N ⇓ φ,F , where φ = [ǫ(a)]+. Remark that [ǫ′(w, v)]− = φ and that φ
is negative; it is then clear that ΣG′,v = ⊢ L;P ; φ,N ⇓ F and the result follows
from the derivation

⊢ L;P ; φ,N ⇓ F

⊢ L;P ;N ⇓ φ,F
[R ⇓]

Case P
+
7→ P ′. Thus fσ = fσ

′ = ⊥ and, moreover, [ǫ(a)]+ is of the form
φ1 ⊕ φ2. ΣG,v is of the form ⊢ L;P ;N ⇓ φ1 ⊕ φ2,F and ΣG′,v = ⊢ L;P ;N ⇓

27

φi,F , for some i ∈ {1, 2}. The result follows from the derivation

⊢ L;P ;N ⇓ φi,F

⊢ L;P ;N ⇓ φ1 ⊕ φ2,F
[⊕i]

Case P
×
7→ P ′. Thus, fσ = fσ

′ = ⊥ and, moreover, [ǫ(a)]+ is of the form
φ1 ⊗ φ2. The vertex v is replaced in G′ with two σ-vertices v1 and v2. ΣG′,v1

and ΣG′,v2
are of the forms ⊢ L1;P1;N1 ⇓ φ1,F1 and ⊢ L2;P2;N2 ⇓ φ2,F2, and

we have ΣG,v = ⊢ L1,L2;P1,P2;N1,N2 ⇓ φ1 ⊗ φ2,F1,F2. The result follows
from the derivation

⊢ L1;P1;N1 ⇓ φ1,F1 ⊢ L2;P2;N2 ⇓ φ2,F2

⊢ L1,L2;P1,P2;N1,N2 ⇓ φ1 ⊗ φ2,F1,F2
[⊗]

Case P
1
7→ P ′. Thus, [ǫ(a)]+ = 1. Since fσ

′ = ⊥, fσ = ⊥ and v is not a vertex
of G′. a is therefore the only arc connected to it in G and ΣG,v =⊢ ·; ·; · ⇓ 1 is
provable:

⊢ ·; ·; · ⇓ 1
[1]

Case P
at
7→ P ′. Thus, [ǫ(a)]+ = K. Since fσ

′ = ⊥, the first case in the

definition of
at
7→ applies, fσ = fσ

′ = ⊥ and ΣG,v = ⊢ K⊥; ·; · ⇓ K is provable:

⊢ K⊥; ·; · ⇓ K
[init]

(2) This is the converse to the previous part. Suppose that P = (G, f0, f1) is
σ-provable. We have fσ = ⊥ and G is σ-provable. We will consider several cases,
and in each one we will show that there is a σ-provable P ′ = (G′, f0

′, f1
′) ∈ S.

There will be few σ-vertices affected by the transition P 7→σ P ′, hence it will be
enough to show that fσ

′ = ⊥ and that the sequents associated to those vertices
are provable. Since P is a playable σ-micro-position, G has a source (belonging
to player σ) or a focused arc (whose origin belongs to player σ).

First case. Suppose that G has a σ-source v. ΣG,v is of the form ⊢ L;P ; ·
with P 6= ∅ and it is provable by assumption, and a proof must end with the
[D ⇓] rule:

⊢ L;P1; · ⇓ P2

⊢ L;P1,P2; ·
[D ⇓]

where P1 and P2 partition P , P2 is not empty and ⊢ L;P1; · ⇓ P2 is provable.

This corresponds to a transition P
D
7→ P ′ = (G′, f0

′, f1
′) in which the outgoing

normal arcs of v corresponding to P2 become focused. The only affected σ-
vertex is v and ΣG′,v is precisely ⊢ L;P1; · ⇓ P2. Moreover fσ

′ = fσ = ⊥,
therefore P ′ is σ-provable.

Second case. Suppose that G = (V, A, p, t, ǫ) has a focused arc, and let
v be its origin. ΣG,v is provable. Consider the last rule R of such a proof.
ΣG,v is of the form ⊢ L;P ;N ⇓ φ,F , where φ is the principal formula of R.
There is a focused arc a = (v, w) for some w such that [ǫ(a)]+ = φ. We are

28

going to consider all the cases for ǫ(a). In each case we show that there is
P ′ = (G′, f0

′, f1
′) ∈ S which is σ-provable. More specifically, we show that

fσ
′ = ⊥ and that the sequents associated to the σ-vertices of G′ affected by the

transition are in fact the premises of R, and are therefore provable.
Case ǫ(a) = lE. Thus φ is negative and R is [R ⇓]. As we did in part (1),

we match this rule with the transition P
R
7→ (G′, f0, f1) in which a is reversed.

The only affected σ-vertex is v. Since φ = [E]−, ΣG′,v is precisely the premise
of R.

Case ǫ(a) = E1 + E2. Thus φ = [E1]
+ ⊕ [E2]

+ and R is [⊕i] for some

i ∈ {1, 2}. As we did in part (1), we match this rule with the transition P
+
7→

(G′, f0, f1) in which ǫ(a) is replaced with Ei. The only affected σ-vertex is v,
and ΣG′,v is precisely the premise of R.

Case ǫ(a) = 00. Thus, φ = 0. This case does not happen, since there is no
introduction rule for 0.

Case ǫ(a) = E1 × E2. Thus φ = [E1]
+ ⊗ [E2]

+ and R is [⊗]. As we did

in part (1), we match this rule with a transition P
×
7→ (G′, f0, f1). The only

affected σ-vertex is v which is split into v1 and v2, and ΣG′,v1
and ΣG′,v2

are
precisely the premises of R.

Case ǫ(a) = 1. Thus φ = 1 and R is [1]. It means that ΣG,v = ⊢ ·; ·; · ⇓ 1.

As we did in part (1), we match this rule with the transition P
1
7→ (G′, f0

′, f1
′)

in which a is removed, and it is clear that v is not a vertex of G′, therefore
fσ

′ = fσ = ⊥ as needed. There are no new/affected σ-vertices in G′.
Case ǫ(a) = k. Thus φ = K and R is [init]. It means that ΣG,v = ⊢

K⊥; ·; · ⇓ K. As we did in part (1), we match this rule with the transition

P
at
7→ (G′, f0

′, f1
′) in which v is removed (first case of the definition of

at
7→). Then

fσ
′ = fσ = ⊥ as needed. There are no new/affected σ-vertices in G′.

Proposition 5.19. Let P be a playable σ-micro-position. Let S = {P ′ : P 7→σ

P ′}. P is σ-provable iff every P ′ ∈ S is σ-provable.

Proof. Let us write P = (G, f0, f1) and G = (V, A, p, t, ǫ). We are going to
prove both directions simultaneously. Let us give names to the two hypotheses:
(A) P is σ-provable, and (B) every P ′ ∈ S is σ-provable. Since P is playable, S
is not empty. Let P ′ = (G′, f0

′, f1
′) ∈ S. We examine the cases for P 7→σ P ′. In

each case we show that (A) implies that P ′ is σ-provable, and that (B) implies
(A). This will prove the proposition, since we chose P ′ ∈ S arbitrarily and we
cover all the cases for P 7→σ P ′. Moreover, it will be enough to consider only
the σ-vertices affected by the transition.

Case P
D
7→ P ′. Let v be the source of G which is selected for the move. Every

σ-vertex w affected by the move is such that the arc (v, w) is normal in G and
becomes focused in the transition. In other words, ΣG,w and ΣG′,w are of the
form ⊢ L;P ; φ,N ⇑ F and ⊢ L;P ;N ⇑ φ,F . The derivation

⊢ L;P ;N ⇑ φ,F

⊢ L;P ; φ,N ⇑ F
[D ⇑]

29

shows that if (B), then each ΣG′,w has a proof, hence so does each ΣG,w; more-
over fσ

′ = ⊥, hence fσ = ⊥ and (A). Conversely, if (A), then each ΣG,w has
a proof, which is equivalent to a proof ending with the above derivation, hence
each ΣG′,w is provable; moreover fσ = ⊥, hence fσ

′ = ⊥ and P ′ is σ-provable.
For each one of the other cases we consider the arc a = (v, w) from the

definition of the corresponding transition.

Case P
at
7→ P ′. There are two cases in the definition of this transition. In the

first case, we must have fσ = ⊤ since the σ-vertex u is the origin of the atomic
arc (u, v). Then fσ

′ = ⊤ and (A) and (B) are both false, which concludes this
case. In the second case, the only affected σ-vertex is w, and ΣG,w and ΣG′,w

are of the form ⊢ L;P ;N ⇑ K⊥,F and ⊢ K⊥,L;P ;N ⇑ F . The derivation

⊢ K⊥,L;P ;N ⇑ F

⊢ L;P ;N ⇑ K⊥,F
[R ⇑ atomic]

shows that if (B), then ΣG′,w has a proof, hence so does ΣG,w; moreover fσ
′ = ⊥,

hence fσ = ⊥ and (A). Conversely, if (A), then ΣG,w has a proof, which is
equivalent to a proof ending with the above derivation, hence ΣG′,w is provable;
moreover fσ = ⊥, hence fσ

′ = ⊥ and P ′ is σ-provable.
In all the remaining cases the only σ-vertex affected by the transition is w.

Case P
R
7→ P ′. ǫ(a) is of the form lE. ΣG,w and ΣG′,w are of the form

⊢ L;P ;N ⇑ φ,F and ⊢ L; φ,P ;N ⇑ F with φ = [lE]− = [E]+. The derivation

⊢ L; φ,P ;N ⇑ F

⊢ L;P ;N ⇑ φ,F
[R ⇑]

allows us to conclude as in the previous cases.

Case P
+
7→ P ′. ǫ(a) is of the form E1 + E2 and a choice is made between E1

and E2 in P ′. Consider both choices. They lead to two elements of S, (G1, f0, f1)
and (G2, f0, f1) (one of them is P ′). Let us write Gi = (V ′, A′, p′, t′, ǫ′i) for each
i ∈ {1, 2}. [ǫ(a)]− is of the form φ1 N φ2 and [ǫ′i(a)]− = φi. ΣG,w is of the form
⊢ L;P ;N ⇑ φ1 N φ2,F and ΣGi,w =⊢ L;P ;N ⇑ φi,F . The derivation

⊢ L;P ;N ⇑ φ1,F ⊢ L;P ;N ⇑ φ2,F

⊢ L;P ;N ⇑ φ1 N φ2,F
[N]

shows that if (B), then ΣG1,w and ΣG2,w have proofs, hence so does ΣG,w;
moreover fσ = ⊥, hence (A). Conversely, if (A), then ΣG,w has a proof, which is
equivalent to a proof ending with the above derivation, hence ΣG1,w and ΣG2,w

are provable; moreover fσ = ⊥, hence P ′ is σ-provable.

Case P
00
7→ P ′. ΣG,w is of the form ⊢ L;P ;N ⇑ ⊤,F and it is provable:

⊢ L;P ;N ⇑ ⊤,F
[⊤]

w is not a vertex of G′ and fσ
′ = fσ, hence P is σ-provable iff P ′ is. If (B),

then (A). Conversely, if (A), then P ′ is σ-provable.

30

Case P
×
7→ P ′. ΣG,w and ΣG′,w are of the form ⊢ L;P ;N ⇑ φ1 O φ2,F and

⊢ L;P ;N ⇑ φ1, φ2,F . The derivation

⊢ L;P ;N ⇑ φ1, φ2,F

⊢ L;P ;N ⇑ φ1 O φ2,F
[O]

allows us to conclude as in the previous cases.

Case P
1
7→ P ′. ΣG,w is of the form ⊢ L;P ;N ⇑ ⊥,F . Consider the derivation

⊢ L;P ;N ⇑ F

⊢ L;P ;N ⇑ ⊥,F
[⊥]

If (B), then fσ
′ = ⊥ and w is a vertex of G′. Then ΣG′,w =⊢ L;P ;N ⇑ F ,

it has a proof, hence so does ΣG,w by the above derivation; moreover fσ = ⊥,
hence (A). Conversely, if (A), then fσ = ⊥ and ΣG,w has a proof, which is
equivalent to a proof ending with the above derivation, hence ⊢ L;P ;N ⇑ F is
provable; L, P , N and F cannot all be empty, therefore w is a vertex of G′, and
ΣG′,w =⊢ L;P ;N ⇑ F is provable; moreover fσ

′ = ⊥, hence (A).

Lemma 5.20. Let P be a σ-macro-position. Let S = {P ′ : P ρ P ′}. P is
σ-provable iff there exists P ′ ∈ S which is σ-provable. P is σ-provable iff every
P ′ ∈ S is σ-provable.

Proof. We show a more general result. For every σ-micro-position P , let
SP = {P ′ : P 7→∗

σ P ′ and this sequence is maximal}. Let us show that for every
σ-micro-position P , P is σ-provable iff there exists P ′ ∈ SP which is σ-provable,
and P is σ-provable iff every P ′ ∈ SP is σ-provable. By proposition 5.14, we
may show it by induction on the maximal length lP of the sequences P 7→∗

σ P ′

for P ′ ∈ SP . If lP = 0, then S = {P} and the result is trivial. Now suppose
that lP > 0 and let S′ = {P ′ : P 7→σ P ′}. By Propositions 5.18 and 5.19, P
is σ-provable iff there exists P ′ ∈ S′ which is σ-provable, and P is σ-provable
iff every P ′ ∈ S′ is σ-provable. For every P ′ ∈ S′, lP ′ < lP and the induction
hypothesis applies. The result follows from the fact that SP =

⋃

P ′∈S′ SP ′ .

Theorem 5.21. Let P be a position and σ ∈ {0, 1}. There is a winning σ-
strategy from P iff P is σ-provable.

Proof. We prove the result by induction on the maximal length lP of the plays
starting in P (see Proposition 5.16). If lP = 0, P is final and there is a winning
σ-strategy from P iff P is a win, iff P is σ-provable. Suppose that lP > 0. Let
S = {P ′ : P ρ P ′}. There are two cases: P is either a σ-macro-position or a
σ-macro-position.

If P is a σ-macro-position, then there is a winning σ-strategy from P iff
there is a winning σ-strategy from some P ′ ∈ S, iff, by induction hypothesis
(lP ′ < lP), there exists P ′ ∈ S which is σ-provable, iff, by lemma 5.20, P is
σ-provable.

If P is a σ-macro-position, then there is a winning σ-strategy from P iff
there is a winning σ-strategy from every P ′ ∈ S, iff, by induction hypothesis
(lP ′ < lP), every P ′ ∈ S is σ-provable, iff, by lemma 5.20, P is σ-provable.

31

6. Related and future work

There is a great deal of work that addresses various game-theoretical aspects
of logic. Most of the work on using game semantics with linear logic is centered
around modeling cut-elimination: in particular, on viewing one player as a pro-
cessing element and the other player as the environment. Blass [29] introduced
a game semantics for linear logic along these lines: this approach was extended
by Abramsky and Jagadeesan [8], Abramsky and Melliès [9], and Hyland and
Ong [7].

The games described here, however, deal with the question about what is
actually achieved when a particular inference rule is used in a proof. In that
sense, our work is more closely related to the “dialog games” inspired by the
early work of Lorenzen [30] (see also [31]).

It is natural to consider extending the games described here for more aspects
of logic, such as the exponentials (! and ?) of linear logic as well as first-order
and second-order quantification. The earlier paper [19] considered adding first-
order quantification, the equality predicate on terms, and least and greatest
fixed points to MALL. That paper also contained numerous examples that ex-
ploited such extensions to neutral strategies and to (simple) games: it was shown
that a natural approach to fixed points immediately lead to viewing the usual
logical specification of bisimulation as the usual game theoretic description of
bisimulation [32].

Developing technical connections to Girard’s Ludics [18] and Faggian and
Hyland’s treatment of parts of Ludics [33] would be of particular interest. Re-
lating proofs and strategies more closely would be another worthy development:
here we will probably need to switch to a framework similar to asynchronous
games and innocent strategies [34].

7. Conclusion

We have presented a two-person game in which one player is attempting
to build a (cut-free) proof of a formula while the other player, who is working
with exactly the same set of rules, is attempting to build a refutation of that
formula. In order to capture the sameness of the two players, the game makes
use of a neutral expression language that can be mapped into logical expressions
using two dual mappings. Restricting the interaction between multiplicatives
of opposite polarities yields a simple notion of game with considerable expres-
siveness. Removing that restriction requires a treatment of the multiplicatives
using a graph structure for game “positions” which essentially represents cut
links between two dual proof structures and can also be mapped to sequents
using two dual mappings. The computational content of the game can be seen
as cut reduction and simultaneous dual proof search at the same time. The
most natural proof system that results from this game-theoretic consideration
is a focusing proof system that allows for multifocusing.

32

Acknowledgements. We would like to thank Claudia Faggian and the review-
ers of an earlier version of this paper for their comments and suggestions for
improving the presentation of this work.

References

[1] R. M. Smullyan, First-Order Logic, Dover Publications, 1995, second edi-
tion.

[2] L. Hallnäs, P. Schroeder-Heister, A proof-theoretic approach to logic pro-
gramming. II. Programs as definitions, J. of Logic and Computation 1 (5)
(1991) 635–660.

[3] J.-Y. Girard, A fixpoint theorem in linear logic, an email posting to the
mailing list linear@cs.stanford.edu (Feb. 1992).

[4] M. I. Kanovich, Simulating linear logic with 1-linear logic, Preprint 94-02,
Laboratoire de Mathématiques Discrètes, University of Marseille (1994).

[5] P. Lincoln, J. Mitchell, A. Scedrov, N. Shankar, Decision problems for
propositional linear logic, Annals Pure Applied Logic 56 (1992) 239–311.

[6] S. Abramsky, R. Jagadeesan, P. Malacaria, Full abstraction for PCF, In-
formation and Computation 163 (2) (2000) 409–470.

[7] J. M. E. Hyland, C.-H. L. Ong, On full abstraction for PCF: I. models, ob-
servables and the full abstraction problem, II. dialogue games and innocent
strategies, III. A fully abstract and universal game model, Information and
Computation 163 (2000) 285–408.

[8] S. Abramsky, R. Jagadeesan, Games and full completeness for multiplica-
tive linear logic, J. of Symbolic Logic 59 (2) (1994) 543–574.

[9] S. Abramsky, P.-A. Melliès, Concurrent games and full completeness, in:
14th Symp. on Logic in Computer Science, IEEE Computer Society Press,
1999, pp. 431–442.

[10] M. H. van Emden, Quantitative deduction and its fixpoint theory, J. of
Logic Programming 3 (1) (1986) 37–53.

[11] R. D. Cosmo, J.-V. Loddo, S. Nicolet, A game semantics foundation for
logic programming (extended abstract), in: C. Palamidessi, H. Glaser,
K. Meinke (Eds.), Principles of Declarative Programming: 10th Interna-
tional Symposium PLILP’98, no. 1490 in LNCS, 1998, pp. 355–373.

[12] J.-V. Loddo, Généralisation des jeux combinatoires et applications aux lan-
gages logiques, Ph.D. thesis, Université Paris VII (2002).

[13] J.-V. Loddo, R. D. Cosmo, Playing logic programs with the alpha-beta
algorithm, in: Logic for Programming and Automated Reasoning (LPAR),
no. 1955 in LNCS, Springer, 2000, pp. 207–224.

33

[14] C. Galanaki, P. Rondogiannis, W. W. Wadge, An infinite-game seman-
tics for well-founded negation in logic programming, Annals of Pure and
Applied Logic 151 (2) (2008) 70–88.

[15] D. Pym, E. Ritter, Reductive Logic and Proof-search: proof theory, seman-
tics, and control, Vol. 45 of Oxford Logic Guides, Oxford University Press,
2004.

[16] A. Saurin, Une étude logique du contrôle (appliquée à la programmation
fonctionnelle et logique), Ph.D. thesis, Ecole Polytechnique (Sep. 2008).

[17] A. Saurin, Towards ludics programming: Interactive proof search, in: Logic
Programming, 24th International Conference, Vol. 5366 of LNCS, 2008, pp.
253–268.

[18] J.-Y. Girard, Locus solum: From the rules of logic to the logic of rules,
Mathematical Structures in Computer Science 11 (3) (2001) 301–506.

[19] D. Miller, A. Saurin, A game semantics for proof search: Preliminary re-
sults, in: Proceedings of the Mathematical Foundations of Programming
Semantics (MFPS05), no. 155 in Electronic Notes in Theoretical Computer
Science, 2006, pp. 543–563.

[20] O. Delande, D. Miller, A neutral approach to proof and refutation in
MALL, in: F. Pfenning (Ed.), 23th Symp. on Logic in Computer Science,
IEEE Computer Society Press, 2008, pp. 498–508.

[21] J.-Y. Girard, On the meaning of logical rules I: syntax vs. semantics, in:
Berger, Schwichtenberg (Eds.), Computational Logic, Springer, 1999, pp.
215–272.

[22] I. Lakatos, Proofs and Refutations, Cambridge University Press, 1976.

[23] J.-M. Andreoli, Logic programming with focusing proofs in linear logic, J.
of Logic and Computation 2 (3) (1992) 297–347.

[24] K. Chaudhuri, D. Miller, A. Saurin, Canonical sequent proofs via multi-
focusing, in: G. Ausiello, J. Karhumäki, G. Mauri, L. Ong (Eds.), Fifth In-
ternational Conference on Theoretical Computer Science, Vol. 273 of IFIP,
Springer, 2008, pp. 383–396.

[25] W. Hodges, Logic and games, in: E. N. Zalta (Ed.), The Stanford Ency-
clopedia of Philosophy, Stanford University, 2004.

[26] J.-Y. Girard, Linear logic, Theoretical Computer Science 50 (1987) 1–102.

[27] J.-Y. Girard, Proof-nets: the parallel syntax for proof-theory, in: A. Ursini,
P. Agliano (Eds.), Logic and Algebra, Vol. 180 of Lecture Notes In Pure
and Applied Mathematics, Marcel Dekker, New York, 1996, pp. 97–124.

34

[28] V. Danos, L. Regnier, The structure of multiplicatives, Archive for Math-
ematical Logic 28 (1989) 181–203.

[29] A. Blass, A game semantics for linear logic, Annals Pure Appl. Logic 56
(1992) 183–220.

[30] P. Lorenzen, Ein dialogisches konstruktivitätskriterium, in: Infinitistic
Methods: Proceed. Symp. Foundations of Math., PWN, 1961, pp. 193–
200.

[31] H. Herbelin, Séquents qu’on calcule: de l’interprétation du calcul des
séquents comme calcul de lambda-termes et comme calcul de stratégies
gagnantes, Ph.D. thesis, Université Paris 7 (1995).

[32] C. Stirling, Bisimulation, modal logic and model checking games, Logic
Journal of the IGPL 7 (1) (1999) 103–124.

[33] C. Faggian, M. Hyland, Designs, disputes and strategies, in: Computer
Science Logic, Vol. 2471 of LNCS, Springer, 2002, pp. 713–748.

[34] P.-A. Melliès, Asynchronous games 2: The true concurrency of innocence,
Theoretical Computer Science 358 (2–3) (2004) 200–228.

35

