
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

October 1988

Logic Programming Based on Higher-Order Hereditary Harrop Logic Programming Based on Higher-Order Hereditary Harrop

Formulas Formulas

Dale Miller
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Dale Miller, "Logic Programming Based on Higher-Order Hereditary Harrop Formulas", . October 1988.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-88-77.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/756
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F756&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/756
mailto:repository@pobox.upenn.edu

Logic Programming Based on Higher-Order Hereditary Harrop Formulas Logic Programming Based on Higher-Order Hereditary Harrop Formulas

Abstract Abstract
Hereditary Harrop formulas are an extension to Horn clauses in which the body of clauses can contain
implications and universal quantifiers. These formulas can further be extended by embedding them in a
higher-order logic; that is, by permitting quantification over function symbol occurrences and some
predicate symbol occurrences, and by replacing first-order terms with simply typed λ-terms. Our
justification for considering this rich extension of Horn clause theory as a satisfactory logic programming
language is provided by a proof-theoretic notion we call "uniform proofs". This notion will be defined and
motivated. This extended language can provide very natural and direct implementations of various kinds
of abstraction mechanisms. For example, higher-order hereditary Harrop formulas (hohh) can be used to
support aspects of modular programming, abstract data types, and higher-order programming.

We have designed and built a logic programming system which implements hohh in much the same way
Prolog implements first-order Horn clauses. This language and its interpreter, collectively called λProlog,
will be described. We will present several example programs where λProlog provides a much more
immediate and satisfactory implementation language than first-order Prologs. These examples are taken
from theorem proving and program transformation. Finally, we will describe some aspects of our
implementation of λProlog.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-88-77.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/756

https://repository.upenn.edu/cis_reports/756

LOGIC PROGRAMMING BASED ON
HIGHER-ORDER HEREDITARY

HARROP FORMULAS

Dale Miller

MS-CIS-88-77
LINC LAB 135

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104

October 1988

Slides presented at the Advanced School on Foundations of Logic
Programming, 19 - 23 September 1988, Alghero, Sardinia, Italy

Acknowledgements: This research was supported in part by NSF grants CCR-87-05596,
MCS-8219196-CER, IRI84-10413-A02, DARPA grant N00014-85-K-0018, and U.S. Army
grants DAA29-84-K-0061, DAA29-84-9-0027.

LOGIC PROGRAMMING BASED ON
HIGHER-ORDER

HEREDITARY HARROP FORMULAS

Dale Miller
Computer and IJ;lformation Science

University of Pennsylvania
Philadelphia, PA 19104-6389 USA

Slides given at the Advanced School on Foundations of Logic

Progralunling, 19 - 23 Septen1ber 1988, Alghero, Sardinia,

Italy.

Logic programming based on
higher-order hereditary Harrop fornlulas

Dale 11iller
Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104-6389

dale@cis.upenn.edu
(215)898-1593

Hereditary Harrop formulas are an extension to Horn clauses in ,vhich
the body of clauses can contain implications and universal quantifiers. These
formulas can further be extended by embedding them in a higher-order logic;
that is, by permitting quantification over function symbol occurrences and
some predicate symbol occurrences, and by replacing first-order terlns ,vith
simply typed ..x-terms. Our justification for considering this rich extension
of Horn clause theory as a satisfactory logic programming language is pro­
vided by a proof-theoretic notion '\ve call "uniform proofs". This notion
will be defined and motivated. This extended language can provide very
natural and direct implementations of various kinds of abstraction mecha­
nisms. For example, higher-order hereditary Harrop formulas (hohh) can
be used to support aspects of modular progranlming, abstract data types,
and higher-order programming.

\Ve have designed and built a logic programlning system ,vhich iln­
plements hohh in much the same ,\\'ay Prolog implements first-order Horn
clauses. This language and its interpreter, collectively called ..xProlog, ,,~ill

be described. \\Te ,vill present several example progralns ,vhere ..xProlog
provides a much more hnmediate and satisfactory implelnentation language
than first-order Prologs. These examples are taken from theorem proving
and program transforlnation. Finally, ,ve ,vill describe some aspects of our
hnplementation of ..xProlog.

1

Lecture I

Introduction

Colleagues

Duke University

Gopalan Nadathur CS assistant professor

Table of Contents Carnegie Mellon University

Conal Elliott CS graduate student
Frank Pfenning CS researcll scientist

University of Edinburgh

J ames Harland CS graduate student

University of Pennsylvania

Amy Felty CIS graduate stllclellt
Elsa Gunter CIS post doc
John Hannan CIS graduate studellt
Dale Miller .CIS assistant professor
Remo Pareschi CIS graduate stlldent
Andre Scedrov Math associate professor

1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9

· . 1-10
1-11

. 1-14
1-15

. 1-16
· . 1-17

1-18
· 1-19
· 1-20

1-21
· . 1-22

. . . 1-23
· 1-24

Colleagues
Outline
Goals of These Lectures
Extensions to Logic Programming
Extensions to the Logic of Logic Programming .
Analysis of "Good" Extensions
Four Abstract Logic Progranlming Languages
The Programlning Language AProlog
Inlplelnentations of AProlog
Three Dilllensions for Extending Horn Clauses .
References
Meta Mathenlatical Properties of Some Logics
An Exalllple of Higher-Order Reasoning
Another Exalnple of Higher-Order Reasoning
Extensional/Non-Extensional / Intensional . .
Higher-Order Logic as an

Object and Meta Language
Sinlply Typed A-Ternls
An Exalnple of A-Conversion. . .
Adding Logic to A-Terms
Fornlulas as A-Terms . . ~ . . .
Another Exalllple of A-Conversion
An Illfornlal Description of T

Miller/Septell1ber 1988 asflp/1/colleagues MillerjSeptell1ber 1988 I-I

Three DiDlensions for Extending Horn Clauses References

First-order Horn clauses forill the origin.

Program-level
Abstraction

[1] P. Andrews, Resolution in Type Theory, Journal of

SYlubolic Logic, ?6 (3), 414 - 432, 1971.

[2] P. Andrews, An Introduction to Mathenlatical Logic and

Type Theory, Acadelllic Press, 1986.

[3] A. Church, A Fornlulation of the Sill1ple Theory of

Types, Journal of SYlnbolic Logic 5(1940), 56 - 68.

[4] A. Felty and D. Miller, Specifying theorell1 provers

in a higher-order logic progral11111ing language, 9th

International Conference on Autonlated Deduction,

Argonne, IL, 23 - 26 May 1988.

[5] J. Gallier and W. Snyder, Higher-Order Unification

Revisited: Complete Sets of Transforll1ations.

Submitted to a special issue of the Journal of SY1nbolic

ComJputation (1988).

[6] J. Hannan and D. Miller, Enriching a lueta language

with higher-order features, Workshop on Meta

Progranl111ing in Logic Prograll1111ing, Bristol, UK, June

1988.

[7] J. Hannan and D. Miller, Uses of higher-order

unification for il11plelllenting progralll transforlllers,

Fifth SYll1posiul11 on Logic Progralll1lling, August 1988,

Seattle, Washington.

[8] R. Harrop, Concerning Forlllulas of the types A ----+

B V C, A ----+ (Ex)B(x) in Intuitionistic Forll1al Systellls.

Journal of SYl11bolic Logic, 25(1), 1960, 27 - 32.

[9] G. Huet, A Unification Algorithl11 for Typed .A-Calculus,

Theoretical C0111puter Science 1, 1975, 27 ~ 57.

[10] G. Huet and B. Lang, Proving and Applying Progralll

Transforlllations Expressed with Second-Order Patterns.

Terms-level
Abstraction

*
/

/
/

/

/
/

/
/

/
/_---­

I
I
I
I
I
I
1

I

/1
/ I

/ I
/ I

/ I
_________ / I

I I
I I

I
--- 1 1_-

1 /

1 /

1 /

I /
I / I /
1/ ---- 1/
/

Control

asflp/l/3d Miller/SelJtenlber 1988 1-10 asflp/l/references Miller/Septell1ber 1988 1-11

Outline

Lecture I

Introduction

Lecture II

Higher-Order Horn Clauses:

Definition, Examples, and Theory

Lecture III

Higher-Order Unification and

a Generalization of SLD-Resolution

Lecture IV

Hereditary Harrop Formulas and

Uniform Proofs

Lecture V

An Approach to Modules and Lexical Scoping

Lecture VI

Higher-Order Hereditary Harrop Formulas

Goals of These Lectures

To probe the essential logical character of various
notions of abstractions in logic programllling.

o higher-order functions

o abstract data types

o lllodules

To describe computational aspects of higher-order
logic.

To present some relationships betweeIl proof theory
and logic programming.

To propose an extension to the logic of Horn
clauses that maintains many of its computational
aspects.

To present a programming language, ;\Prolog, built
on this extension.

To use the proposed extensions to provide new
programming language features.

asflp/1jl11ap Miller jSeptelllber 1988 1-2 asflp j 1 j goals Miller jSeptel11ber 1988 1-3

Extensions to Logic Programming

AIllalgaIIlate Prolog with other languages.

Modify existing interpreters to add new
functionali ty.

Extend the logical foundations of Prolog.

o Increase the role of negation

o Increase the role of equality

o Quantify over Illore syntactic categories

o Add Illore logical priIllitives to queries

~xtensions to the Logic of Logic Prograrnllling

We shall consider two kinds of extensions in these
talks.

Quantificational extension

o adding quantification over predicate and/or
function sYIllbols

o higher-order Horn clauses

o terIllS extended with A-terIllS

Propositional extension

o adding additional connectives to goals and
prograIll clauses

o hereditary Harrop forIllulas

o intuitionistic provability Illodels cOIllputations

asflp/1/extensions Miller/Septel11ber 1988 1-4 asflp /1/extensiol1s Miller /Septel11ber 1988 1-5

Analysis of "Good" Extensions Four Abstract Logic PrograIllITling Languages

Extensions lllUSt maintain a certain lllatch between

an operational interpretation and the logical

interpretation of connectives within goals.

Programs, Goals <===> Logical Forlllulas

Solving a Goal <===> Logical Provability

Logical connectives are to have search-related

meanings, for example, the properties listed below

such hold.

o P I- G1 V G2 if and only if P ~ G1 or P ~ G2 .

o P I- 3x G if and only if for some t, P ~ G[t/x].

fohc

hohe

fohh

hohh

First~order Horn clauses with classical or
intuitionistic provability

Higher-order Horn clauses with classical
or intuitionistic provability

First-order hereditary Harrop formulas
with intuitionistic provability

Higher-order hereditary Harrop formulas
with intuitionistic provability

hohh

/ "fohh hohe

~ /
fohe

-----t denotes containlllent

asHp /1/analysis Miller /Septel11ber 1988 1-6 asfip /1/analysis Miller /Septeillber 1988 1-7

The Prograrnllling Language AProlog

AProlog is a progralllllling language built on
top of hohh. An interpreter for this language.
uses a depth-first discipline for both clauses and
(pre)unifier selections.

AProlog extends Prolog by providing

o higher-order prograIIlllling

o A-terllls as data structures

o stacked-based lllechanislll for introducing and
discharging program. clauses

o scoping tnechanislll for constants

o modules and local iIIlporting

o abstract data types

An overview of AProlog can be found in [23].

Illlplelllentations of AProlog

LP2.6 (August 1987, UPenn, Miller and Nadathur)

LP2.7 (July 1988, Duke and UPenn, Miller and
Nadathur) Available in C-Prolog and Quintus
Prolog version (4100 lines of code). Does not
illlplernent the full dynamic lllodule facility
anticipated by the theory. Does provide a
depth-first illlplernentation of full higher-order
unification. Sources and several cOlllplete examples
are in the distribution, which is available frolll

Gopalan Nadathur
Com.puter Science. Department
Duke University
Durhalll, NC 27706 USA
(gopalan@cs.duke.edu)

eLP (expected Winter 88, CMU) Written in
Comlllon Lisp. Will be used as a meta langl1age
within the ERGO program development project.
Should illlplelllent the full theory of hohh as well
as certain enhancements. Implementation being
done by Conal Elliott and Frank Pfennillg.

asflp/l/lprolog Miller /Septelllber 1988 1-8 asflp/l/lprolog Miller/Septelnber 1988 1-9

Acta Informatica 11, (1978), 31 - 55.

[11] D. Miller, Proofs in Higher-Order Logic, Ph. D.

dissertation, Carnegie Mellon University, Mathematics

Departlllent, August 1983.

[12] D. Miller, A logical analysis of lllodules in logic

progralnming, to, appear in the Journal of Logic

Progralunling.

[13] D. Miller, A theory· of ll10dules for logic progralnming,

IEEE Symposium on Logic Programming, Salt Lake City,

Septelnber 1986.

[14] D. Miller, Lexical Scoping and Abstract Data Types in

Logic Progran11ning, in preparation.

[15] D. Miller, Unification Under A Mixed Prefix,

unpublished draft, 50 pages.

[16] D. Miller and G. Nadathur, Higher-order logic

programming, Proceedings of the Third International

Logic Programlning Conference, London, June 1986, 448

- 462.

[17] D. Miller and G. Nadathur, Some uses of higher-order

logic in cOlnputational linguistics, 24th Annual Meeting

of the Association for COlnputational Linguistics, New

York, June 1986.

[18] D. Miller and G. Nadathur, A logic programming

approach to luanipulating forlnulas and programs,

IEEE SYlnposiu111 on Logic Progralnll1ing, San Franciso,

Septelnber 1987.

[19] D. Miller, G. Nadathur, and A. Scedrov, Hereditary

Harrop for111ulas and uniforn1 proofs systell1s, Second

Annual SY111posiu1l1 on Logic in C0111puter Science,

Cornell University, June 1987, 98 - 105. Theorel11 3

is wrong. It is corrected in the [20].

[20] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov,

U nifor111 proofs as a foundation for logic progra1111lling,

sublllitted May 1988.

[21] G. Nadathur, A Higher-Order Logic as the Basis for

Logic Progralllllling, Ph. D. dissertation, University of

Pennsylvania, May 1987.

[22] G. Nadathur and D. Miller, Higller-order Horn clauses,

sub111itted April 1988.

[23] G. Nadathur and D. Miller, An overview of -XProlog,

Fifth Syn1posiull1 on Logic Program111ing, August 1988,

Seattle, Washington.

[24] F. Pfenning, Partial polY1110rphic type inference and

higher-order unification, Proceedings of the ACM Lisp

and Functional P"togra1111ning Conference, 1988.

[25] F. Pfenning and C. Elliot, Higher-order abstract syntax,

Proceedings of the ACM-SIGPLAN Conference on

Progra111ming Language Design and Il11plelllentation,

1988.

[26] L. Paulson, Natural Deduction as Higher-Order

Resolution, Journal of Logic Progralll111ing 3(3), 1986,

237 - 258.

asflp/1/references Miller/Septen1ber 1988 1-12 asflp/1/references Miller/Septelllber 1988 1-13

Meta Mathelllatical Properties of SOllle Logics

First-order logic

o Valid formulas are precisely theorems
(soundness and cOlllpleteness).

o Theorem are described syntactically via
axioms and inference rules.

o Valid formulas are described semantically via
lllodels.

Second-order "logic"

o Valid formulas are those provable in the
standard model of the integers.

o G5del showed that there is no (reasonable)
syntactic characterization of these valid
formulas.

o Second-order "logic" is more mathematics
than logic.

Higher-order logic

o Syntactic tools are used to describe the nature
of predicate and function quantification.

o Typed A-calculus is ·generally used to denote
terms of higher-type (see Church [3]).

o Theorems are de~cribed syntactically: some
approaches have complete model theories,
some do not.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

An ExaIllple of Higher-Order Reasoning

VB (B c open ~ open(U B))

open set axiom

Vz (Az ~ 3G (open(G) /\ Gz /\ G C A))

assuInption

{G I G C A /\ ope~n(G)} Copen

simple

open(U{GIG C A /\ open(G)})

Modus Ponens 1, 3

U{G IG C A /\-open(G)} C A

siTIlple

A C U{G I G C A /\ open(G)}

simple (uses 2)

open(A)

4, 5, 6, and extensionality

0~

asflp/l/111eta Miller/Septel11ber 1988 1-14 asflp /1 j ll1eta Miller jSeptell1ber 1988 1-15

Another ExanIple of Higher-Order Reasoning

believes(John, "The sun rises in the east.")

~ "The sun rises in the east." "Nixon lied."

Therefore, believes(John, "Nixon lied.")

The problelll illustrated above is generally
addressed by eInbellishing the underlying logic
to provide an analysis of the intensionality of a
proposition.

However, a weak enough logic can also block such
conclusions.

Extensional / Non-Extensional/Intensional

Extensionality: .Predicates (and function) are
equal if they have the saIne extensions. Generally
assumed in mathematics.

Direct higher-order extensions to first-order logic
do not guarantee extensionality. AxiolllS such as

'v'x[Px = Qx] ~ P == Q

lllUSt be added explicitly to get an extensional
logic.

Intensional logics, such as those of Montague and
Gallin, are embellishlllents of extensional higher­
order logics with extra constants (e.g. intensional
oper'ators, modal operators) and with additional
axioms and inference rules.

With regard to such "selllantic" issues, we shall
focus on a very weak higher-order extension to
first-order logic.

asftp /1 /Illeta Miller /Septelllber 1988 1-16 asflp/1/111eta Miller /Septelllber 1988 1-17

Higher-Order Logic as an

Object and Meta Language

Original examination of higher-order logic was
to forIllalize matheIIlatics and then to study the
resulting formalisIn to conclude properties of
rnathelllatics. See Church [3] and Andrews [2].

Higher-order logic can makes a very interesting and
powerful Ineta language. SOIne recent 'work has
focused on the following three areas.

o theorelll provers: Felty and Miller [4], Paulson
[26], Pfenning [24]

o program transformers: Hannan and Miller [6]
and [7], Miller and Nadathur [18], Pfenning
and Elliott [25].

o natural language semantics: Miller and
Nadathur [17].

Simply Typed A-TerIllS

Types:

o A set of ground types {o, b1 , ... , bn }

o All types a --+ (3 where a and (3 are types.
et. --)~

Ternas: I' ~r--- 7

c I x I AX.t (t 1 t2)
0(I 'of' L _

CJ,. ->(3~
Equivalence of Terms:

a Ax·(fx) -a Ay.(fy)

(3 (Ag.AX.(g x)) f -f3 Ax·(f x)
TJ AX·(fx) - 1] - f

Functions are expressions of functional type, that
is, of type a --+ (3.

Predicate are functional expression~ of target type
0, that is, of type ao ~ · · · ~ an ~ o.

Propositions are expressions of type o.

asftp/ljl11eta Miller jSeptel11ber 1988 1-18
asflp j 1 jstt MillerjSeptenlber 1988 1-19

An ExaDlple of A-Conversion Adding Logic to A-Terllls

\I(AX P) is abbreviated as \Ix P.

3(AX P) is abbreviated as 3x P.

AX(X + 1)

AIAz(f(fz))

(>"f>..z(f (f z))) >..x(x + 1) c

>..z((>..x(x + 1))(>"x(x + 1)z)) c

AZ((AX(X + 1))(z + 1)) c

AZ((Z + 1) + 1) c

((c+1)+1)

'o--+-o

v 0--+-(0--+-0)

1\0--+-(0--+-0)

=> o--+- (o--+- 0)

\I(0.---+0)---+0

:3(0.---+0)---+0

negation

disjunction

conjunction

iIllplication

universal a-set recognizer

non-eIllpty a-set recognizer

Type association is to the right: 0 ~ (0 ~ 0) is

written more simply as 0 -7 0 -7 O.

asflp/l/stt Miller/Septelnber 1988 1-20 asflp/l/stt Miller/Septelllber 1988 1-21

Forlllulas as A-Terms

"Every Illan loves a wom.an."

Vx (rnan(x) :> 3y (wornan(y) /\ loves(x, y)))

VAx((rnan x) ~ 3Ay((wornan y) /\ (loves x y)))

"uncle whose children are doctors"

Ax((uncle x) /\ (VAy((child x y) :> (doctor y))))

Another Exalllple of A-Conversion

U ::== ABAx3G (BG /\ Gx)

C ::== APAQVX (Px ~ Qx)

{G I G C A /\ (open G)} ::== AG. G C A /\ (open G)

U{G I G C A /\ (open G)}

[ABAx3G (B G /\ G X)][AG. G C A /\ (open G)]

Ax:lG [AG. G C A /\ (open G)]G /\ Gx

Ax3G [G C A /\ (open G) /\ Gx]

Ax3G [Vx [Gx ~ Ax] /\ (open G) /\ Gx]

asflp/l/stt Miller18eptember 1988 1-22 asflpilis t t MilleriSeptel11ber 1988 1-23

An Informal Description of T

If A A-converts to A' and J-- A, then J-- A'.

All constants and variables h,ave simple types.

Quantification over predicates and function is
perIllitted.

AxioIlls and inference rules for the classical (resp.
intuitionistic) version of T are those of classical
(resp. intuitionistic) first-order logic plus the
inference rule of A-conversion:

This is roughly equivalent to thinking of equality of
terms as being Illodulo A-conversion.

AxioIlls of extensionality, description, choice and
infinity are not used in T.

See Church 1940 [3] and Andrews 1986 [2] for more
about this kind of higher-order logic.

Meta theoretic results:

Table of Contents

Lecture II

Higher-Order Horn Clauses:

Definition, Exalllples, and Theory

Which Formulas Should Be Considered
Higher-Order Horn Clauses? 11-1

Can the Head of a Clause Be a
Predicate Variable? 11-2

Higher-Order Horn Cla~ses 11-3
A Possible Problem . .- 11-4
An Approach to Solving This Problem 11-5
Positive Instances. 11-6
Provability from Horn Clauses 11-7
Some AProlog Syntax 11-8
Polymorphic Typing 11-9
The Mappred Program 11-10
The Sublist Program 11-11
Flexible Goals 11-12
Constraining Flexible Goals 11-13
Interpretations for Higher-Order Horn Clauses .. 11-14
A Non-Compositional Notion of Satisfaction . .. 11-15
A Least Fixpoint Interpretation 11-16
The Mapfun Progranl 11-17
The Mapfun Prograll1 in "Reverse" 11-18
A-terms as Data Structures 11-19
The Advantage of Such a Representation 11-20
Prograllls as Data Objects 11-21
Prograllls as A-terllls 11-22
Analyzing the Append Progralll 11-23

Schutte, Tait, Takahashi, Girard
Andrews 1971 [1]
Huet 1975 [9]
Miller 1983 [11]

Cut-Elimination
Resolution
Unification
Herbrand Theorem

asflp/l/stt Miller /Septelllber 1988 1-24 Miller/Septenlber 1988

.Which Formulas Should Be Considered

. Higher-Order Horn Clauses?

Most certainly, the following should be examples of
higher-order Horn clauses.

rnappred P nil nil
(P X Y) /\ (rnappred P L K) ~

(rnappred P (cons XL) (cons Y K))

mapfun F nil nil
(rnapfun F L K) ~

(mapfun F (cons X L) (cons (F X) K))

Here the types for the four non-logical constants
would be something like the following:

nil: list
cons: i ~ list ~ list

rnappred : (i --+ i ~. 0) ~ list ~ list ~ 0
rnapfun : (i ~ i) --+ list --+ list ~ 0

Can the Head of a Clause Be a

Predicate Variable?

Consider the following two forlllulas:

\:IP \:IX ((q X) ~ (P X))

(q a)

Frolll these two clauses, any forlllula is provable.
To prove an arbitrary forlllula, say r, use the
instance P 1-+ AX.r "and X 1-+ a to get

(q a) ~ r.

These clauses are, thus, inconsistent.

The predicate head of a Horn clause describes
which procedure that clause is helping to define.

asflp/2/which Miller jSeptember 1988 11-1
asflpj2jwhich Miller jSeptelnber 1988 11-2

Higher-Order Horn Clauses

Let 1{+ be the set of all A-norInal forInulas built

froIn non-logical constants, variables, and the

logical constants true, /\, V and 3.

Let G be a syntactic variable for propositions in
1{+.

Let A be a syntactic variable for propositions in

1{+ with non-logical constants as their head. Such

formulas are called atoms.

A higher-order Horn clause is the universal closure

of a forInula of the forlll G J A or simply A.

Let P be a syntactic variable for sets of Horn

clauses.

A Possible Problem

Consider a proof of 3Y pY from the higher-order
Horn claus~

VQ (Q ~ pa)

There is a proof with answer substitution Y ~ a.
The instance of this Horn clause used in this proof
IS

true => pa.

There is another proof, however, which yields no
answer substitution. First, instantiate x with ,pb
to get the forllluia

which is equivalent (classically) to the disjunction

pb V pa.

The forIllula ~Y pY is then provable with the
"disjunctive" answer substitution Y 1---+ a or Y r---+ b.

The higher-order substitution instance of a higher­
order Horn clause is not necessarily a higher-order
Horn clause.

asflp/2jhohc Miller jSeptember 1988 11-3 asflp/2/hohc Miller/Septeluber 1988 11-4

An Approach to Solving This Problelll

Notice that if s, t E 1i+ then [x := s]t E 1i+, that
is, 1i+ is closed under substitutions from 1i+.

Thus, higher-order Horn clauses are closed under

instantiations from 1i+.'

Approach: If G is provable frolll a set of higher­

order Horn clauses then it i~ provable by a proof

whose only substitution terms are taken from 1i+.

Thus, 1i+ is the Herbrand Universe" for higher­

order Horn clauses.

Positive Instances

~et P be a set of higher-order Horn clauses.

Get [P] be the smallest set of higher-order Horn

~lauses such that

o P C [P], and

o if \/x D E [P] and t E 1i+ is closed and the

same type as x, then [x :== t]D E [P].

asflp/2/hohc Miller/September 1988 11-5 asflp/2/hohc Miller /Septeillber 1988 11-6

Provability frolll Horn Clauses

Theorelll: Let Gt , G2 , ,A, 3x Bx E 1-l+ each be
closed propositions. Let P be a set of higher-order
Horn clauses. Let J-T be classical provability over
T. The following are true:

o P J-T true.

o P J-T G1 /\ G2 if and only if P J- T G1 and
P J-T G2 •

o P J-T Gl V G2 if and only if P ~T G1 or
P J-r G2 •

o P J-T 3x B if and only if there is a closed
formula t E 7-{+ such that P I-r [x := t]B.

a P J-T A if and only if A E [P] or there is a
G :J A E [P] and P J-T G.

Proof: See Nadathur's dissertation [21] or the
joint paper [22]. See also [16].

Some AProlog Syntax

The syntax of terms is similar to that for Lisp
(functions are represented as curried expression).
Major differences are:

a A-abstraction is written with an infix \.

a Lists are written as in Prolog.

(redu·ce (lambda (x y)~ (x+y)) '(1 2 3) 0)=6
(reduce X\Y\ (X + Y) [1,2,3J 0 6)

The syntax of clauses and goals is similar to that
for Prolog. The major difference is the possibility
of having explicit existential quantification in goals.

?- sigma Y\(generate X Y, test Y Z).
B

The syntax of type declarations is similar to that
for ML.

type nil list.
type cons i -) l~st -) list.
type mappred (i -)"i -) 0) -)

list -) list -) o.
type mapfun (i -) i) -) list -) list -) o.

asflp/2/hohc Miller/Septenlber 1988 11-7
asflp/2/syntax Miller/September 1988 11-8

Polymorphic Typing

Types are a language of first-order terlllS that is
separate frOIll the language of A-terllls.

Prilllitive types:

0, int, string,

Type constructors:

(list int), (pair int string),
(list (pair int int)),

The Mappred Progralll

type mappred (A -) B -) 0) -)
(list A) -) (list B) -) o.

mappred P nil nil.
mappred P [XIL1] [YIL2] :- P X Y,

mappred P L1 L2.

The predicate variable P appears both as an
argulllent and as taking argulllents. Consider the
following silllple clauses:

Polymorphic types: Allow first-order variables in
type expressions.

Functional types:

int -) int,

type [_1_]

type []
type pair

int -) (list int) -) 0,

A -) (list A) -) (list A)
(list A)
A -) B ->. (pair A B)

. . '.

type age person -) int -) 0.

age bob 23.
age sue 24.
age ned 23.

and now consider the following query:

?- mappred X\Y\(age X V). [ned, bob, sue] L.

This query essentially asks for the ages of
the individuals ned, bob and sue. An answer
substitution for L is [23, 23, 24].

asflp/2/syntax Miller/Septell1ber 1988 11-9 asflp/2/syntax Miller /Septelllber 1988 11-10

The Sublist Progralll

type sublist (A -) 0) -)
(list A) -) (list A) -) o.

sublist p [XIL] [XIK] :- P X, sublist P L K.
sublist P [XIL] K :- sublist P L K.
sublist P [] [].

type have_age (list person) ->
(list person) -) o.

have_age L K :-
sublist Z\(sigma X\(age Z X)) L K.

type same_age (list person) -)
(list person) -) o.

same_age L K :- sublist Z\(age Z A) L K.

Flexible Goals

P bob 23.

One answer to this query is the substitution
(X\Y\ (age X Y)) for P. Many other substitutions
are also valid. Let G be any provable closed query.
The substitution X\Y\G for P is a legal answer
substitution.

For example, substituting

X\Y\ (memb 4 [3,4,5])

for P is also an answer substitution.

asflp/2/syntax Miller/Septelnber 1988 11-11 asflp/2/syntax Miller/Septel11ber 1988 11-12

Constraining Flexible Goals

Such queries are essentially ill-posed. The range of
a predicate quantifier should be restricted by the
programlller. For exalllple,

type primrel (person -) 0) -) o.
type reI . (person -) 0) -) o.
type mother person -) o.
type wife person -) o.

primrel mother.
primrel wife.
reI R :- primrel R.
reI X\Y\ (sigma Z\(R X Z , S Z V)) :­

primrel R , primrel S.
mother jane mary.
wife john jane.

The query

?- reI R, R john mary,

has the unique answer substitution for R

X\Y\(sigma Z\(wife X Z, mother Z V))

Interpretations for Higher-Order Horn Clauses

An interpretation is any set of closed, atomic
propositions in 1-{+.

The following cOlllpositional definition of
satisfaction is problematic.

o I F true

o I F G if G is atomic and G E I.

o I F G 1 V G 2 if I F G1 or.I F G2 ·

o I F G 1 /\ G2 if I F G1 and I F G2 .

o I F 3x B if there is a closed term t E 1-{+ such
that I F [x := t]B.

The problelll with this definition is that the
recursion in the last line is not well-founded: the
forIllula [x :== t]B can have lllore logical connectives
that the formula 3x B.

3P (Pa)
P ~ Az(3P (Pa) /\ q)

3P (Pa) /\ q

asflp/2/syntax Miller/September 1988 11-13 asflp/2/satis Miller/Septelllber 1988 11-14

A Non-Compositional Notion of Satisfaction

Let I be an interpretation and G a proposition
in 1l+. Write I H= G if there is a sequence of
forlllulas

G1 , , Gn == G

such that for i = 1, ,n, either

o G i is true, or

o G i E I, or

o G i == G' 1\ G" and {G', G"} C {G1 , ... , Gi - 1 },

or

o G i == G' V G" and G' or G" E {G1 , ... , Gi - 1 },

or

o G i == :3x G' and there is atE 1l+ such that
[x :== t]G' E {G1 , ... ,Gi - 1 }.

A Least Fixpoint Interpretation

Let P be a given set of higher-order Horn clauses.
Define the following function froIn interpretations
to interpretations:

Tp(I):=={AIA E [P]orG ~ A E [P]
and I H= G}.

It is not difficult to see that Tp is Inonotone and
continuous on the _.set of all interpretations.

The least fixpoint of Tp is therefore

00

T:P(0) := UTp(0).
n=O

It is this subset of 1l+ that we think of as being
deterlllined by P, and we call it the denotation of
P.

Theorell1: Let G E 1l+ be a closed proposition.
Then T:P(0) H= G if and only if P ~T G. See [21].

asflp/2/satis Miller/Septenlber 1988 11-15 asflp/2/satis Miller /8eptember 1988 11-16

The Mapfun PrograIll

. Consider the following progralll

type mapfun (A -> B) ->
(list A)·-> (list B) -> o.

mapfun F [XIL1] [(F X)I L2] .­
mapfun F L1 L2.

mapfun F [] [].

The Mapfun PrograIll in "Reverse"

Consider the following query:.
?- mapfun F [a, b]. [(g a ~), (g a b)].

There is precisely one answer for this query,
namely the substitution X\ (g a X) for F. The
unification problelll (F a) and (g a a) needs to be
solved here. There are four unifiers for F:

There is no "function" (that is, A-term) which
maps a to c and lllaps b to d.

If any but the second is selected first, the choice of
unifier would need to be backtracked over.

Notice that the following qoal is not provable:

mapfun F [a, b] [c, d].

and consider the following query

?- mapfun X\(g a X) [a, b] L,

The answer substitution for L is

[(g a a), (g a b)]

An interpreter would need to form the terms
«X\ (g a X)) a) and «X\ (g a X)) b) and then
reduce these terlllS using the rules of A-conversion.

X\(g X ~),

X\(g X a),

X\(g aX),
X\(g a a).

asfl p /2/luapfun Miller/Septeluber 1988 11-17 asflp/2/mapfun Miller /Septeluber 1988 II-18

A-terms as Data Structures

A-terms capture the higher-order abstract syntax of
objects like forlllulas and prograllls [25].

Vx (p(x) V q(x))

(all X\ ((p X) or (q X)))

The Advantage of Such a Representation

The equivalence of the the two formulas

Vx (p(x) V q(x)) and Vy (p(y) V q(y))

is captured by the a-convertibility of

(all X\ ((p X) or (q X)))
(all Y\ ((p y) or (q Y)))

sum rn n if (rn == 0) then n
else sum (m - 1) (n + 1)

Substitution is implemented by ,B-reduction. For
exaIllple, the result of instantiating Vy (p(y) V q(y))
with f(a) is the represented by the A-normal forlll
of

(X\ ((p X) or (q X))) (f a)

(fixpt Sum\M\N\
(cond (M = 0) N

(Sum (M - 1) (N + 1))))

Higher-order unification illlplements sophisticated
pattern matching. Consider unifying an expression
against the following two higher-order telllplates:

(all X\ ((P X) or (Q X)))
(all X\ (P or (Q X)))

asflp/2/pods Miller/Septeluber 1988 11-19 asflp/2/pods Miller/Septelllber 1988 11-20

Prograllls as Data Objects

Programs have a rich structure:

o variable bindings (for forlllal parameters)

o function bindings (for defining new functions)

Consider using Lisp as the llleta-language:

o Use Lisp's notation for A-terllls to represent
programs.

o The only primitive lllechanisllls for ,
manipulating such terlllS are CAR, CDR,
CONS.

o Lisp implementations produce obscure
descriptions of progralll analysis.

Need more sophisticated analysis techniques

Programs as A-terms

Consider a siIllple functional language with a
conditional operator, lists, and recursion. The
append progralll lllight appear as

fun append K L ==
(if (null K) L

(cons (car K) (append (cdr K) L)))

By introducing new co~stants to denote each
progralllming language construct, we can represent
this program by the the terlll

fix F\K\L\ (if (null K) L
(cons (car K) (F (cdr K) L)))

o Bindings in the object language are
represented by bound variables (abstractions)
in the meta language

o Two object level programs differing only in
renallling of bound variables are treated as
equivalent terms.

o Substitution for forlllal parameters in the
object language is acheived by ,B-reduction.

asflp/2/pods Miller /Septelllber 1988 11-21 asflp/2/pods Miller /Septel11ber 1988 11-22

Analyzing the Append Progralll

Consider uinifying the code for appen'd

fix F\K\L\ (if (null K) L
(cons (car K) (F (cdr K) L)))

Lecture III

Higher-Order Unification and

a Generalization of SLD-Resolution

against the template Table of Contents

fix F\M\N\ (if (C M) (G M N)
(H (F (K M) N) M))

with free variables C, G, H, and K. It unifies with
the "append" term with the substitution

Unification such as this provides a new method
of analyzing program structure. It is very
different from representing programs as lists and
manipulating them using CAR or CDR in Lisp or
first-order unification and =.. in Prolog.

· . 111-3
· . 111-4
· . 111-5
· . 111-6

· 111-7
· . 111-8
· . 111-9

111-10
· 111-11

111-12
· 111-13
· 111-14

. . . . 111-15
111-16
111-17

· 111-18
111-19
111-20
111-21
111-22

Higher-Order Unification . 111-1
Some References on Higher-Order Unification . . . 111-2
Some Structural Properites of

Higher-Order Unification
Some Additional Properties
Nesting of Abstractions
An Example .
A Simple Tail Recursion Schema .
Matching the Tail Recursive Schema
A More General Tail Recursion "Template"
The Structure of A-normal Terms
Disagreement Pairs of A-terms
Simplifying Rigid-Rigid Pairs
Processing Flexible-Rigid Pairs
Example 1: Occurs Check .
Example 2
Example 3 .
Example 4 .
Example 5 .
Generalizing SLD-Resolution
P-Derivation
P-Derivation (continued)
Fixing Choices in P-Derivations

X\ (null X)
X\Y\ Y
X\Y\ (cons (car Y) X)
X\ (cdr X)

c --)
G --)
H --)

K --)

asflp/2/pods Miller jSepteluber 1988 11-23 MillerjSepteulber 1988

Higher-Order Unification

Given any two (simply typed) terlllS sand t of the
same type, the task of finding a substitution a,
if one exists, such that a(s) == a(t), is known as
higher-order unification.

[A better name is simply typed A-term unification
modulo a{31]-conversion.]

Some characteristics of higher-order unification:

o It is a semi-decidable problem (even for just
second-order unification).

o If unifiers exists, there is not necessarily a
Inost general unifier. In fact, there may be
infinitely Illany independent unifiers.

o General non-redunant search can only be
achieved for pre-unifiers and not unifiers.

o SOllle unification problems, called ftexible­
flexible problems, can produce so Inany
unifiers that solving them is best delayed.
Flexible-flexible problems are treated as
constraints.

SOIne References on Higher-Order Unification

Huet in [9] gave the first full description of higher­

order unification.

Gallier and Snyder. in [5] redo Huet's approach

using the sets of transformations of Herbrand­

Martelli-Montanari.

Miller in [15] consigers higher-order unification

in the presence of a mixed prefix, i. e. adrnitting

quantifier alternations.

Elliott's Ph. D. thesis at Carnegie Mellon

University will be on extensions to higher-order

unification.

asflp/3jprops Miller /September 1988 111-1 asflp/3/props Miller/Septenlber 1988 111-2

Some Structural Properites of

Higher-Order Unification

Dependence on an abstraction. A terlll t is
dependent on its i th abstraction if a A-normal form
of t is of the form

and Xi is free in t'. t' may be a of functional type
itself.

The term

to == AUAVAWAh (F u h(G v))

is dependent on its first, second and fourth
abstractions but not its third.

SOIne Additional Properties

Dependency Invariance. Let t be a term that
is dependent on its i th abstraction. If t A-converts
to s, then s is dependent on its i th abstraction.

That is, dependence on an abstraction is well­
defined with respect ~o term equality.

Dependency and Substitution. Let t be a
terlll and a a substitution. If a(t) is dependent
on its i th abstraction, then t is dependent on its i th

abstraction.

That is, abstraction dependencies cannot be
introduced by substitution.

For example, let

t = AxAy.(F x)
a==[F~(cy)]

Then a(t) == AXAZ.(C y x).

asflpj3jprops Miller/ September 1988 111-3 asflp/3/props Miller/September 1988 111-4

Nesting of Abstractions

Nested Dependency. Let t be a A-norlllal terlll,
let a be a substitution, such that

t == AXI ... AXn.t'
a(t) = AXl · .. AXn.t"

Let Xi, Xj E {Xl, ... ,Xn}.

If every occurrence of Xi in t' is in the scope of an
occurrence of X j in t'
then every occurrenc~ of Xi in t" is in the scope of
an occurrence of X j in t".

That is, the "in the scope of" relationship .
between bound variables does not change under
substitution.

Consider again the term

to == AUAVAWAh.(F U (h(G v)))

For any substitution (]" (for F and G), every
occurrence of v in the terlll a(to) will be in the
scope of h.

An Example

Consider the term (higher-order template)

to == AUAVAWAh.(F U (h (G v)))

which we will try to unify with each of the terms

tl == AUAVAWAh.((2 * w) + h(3 * v))
t2 == AUAVAWAh.((2 * u) + (3 *v))
t3 == AUAVAWAh.((2 * u) + h(3 * v))

o For any. substitution a, a(t1) is dependent
upon its third abstraction (w) while to is not
dependent of its. third abstraction. Hence, t 1

does not unify with to.

o Since all occurrences of v in to are restricted
to be in the scope of h and since v is not so
restricted in t2, to does not unify with t2.

o t3 does unify with to, with substitution (]" ==

[F ~ AxAy.((2 *x) + y), G ~ Ax.(3 * x)]

See [7] for lllore of this kind of analysis.

asflpj3jprops Miller jSeptelnber 1988 111-5 asflpj3jprops Miller jSeptelnber 1988 111-6

A Silllple Tail Recursion Schellla

Consider the following scheIlla (open higher-order
terIll) :

(fix AfAxAy (if (0 x y) (B x y)
(f (E1 X Y) (E2 X y))))

From our properties, we have the following
constraints on closed instances of this terlll:

o They are terms denoting recursive prograIll of
two arguments and the body of the program
lllUSt be an if expression.

o No recursive calls (f) are possible in the
"conditional" and "then" parts of the
prograIll.

o There is exactly one recursive call in the "else"
part of the progralll and it occurs at the top­
level.

Matching the Tail Recursive Schellla

(fix AfAxAy (if (0 x y) (B x y)
(f (E1 X y) (E2 X y))))

The following terIll representing the append
prograIll does not unify with this scheIlla:

(fix AfAkAl (if (null k) l
(cons (car k) (f (cdr k) l))))

The following terIll representing the reverse
prograIll,

(fix AfAkAl (if (null k) l
(f (cdr k) (cons (car k) l))))

does unify with this scheIlla with substitution

o ~ AxAy.(null x)
B ~ AxAy.y .
E 1 ~ AxAy.(cdr x)
E 2 ~ AxAy.(cons (car x) y)

asflp / 3/t ailrec Miller /Septell1ber 1988 111-7 asflp /3 /tailrec Miller/Septelllber 1988 111-8

A More General Tail Recursion "Template"

type tail_rec_body «Ai -> A2 -> A3) ->

Ai -> A2 -> A3) -> o.

type tailrec (Ai -> A2 -> A3) -> o.

tailrec (fix Prog):- tail_rec_body Prog.

tail_rec_body (F\X\Y\ (H X V)).
tail_rec_body (F\X\Y\ (F (G X Y) (H X V))).

tail_rec_body

(F\X\Y\ (if (C X Y)

(Hi F X Y) (H2 F X V))) :­

tail_rec_body Hi, tail_rec_body H2.

For more analysis and an 'extension of this 'xProlog

program see [18]. See also Huet and Lang [10].

The Structure of 'x-norlllal TerlllS

All ,x-norIllal ~erIlls can be put into the form

t = AXI ... AXn (h el · · · em)

where n, rn > 0 and (h el · · · em) is of primitive

type.

The list Xl, ... ,Xn -is called the binder.

The variable or constant h is called the head.

The terms el, ... ,em are the arguments.

If h is a constant or a member of the binder, the

terlll is rigid.

Otherwise, h is a variable not a member of its

binder and the term is flexible.

asflp / 3 / t ailrec Miller /Septelnber 1988 111-9 asflp j 3 jholldef Miller jSeptenlber 1988 111-10

Disagreement Pairs of A-terms

A disagreement pair is a pair of two A-norlllal
terms of the same type. Given a- and 1]-.

conversions, two such terIIlS can be rewritten into
equivalent terms with the same binder. Thus we
write disagreeInent pairs as

AXI · · · AXn (h el · · · eml , k 11 · · · f m2)

Simplifying Rigi~-RigidPairs

Consider the rigid-rigid disagreement pair

AXI · · · AXn (h el .. · eml , k 11 · · · 1m 2).

This pair is not unifiable if h is not identical to k.

Thus for this pair to be unifiable then h == k and
1111 . 1112 == rn and the list of disagrement pairs

AXI ... AXn , (el' il), . . . , AXl···AXn (em,lm)
DisagreeIllent pairs fall into three classes:

rigid-rigid both terlllS are rigid

flexible-rigid one terIn is flexible and one
rigid. We aSSUllle the first one
listed is flexible, otherwise swap
theIne

flexible-flexible both terlllS are flexible

are all siIllultaneously unifiable.

If the types of hand k are different, then they
lllUSt be unifiable. Use the Ingu of the type
expreSSIons.

A list of disgreement pairs can either be recognized
as non-unifiable or can be simplified to an
equivalent unification problem with only flexible­
rigid or flexible-flexible pairs.

asflp/3/houdef Miller/Septeillber 1988 111-11 asflp/3/houdef Miller /Septelnber 1988 111-12

Processi.ng Flexible-Rigid Pairs

Given the fle~ible-rigiddisagreelllent pair

There are two possible and incomparable ways
to get (h el ... ernl) to have rigid he~d k after
substitution and norlllalization.

Illlitate The flexible terlll gets k as its head
directly. This can work only if k is not
in the binder.

ExaIllple 1: Occurs Check

Consider the unification problelll

x == (F X)

where both X and F are variables. Notice that
X occurs free in (F X). Does this unification
problem have a solution?

Yes. In fact two general ones, naIllely

Project

h 1--+ AWl ... AWrn1 (k (hIWI ... wrn1)···
(hrn2 WI · · · wrnJ)

The flexible terlll gets k as its head
indirectly by projecting one of the
argulllents 11, · · · ,1m 2 into the head
position.

h 1--+ AWl . . · AWrnl (Wi (hI wI · · · wrn1) · ...
(hpWI · · · wrnJ)

wllere 1 < i < rn1 and p > 0 is
determined by the type of Wi.

F-+ Aw.w, and F ~ Aw.X.

There are generalizations of the first-order occurs
check that can be used in the higher-order setting
to recognize failing unification problellls.

Of course, the unification problelll X == t where t is
a terIll not containing X free has the single unifier
X-+ t.

asflp /3 /houdef Miller/Septell1ber 1988 111-13 asflp/3/houex Miller /Septenlber 1988 111-14

Example 2 ExaInple 3

(F a, 9 a)

Let F be a variable of type i ~ i, 9 a constant of
type i ~ i, and a a constant of type i.

~

project H ~ AW.W iInitate not possible

/.
AX (x, x)

AX (F X, 9 x)
;1 '\

iInitate F ~ Aw.g(H w) project F ~ AW.W

I \
, AX (g (H x), 9 x) AX (x, gx)

AX (H x, x) . F"

Answer substitution: F ~ AW.gW

'\
project F ~ AW.W

\
·(a, ga)

Fer:"
. ~\

project j[1---+ AW.W

\
(a, a)

iInitate H ~ Aw.a

j
(a, a)

/
iIn~tate F ~ Aw.g(H '}1J)

/,
·(g(H a),g a)
(H a, a)

/.

Answer substitutions: F ~ Aw.ga and F ~

AW.gW

asflp/3/houex Miller /8eptember 1988 111-15 asflp/3/houex Miller/September 1988 111-16

Example 4

Let X be a variable of type (i ~ i) ~ i.

(X, AU (U(X(AV.V))))
AU (Xu, U(X(AV.V)))

- /- '\
project X ~ Aw.w(H w) imitate not possible

t/
AU (u(H u), U(H(AV.V)))

AU (H u, H (AV.V))

This ·final disagreeIllent pair is flexible-flexible.
This has the solution H t----+ AW.Y which yields
X t---+ AW.W Y as an answer substftution.

Exarnple 5

Let 9 be a constant of type i ~ i ~ i, let F be a
variable of type i -4- i, and let Z be a variable of
type i.

AXAy (F x, 9 Z y)

/ \
imitat~ F 1-+ Aw(g(H1w)(H2w)) p;oject F 1-+ AW.W

-t? \
AXAy (g(H1x)(H2 x), 9 Z y) AXAy (x, 9 Z y)
AXAy (Hl x, Z), AXAy (H2 x, y)

/- - ~

project H 2 t----+ AW.W imitation not possible

I
AXAy (H1 x, Z), AXAy (x, y)

The rigid-rigid disagreIllent pair above is not
unifiable.

asflp/3/houex Miller/September 1988 111-17 asflp/3/houex Miller/September 1988 111-18

2,

Generalizing SLD-Resolution

The state of a resolution-style theorelll prover is

the following:

o a program P which is a finite set of higher­

order Horn clauses.

a a list of 4-tuples (9, U, (), V) where

a 9 is a list of goals that need to be proved,

a U is a list of disagreelllent pairs that need

to be unified,

a () is a substitution, and

o V is a list of free variables including all

those free in 9, U, and ().

P-Derivation

(92, U2 , ()2, V2) is P -derived froIn (91, U1 , (}1, VI)

if UI is siInplified and not a failed unification

probleIn and:

Goal reduction step: ()2 == 0, U2 == U l , and there

is a goal forlllula G E 91 (9' :== 91 - {G}) s.t.

a G is G l /\ G2 and 92 == 9' U {G I , G2 } and

V2 == VI, or ."

a G is GI V G2 and, for i == 1 or i

92 == 9' U {Gi } and V2 == VI, or

a G is 3x P and for SOllle variable y tf- VI,

V2 == VI U {y} and 92 == 9' U {[x :== y]P}.

asflp/3/sld Miller /Septeillber 1988 111-19 asflp/3/sld Miller /Septeillber 1988 111-20

P-Derivation (continued)

Backchaining step: Let G E 91 be a rigid

atolll, and let D E P be such that D =
VX1 ... VX n (G' => A) for some sequence of

new variables Xl, · · · ,Xn . Then ()2 = 0, V2 ==
VI U {Xl, . · · , X n }, ~h = 91 - {G} U {G'}, and
let U2 be the simplified form of U1 U {(G, A)}.

Unification step: U1 is not a solved set and for

some flexible-rigid pair (F1 , F2) E U1 there is an

imitation or projection substitution terlll, call it

()2, and 92 == ()2 (91), U2 is the silllplified form of

()2 (U1), and V2 is updated by the new variables in

()2.

See Nadathur's dissertation [21] or the joint paper

[22].

Fixing Choices in P-Derivations

Illlpose a depth-first discipline on the following
choices.

o Goals processed in left-to-right order.

o Left disjuncts attempted before right disjunct.

o Clauses tried in top-down fashion.

o Reduce unification problems to flexible-flexible
prior to solving goals.

o Do irnitations prior to projections. [This is a
switchable option in LP2.7.]

o Postpone flexible goals as well as flexible­
flexible disagreement pairs. [Flexible goals not
postponed in LP2.7.]

asflp/3/sld Miller/Septenlber 1988 111-21 asflp/3/sld Miller/Septenlber 1988 111-22

Lecture IV

Hereditary Harrop ForInulas and

U niforlll Proofs

Characterizing Proofs frolll Horn Clauses

Every goal is attelllpted with respect to the saIne

o program clauses, and

o constants.

· . IV-l
· . IV-2
· . IV-3

IV-4
· . IV-5
· . IV-6

Table of Contents

There are natural interpretations of irnplications
and universal quantification in goals that can
provide these scoping lllechanisrns.

Such scoping lllechanislll would, however, provide
natural lllechanisrns for rnodular prograrnrning and
abstract datatypes.

That is, there are no scoping mechanisrns available
for either progralll clauses or constants.

In particul~r, irnplicational goals can be used
to aSSUITle and discharge prograrn clauses and
universal goals can be used to assurne and
discharge constants.

· . IV-7
· . IV-8

. IV-9
IV-lO
IV-ll
IV-l2
IV-l3
IV-l4
IV-l5
IV-16
IV-17
IV-18

. . . . IV-19
IV-20

Characterizing Proofs from Horn Clauses
Search Semantics for the Connectives
Cut-Free Sequential Proofs .
Uniform Sequential Proofs
Abstract Logic Programming Languages .
Examples of ALPLs.
Languages Which Are Not

A bstract Logic Programming Languages. .
First-Order Harrop Formulas.
First-Order Hereditary Harrop Formulas
A Classical and Non-Intuitionistic Proof
A Nasty Classical Equivalence
The Sterile Jar Problem
Extending Universal Quantifiers in Goals
Signatures
A Non-Deterministic Interpreter
A Non-Deterministic Interpreter (Continued)
A Deternlinistic Interpreter
Four Implementations of GENERIC
Raising: A Dual to Skolemization
Explicit Prefix as a Constraint

Miller/Septenlber 1988 asflp /4/uniforlll Miller /Septelllber 1988 IV-1

Search Semantics for the Connectives Cut-Free Sequential Proofs

r ---+ ~,C B, C, ~ ---+ eLet P ~0 G mean G succeeds given P.

The intended success/failure semantics for each
connective may then be given by the following:

r ----+ ~,B

r ---+ ~,B /\ C

B,~ ---+ 8

A-R A-L

B A C, ~ ---+ e

c,~ ---+ e
V-L

AND P ~o G1 A G2 only if P ~o G1 and
BVC,~ ---+ e

P ~o G2
r ----+ ~,B r ~ ~,c

v-R V-R

OR P 1-0 G1 V G2 only if P ~o G1 Of
r ---+ ~,BVC r ~ ~,BVC

P~o G2 r ---+ e, B c,r ---+ ~ B,r ~ 8,C
:)-L =:>-R

INSTANCE P 1-0 3x G only if P 1-0 G[t/x] fOf
B :) C, r ---+ ~ U 8 r ~ 8,B:) C

SOllle term t r, [x/t]P ~ e r ~ 8, [x/t]P
'v'-L ~-R

AUGMENT P ~o D :) G only if P U {D} 1-0 G r, "Ix P ---+ 8 r ~ 8,~x P

GENERIC P ~o \Ix G only if P r-o G[c/x] for
r, [x/y]P ---+ e r ---+ e, [x/y]P

3-L 'v'-R

SOllle constant c that does not appear r,~xp ---+ e r ---+ 8, 'v'x P

in P or in G. r ---+ 8,-.L
-.L-R

r ---+ 8, B

r ~ ~ is initial if r n ~ contains an atolllic
fOflllula. Standard proviso on \I-R and 3-L.

asflp/4/unifornl Miller/September 1988 IV-2 asflp / 4/uniforl11 Miller/September 1988 IV-3

Definition: (V, Q, ~R) is an abstract logic
programming language (ALPL) if and only if for
every finite P C V and G E Q, P ~R G if and only
if P ~o G. See [19] and [20].

U niforrn Sequential Proofs

Definition: A uniform proof is a cut-free,
atomically closed sequent proof in which

o at IIlOSt one formula occurs in the succedent of
each sequent, and

o every sequent in the proof that contains a non­
atomic formula in its succedent is the lower
sequent of the inference figure introducing that
formula's top-level connective.

Intuitively, a unifortn proof is one in which
complex goals are illlmediately simplified (reading
bOttOIIl-Up) .

Definition: P J-o G if and only if the sequent
P ~ G has a uniforrn proof.

~R

Q

V

Abstract Logic ProgralllIlling Languages

a forIllulation of logic containing the
connectives /\, V, =>, :3 and V (it IIlay
include others, say negation and equality.)

a derivability relation for £-forIIlulas

a set of £-forIllulas (goal forIllU1as).

a set of £-forIllulas (definite or program
forIIlulas) .

asflp/4/uniform Miller/September 1988 IV-4 asflp/4/uniforn.l Miller jSeptelllber 1988 IV-5

Exalllpies of ALPLs Languages Which Are N ot

Abstract Logic Progralllllling Languages
fohe First-order Horn clauses with classical or

intuitionistic provability

hohc Higher-order Horn clauses with classical
or intuitionistic provability

fohh First-order hereditary Harrop forlllulas
with intuitionistic provability

hohh Higher-order hereditary Harrop forlllulas
with intuitionistic provability

p(a) V p(b) 1-1 ,0 ::Ix p(x)

p(a) V p(b) 1-1,0 p(b) V p(a)

q ~ p(a), -'q ~ p(b) ~c 3x p(x)

No uniforIll proofs exist in these cases.

p(a) V p(b) ~ 3x p(x)

This proof is both classically and intuitionistically
valid. It is not, however, uniforIll.

p(b) ~ p(b)______ 3-R3-R
p(a) ~ p(a)

p(a) ~ 3x p(x) p(b) ~ 3x p(x)_______________ V-L

hohh

/ \
fohh hohe

~/
fohc

~ denotes containlllent

asflp/4/uniform Miller/Septetuber 1988 IV-6 asflp / 4/harrop Miller/Septetllber 1988 IV-7

First-Order Harrop Formulas

A:= atolllic formula

G:== arbitrary formula

D :== A IG :) D IVx D ID 1 /\ D

First-Order Hereditary Harrop Formulas

A := atomic formula

D := A IG => A IVx D ID 1 /\ D 2

G := A IG1 /\ G2 IG1 V G2 IVx G I :3x G ID => G

or

D := A IG => A IVx D ID 1 /\ D 2
v
Q

set of closed D-formulas

set of closed G-formulas

Theorem (Harrop [8])

Let 1-{ be a set of D-forlllulas. Then

a If 1-{ r- I A V B then 1-{ r- I A or 1-{ r-lB.

o If 1-{ r-I :3x B then for some t, 1-{ r-I [x/t]B.

a If 1-{ r- I A /\ B then 1-{ r- I A and 1-{ r-lB.

a If 1-{ r- I A :) B then A, 1-{ r-lB.

a If1-{ r-I VX B then 1-{ r-I [x/y]B for any new

parameter y.

(F, V, Q, r- I) is a logic programIlling language.

(F, V, Q, r-c) is not a logic prograIllming language.

~or example, there is a classical proof of the

,equent

(p(a) /\ p(b) => q) ~ 3x (p(x) => q)

while there is no uniform proof.

asflp /4/harrop Miller/September 1988 IV-8 asflp / 4/harrop Miller/Septell1ber 1988 IV-9

A Classical and N on-Intuitionistic Proof A Nasty Classical Equivalence

--------------- 3-R.

V-R

~-R

D ~ G l ,G2

~ G l ,D ~ G2

G1 V (D :) G2) =Gl V -,D V G2

- -,D V G l V G2

=(D:) G1) VG2

- (D ~ G l) V CD ~ G2)

The classical equivalence of p ~ q with -'p V q
underlllines the intended scoping of illlplications.

=>-L

3-R

~ q

=>-R

=>-R

p(a), p(b) --+ p(a) 1\ p(b)

pea) 1\ pCb) => q ----+ 3x (p(x) => q)

p(a) 1\ p(b) => q, p(a), p(b) -+ q

p(a) 1\ p(b) => q, p(a) ~ q, p(b) => q

p(a) 1\ p(b) => q ----+ p(a) => q, p(b) => q

pea) 1\ pCb) ~ q ----+ pea) => q, 3x (p(x) => q)

--------------- I\-R
p(a), p(b), q

pea), pCb) ----+ pea) . pea), pCb) ----+ pCb)

~ G l ,Gl V.(D ~ G2)

~ Gl V (D :) G2)

V-R

Perillitting lllore than one forIllula on the right
works against our intented interpretation of the
logical connectives.

asflp/4/harrop Miller/September 1988 IV-I0 asflp/4/harrop Miller/Septell1ber 1988 IV-II

The Sterile J ar ProblelTI Extending Universal Quantifiers in Goals

Perlllit V-quantifiers in goals to quantify functions
and predicate syrnbols.

While this could technically be called a higher­
order extension, this extension does not need
to be accolllpanied with A-terllls and higher­
order unification to be given a (theoretically)
cornplete implementation. An "essentially first­
order" implementation will correctly provide this
extension.

pi X\(bug X=> in X Y=> dead X).
:- headed Y, in X Y, bug X.

type sterile jar -> o.
type bug insect -> o.
type dead insect -> o.
type heated jar -> o.
type in insect -> jar -> o.
type j Jar ·

sterile Y :­
dead X
heated j.

?- sterile j
?- pi X\(bug X => in X j => dead X)
?- bug b => ln b j => dead b

bug b ?- (in b j) => (dead b)
in b j ?- dead b

?- headed j, in b j, bug b
?- headed j
?- in b j
?- bug b .

This extension simply permit predicates and
function symbols to be given-scope a long with
first-order individuals.

asHp / 4 /harrop Miller/Septenl.ber 1988 IV-12 asflp/4/generic Miller/Septetnber 1988 IV-13

Signatures A N on-Deterlllinistic Interpreter

Let a signature be an association list between
tokens and arities (or between tokens and types).

For exalllple, b
signature.

{f /1, g/2, a/O, biD}, is a

A state or our interpreter is a triple (~, P, G)
where

o ~ is the current signature,

o P is the current program (a set of ~­
formulas), and

o G is the current goal (a ~-formula).

Let the Herbrand Universe determined by ~, "
written as H(~), be the set of all first-order terms
built using terms in ~.

A b-formula is a forITlula all of whose non-logical
constants are frolll ~.

. For the discussion here, we shall perlllit the
confusion of terms from H(~) with atomic ~­

forlllulas.

Defintion: [Ph~ is the smallest set of fohh
forITlulas such

(1) P C [P]E.

(2) If D 1 /\ D 2 E [P]E then D 1 , D 2 E [P]E.
(3) If Vx D E [P]E and t E H(b) then

[x := t]D E [P]E.

asflp / 4/generic Miller/September 1988 IV-14 asflp / 4/generic Miller/Septenlber 1988 IV-15

A Non-Deterlllinistic Interpreter (Continued) A Deterlllinistic Interpreter

The interpreter can be describe at a very high-level
as follows:

((~, P, G)) denotes the proposition that the
interpreter succeeds given the current signature
~, the current prograIn P, and the goal G.

SUCCESS

AND

OR

INSTANCE

AUGMENT

GENERIC

((~, P ,- true))

((~,P,Gl/\G2)) if both ((~,P,Gl))

and ((~, P, G2)).

((~, P, G1 V G2)) if either
((~, P, G1)) or ((~, P, G2)).
((~, P, 3x G)) if for SOIne t E H(~),

((~, P, [x := t]G)).

((~, P, D => G)) if ((~, P U {Dr, G)).

((~, P, Vx G)) if for SOIne c ~ ~,

((~ U {e}, P, [x := e]G)).

Add a depth-first discipline to backtracking.

Use logical variables (free variables) in
BACKCHAIN and INSTANCE instead of guessing
at a closed terlll.

Process conjuncts and disjuncts in a left-to-right
order.

When adding a clause during AUGMENT, add it
to the top of the list.

In BACKCHAIN, select clauses in a top-down
fashion.

How does one handle the problelll of quantifier
.alternation? Howto modify unification in the
presence of the restriction posed by GENERIC?

BACKCHAIN ((~, P, A)) (where A is atomic) if
either A E [P]~ or G ~ A E [P]~

and ((~, P, G)).

asflp /4/generic M~ller/Septelllber 1988 IV-16 asflp /4/deter Miller/Septenlber 1988 IV-17

Four Implelllentations of GENERIC

Given the query

P(x) 7- Vy(G(y,z)).

where x and z are lists of free (logical) variables
(possibly overlapping).

(1) Reduce to P(x) 7- G(c, z) where c
is a new constant (added to the current
signature). Modify unification to respect
the constraint that the variables in x and z
cannot get instantiated with terlllS containing
c.

(2) Reduce to P(x) 7- G(f(x, z), z) where
f is a skolelll function. Unification is
unchanged. The occur-check is required to
enforce restriction.

(3) Higher-order unification provides a different
approach (called raising).

(4) Keep an explicit prefix as a, constraint.

Raising: A Dual to Skolernization

Notice that inner-lllost universals are related to
A-abstraction.

r- 3xVy [t1 = 81 /\ · · · /\ tn = Sn]

if and only if

While a prefix can be simplified by having
Skolernization introduce new constants of higher­
type, prefixes can also be simplified by introducing­
new variables of higher-type.

J-- Vx3yVz.P(x, y, z)

if and only if

J-- 3hVxVz.P(x, h(x), z)

This approach is used in LP2.7. See [15] for
cornplete description and correctness proofs.

asflp / 4/deter Miller/Septelllber 1988 IV-18 asflp/4/deter Miller/Septelllber 1988 IV-19

Explicit Prefix as a Constraint

Consider quantified sequents for representing
current states with free varialbes. The free
variables are existentially quantified while melllbers
of the signature are universally quantified. The
position of an existential quantifiers in the prefix
determines which constants can appear in the
substitution term for the existentially quantified
variable.

For exatnple,

Vx 3y Vz 3u (P ----4' G)

describes a state with signature {X, z} and where
the logical variable y can be instantiated with a
terlll frolll H ({x }) and the logical variable u can be
instantiated with a terlll from H({x, z}).
INSTANCE and BACKCHAIN add =:I-quantifiers
to the prefix.

GENERIC adds V-quantifiers to the prefix.

This approach is used in eLP. See [15] for complete
description and correctness proofs.

Lecture V

An Approach to Modules and

Lexical Scoping

Table of Contents

Formulas That Are Both Program Clauses
and Goal Formulas

Extension Tables
Example of Lexical Scoping . . .
Implementing Fail and Succeed. .
Minimal Logic Negation . .
A Simple Database Example
Reimplementing Consult. .
Parametric Modules. . . .
Combining Modules
Inlporting Modules
Programs as Possible Worlds.
A Continuous Operator on Interpretations .

. Kripke-model Fixed Point
A Mechanism for Abstract Datatypes . .
Stacks as Abstract Datatypes
Module Definition for Stackes
Binary Trees As an Abstract Data Types
Another Way to Connect Modules
Encapsulating State.
Encapsulating State (continued) .
A Need for El11bedded Il11plications . .

V-I
V-2
V-3
V-4
V-5
V-6
V-7
V-9

V-I0
V-II
V-12
V-13
V-14
V-15
V-16
V-17
V-l8
V-19
V-20
V-2I
V-22

asflp/4/deter Miller/September 1988 IV-20 Miller/Septenlber 1988

Formulas That Are Both Progralll Clauses

and Goal Forlllulas

TheoreIn: If M is both a prograIll clause and
a goal formula then r l-0 M /\ G if and only if
r l-0 M /\ [M :) G].
Such formulas can be stored after being proved
to hold. Such storing does not make new goals
provable. Instead it possibly provides shorter
proofs for existing provable goals.

The core of an abstract logic prograInrning
language (£, V, g, l-R) is the intersection, V U g.
The core of (extended) fohh is

M :==' A IM J A IM 1 /\ M 2 IVx M,

where the universal quantification is strictly first­
order. This is the fraglllent of fohh that does not
contain occurrences of disjunctions of existential
quantifiers. It contains fohe.

The core for fohe is simply the set of closed atomic
formulas.

Extension Tables

We use the very siIllple exalllple of the Fibonacci
program to illustrate how iIllplicational goals can
be used to build "scoped extension tables."

fib(O,O).
fib(1,1).
fib(N,F) :- N1 is N-1, N2 is N-2, fib(N1,F1),

fib(N2,F2), F is F1+F2.

fib(N,M) :-
memo(O,O) => memo(1,1) => fiba(N,M,2).

fiba(N,M,I) :- memo(N,M).
fiba(N,M,I) :-

N1 is 1-1, N2 is !-2, memo(N1,F1),
memo(N2,F2), F is F1+F2, Ii is 1+1,
memo(I,F) => fiba(N,M,I1).

asHp / 5/1exex Miller/September 1988 V-I asflp / 5 /lexex Miller/Septenlber 1988 V-2

Example of Lexical Scoping

reverse L K :- pi Rev\ (

(pi L\ (Rev [] L L),

pi X\pi L\pi K\pi M\(Rev [XIL] K M :­

Rev L K [XIM]))

=> Rev L K [])

reverse L K :- pi Rev\ (

((Rev [] K),

pi X\ pi L\ pi M\(Rev [XIL] M -­

Rev L [XIM]))

=> Rev L [])

IrnplelTIenting Fa~l and Succeed

How do we iIllplement the predicate fail that is
never provable? One way is to have the prograIll
for fail be eIIlpty.

In this dynamic logic (fohh), a programmer may
add to the current prograIll clauses that add
IIleaning to f ai1.

The goal
'tIp.p

will always fail: it picks a new predicate name,
that is, it is guaranteed to have no program clauses
defining it, and then a proof for it is attelllpted.

Similarly, how do you implement the predicate
succeed which is to succeed exactly once?

The goal
'tip .p :> p

will succeed exactly once.

asflp j 5jlexex Miller jSeptelllber 1988 V-3 asflp j 5 jlexex Miller jSeptell1ber 1988 V-4

MiniIllal Logic Negation

Pick 1.. as a special non-logical constant.
Expressions of the forIn A :>1.. will be read as,A.

p(a) /\p(b) ~1..

p(a)

?~ p(b)

?- p(b) ~1..

p(a) 1\ p(b) :>1..

p(a)

p(b)

?- p(c)

See [13] and [12] for more on this kind of negation.

A Silllple Database Exalllple

enrolled(jane,102).
enrolled(bill,100).
1.. :- enrolled(X,101),enrolled(X,102).

db :- read(Command), do(Command), db.
do(enter(Fact)) :- Fact => db.
do(retract) :- fail.
do(commit) :- repeat.
do(check(Query))" :-

(Query, write(yes), nl,!;
Query => 1.., write(no),nl,!;
write('no, but it could be true'),nl).

do(consis) :- (not 1.., write(yes),!;
write(no))., nl.

?- db.
?- check(enrolled(jane,102)).
yes
?- check(enrolled(jane,101)).
no
7- check(enrolled(bill,101)).
no, but it could be true
?-

asflp / 5/negation Miller/Septeluber 1988 V-5 asflp/5/negation Miller/Septelllber 1988 V-6

Reirnplelllenting Consult

Let classify, scanner, misc be the nallle of files

containing Prolog code.

Consider solving the goal

misc => «classify => (Gl, scanner => G2)),

G3).

An interpreter will need to consider showing

o Gl frolll mise and classify,

o G2 froIn mise, classify, and scanner, and

o G3 frolll misc.

"New" code becomes accessible and disappears in a

stack-disciplined fashion.

Modules

module ModuleName.

Declarations of operators, types, modes, etc.

Collection of clauses

For exalllple,

module lists.

append ([] ,X,X) .

append([UIL],X,[UIM]) :- append(L,X,M).

member(X,[X,IL]) :- !.

member(X,[YIL]) :- member(X,L).

memb(X,[XIL]).

memb(X,[YIL]) :- memb(X,L).

asflp/5/modules Miller/Septelnber 1988 V-7 asflp/5/modules Miller/Septelnber 1988 V-8

Parametric Modules

module sort(Order).

: bsort (L1 , L2) :­

append(Sorted,[Big,SmallIRest],L1),

Order(Big,Small),
I. ,
append(Sorted,[Small,BigIRest] ,L3),

bsort(L3,L2).

bsort(L1,L1).

COlllbining Modules

?- lists => sort«) => bsort([3,2,1] ,X)

lists, sort«) ?- bsort([3,2,1] ,X)

module sort(Order).
bsort(L1,L2) :-

(lists =>
(append(Sorted,[Big,SmallIRest] ,L1),
Order(Big,Small),
I. ,
append(Sorted,[Small,BigIRest] ,L3),
bsort(L3,L2)

) .
bsort(L1,L1).

asflp/5/n1.odules Miller/Septeluber 1988 V-9 asflp/5/1uodules Miller/Septen1.ber 1988 V-10

For each clause of the forlll

Vw(G :) A)

Imodule M 1

I
I PI

Importing Modules

Illodule M 2 (x) Imodule M 3 (y, z)
Iilllport M 1 M 2 (y)

P2 (x) IP3 (z)

Programs as Possible Worlds

Fix the signature ~ and assume that universal
quantifiers are removed froIll all goals and the
body of programs.

o Let W be the set of all programs. This set will
be used as the set of possible worlds.

o A function I froIll W to a subset of H (~) is
an interpretation if

in P3 replace it with one of the form

See [13] and [12] for several examples of using this
forlll of importing.

o (W, c, I) is a Kripke Illodel.

o Define each of the following for interpretations
II and 12 .

II L 12 :== Vw E W[II (w) C 12 (w)]

(II U I2)(w) :== I l (w) U I 2 (w)

(II n I 2)(w) :== I l (w) n I 2 (w)

o The set of interpretations is a complete lattice
under c.

o The minimal interpretation is 11- where
I 1- (w) == 0 for all w E W.

asflp/5/modules Miller/September 1988 V-II
asflp/5/kripke Miller/Septenlber 1988 V-12

A Continuous Operator on Interpretations

Define I, w H== G as follows:

o I,w~T.

o I, w H== A if A E I (w) .

o I, W H== G1 /\ G2 if I, w H== G1 and I, w H== G2 ·

o I,w H== G1 V G2 if I,w ~ G1 or I,w H== G2 .

o I, w H== P~ G if I, w U {D} H== G.

Define T as a mapping frolIl interpretation to
interpretations as follows:

T(I)(w) := {A Iif A E [wh~ or G ~ A E [w]~

and I, w H== G}

Kripke-lllodel Fixed Point

The least fixed point of T is

TOO(Il-) := T(Il-) U T 2(Il-) U T 3 (Il-) U ...

and has the following properties:

Theorem: If P is a program and G is a goal

forlIlula, then P ~ I G if and only if TCO (I1-), P ~

G. (See [13] and [12].)

Theorelll: If G is a goal formula and J- I G then G

is true in TOO(I1-) in the usual Kripke Illodel sense

(replace H== with 1=).

asflp j 5 jkripke Miller jSepteulber 1988 V-13 asflp j 5 jkripke Miller jSeptelllber 1988 V-14

A Mechanislll for Abstract Datatypes

Consider solving the goal

3x Vy (D(y) ~ G(x)).

o Substitution terms determined for x cannot
contain the constant introduced for y.

o V provides a llleans for hiding data in llloduies.

Allow existential quantifiers around program
clauses. Such existential quantifiers are interpreted
as follows: .

Stacks as Abstract Datatypes

Let stack stand for the following expression:

3empty 3stk [emptystack(empty) 1\
VsVx(push(x,s, stk(x, s))) /\
VsVx(pop(x, stk(x, s), s))]

?- 3x(stack ~ 3y[G(x, y)])

?- 3x Vempty Vstk (stack' ::) 3y[G(x, y)])

(3x D) :) G Vx (D :> G)

provided x is not bound in G (otherwise, renallle x
first) .

This is intuitionistically (hence, classically) valid.

. asflp/5/abs Miller/Septenlber 1988 V-15 asflp/5/abs Miller/Septelllber 1988 V-16

Module Definition for Stackes Binary Trees As an Abstract Data Types

module stack.

kind stack type -> type.
type empty (stack A) -> o.
type pop A -> (stack A) -> (stack A) -> o.
type push A -> (stack A) -> (stack A) -> o.

btsort L K :- build L Bt, traverse Bt K.

int -> bt -> o.
btree -> list int -> o.
bt.
int -> bt -> bt -> bt.
list int -> bt -> o.
list int -> list int -> o.

module btreesort Order.
import lists.
local insert
local traverse
local root
local bt
local build
type btsort

emp (stack A).
stk A -> (stack A) -> (stack A).

local
local

S
(stk X S)

empty emp.
pop X
push X

(stk X S).
s.

build [] T.
build [NIL] T :- insert N T, build L T.

insert N (bt M T S) :- N = M, ! .
insert N (bt M T S) :- Order N M, ,. ,

insert N T.
insert N (bt M S T) .- insert N T..

traverse root [].
traverse (bt N Left Right) L :­

traverse Left K, traverse Right J,
append K [NIJ] L.

asflp/5/abs Miller/Septelnber 1988 V-17 asflp/5/abs Miller/Septelnber 1988 V-18

·­·

·­·

Another Way to Connect Modules

module modi.

p X y

q X Y Z .-

r X Y

module mod2.

p X Y :- pi p\ pi q\ pi r\
(modi =) p X V).

t X Y :- pi p\ pi q\ pi r\
(modi =) q (f X) [] V).

Encapsulating State

nodule accounts.

type print_amt account -) 0 -) o.
type wd_money account -) int -) 0 -) o.
type add_money account· -) int -) 0 -)' o.
type make_account account -) int -) 0 -) o.

nake_account Acc Amt G :- pi Reg\ (
((Reg Amt) , "

(pi Inc\ (pi H\ (pi Tmp\
(add_money Acc Inc H :-

Reg Val, Tmp is (Val + Inc),
Reg Tmp =) H)))),

(pi Dec\ (pi H\ (pi. Tmp\
(wd_money Acc Dec H :-

Reg Val, Tmp is (Val - Dec),
Reg Tmp =) H)))),

(pi Acc\ (pi H\ (pi Val\
(print_amt Acc H :-

Reg Val, write Val, nl, H)))))
=) G).

asflp / 5/abs Miller/Septelnber 1988 V-19 asflp/5/abs Miller/Septelllber 1988 V-20

Encapsulating State (continued)

type transactions o.
type quit 0 -> o.

transactions :- write ,,»- "
read Entry, (Entry = quit, !;

Entry transactions).

?- transactions.
»- make_account john 10.
»- add_money john 5.
»- print_amt john.
15
»- wd_money john 14 ..
»- print_amt john.
1
»- quit.
?-

A Need for Elllbedded Illlplications

Assume that the binary relation compare is defined

in the module compound.

?- compmod => btreesort compare =>

btree [3,1,5] L.

?- btreesort (X\Y\(compmod=>compare X V))

=> btree [3,1,5] L.

?- write "Enter an order relation",

read Order,

btreesort Order => btr~e [3,1,5] L,

write L.

For more on how to get thes program-level

abstractions out of (extended) fohh see [14].

asflp/5/abs ' Miller/September 1988 V-21 asflp/5/abs Miller/Septelllber 1988 V-22

Lecture VI

Higher-Order Hereditary Harrop Formulas .

How Can Hereditary Harrop ForDlulas be

Made Higher-Order?

Table of Contents

How Can Hereditary Harrop Formulas be
Made Higher-Order? .

The Dynamic Approach
Strengths of the Dynamic Language
Problems with the Dynalnic Language
The Static Language:

Higher-Order Hereditary Harrop Formulas .
A Meta Interpreter, .
Why This Interpreter Does Nat

Interpret Itself
Specifying the Formulas of an Object Logic
Negation Normal: Propositional Part .
Negation Normal: Quantificational Part .
Specifying Inference Rules
Specifying Inference Rules (continued)
Natural Deduction Rules .
Specifying the Discharge of Assumptions
Inference Rules As Tactics
Inference Rules As Tactics (continued)
A Goal Reduction Tactical.
Tacticals.
Sil11plifying SOllle Goal Expressions
Interactive Theorelll Proving . . .
The Copy Verification Progranl

VI-I
VI-2
VI-3
VI-4

VI-5
. VI-6

VI-7
VI-8
VI-9

VI-IO
VI-11
VI-12
VI-13
VI-14
VI-15
VI-16
VI-17
VI-r-18
VI-19
VI-20
VI-21

This question can loosely be phrased as "Can
progratn-Ievel abstraction can be reflected into
terllls?" In particular, can tnodules be embedded
inside terllls?

There seetn to be two general approaches to
answering this question.

Dynamic This approach pertnits such full
reflection. Serious kinds of run tillle
errors, however, can occur. The
language is very ·strong since it contains
a kind of eval or apply operator.

Static This approach restricts such reflection.
As a result, we can prove the that the
resulting language has no run tiIlle
errors. This conservative approach,
however, disallows tnany sensible
cOIllputations.

rhis dichotollly, which is illustrated on the
following slides, can be dealt with as follows:

o Itnplelllent the Dynalllic language.

o Prove theorellls about the Static language.

Miller/Septel11ber 1988 asflp/6/embedded Miller/Septeluber 1988 VI-l

The Dynamic Approach

Let A denote atoIllic forlllulas of the form

where

P is a non-logical constant or variable, and

ti is a SiIIlply typed A-terIll perhaps with
embedded 1\, V, =>, 3, and Y.

Let 9 and V be the G- and D-formulas given by

G ::= A I G1 V G2 I G1 1\ G2 I 3x G I D :> G IYx G

D ::= A I G ~ A IYx D I D1 1\ D2

Strengths of the Dynalllic Language

Perlllits predicates substitutions to carry around
their own code.

?- btreesort X\Y\(compmod => compare X Y)
=> btree [3,1,5] L ..

After computing a terIIl that denotes a prograIIl,
make it into an available program.

7- transform Spec Prog, Prog => G.

Reflection makes meta-interpreters very siIIlple.

tl :- nl, read Command, do Command.

do quit ..
do (enter Prog) :- Prog => tl.
do (solve Goal) :- (Goal, !, write "Yes";

write "No"),
tl.

asflp / 6/ enlbedded Miller /Septelnber 1988 VI-2 asflp / 6/ elubedded Miller /Septenlber 1988 VI-3

Problems with the Dynamic Language

With negatively occurring predicate variables in
goal forlllulas, it is not possible to guarantee that
the current program is always a subset of V. For
exalllple, in the goal,

?- transform Spec Prog, Prog => G.

transform could output a formula with a top-level
disjunct.

More seriously, SOIne intuitionistic provable
goals forlllulas do not have uniform proofs. The
following such goal (in the dynamic language) is
due to Pfenning.

3Q[VpVq[R(p:> q) :J R(Qpq)] /\ Q(t V 8)(8 V t)].

Here R is a constant of type ° ~ 0, 8 and t
are constants of type 0, Q is a variable of type
o ~ 0 ~ 0, and p and q are constants of type
o.

The only substitution terlll for Q is AXAy(x :) y).
Any proof of this goallllust contain within it a
proof of the sequent t V s ----+ s V t.

The Static Language:

Higher-Order Hereditary Harrop Formulas

Let A denote atomic forInulas of the forIn

where

P is a nonlogical constant or variable, and

ti is a simply typed A-terIll perhaps with
embedded. A, V, 3, and V (no:».

Let A r denote such a forllluia where P is a
nonlogical constant. These are called rigid atoms.

Let Q and V be the G- and D-forlllulas given by

G ::= A I G1 V G2 I G1 A G2 I 3x G I D :> G IVx G

D ::= AT I'G :J AT I Vx D I D 1 A D 2

Then hohh = (7, V, Q, ~ I), where

7 denotes our higher-order logic, and

~ I denotes intuitionistic provability.

asflp/6/embedded Miller/Septeluber 1988 VI-4
asflp/6/hohh Miller/Septenlber 1988 VI-5

A Meta Interpreter Why This Interpreter Does Not

Interpret Itself

module interpreter.
import lists.

interp Cl true.
interp Cl (Gl , G2) :-

interp Cl Gl , interp Cl G2.
interp Cl (G1 ; G2) :-

interp Cl Gl ; interp Cl G2.
interp Cl ~D => G) :- interp [DICl] .G.
interp Cl (sigma G) :-

sigma T\ (interp Cl (G T)).
interp Cl (pi G) :-

pi X\ (interp Cl (G X)).
interp Cl A :-

memb Clause Cl, instan Clause Inst,
(Inst = A ; Inst = (A :- G),

interp Cl G).

type
type

interp
instan

(list 0) -> 0 -> o.
o -) 0 -) o.

The clauses which involve "internal quantifiers"
are polymorphic. That is, the. quantification is over
variables of unspecified type.

Consider the instan predicate.

instan (forall P) C :- instan (P T) C.
instan C C.

There is an illlplicit universal quantification of a
type variable for. the type of T in the first clause. If
this program is lllade into a list of clauses, say

[pi C\(pi P\ (instan (forall P) C :­
instan (P T) C)),

pi C\ (instan C C)],

to be fed to interp, then this illlplicit type
quantification is lost. It is instead existentially
quantified by being made a ~ree type variable.

instan (pi P) C :- instan (P T) C.
instan C C.

asflp / 6/interp Miller/Septel11ber 1988 VI--6 asflp/6/interp Miller/Septel11ber 1988 VI-7

Specifying the Fornlulas of an Object Logic

The following module provides the signature for
forIllulas of a first-order logic.

Negation N orlllal: Propositional Part

Negation normal formulas are those first-order
formulas in which negations have atoIllic scope.

module logic. module nnf.
import logic.

infix 110 and xfy.
infix 110 or xfy. type nnf bool -> bool -> o.
infix 120 imp xfy.

kind i type.
kind bool type.

type and bool -> bool -> bool.
type or bool -> bool -> bool.
type imp bool -> bool -> bool.
type neg bool -> bool.
type forall (i -> bool) -> bool.
type exists (i -> bool) -> bool.
type false bool.

The formula \Ix 3y (p(y) :) p(x)) is written as the
term

forall X\ (exists Y\ (p X imp p V)).

nnf (A and B) (C and D) :­
nnf A C, nnf B D.

nnf (A or B) (C or D) :-
nnf A C, nnf-B D.

nnf (A imp B) (C or D) :­
nnf (neg A) C, nnf B D.

nnf (neg (neg A)) B :-

nnf A B.
nnf (neg (A and B)) (C or D) :-

nnf (neg A) C, nnf (neg B) D.
nnf (neg (A or B)) (C and D) :-

nnf (neg A) C, nnf (neg B) D.
nnf (neg (A imp B)) (C and D) .­

nnf A C, nnf (neg B) D.

asflp / 6 /logic Miller/Septelnber 1988 ' VI-8 asflp/6/nnf Miller /Septel11ber 1988 VI-9

Negation N orlllal: Quantificational Part

nnf (forall A) (forall B) :­
pi X\ (nnf (A X) (B X)).

nnf (exists A) (exists B) :­
pi X\ (nnf (A X) (B X)).

nnf (neg (forall A)) (exists B) :­
pi X\ (nnf (neg (A X)) (B X)).

nnf (neg (exists A)) (forall B) :­
pi X\ (nnf (neg (A X)) (B X)).

nnf A A.

Specifying Inference Rules

type proof sequent -) prf -) o.
type --) (list bool) -) bool -) sequent.
infix 100 --) xfy.

r ~ ~,B r ~ ~,C____________ !\-R

r ~ ~,B /\C

type and_r prf -) prf -) prf.

proof (Gamma --> (A and B)) (and_r Pi P2) .­
proof (Gamma --> A) Pi,
proof (Gamma --) B) P2.

asflp/6/nnf Miller/Septelllber 1988 VI-IO asflp/6/inf Miller/Septenlber 1988 VI-11

Specifying Inference Rules (continued) Natural Deduction Rules

proof (Gamma --> (A or B)) (or_r P) :­
proof (Gamma --> A) P;
proof (Gamma --> B) P.

3xA

[x/t]A
__ 3-1

r -4 Ll,B

r -4 Ll,B V C
V-R

r -4 Ll,C

r -4 Ll,B V C
V-R

A B___ A-I
AAB

A

AvE
V-I

[x/y]A
__ 'V-I
'Vx A

B

AvB
v-

r -4 8, [x/y]P
__~~__ 'V-R

proof (Gamma --> (exists A)) (exists_r P) .­
proof (Gamma --> (A T)) P.

r, [x/t]P -4 e
-- 'V-L
r,'Vxp -4 8

r -4 8, [x /t]P______ 3-R

proof (A and B) (and_i Pi P2) :­
proof A Pi,
proof B P2. _

proof (A or B) (or_i P) :­
proof A P; proof B P.

proof (exists A) (exists_i p) :­

proof (A T) P.
proof (forall A) (forall_i P) :­

pi T\ (proof (A T) (P T)).

r -48,'VxP

proof (Gamma --> (forall A)) (forall_r P) .­
pi T\ (proof (Gamma --> (A T)) (P T)).

type forall_r (i -> prf) -> prf

asflp/6/inf Miller jSeptenlber 1988 VI-12 asflpj6jinf Miller jSeptelllber 1988 VI-13

Specifying the Discharge of AssuInptions

(A)
B :J-1

A~B

proof (A imp B) (imp_i p) :-

pi PA\ «proof A PA) =>
(proof B (P PA))).

type imp_i (prf -> prf) -> prf.

Inference Rules As Tactics

Ato:m.ic Goals

type pgoal sequent -> prf -> goalexp.

(pgoal (Gamma --> A) P)

r ---+ ~,B r ---+ ~,C____________ I\-R

r ---+ ~,B /\ C

proof (Gamma --> (A and B)) (and_r Pi P2) .­
proof "(Gamma --> A) Pi,
proof (Gamma --> B) P2.

and_r_tac (pgoal (A and B) (and_i Pi P2))
(andgoal (pgoal A Pi)

(pgoal B P2)).

asflp/6/inf Miller/Septell1ber 1988 VI-14 asflp/6/tacs Miller/Septell1ber 1988 VI-15

Inference Rules As Tactics (continued)

r, [xly]P --+ e
_____ ·~-L

r,3x P --+ e

exists_l_tae
(pgoal (Gamma1 --) A) (exists_i P))
(allgoal X\ (pgoal ([(B X) IGamma2] --) A)

(P X)))

memb_and_rest (exists B) Gamma1 Gamma2.

A Goal Reduction Tactical

type truegoal goalexp.
type andgoal goalexp -> goalexp ->

goalexp.
type allgoal (A -> goalexp) -> goalexp.
type maptae (goalexp -> goalexp -> 0) ->

(goalexp -> goalexp -> 0) -> o.

maptae Tae truegoal tru~goal.

maptac.Tae (andgoal InGoa11 InGoa12)
(andgoal OutGoa11 OutGoa12) .­

maptac Tae InGoa11 OutGoa11,
maptae Tae InGoa12 OutGoa12.

maptac Tae (allgoal InGoal)
(allgoal OutGoal) :-

pi T\ (maptae Tae (InGoal T) (OutGoal T)).

maptae Tae InGoal OutGoal :­
Tae InGoal OutGoal.

asflp/6/tacs Miller/Septel11ber 1988 VI-16 asflp / 6 /tacs Miller/Septelllber 1988 VI-17

Tacticals

then Tae! Tae2 InGoal OutGoal :­
Tae! InGoal MidGoal,
maptae Tae2 MidGoal OutGoal.

orelse Tac! Tae2 InGoal OutGoal :­
Tac! InGoal OutGoal;
Tac2 InGoal OutGoal.

idtac Goal Goal.

repeat Tac InGoal OutGoal :- .
orelse (then Tae (repeat Tac))

idtac InGoal OutGoal.'

try Tac InGoal OutGoal :-
orelse Tac idtac InGoal OutGoal.

complete Tac InGoal truegoal :­
Tae InGoal OutGoal,
goalred OutGoal truegoal.

Silllplifying SOUle Goal Expressions

goalred (andgoal truegoal Goal) OutGoal :­
goalred Goal OutGoal.

goalred (andgoal Goal truegoal) OutGoal :­
goalred Goal OutGoal.

goalred (allgoal T\ truegoal) truegoal.

goalred Goal Goal.

asflp/6/tacs Miller/Septenlber 1988 VI-18 asflp / 6/tacs Miller/Septelllber 1988 VI-19

Interactive Theorem Proving

query (pgoal A P) OutGoal :-
write A, write "Enter tactic:", read Tac,
Tac (pgoal A P) OutGoal.

interactive InGoal OutGoal :­
repeat query InGoal OutGoal.

and_e_query (pgoal C PC)
(impgoal (proof A (and_e1 P))

(impgoal (proof B (and_e2 P))
(pgoal C PC))) :­

memo (hyp (A and B) P), .

write "Eliminate this conjunction?",
write (A and B),
read "yes".

For lllore exalllpies on building theorem provers in
this fashion,. see Felty and Miller [4].

The Copy Verification Program

The goal

?- copy_ver Tacs Copy In Out

attelllpts to repeatly copy the goal structure in
Copy onto the goal In to get the goal Out. Tacs
provides the lllethods for decomposing Copy.

copy_ver Tacs (andgoal C1 C2)
(andgoal Ii 12) Out :­

copy_ver Tacs C1 11 01,
copy_ver Tacs C2 12 02,
goalred (andgoal 01 02) Out.

copy_ver Tacs (allgoal C) (allgoal I) Out :­
pi T\(copy_ver Tacs (C T) (I T) (0 T)),
goalred (allgoal 0) Out.

copy_ver Tacs Copy In Out :­
memb Tac Tacs,
Tac Copy NewC, Tac In Mid,
maptac (copy_ver Tacs NewC) Mid Out.

copy_ver Tacs Copy Goal Goal.

asflpj6jtacs Miller jSeptenlber 1988 VI-20 asflp j 6 j t.acs Miller jSeptel11ber 1988 VI-21

	Logic Programming Based on Higher-Order Hereditary Harrop Formulas
	Recommended Citation

	Logic Programming Based on Higher-Order Hereditary Harrop Formulas
	Abstract
	Comments

	tmp.1195675536.pdf.CLYt2

