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Logic Programming Based on Higher-Order Hereditary Harrop Formulas

Abstract

Hereditary Harrop formulas are an extension to Horn clauses in which the body of clauses can contain
implications and universal quantifiers. These formulas can further be extended by embedding them in a
higher-order logic; that is, by permitting quantification over function symbol occurrences and some
predicate symbol occurrences, and by replacing first-order terms with simply typed A-terms. Our
justification for considering this rich extension of Horn clause theory as a satisfactory logic programming
language is provided by a proof-theoretic notion we call "uniform proofs". This notion will be defined and
motivated. This extended language can provide very natural and direct implementations of various kinds
of abstraction mechanisms. For example, higher-order hereditary Harrop formulas (hohh) can be used to
support aspects of modular programming, abstract data types, and higher-order programming.

We have designed and built a logic programming system which implements hohh in much the same way
Prolog implements first-order Horn clauses. This language and its interpreter, collectively called AProlog,
will be described. We will present several example programs where AProlog provides a much more
immediate and satisfactory implementation language than first-order Prologs. These examples are taken
from theorem proving and program transformation. Finally, we will describe some aspects of our
implementation of AProlog.
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Hereditary Harrop formulas are an extension to Horn clauses in which
the body of clauses can contain implications and universal quantifiers. These
formulas can further be extended by embedding them in a higher-order logic;
that is, by permitting quantification over function symbol occurrences and
some predicate symbol occurrences, and by replacing first-order terms with
simply typed A-terms. Our justification for considering this rich extension
of Horn clause theory as a satisfactory logic programming language is pro-
vided by a proof-theoretic notion we call “uniform proofs”. This notion
will be defined and motivated. This extended language can provide very
natural and direct implementations of various kinds of abstraction mecha-
nisms. For example, higher-order hereditary Harrop formulas (hohh) can
be used to support aspects of modular programming, abstract data types,
and higher-order programming.

We have designed and built a logic programming system which im-
plements hohh in much the same way Prolog implements first-order Horn
clauses. This language and its interpreter, collectively called AProlog, will
be described. We will present several example programs where AProlog
provides a much more immediate and satisfactory implementation language
than first-order Prologs. These examples are taken from theorem proving
and program transformation. Finally, we will describe some aspects of our
implementation of AProlog.
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Three Dimensions for Extending Horn Clauses

Program-level
Abstraction

/ Terms-level
Abstraction

First-order Horn clauses form the origin.
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Goals of These Lectures

To probe the essential logical character of various

" notions of abstractions in logic programming.

o higher-order functions

o abstract data types

o modules
To describe computational aspects of higher-order
logic.
To present some relationships between proof theory
and logic programming.
To propose an extension to the logic of Horn

clauses that maintains many of its computational
aspects.

To present a programming language, AProlog, built
on this extension.

To use the proposed extensions to provide new
programming language features.

asflp/1/goals Miller/September 1988 1-3



Extensions to Logic Programming ixtensions to the Logic of Logic Programming

. We shall consider two kinds of extensions in these
Amalgamate Prolog with other languages. talks.

Modify existing interpreters to add new

functionality. Quantificational extension

o adding quantification over predicate and/or

Extend the logical foundations of Prolog. - function symbols

o higher-order Horn clauses

o Increase the role of negation o terms extended with A-terms

o Increase the role of equality Propositional extension

o adding additional connectives to goals and
o Quantify over more syntactic categories program clauses

o hereditary Harrop formulas

o Add more logical primitives to queries T . _
o intuitionistic provability models computations

asflp/1/extensions Miller/September 1988 -4 asflp/1/extensions Miller/September 1988 I-5




Analysis of “Good” Extensions Four Abstract Logic Programming Languages

Extensions must maintain a certain match between fohc First-order Horn clauses with classical or

: : : : intuitionisti bilit
an operational interpretation and the logical HIILMONISUC provabliity

hohc  Higher-order Horn clauses with classical

interpretation of connectives within goals. or intuitionistic provability

Programs, Goals <= Logical Formulas fohh . First-order hereditary Harrop formulas

ith intuitionistic provabilit
Solving a Goal <= Logical Provability : W_ . p v y
hohh  Higher-order hereditary Harrop formulas

with intuitionistic provability
Logical connectives are to have search-related

meanings, for example, the properties listed below hohh
such hold. /
o PGV Gy ifandonly if PGy or P Gs. | fohh hohc
& 77
o P F Jz G if and only if for some ¢, P + G[t/z]. \ /
fohc

— denotes containment

asflp/1/analysis Miller/September 1988 1-6 asflp/1/analysis Miller/September 1988 I-7



The Programming Language AProlog

AProlog is a programming language built on
top of hohh. An interpreter for this language
uses a depth-first discipline for both clauses and
(pre)unifier selections.

AProlog extends Prolog by providing

(®)

O

O

higher-order programming
A-terms as data structures

stacked-based mechanism for introducing and
discharging program clauses

scoping mechanism for constants
modules and local importing

abstract data types

An overview of AProlog can be found in [23].

Implementations of AProlog

LP2.6 (August 1987, UPenn, Miller and Nadathur)

LP2.7 (July 1988, Duke and UPenn, Miller and
Nadathur) Available in C-Prolog and Quintus
Prolog version (4100 lines of code). Does not
implement the full dynamic module facility
anticipated by the theory. Does provide a
depth-first implementation of full higher-order
unification. Sources and several complete examples
are in the distribution, which is available from

Gopalan Nadathur

Computer Science Department
Duke University

Durham, NC 27706 USA
(gopalan@cs.duke.edu)

eLP (expected Winter 88, CMU) Written in
Common Lisp. Will be used as a meta language
within the ERGO program development project.
Should implement the full theory of hohh as well
as certain enhancements. Implementation being
done by Conal Elliott and Frank Pfenning.

asflp/1/lprolog Miller /September 1988 I-8
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Meta Mathematical Properties of Some Logics

First-order logic

o Valid formulas are precisely theorems
(soundness and completeness).

o Theorem are described syntactically via
axioms and inference rules.

o Valid formulas are described semantically via
models.
Second-order “logic”
o Valid formulas are those provable in the
standard model of the integers.

o Godel showed that there is no (reasonable)
syntactic characterization of these valid
formulas.

o Second-order “logic” is more mathematics
than logic.
Higher-order logic
o Syntactic tools are used to describe the nature
of predicate and function quantification.

o Typed A-calculus is generally used to denote
terms of higher-type (see Church [3]).

o Theorems are described syntactically: some
approaches have complete model theories,
some do not.

asflp/1/meta Miller/September 1988 1-14

An Example of Higher-Order Reasoning

(1) VB (B C open D open(lJ B))
open set axiom
(2) Vz (Az D 3G (open(G) A Gz A G C A))
assumption
3)  {G|G C AN open(G)} C open
simple
(4 open(U{G | G C A A open(G)})
Modus Ponens 1, 3
(5)  U{G |G C ANopen(G)} C A
simple
(6) ACU{G|GC AN open(G)}
| simple (uses 2)
(7) open(A)
4, 5, 6, and extensionality
A
C%

- asflp/1/meta Miller/September 1988 I-15



Another Example of Higher-Order Reasﬂoning

believes(John, “The sun rises in the east.”)
- “The sun rises in the east.”= “Nixon lied.”

Therefore, believes(John, “Nixon lied.”)

The problem illustrated above is generally
addressed by embellishing the underlying logic
to provide an analysis of the intensionality of a
proposition.

However, a weak enough logic can also block such
conclusions.

asflp/1/meta Miller/September 1988 I-16

" Extensional / Non-Extensional / Intensional

Extensionality: Predicates (and function) are
equal if they have the same extensions. Generally
assumed in mathematics.

Direct higher-order extensions to first-order logic
do not guarantee extensionality. Axioms such as

Vz[Px=Qz] D P=Q

must be added explicitly to get an extensional
logic.

Intensional logics, such as those of Montague and
Gallin, are embellishments of extensional higher-

order logics with extra constants (e.g. intensional
operators, modal operators) and with additional

axioms and inference rules.

With regard to such “semantic” issues, we shall
focus on a very weak higher-order extension to
first-order logic.

asflp/1/meta Miller /September 1988 I-17



Higher-Order Logic as an
Object and Meta Language

Original examination of higher-order logic was
to formalize mathematics and then to study the
resulting formalism to conclude properties of
mathematics. See Church [3] and Andrews [2].

Higher-order logic can makes a very interesting and
powerful meta language. Some recent work has
focused on the following three areas.

o theorem provers: Felty and Miller [4], Paulson
[26], Pfenning [24]

o program transformers: Hannan and Miller [6]
and [7], Miller and Nadathur [18], Pfenning
and Elliott [25].

o natural language semantics: Miller and
Nadathur [17].

Simply Typed A\-Terms

Types:
o A set of ground types {o,b1,...,b,}
o All types @ — 3 where o and § are types.

Terms: ,-f:il‘s ®

=
Cc | €I I ‘}(\LIE.\t | (tl tz)

C—A->/3 oA

Equivalence of Terms:

a Az.(fz) =a Ay.(fy)
g (Ag-Az.(9 z)) f =p Az.(f z)
n Me.(fz) =, f

Functions are expressions of functional type, that
is, of type a@ — (.

Predicate are functional expressions of target type
o, that is, of type ag —» -+ — a,, — 0.

Propositions are expressions of type o.

asflp/1/meta Miller/September 1988 I-18
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An Example of \-Conversion

Ax(z + 1)
AfAz(f(f2))

(AfAz(f (f 2))) Az(z+1) ¢
Az((Az(z + 1))(Az(z + 1)2)) ¢
Az((Az(z+1))(z+ 1)) c
M((z+1)+1)c

((c+1)+1)

Adding Logic to A-Terms

oo negation
Vo—s(0—0) disjunction
No—s(0—s0) conjunction
Do—s(0—0) implication
V(a—0)—o universal a-set recognizer
El(a_,o)_w non-empty a-set recognizer

V(Az P) is abbreviated as Vz P.

d(Az P) is abbreviated as 3z P.

Type association is to the right: 0 — (0 — o) is

written more simply as 0 — 0 — o.

asflp/1/stt Miller/September 1988
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Formulas as \-Terms

“Every man loves a woman.”
Vz (man(z) D Jy (woman(y) A loves(z,y)))
VAz((man x) D IAy((woman y) A (loves z y)))

“uncle whose children are doctors”

Az ((uncle ) A (VAy((child = y) D (doctor y))))

asflp/1/stt Miller/September 1988 I-22

Another Example of \-Conversion

U == ABAz3G (BG A Gz)
C == APAQVz (Pz D Qx)

{G|GC AN (open G)} == )AG. G C AA (open G)

U{G | G € AN (open G)}
[ABAz3G (B G A G z)][AG. G C A A (open G)]
AzdG [AG. G C A A (open G)|G A Gz
AzdG [G C A A (open G) A Gz

Az3G [Vz [Gx D Az] A (open G) A Gz

asflp/1/stt Miller/September 1988 I-23



An Informal Description of 7

All constants and variables have simple types.

Quantification over predicates and function is
permitted.

Axioms and inference rules for the classical (resp.
intuitionistic) version of 7 are those of classical
(resp. intuitionistic) first-order logic plus the
inference rule of A-conversion:

If A A-converts to A’ and - A, then - A’.

This is roughly equivalent to thinking of equality of
terms as being modulo A-conversion.

Axioms of extensionality, description, choice and
infinity are not used in 7.

See Church 1940 [3] and Andrews 1986 [2] for more
about this kind of higher-order logic.

Meta theoretic results:

Cut-Elimination
Resolution Andrews 1971 [1]
Unification Huet 1975 [9]
Herbrand Theorem Miller 1983 [11]

asflp/1/stt Miller/September 1988 I-24

Schutte, Tait, Takahashi, Girard
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Definition, Examples, and Theory
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"Which Formulas Should Be Considered
Higher-Order Horn Clauses?

Most certainly, the folloWing should be examples of
higher-order Horn clauses.

mappred P nil nil
(PXY)A (mappred P L K) D
(mappred P (cons X L) (cons Y K))

map fun F nil nil
(mapfun F L K) D
(mapfun F (cons X L) (cons (F X) K))

Here the types for the four non-logical constants
would be something like the following;:

nal : list
cons : 1 — list — list
mappred : (1 = 1 — 0) — list - list — o
mapfun : (i — i) — list — list > o

Can the Head of a Clause Be a

Predicate Variable?

Consider the following two formulas:

VP VX ((g X) D (P X))
(q a)

From these two clauses, any formula is provable.

To prove an arbitrary formula, say r, use the
instance P +— Az.r and X +— a to get

(ga)Dr.

These clauses are, thus, inconsistent.

The predicate head of a Horn clause describes

which procedure that clause is helping to define.

asflp/2/which Miller /September 1988 I1-1
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Higher-Order Horn Clauses

Let 1+ be the set of all A-normal formulas built
from non-logical constants, variables, and the
logical constants true, A, V and 3.

Let G be a syntactic variable for propositions in
HT.
Let A be a syntactic variable for propositions in

H* with non-logical constants as their head. Such
formulas are called atoms.

A higher-order Horn clause is the universal closure
of a formula of the form G D A or simply A.

Let P be a syntactic variable for sets of Horn

clauses.

A Possible Problem

Consider a proof of 3Y pY from the higher-order
Horn clause

VQ (@ D pa)

There is a proof with answer substitution ¥ — a.
The instance of this Horn clause used in this proof
is

true D pa.

There is another proof, however, which yields no
answer substitution. First, instantiate z with —pb
to get the formula

—-pb D pa
which is equivalent (classically) to the disjunction
pb V pa.

The formula Y pY is then provable with the
“disjunctive” answer substitution Y + a or Y + b.

The higher-order substitution instance of a higher-
order Horn clause is not necessarily a higher-order
Horn clause.

asflp/2/hohc Miller/September 1988 II-3
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An Approach to Solving This Problem

Notice that if s, € H* then [z := s]t € H*, that
is, H* is closed under substitutions from H™*.

Thus, higher-order Horn clauses are closed under
instantiations from H*.

Approach: If G is provable from a set of higher-
order Horn clauses then it is provable by a proof
whose only substitution terms are taken from H*.

Thus, H* is the Herbrand Universe for higher-
order Horn clauses.

asflp/2/hohc Miller/September 1988 I1-5

Positive Instances

Let P be a set of higher-order Horn clauses.

Let [P] be the smallest set of higher-order Horn

>lauses such that
o P C [P], and

o if Vo D € [P]and t € Ht is closed and the
same type as z, then [z :=t]D € [P].

asflp/2/hohc Miller /September 1988 I1-6



Provability from Horn Clauses

Theorem: Let G;,G3,A,3x Bz € H* each be
closed propositions. Let P be a set of higher-order
Horn clauses. Let -7 be classical provability over
7. The following are true:

o P kg true.

o P kg Gi1 AGsif and only if P 7+ G, and
Pbkr G,.

P Fr Gy V Gyifand only if P 4+ G1 or
P 1 Go.

o]

P b1 dx B if and only if there is a closed
formula t € H* such that P +7 [z := {]B.

o}

P 1 Aifand only if A € [P] or there is a
GO Ae[Pland P +1G.

(e]

Proof: See Nadathur’s dissertation [21] or the
joint paper [22]. See also [16].

Some AProlog Syntax

The syntax of terms is similar to that for Lisp
(functions are represented as curried expression).
Major differences are:

o A-abstraction is written with an infix \.
o Lists are written as in Prolog.

(reduce (lambda (x y)- (x+y)) (1 2 3) 0)=6
(reduce X\Y\ (X + ¥) [1,2,3] 0 6)

The syntax of clauses and goals is similar to that
for Prolog. The major difference is the possibility
of having explicit existential quantification in goals.

7- sigma Y\(generate X Y, test Y Z).

_-37

The syntax of type declarations is similar to that
for ML.

type nil list.
type cons i -> 1list -> list.
type mappred (i -> i -> o) ->
list -> list -> o.
type mapfun (i -> i) -> list -> list -> o.

asflp/2/hohc Miller/September 1988 I1-7
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Polymorphic Typing

Types are a language of first-order terms that is
separate from the language of A-terms.

Primitive types:

o, int, string,

Type constructors:
(list int), (pair int string),

(1ist (pair int int)),
Functional types:
int -> int, int -> (list int) -> o,
Polymorphic types: Allow first-order variables in
type expressions.

type [_I_] A -> (list A) -> (1list A)
type [] (list A)
type pair A -> B -> (pair A B)

asflp/2/syntax Miller/September 1988 - I1-9

The Mappred Program

type mappred (A -> B -> o) ->
(list A) -> (list B) -> o.

mappred P nil nil.
mappred P [X|L1] [Y|L2] :- P X Y,
' mappred P L1 L2.

The predicate variable P appears both as an
argument and as taking arguments. Consider the
following simple clauses:

type age person -> int -> o.
age bob 23.

age sue 24.
age ned 23.

and now consider the following query:

7- mappred X\Y\(age X Y) [ned, bob, sue] L.

This query essentially asks for the ages of
the individuals ned, bob and sue. An answer
substitution for L is [23, 23, 24].
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The Sublist Program

type sublist (A -> o) ->
(list A) -> (list A) -> o.

sublist P [X|L] [XIK] :- P X, sublist P L K.

sublist P [X|L] K :- sublist P L K.
sublist P [] [].

' type have_age (1ist person) ->
(1ist person) -> o.

have_age L K :-
sublist Z\(sigma X\(age Z X)) L K.

type same_age (list person) ->
(1list person) -> o.

same_age L K :- sublist Z\(age Z A) L K.

Flexible Goals

P bob 23.

One answer to this query is the substitution
(X\Y\(age X Y)) for P. Many other substitutions
are also valid. Let G be any provable closed query.
The substitution X\Y\G for P is a legal answer
substitution.

For example, substituting

X\Y\ (memb 4 [3,4,5])

for P is also an answer substitution.
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Constraining Flexible Goals Interpretations for Higher-Order Horn Clauses

Such queries are essentially ill-posed. The range of An interpretation is any set of closed, atomic
a predicate quantifier should be restricted by the propositions in H*.

rogrammer. For example
Pros pee The following compositional definition of

type primrel (person -> o) -> o. satisfaction is problematic.

type rel ~(person -> o) -> o. o T = true

type mother person -> o.

type wife person -> 0. o I lz G if G iS atomic and G € I

o Il’—‘Gl VG2 lfIlzGl OI‘.I|:G2.
IEGIAGyif I|EGyand I |= Gs.
o I = dz B if there is a closed term ¢t € H™ such

primrel mother.
primrel wife.
rel R :- primrel R.

o

rel X\Y\ (sigma Z\(R X Z , S Z Y)) :- that I |= [¢ :=t|B.
primrel R , primrel S. The problem with this definition is that the
mother jane mary. recursion in the last line is not well-founded: the

‘w1fe John jane. formula [z := t]B can have more logical connectives

that the formula Jdz B.

The query
7- rel R, R john mary, | AP (Pa)
' P — A\z(3P (Pa) A q)
h s
as the unique answer substitution for R 3P (Pa) A g

X\Y\(sigma Z\(wife X Z, mother Z Y))
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A Non-Compositional Notion of Satisfaction

Let I be an interpretation and G a proposition
in H*. Write I H= G if there is a sequence of
formulas

Gi,...,Go, =G
such that for ¢ = 1,...,n, either

o (; is true, or

o G;€l,or

o G;=G"ANG" and {G',G”} C {Gl, .. -,Gi—l};
or

o G; = G'VG" and G' or G" € {Gl, .. ,Gi—l},
or

o G; = Jz G’ and there is a t € H™* such that
[z :=t]G' € {Gy,...,Gi-1}.

A Least Fixpoint Interpretation

Let P be a given set of higher-order Horn clauses.
Define the following function from interpretations
to interpretations:

Tp(I):={A|A € [Plor G D A € [P]
and I B= G}.

It is not difficult to see that T’ is monotone and
continuous on the set of all interpretations.

The least fixpoint of T is therefore
T (0) := | T (®).
n=0

It is this subset of H* that we think of as being
determined by P, and we call it the denotation of
P.

Theorem: Let G € H™' be a closed proposition.
Then T3 (0) H= G if and only if P 7 G. See [21].
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The Mapfun Program

" Consider the following program

type mapfun (A -> B) ->
(list A) -> (list B) -> o.

mapfun F [X|L1] [(F X)| L2] :-
mapfun F L1 L2.
mapfun F [1 [J.

and consider the following query
7- mapfun X\(g a X) [a, b] L,

The answer substitution for L is
[(g a a), (g ab)]
An interpreter would need to form the terms

((X\(g a X)) a) and ((X\(g a X)) b) and then
reduce these terms using the rules of A-conversion.
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The Mapfun Program in “Reverse”

Consider the following query:

7- mapfun F [a, b] [(g a a), (g a b)].

There is precisely one answer for this query,
namely the substitution X\(g a X) for F. The
unification problem (F a) and (g a a) needs to be
solved here. There are four unifiers for F:

X\(g X X), X\(g a X),
N\(g X a), X\(g a a).

If any but the second is selected first, the choice of
unifier would need to be backtracked over.

Notice that the following qoal is not provable:
mapfun F [a, b] [c, d].

There is no “function” (that is, A-term) which
maps a to ¢ and maps b to d.
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A-terms as Data Structures

A-terms capture the higher-order abstract syntaz of
objects like formulas and programs [25].

vz (p(z) V q(z))

(all X\ ((p X) or (q X)))

summmn == 1if (m=0)thenn
else sum (m—1) (n+1)

(fixpt Sum\M\N\
(cond (M =0) N
(Sum (M - 1) (N + 1))))

The Advantage of Such a Representation

The equivalence of the the two formulas

vz (p(z) V q(x)) and Vy (p(y) V q(y))

is captured by the a-convertibility of

(all X\ ((p X) or (q X)))
(all Y\ ((p Y) or (q Y)))

Substitution is implemented by S-reduction. For
example, the result of instantiating Yy (p(y) V q¢(y))
with f(a) is the represented by the A-normal form
of

(X\ ((p X) or (q X))) (f a)

Higher-order unification implements sophisticated
pattern matching. Consider unifying an expression
against the following two higher-order templates:

(all X\ ((P X) or (Q X)))
(all X\ (P or (Q X)))
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Programs as Data Objects

Programs have a rich structure:

o variable bindings (for formal parameters)

o function bindings (for defining new functions)
Consider using Lisp as the meta-language:

o Use Lisp’s notation for A-terms to represent
programs.

o The only primitive mechanisms for
manipulating such terms are CAR, CDR
CONS.

o Lisp implementations produce obscure
descriptions of program analysis.

Need more sophisticated analysis techniques

Programs as A-terms

Consider a simple functional language with a
conditional operator, lists, and recursion. The
append program might appear as

fun append K LL =
(if (null K) L
(cons (car K) (append (cdr K) L)))

By introducing new constants to denote each
programming language construct, we can represent
this program by the the term

fix F\K\L\ (if (null K) L
(cons (car K) (F (cdr K) L)))

o Bindings in the object language are
represented by bound variables (abstractions)
in the meta language

o Two object level programs differing only in
renaming of bound variables are treated as
equivalent terms.

o Substitution for formal parameters in the
object language is acheived by [-reduction.
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Analyzing the Append Program

Consider uinifying the code for append

fix FA\K\L\ (if (null K) L
(cons (car K) (F (edr K) L)))

against the template

fix F\M\N\ (if (C M) (G M N)
(H (F (K M) N) M)

with free variables C, G, H, and K. It unifies with
the “append” term with the substitution

C -—> X\ (null X)

G --> X\Y\Y

H --> X\Y\ (cons (car Y) X)

K ——> X\ (cdr X)
Unification such as this provides a new method
of analyzing program structure. It is very
different from representing programs as lists and
manipulating them using CAR or CDR in Lisp or
first-order unification and =.. in Prolog.
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Higher-Order Unification

Given any two (simply typed) terms s and ¢ of the
same type, the task of finding a substitution o,

if one exists, such that o(s) = o(t), is known as
higher-order unification.

[A better name is simply typed A-term unification
modulo afn-conversion.]

Some characteristics of higher-order unification:

o It is a semi-decidable problem (even for just
second-order unification).

o If unifiers exists, there is not necessarily a
most general unifier. In fact, there may be
infinitely many independent unifiers.

o General non-redunant search can only be
achieved for pre-unifiers and not unifiers.

o Some unification problems, called flexible-
flexible problems, can produce so many
unifiers that solving them is best delayed.
Flexible-flexible problems are treated as
constraints.
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Some References on Higher-Order Unification

Huet in [9] gave the first full description of higher-
order unification.

Gallier and Snyder in [5] redo Huet’s approach
using the sets of transformations of Herbrand-
Martelli-Montanari.

Miller in [15] considers higher-order unification
in the presence of a mixed prefix, i.e. admitting
quantifier alternations.

Elliott’s Ph. D. thesis at Carnegie Mellon
University will be on extensions to higher-order
unification.
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Some Structural Properites of
Higher-Order Unification

Dependence on an abstraction. A term ¢ is
dependent on its 1" abstraction if a A-normal form
of t is of the form

ALY ... AT; '

and x; is free in ¢'. ¢’ may be a of functional type
itself.

The term

to = AudvAwAh (F u h(G v))

is dependent on its first, second and fourth
abstractions but not its third.

Some Additional Properties

Dependency Invariance. Let ¢ be a term that
is dependent on its i** abstraction. If ¢ A-converts
to s, then s is dependent on its 3** abstraction.

That is, dependence on an abstraction is well-
defined with respect to term equality.

Dependency and Substitution. Let ¢t be a
term and o a substitution. If o(¢) is dependent

on its ¢** abstraction, then t is dependent on its 7%
abstraction.

That is, abstraction dependencies cannot be
introduced by substitution.

For example, let

t =Ax)y.(F x)
0=[F(cy)]

Then o(t) = AzAz.(c y ).

asflp/3/props Miller/September 1988 I11-3

asflp/3/props Miller/September 1988 111-4



Nesting of Abstractions

Nested Dependency. Let ¢t be a A-normal term,
let o be a substitution, such that

t = Azy... Azt
a(t) = Azy ... Az, .t

Let z;,z; € {z1,...,Zn}.
If every occurrence of x; in ¢’ is in the scope of an
occurrence of z; in ¢’

then every occurrence of x; in t” is in the scope of
an occurrence of z; in t".

That is, the “in the scope of” relationship
between bound variables does not change under
substitution.

Consider again the term
to = AudvAwAh.(F v (h(G v)))

For any substitution o (for F' and G), every
occurrence of v in the term o(%y) will be in the
scope of h.

An Example

Consider the term (higher-order template)
to = AudvAwAh.(F u (h (G v)))
which we will try to unify with each of the terms

t1 = AudvdwAh.((2 x w) + h(3 *v))
to = AuAvAwAh.((2 % u) + (3 % v))
t3 = Au)\p)\w)\h.((2 *u) + h(3 xv))

o For any substitution o, o(¢1) is dependent
upon its third abstraction (w) while ¢y is not
dependent of its third abstraction. Hence, 4
does not unify with .

o Since all occurrences of v in t¢ are restricted
to be in the scope of h and since v is not so
restricted in t5, o does not unify with ¢,.

o t3 does unify with ¢y, with substitution o =

[F— Ay ((2*z) +y), G Ax.(3x*x)]

See [7] for more of this kind of analysis.
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A Simple Tail Recursion Schema Matching the Tail Recursive Schema

Consider the following schema (open higher-order

term):

) (fiz AfazAy (if (C zy) (B z y)

(fiz MAzdy (if (Czy) (Bzy) (f (Br zy) (B2 7 y))))
(f (B1 z y) (B2 7 y))))

The following term representing the append

From our properties, we have the following program does not unify with this schema:

constraints on closed insta.nces of th'is term: (Fiz AFAKML (if (null k) 1
o They are terms denqtmg recursive program of : (cons (car k) (f (cdr k) 1))))
two arguments and the body of the program

must be an 4f expression. The following term representing the reverse

o No recursive calls (f) are possible in the program,
“conditional” and “then” parts of the
program. (fix AfARAN (if (null k) 1
o There is exactly one recursive call in the “else” (f (cdr k) (cons (car k) 1))))
part of the program and it occurs at the top- ,
level. does unify with this schema with substitution

C — AzAy.(null z)

B — ArAyy

E; — Ax)y.(cdr x)

Es — AzAy.(cons (car x) y)
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A More General Tail Recursion “Template”

type tail_rec_body ((A1 -> A2 -> A3) ->
Al -> A2 -> A3) -> o.

type tailrec (A1 -> A2 -> A3) -> o.

tailrec (fix Prog):- tail_rec_body Prog.

tail_rec_body (F\X\Y\ (H X Y)).

tail_rec_body (F\X\Y\ (F (G X Y) (HX Y))).

tail_rec_body
(FAX\Y\ (if (C X Y)
(HLFXY) (H2F XY))) :-

tail_rec_body H1l, tail_rec_body H2.

For more analysis and an extension of this AProlog

program see [18]. See also Huet and Lang [10].

The Structure of \-normal Terms

All A-normal terms can be put into the form
t=Ar1... 2z, (her - -en)

where n,m > 0 and (h e;---e,,) is of primitive

type.

The list x1,...,x, is called the binder.
The variable or constant h is called the head.

The terms eq,...,e,, are the arguments.

If h is a constant or a member of the binder, the

term is rigid.

Otherwise, h is a variable not a member of its

binder and the term is flexible.
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Disagreement Pairs of \-terms

A disagreement pair is a pair of two A-normal
terms of the same type. Given - and 7-
conversions, two such terms can be rewritten into
equivalent terms with the same binder. Thus we
write disagreement pairs as

AL ATy (h €1..-€my, kflfm2>

Disagreement pairs fall into three classes:
rigid-rigid both terms are rigid

one term is flexible and one
rigid. We assume the first one

listed is flexible, otherwise swap
them.

flexible-flexible  both terms are flexible

flexible-rigid
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Simplifying Rigid-Rigid Pairs
Consider the rigid-rigid disagreement pair

)\SEl)\ZUn <h 61...6m1,k fl.fm2>

This pair is not unifiable if & is not identical to k.

Thus for this pair to be unifiable then h = k and
m1 = mg = m and the list of disagrement pairs

)\331"')\$n-<€1,f1), cevy )‘xl)‘xn <6m7fm>

are all simultaneously unifiable.

If the types of h and k are different, then they
must be unifiable. Use the mgu of the type
expressions.

A list of disgreement pairs can either be recognized
as non-unifiable or can be simplified to an
equivalent unification problem with only flexible-
rigid or flexible-flexible pairs.
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Processing Flexible-Rigid Pairs

Given the flexible-rigid disagreement pair
A1 ATp (her...emyy K f1-o. fmy)-

There are two possible and incomparable ways
to get (h ey ...€n,) to have rigid head k after
substitution and normalization.

Imitate The flexible term gets k as its head
directly. This can work only if k is not
in the binder.

h—= Awy ... W, (K (Riw1 ... Wn,)- ..
(hmzwl . 'wml))

Project  The flexible term gets k as its head
indirectly by projecting one of the
arguments fi,..., fm, into the head
position.

h'—))\’wl...)\’wml (’LU,' (hlwlwml)

(hpty - . . Wiy ))

wherel < ¢ < mjyandp > 0Ois
determined by the type of w;.

Example 1: Occurs Check

Consider the unification problem
X =(F X)

where both X and F are variables. Notice that
X occurs free in (F' X). Does this unification
problem have a solution?

Yes. In fact two general ones, namely

Fe— ww, and F+— \w.X.

There are generalizations of the first-order occurs
check that can be used in the higher-order setting
to recognize failing unification problems.

Of course, the unification problem X = ¢ where ¢ is

a term not containing X free has the single unifier
X —t.

asflp/3/houdef Miller/September 1988 111-13

asflp/3/houex Miller/September 1988 I11-14



Example 2

Let F' be a variable of type ¢ — %, g a constant of
type ¢ — 1, and a a constant of type :.

(F a,g a)

/

imitate F' — \w.g(H w) project F' — Aw.w

\/

( (H a’ ’ ’(CL,gCL}
(H a,a)

/ \ Fa

imitate H — A\w.a project H— dw.w

/ Y

(a,a) (a,a)

Answer substltutlons F — Aw.ga and F —
Aw.gw

Example 3

Az (F z,g )

/ \
/ .

imitate F' — Aw.g(H w) project F — \w.w
/ \
(H z), g ) Az (z gsc)
(H z,z)

project H — Aw.w = 1m1tate not possible

l,/_
Az (z, x)

Answer substitution: F — \w.gw
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Example 4

Let X be a variable of type (1 — 7) — 4.

(X, du (u(X (Av.v))))
A (Xu, u(X(Av.v)))

&)
imitate not possible

project X Aw.w(H w)

4
A (u(H u), u(H(Av.v)))
A (H u, H (Av.v))

This final disagreement pair is flexible-flexible.
This has the solution H — Aw.Y which yields
X — Aw.w Y as an answer substitution.
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Example 5

Let g be a constant of typei — 7 — ¢, let F' be a
variable of type ¢ — i, and let Z be a variable of

type 1.

AzXy (F z, g Z y)

/ \

imitate F' — )\w(g(Hllw)(ng)) project F — Aw.w

A <)

Axy (9(Hiz)(Hoz), g Z y) AzXy (z, 9 Z y)
AxAy (Hy z, Z), z)dy (Hy z, y)

N

project Ho — Aw.w imitation not possible

Azdy (Hy z,Z), Azdy (z,y)

The rigid-rigid disagrement pair above is not
unifiable.
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Generalizing SLD-Resolution

The state of a resolution-style theorem prover is
the following;:

o a program P which is a finite set of higher-

order Horn clauses.
o a list of 4-tuples (G,U,8,V) where
o @ is a list of goals that need to be proved,

o U is a list of disagreement pairs that need
to be unified,

o @ is a substitution, and

o V is a list of free variables including all
those free in G, U, and 6.
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P-Derivation

(Go, U, b2, Vs) is P-derived from (Gy,Us, 01,V1)
if U, is simplified and not a failed unification
problem and:

Goal reduction step: 0, = 0, Us = Uy, and there
is a goal formula G € Gy (G' := G; — {G}) s.t.

o (G is Gl AN G2 and gg - Q’ U {Gl,GQ} and
V2=V1,OI' .

o GisG1 VGyand,fori = lor: = 2,
G, =G' U {Gi} and V, =V, or

o G is dz P and for some variable y ¢ V),
Vo = V1 U{y} and G2 = G' U {[z := y] P}.
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P-Derivation (continued)

Backchaining step: Let G € G; be a rigid
atom, and let D € P be such that D =

V1 ...Vz, (G D A) for some sequence of
new variables z1,...,Z,. Then 8z = 0, Vs =
Vi UA{z1,...,T0}, G2 = G1 — {G} U {G"}, and
let Uy be the simplified form of U U {(G, A)}.

Unification step: U; is not a solved set and for
some flexible-rigid pair (Fi, F») € U, there is an
imitation or projection substitution term, call it
02, and Gy = 62(G1), Us is the simplified form of
62(U, ), and Vs is updated by the new variables in
6.

See Nadathur’s dissertation [21] or the joint paper
[22].
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Fixing Choices in P-Derivations

Impose a depth-first discipline on the following
choices.

o Goals processed in left-to-right order.
o Left disjuncts attempted before right disjunct.
o Clauses tried in top-down fashion.

o Reduce unification problems to flexible-flexible
prior to solving goals.

o Do imitations prior to projections. [This is a
switchable option in LP2.7.]

o Postpone flexible goals as well as flexible-
flexible disagreement pairs. [Flexible goals not
postponed in LP2.7.]

asflp/3/sld Miller/September 1988 IT1-22



Lecture IV

Hereditary Harrop Formulas and

Uniform Proofs

Table of Contents

Characterizing Proofs from Horn Clauses
Search Semantics for the Connectives .
Cut-Free Sequential Proofs

Uniform Sequential Proofs . .
Abstract Logic Programming Languages .
Examples of ALPLs . .

Languages Which Are Not

Abstract Logic Programming Languages .

First-Order Harrop Formulas . .
First-Order Hereditary Harrop Formulas
A Classical and Non-Intuitionistic Proof
A Nasty Classical Equivalence

The Sterile Jar Problem . .
Extending Universal Quantifiers in Goals
Signatures

A Non- Determlnlstlc Interpreter .
A Non-Deterministic Interpreter (Contmued)
A Deterministic Interpreter

Four Implementations of GENERIC
Raising: A Dual to Skolemization
Explicit Prefix as a Constraint .

. Iv-1
. IV-2
. IV-3
. IV+4
. IV-5
. IV-6

. IV=7
. IV-8
. IV-9

Iv-10
Iv-11
IV-12
Iv-13
Iv-14
IV-15
IvV-16
IV-17
IV-18
Iv-19
IvV-20

Miller/September 1988

Characterizing Proofs from Horn Clauses

Every goal is attempted with respect to the same
o program clauses, and
o constants.

That is, there are no scoping mechanisms available
for either program clauses or constants.

Such scoping mechanism would, however, provide
natural mechanisms for modular programming and

abstract datatypes.

There are natural interpretations of implications
and universal quantification in goals that can
provide these scoping mechanisms.

In particular, implicational goals can be used
to assume and discharge program clauses and
universal goals can be used to assume and
discharge constants.
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Search Semantics for the Connectives

Let P o G mean G succeeds given P.

The intended success/failure semantics for each
connective may then be given by the following:

AND PlFo Gy AGg only if P o Gy and
Plto Gy

OR Plto GiVGyonlyif P o Gy or
Plto Gy

INSTANCE P bo dz G only if P ko G[t/z] for

some term ¢
AUGMENT Pto D D G only if PU {D} Fo G

GENERIC P ko Vz G only if P ko Gle/z] for
some constant ¢ that does not appear
in P or in G.
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Cut-Free Sequential Proofs

r — A,B r — A,C B,C,A — O
A-R A-L

BAC, A — O

r — A,BAC

B,A — © cC,A — ©

v-L

Bv(C,A — ©

' — A,B r — A,C
V-R . V-R

r — A,BvC(C

r — A,BVvC

B, — ©,C
O-L O-R
r — o,B>C

r — ©o,B c,r — A

BO>C,I' — AU®

L, [z/t]P — © r — O,[z/t]P :

V-L
rve P — © r — ©O,3z P
L [z/y]P — © r — oO,[z/y]P
3-L
'nda P — © r — o,vz P
r — o,1
1-R
r — ©,B

I' — Ais wnitial if ' N A contains an atomic
formula. Standard proviso on V-R and 3-L.
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Uniform Sequential Proofs

Definition: A uniform proof is a cut-free,
atomically closed sequent proof in which

o at most one formula occurs in the succedent of
each sequent, and

o every sequent in the proof that contains a non-
atomic formula in its succedent is the lower
sequent of the inference figure introducing that
formula’s top-level connective.

Intuitively, a uniform proof is one in which
complex goals are immediately simplified (reading
bottom-up).

Definition: P ko G if and only if the sequent
P — @G has a uniform proof.

Abstract Logic Programming Languages

L a formulation of logic containing the
connectives A, V, D, 3 and V (it may
include others, say negation and equality.)

Fr a derivability relation for £-formulas

g a set of L-formulas (goal formulas).

D a set of L-formulas (definite or program
formulas).

Definition: (D, G,Fg) is an abstract logic
programming language (ALPL) if and only if for
every finite P C D and G € G, P kg G if and only
if PFo G. See [19] and [20].
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Examples of ALPLs Languages Which Are Not
| Abstract Logic Programming Languages

fohc First-order Horn clauses with classical or
intuitionistic provability
hohc  Higher-order Horn clauses with classical p(a) vV p(b) Fr,c 3z p(z)

or intuitionistic provability
p(a) vV p(b) Fr.c p(b) Vv pla
fohh  First-order hereditary Harrop formulas (a) v p(b) (6)vpla)
with intuitionistic provability g D p(a), ~q¢ D p(b) ¢ Iz p(x)

hohh  Higher-order hereditary Harrop formulas

with intuitionistic provability No uniform proofs exist in these cases.

hohh p(a) — p(a) p(b) — p(b)

J-R I-R
SN | (@) — Jop)  pb) — 3z p(a)

fohh hohc | v-L
/7 p(a) Vp(b) — Iz p(z)

fohc This proof is both classically and intuitionistically

valid. It is not, however, uniform.

— denotes containment
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First-Order Harrop Formulas

A := atomic formula
G := arbitrary formula
D:=A|GD>D|VxD|DiAD
’ or
D:=A|G>A|VzD|DyAD;

Theorem (Harrop [8])

Let H be a set of D-formulas. Then

0o

(o]

o

O

o}

IfH+-y AVvBthen HFr Aor H 'ty B.

If H Fr 3z B then for some t, H by [z/t]B.
IfH+-;y ANB then H+y A and H - B.
IfHbF; AD B then A, H F; B.

If H +; Vo B then H +j [z/y]B for any new

parameter y.

asflp/4/harrop Miller/September 1988 V-8

First-Order Hereditary Harrop Formulas

A := atomic formula
D=A|GDA|V$D|D1/\D2
G:=A|Gi1ANG2|G1VG, |V G|IzG|DDG

D set of closed D-formulas

g set of closed G-formulas
(F,D,G,Fr) is a logic programming language.
(F,D,G,F¢) is not a logic programming language.

For example, there is a classical proof of the

sequent

(p(a) Ap(b) D q) — 3z (p(z) D q)

while there is no uniform proof.
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A Classical and Non-Intuitionistic Proof A Nasty Classical Equivalence

G1V(DDG2)EG1 V-DVG,

p(a),p(b) — p(a) * p(a),p(b) — p(b) ="DVGi VG
(a), p(b) @D P, =(DDG1) VG2
a), e a) A\ a), , —_
p(a),p p(a) Ap p(a), p(b), g . = (D> GV (DD G,
p(a) Ap(b) D g,p(a),p(b) — ¢
. O-R The classical equivalence of p D ¢ with —p V ¢
pla)Ap®) D a.p(a) — o) 2e _ o * undermines the intended scoping of implications.
p(a) Ap(b) Dg — p(a) D q,p(b) Dg
a b — a ,dz T
p(a) Ap(b) D q p(a) D ¢,3z (p(x) D q) R D — Gy.Go
p(a) Ap(b) D g — 3Fz (p(z) D q) D-R

— Gl,D 2 Gz
E— Gl,Gl V(D D) Gg)

V-R

— G1V(DDG2)

Permitting more than one formula on the right
works against our intented interpretation of the
logical connectives.
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The Sterile Jar Probiem

type sterile
type bug
type dead
type heated
type 1in
type ]
sterile Y
dead X
heated j.

bug b
in b j

:-= pi X\ (bug
:— headed Y,

jar -> o.

insect -> o.

insect -> o.

jar -> o.

insect -> jar -> o.
jar.

?- sterile j
7- pi X\(bug X => in X j => dead X)

?7- bug b => in b j => dead b

?7- (in b j) => (dead b)

?- dead b

?- headed j, in b j, bug b
?7- headed j

?7-in b j

?7- bug b

X=> in X Y=> dead X).
in X Y, bug X.

asflp/4/harrop
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Extending Universal Quantifiers in Goals

Permit V-quantifiers in goals to quantify functions
and predicate symbols.

While this could technically be called a higher-
order extension, this extension does not need

to be accompanied with A-terms and higher-
order unification to be given a (theoretically)
complete implementation. An “essentially first-
order” implementation will correctly provide this
extension.

This extension simply permit predicates and
function symbols to be given-scope a long with
first-order individuals.
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Signatures

Let a signature be an association list between
tokens and arities (or between tokens and types).

For example, ¥ = {f/1,9/2,a/0,b/0}, is a
signature.

Let the Herbrand Universe determined by X,
written as H(X), be the set of all first-order terms
built using terms in ¥.

A 3-formula is a formula all of whose non-logical
constants are from 3.

- For the discussion here, we shall permit the
confusion of terms from H(X) with atomic X-
formulas.

asflp/4/generic
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A Non-Deterministic Interpreter

A state or our interpreter is a triple (X, P, G)
where

o Y is the current signature,

o P is the current program (a set of -
formulas), and

o G is the current goal (a X-formula).

Defintion: [P]s is the smallest set of fohh
formulas such

(1) PC[Pls.
(2) If Dy A Dy € [P]s then Dy, Dy € [Ps.

(3) Ifvz D € [P]s andt € H(X) then
[l' = t]D € [73]2

asflp/4/generic Miller/September 1988
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A Non-Deterministic Interpreter (Continued)

((X,P,G)) denotes the proposition that the
interpreter succeeds given the current signature
3}, the current program P, and the goal G.

The interpreter can be describe at a very high-level
as follows:

SUCCESS ((2, P, true))

AND ((S,P,G1 AGs)) if both ((S,P,Gy))
and ((Z, P, Ga)).
OR ((Z,P,Gy V Gs)) if either

2, P,G1)) or ({3, P,Gs)).

((
INSTANCE (%, P, 3z G)) if for some t € H(X),
(%, P, [z :=1]G)).

AUGMENT ((Z,P,D D G)) if ((%,P U {D},G)).

GENERIC  ((%,P,Vz G)) if for some ¢ ¢ X,
(XU {c},P,[z := (|G)).

BACKCHAIN ((3,P, A)) (where A is atomic) if
either A € [Pz or G D A € [P]s
and ((3,P, G)).

asflp/4 /generic Miller /September 1988 IvV-16

A Deterministic Interpreter

Add a depth-first discipline to backtracking.

Use logical variables (free variables) in
BACKCHAIN and INSTANCE instead of guessing
at a closed term.

Process conjuncts and disjuncts in a left-to-right
order.

When adding a clause during AUGMENT, add it
to the top of the list.

In BACKCHAIN, select clauses in a top-down
fashion.

How does one handle the problem of quantifier

-alternation? How to modify unification in the

presence of the restriction posed by GENERIC?
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Four Implementations of GENERIC

Given the query

P(z) 7- Vy(G(y,2))

where Z and Z are lists of free (logical) variables
(possibly overlapping).

(1) Reduce to P(Z) ?— G(c, z) where c
is a new constant (added to the current
signature). Modify unification to respect
the constraint that the variables in Z and Z
cannot get instantiated with terms containing
C.

(2) Reduceto P(Z) 77— G(f(z,Z2),Zz) where
f is a skolem function. Unification is
unchanged. The occur-check is required to
enforce restriction.

(3) Higher-order unification provides a different
approach (called raising).

(4) Keep an explicit prefix as a constraint.

asflp/4/deter Miller/September 1988 IV-18

Raising: A Dual to Skolemization

Notice that inner-most universals are related to
A-abstraction.

F3zVy [t =81 A ... Aty = 84
if and only if

While a prefix can be simplified by having
Skolemization introduce new constants of higher-
type, prefixes can also be simplified by introducing
new variables of higher-type.

= ‘v’:cEly‘v’z.P‘(m, Y, 2)
if and only if

F 3hVzVz.P(z, h(x), 2)

This approach is used in LP2.7. See [15] for
complete description and correctness proofs.
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Explicit Prefix as a Constraint

Consider quantified sequents for representing
current states with free varialbes. The free
variables are existentially quantified while members
of the signature are universally quantified. The
position of an existential quantifiers in the prefix
determines which constants can appear in the
substitution term for the existentially quantified
variable.

For example,
Ve yVz Ju (P — G)

describes a state with signature {x, 2z} and where
the logical variable y can be instantiated with a
term from H({z}) and the logical variable u can be
instantiated with a term from H({z, z}).

INSTANCE and BACKCHAIN add 3-quantifiers
to the prefix.

GENERIC adds V-quantifiers to the prefix.

This approach is used in eLP. See [15] for complete
description and correctness proofs.

asflp/4/deter
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Formulas That Are Both Program Clauses

and Goal Formulas

Theorem: If M is both a program clause and
a goal formula then I' o M A G if and only if
I'ko M A[M DG

Such formulas can be stored after being proved
to hold. Such storing does not make new goals
provable. Instead it possibly provides shorter
proofs for existing provable goals.

The core of an abstract logic programming
language (£, D, G,FR) is the intersection, DU G.

The core of (extended) fohh is
M::’A|M3A|M1/\M2 |V$M,

where the universal quantification is strictly first-
order. This is the fragment of fohh that does not
contain occurrences of disjunctions of existential
quantifiers. It contains fohc.

The core for fohc is simply the set of closed atomic

formulas.

Extension Tables

We use the very simple example of the Fibonacci
program to illustrate how implicational goals can
be used to build “scoped extension tables.”

fib(0,0).

fib(1,1).

fib(N,F) :- N1 is N-1, N2 is N-2, fib(N1,F1),
fib(N2,F2), F is F1+F2.

fib(N,M) :-
memo(0,0) => memo(1,1) => fiba(N,M,2).
fiba(N,M,I) :- memo(N,M).
fiba(N,M,I) :-
N1 is I-1, N2 is I-2, memo(N1,F1),
memo (N2,F2), F is F1+F2, I1 is I+1,
memo(I,F) => fiba(N,M,I1).
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Example of Lexical Scoping

reverse L K :- pi Rev\ (
(pi L\ © (Rev [ L 1),
pi X\pi L\pi K\pi M\(Rev [XIL] K M :-
Rev L K [XIM]))
=> Rev L K [1)

reverse L K :- pi Rev\ (
( (Rev []1 K),
pi X\ pi L\ pi M\(Rev [X|L] M :-
Rev L [XIMI))
=> Rev L [1)

Implementing Fail and Succeed

How do we implement the predicate fail that is
never provable? One way is to have the program
for fail be empty.

In this dynamic logic (fohh), a programmer may
add to the current program clauses that add
meaning to fail.

The goal
Vp.p
will always fail: it picks a new predicate name,

that is, it is guaranteed to have no program clauses
defining it, and then a proof for it is attempted.

Similarly, how do you implement the predicate
succeed which is to succeed exactly once?

The goal
Vp.pDp

will succeed exactly once.
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Minimal Logic Negation

Pick L as a special non-logical constant.
Expressions of the form A D1 will be read as - A.

p(a) Ap(b) DL
p(a)
7— p(b)
?7— p(b) DL

p(a) Ap(b) DL
p(a)
p(b)
7— p(c)

See [13] and [12] for more on this kind of negation.
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A Simple Database Example

enrolled(jane,102).
enrolled(bill,100).
1l :- enrolled(X,101),enrolled(X,102).

db :- read(Command), do(Command), db.
do(enter(Fact)) :- Fact => db.
do(retract) :- fail.
do(commit) :- repeat.
do(check(Query)) :-

(Query, write(yes), nl,!;

Query => 1, write(no),nl,!;

write(’no, but it could be true’),nl).

do(consis) :- (not L, write(yes),!;
write(no)), nl.

7- db.

?- check(enrolled(jane,102)).
yes

?- check(enrolled(jane,101)).
no

7- check(enrolled(bill,101)).

no, but it could be true
?—
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Reimplementing Consult | Modules

module ModuleName.
Let classify, scanner, misc be the name of files Declarations of operators, types, modes, etc.
containing Prolog code. Collection of clauses

Consider solving the goal
For example,

misc => ((classify => (G1, scanner => G2)),

G3). module lists.

append ([],X,X).
append([U|L],X,[UIM]) :- append(L,X,M).
member (X, [X|L]) :- 1.

member (X, [Y|L]) :- member(X,L).
o G2 from misc, classify, and scanner, and memb (X, [XIL]).

memb (X, [YIL]) :- memb(X,L).

An interpreter will need to consider showing

o G1 from misc and classify,

o G3 from misc.

“New” code becomes accessible and disappears in a

stack-disciplined fashion.
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Parametric Modules

module sort(Order).
 bsort(L1,L2) :-
‘ append(Sorted, [Big,Small|Rest],L1),

Order(Big,Small),
!

append(Sorted, [Small,Big|Rest],L3),
bsort(L3,L2).

bsort(L1,L1).
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Combining Modules

?- lists => sort(<) => bsort([3,2,1],X)
lists, sort(<) ?- bsort([3,2,1],X)

module sort(Order).
bsort(L1,L2) :-
(lists =>
(append(Sorted, [Big,Small|Rest],L1),

Order(Big,Small),

] .
’

append(Sorted, [Small,Big|Rest],L3),

bsort(L3,L2)
).
bsort(L1,L1).
asflp/5/modules Miller/September 1988 V-10




Importing Modules Programs as Possible Worlds

Fix the signature ¥ and assume that universal

| module My module Mz (z) |module Ma(y, 2) quantifiers are removed from all goals and the

| | import M; Ma(y) body of programs. .

| Py Pa() | P3(2) o Let W be the set of all programs. This set will
be used as the set of possible worlds.

For each clause of the form o A function I from W to a subset of H(X) is
" an interpretation if
Vo (G D A)
Vwy, we € W[wy C wy D I(wy) C I(ws)].
in P3 replace it with one of the form
| o (W,C,I) is a Kripke model.
o Define each of the following for interpretations
Il and [2.

Vi ((My A Ma(y)) D G) D A)

See [13] and [12] for several examples of using this
form of importing. L E I :=VYw e W[h(w) C Ix(w)]

(Il L IQ)('U)) = Il(w) U IQ(’U))
(I N L) (w) = I (w) N Iy(w)

o The set of interpretations is a complete lattice
under L.

o The minimal interpretation is I, where
I (w)=0for all w e W.
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A Continuous Operator on Interpretations

Define I, w H= G as follows:
o I,wH=T.
ILwh=Aif A€ I(w).

o

o

o

I,’LUH:Gl\/GQ ifI,wH=G1 or I,’LUH‘—‘GQ.
Lwh=DD>Gif ,Lwu{D} K= G.

Q

Define T as a mapping from interpretation to
interpretations as follows:

T(I)(w):={A|if A€ [w]gor G D A € [w]y
and I, w b= G}

IL,wH= G AGs if I,w f= Gy and I, w H= Gs.

Kripke-model Fixed Point

The least fixed point of T is
TOO(I_L) = T(I_L) L TZ(I_L) L T3(I_j_) Li...
and has the following properties:

Theorem: If P is a program and G is a goal
formula, then P +; G if and only if T°°(11),P K=
G. (See [13] and [12].)

Theorem: If G is a goal formula and by G then G

is true in 7°°(I ) in the usual Kripke model sense
(replace = with |=).
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A Mechanism for Abstract Datatypes Stacks as Abstract Datatypes
Consider solving the goal Let stack stand for the following expression:

dz Vy (D(y) D G(z)). Jdempty Jstk [ emptystack(empty) A
VsV (push(z, s, stk(z, s))) A

o Substitution terms determined for x cannot VsVz(pop(z, stk(z, 5), s))]

contain the constant introduced for y.

o V provides a means for hiding data in modules. ?7—  3z(stack O y[G(z,y)])
?— Jdz(stac ;

Allow existential quantifiers around program
clauses. Such existential quantifiers are interpreted

as follows: ?— dz Vempty Vstk (stack’ D Fy[G(z,y)])
(3x D) D G = Vz (D D G)

provided z is not bound in G (otherwise, rename x
first).

This is intuitionistically (hence, classically) valid.
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Module Deﬁnition for Stackes

module stack.

kind stack type -> type.

type empty (stack A) -> o.

type pop A -> (stack A) -> (stack A) -> o.
type push A -> (stack A) -> (stack A) -> o.

local emp (stack A).
local stk A -> (stack A) -> (stack A).

empty emp.
pop X S (stk X S).
push X (stk X S) S.
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Binary Trees As an Abstract Data Types

module btreesort Order.

import lists.

local insert int -> bt -> o.

local traverse btree -> list int -> o.
local root bt.

local bt int -> bt -> bt -> bt.
local build list int -> bt -> o.

type btsort 1list int -> list int -> o.

btsort L K :- build L Bt, traverse Bt K.

build [] T.
build [N|L] T :- insert N T, build L T.

insert N (bt M T S) :- N=M, !.

insert N (bt M T S) :- Order N M, !,
insert N T.

insert N (bt M S T) :- insert N T.

traverse root [].

traverse (bt N Left Right) L :-
traverse Left K, traverse Right J,
append K [N[J] L.
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Another Way to Connect Modules

module modl.

H QO 'O
b4 D4 D
<
N
I

module mod2.

pXY :-pip\pig\pir\
(modl =>p X Y).
t XY :- pip\ pigq\ pir\
(modl => q (£ X) [0 V).
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Encapsulating State

nodule accounts.

type print_amt ,account
type wd_money account
type add_money account

type make_account account

nake_account Acc Amt G :-
( (Reg Amt), .

->

o -> 0.

-> int -> o -> o.
-=> int -> o -> o.
-> int -> o —-> o.

pi Reg\ (

(pi Inc\ (pi H\ (pi Tmp\
(add_money Acc Inc H :
Reg Val, Tmp is (Val + Inc),

Reg Tmp => H) ))),

(pi Dec\ (pi H\ (pi Tmp\
(wd_money Acc Dec H :-
Reg Val, Tmp is (Val - Dec),

Reg Tmp => H) ))),
(pi Acc\ (pi H\ (pi Val\

(print_amt Acc H :

Reg Val, write Val, nl, H)))))

=> G).

asflp/5/abs Miller/September 1988
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Encapsulating State (continued)

type transactions o.
type quit o -> o.

transactions :- write ">>- ",
read Entry, ( Entry = quit, !;
Entry transactions).

?7- transactions.

>>- make_account john 10.
>>- add_money john 5.

>>- print_amt john.

15

>>- wd_money john 14..
>>- print_amt john.

1

>>- quit.

?_

A Need for Embedded Implications

Assume that the binary relation compare is defined

in the module compound.

?- compmod => btreesort compare =>
btree [3,1,5] L.
?7- btreesort (X\Y\(compmod=>compare X Y))
=> btree [3,1,5] L.
?- write "Enter an order relation",
read Order, '
btreesort Order => btree [3,1,5] L,

write L.

For more on how to get thes program-level
abstractions out of (extended) fohh see [14].
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How Can Hereditary Harrop Formulas be

Made Higher-Order?

This question can loosely be phrased as “Can
program-level abstraction can be reflected into

terms?” In particular, can modules be embedded

inside terms?

There seem to be two general approaches to
answering this question.

Dynamic This approach permits such full

reflection. Serious kinds of run time

. errors, however, can occur. The

language is very strong since it contains

a kind of eval or apply operator.

Static This approach restricts such reflection.
As a result, we can prove the that the

resulting language has no run time
errors. This conservative approach,
however, disallows many sensible
computations.

T'his dichotomy, which is illustrated on the
following slides, can be dealt with as follows:

o Implement the Dynamic language.

o Prove theorems about the Static language.
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The Dynamic Approach

Let A denote atomic formulas of the form

(Pt ... ty)
where
P is a non-logical constant or variable, and
t; is a simply typed A-term perhaps with

embedded A, V, D, d, and V.
Let G and D be the G- and D-formulas given by
Gu:=A|G1VGy |G1ANGy |G| DDG|Vz G

DZ:ZAlG:)AIV:EDIDl/\DQ
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Strengths of the Dynamic Language

Permits predicates substitutions to carry around
their own code.

7- btreesort X\Y\(compmod => compare X Y)
=> btree [3,1,5] L. -

After computing a term that denotes a program,
make it into an available program.

?7- transform Spec Prog, Prog => G.

Reflection makes meta-interpreters very simple.

tl :- nl, read Command, do Command.
do quit. |
do (enter Prog) :- Prog => tl.
do (solve Goal) :- (Goal, !, write "Yes";
write "No" ),
tl.
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Problems with the Dynamic Language

With negatively occurring predicate variables in
goal formulas, it is not possible to guarantee that
the current program is always a subset of D. For
example, in the goal,

7?- transform Spec Prog, Prog => G.

transform could output a formula with a top-level
disjunct.

More seriously, some intuitionistic provable
goals formulas do not have uniform proofs. The
following such goal (in the dynamic language) is
due to Pfenning.

JQ[VpVq[R(p D q) D R(Qpg)] A Q(t V s)(s V 1)].

Here R is a constant of type o — o0, s and ¢
are constants of type o, ) is a variable of type
o — 0 — o, and p and ¢ are constants of type
0.

The only substitution term for @ is AzAy(z D v).
Any proof of this goal must contain within it a
proof of the sequent t Vs — sVit.

The Static Language:
Higher-Order Hereditary Harrop Formulas

Let A denote atomic formulas of the form

(Pt ... ty)
where
P is a nonlogical constant or variable, and
t; is a simply typed A-term perhaps with

embedded A, V, 3, and V (no D).

Let A, denote such a formula where P is a
nonlogical constant. These are called rigid atoms.

Let G and D be the G- and D-formulas given by
Gu:=A|GiVGy |G1ANGy |z G| DDG |V G

D:=A,|GDA, |YeD| DA D,

Then hohh = (7, D, G,};), where
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T denotes our higher-order logic, and
Fr denotes intuitionistic provability.
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A Meta Interpreter

module interpreter.
import lists.

type interp (list o) -> o -> o.
type instan o -> o -> o.

interp Cl true.
interp C1 (Gl , G2) :-
interp C1 G1 , interp Cl G2.
interp C1 (Gl ; G2) :-
interp C1 G1 ; interp Cl G2.
interp C1 (D => G) :- interp [D|C1].G.
interp C1 (sigma G) :-
sigma T\ (interp Cl (G T)).
interp C1 (pi G) :-
pi X\ (interp Cl (G X)).
interp C1 A :-
memb Clause Cl, instan Clause Inst,
( Inst = A ; Inst = (A :- G),
interp C1 G ).

instan (pi P) C :- instan (P T) C.
instan C C.

Why This Interpreter Does Not
Interpret Itself

The clauses which involve “internal quantifiers”
are polymorphic. That is, the quantification is over
variables of unspecified type.

Consider the instan predicate.

instan (forall P)_C :— instan (P T) C.
instan C C.

There is an implicit universal quantification of a
type variable for the type of T in the first clause. If
this program is made into a list of clauses, say

[pi C\(pi P\ (instan (forall P) C :-
instan (P T) C)),
pi C\ (instan C C)],

to be fed to interp, then this implicit type
quantification is lost. It is instead existentially
quantified by being made a free type variable.
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Specifying the Formulas of an Object Logic

The following module provides the signature for

formulas of a first-order logic.

module logic.

infix
infix
infix

kind
kind

type
type
type
type
type
type
type

110 and xfy.
110 or xfy.
120 imp xfy.
i type.
bool type.
and bool -> bool -> bool.
or bool -> bool -> bool.

imp bool -> bool -> bool.

neg bool -> bool.

forall (i -> bool) -> bool.
exists (i -> bool) -> bool.
false bool.

The formula Vz Jy (p(y) D p(z)) is written as the

term

forall X\ (exists Y\ (p X imp p Y)).

asflp/6/logic Miller/September 1988
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Negation Normal: Propositional Part

Negation normal formulas are those first-order
formulas in which negations have atomic scope.

module nnf.
import logic.

type nnf bool -> bool -> o.

nnf (A and B) (C and D) :-
nnf A C, nnf B D.
nnf (A or B) (C or D) :-
nnf A C, nnf B D.
nnf (A imp B) (C or D) :-
nnf (neg A) C, nnf B D.
nnf (neg (neg A)) B :-
nnf A B. '
nnf (neg (A and B)) (C or D)

nnf (neg A) C, nnf (neg B) D.

nnf (neg (A or B)) (C and D)

nnf (neg A) C, nnf (neg B) D.

nnf (neg (A imp B)) (C and D)
nnf A C, nnf (neg B) D.
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Negation Normal: Quantificational Part

nnf (forall A) (forall B) :-
pi X\ (anf (A X) (B X)).
nnf (exists A) (exists B) :-
pi X\ (onf (A X) (B X)).
nnf (neg (forall A)) (exists B) :-
pi X\ (anf (neg (A X)) (B X)).
nnf (neg (exists A)) (forall B) :-
pi X\ (anf (neg (A X)) (B X)).

nnf A A.
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Specifying Inference Rules

type proof sequent -> prf -> o.
type --> (1list bool) -> bool -> sequent.
infix 100 --> xfy.

r — A,B r — A,C
I' — A,BAC

A-R

type and_r prf -> prf -> prf.

proof (Gamma --> (A and B)) (and_r P1 P2) :-
proof (Gamma --> A) P1,
proof (Gamma --> B) P2.
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Specifying Inference Rules (continued)

T — A,B I — A,C

V-R V-R
I — A,BvVC r — A BvC

proof (Gamma --> (A or B)) (or_r P) :-
proof (Gamma --> A) P;
proof (Gamma --> B) P.

I [z/t]P — ©
'Vt P — ©

T 0, [z/P
V.L — Sl/ap o

' — ©,dz P

proof (Gamma —--> (exists A)) (exists_r P) :-
proof (Gamma --> (A T)) P.

' — O,Vz P

proof (Gamma --> (forall A)) (forall_r P) :-
pi T\ (proof (Gamma --> (A T)) (P T)).

type forall_r (i -> prf) -> prf

asflp/6/inf Miller /September 1988 VI-12

A B
ANB

proof (A and B) (and_i P1 P2) :

Natural Deduction Rules

N—1

[2/04 L

l=/yl4

dxr A Vz A

proof A P1,
proof B P2..

proof (A or B) (or_i P) :-
proof A P; preof B P.

proof (exists A) (exists_i P) :

proof (A T) P.

proof (forall A) (forall_i P) :

pi T\ (proof (A T) (P T)).

I

asflp/6/inf

Miller/September 1988

VI1-13



Specifying the Discharge of Assumptions

(4)

proof (A imp B) (imp_i P) :-
pi PA\ ((proof A PA) =>
(proof B (P PA))).
type imp_i (prf -> prf) -> prf.

Inference Rules As Tactics
Atomic Goals
type pgoal sequent -> prf -> goalexp.
(pgoal (Gamma --> A) P)

r — A,B Ir — AC
I — A,BAC

NA-R

proof (Gamma --> (A and B)) (and_r P1 P2)
proof (Gamma --> A) P1,
proof (Gamma --> B) P2.

and_r_tac (pgoal (A and B) (and_i P1 P2))
(andgoal (pgoal A P1)
(pgoal B P2)).

asflp/6/inf
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Inference Rules As Tactics (continued)

r.3zP — ©

J-L

exists_1_tac
(pgoal (Gammal --> A) (exists_i P))
(allgoal X\ (pgoal ([(B X)|Gamma2] --> A)
(P X)))

memb_and_rest (exists B) Gammal GammaZ2.

A Goal Reduction Tactical

type truegoal goalexp.
type andgoal goalexp -> goalexp ->
goalexp.
type allgoal (A -> goalexp) -> goalexp.
type maptac  (goalexp -> goalexp -> o) ->
(goalexp -> goalexp -> o) -> o.

maptac Tac truegoal truegoal.

maptac Tac (andgoal InGoall InGoal2)
(andgoal OutGoall OQutGoal2) :-
maptac Tac InGoall OutGoall,
maptac Tac InGoal2 OutGoal2.

maptac Tac (allgoal InGoal)
(allgoal OutGoal) :-
pi T\ (maptac Tac (InGoal T) (OutGoal T)).

maptac Tac InGoal OutGoal :-
Tac InGoal OutGoal.
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Tacticals

then Tacl Tac2 InGoal OutGoal :-
Tacl InGoal MidGoal,
maptac Tac2 MidGoal OutGoal.

orelse Tacl Tac2 InGoal OutGoal :-
Tac1 InGoal OutGoal;
Tac2 InGoal OutGoal.
idtac Goal Goal.
repeat Tac InGoal OutGoal :-
orelse (then Tac (repeat Tac))
idtac InGoal OutGoal.

try Tac InGoal OutGoal :-

orelse Tac idtac InGoal OutGoal.

complete Tac InGoal truegoal :-
Tac InGoal OutGoal,
goalred OutGoal truegoal.

- Simplifying Some Goal Expressions

goalred (andgoal truegoal Goal) OutGoal :
goalred Goal OutGoal.

goalred (andgoal Goal truegoal) QOutGoal :
goalred Goal QOutGoal.

goalred (allgoal T\ truegoal) truegoal.

goalred Goal Goal.
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Interactive Theorem Proving

query (pgoal A P) OutGoal :-
write A, write "Enter tactic:", read Tac,
Tac (pgoal A P) OutGoal.

interactive InGoal OutGoal :-
repeat query InGoal OutGoal.

and_e_query (pgoal C PC)
(impgoal (proof A (and_el P))
(impgoal (proof B (and_e2 P))
(pgoal C PC))) :-
memo (hyp (A and B) P),
write "Eliminate this conjunction?",
write (A and B),
read "yes'".

For more examples on building theorem provers in
this fashion, see Felty and Miller [4].

The Copy Verification Program

The goal

?- copy_ver Tacs Copy In Out

attempts to repeatly copy the goal structure in
Copy onto the goal In to get the goal Out. Tacs
provides the methods for decomposing Copy.

copy_ver Tacs (andgoal C1 C2)
(andgoal Il I2) Out :-
copy_ver Tacs C1 I1 01,
copy_ver Tacs C2 I2 02,
goalred (andgoal 01 02) Out.

copy_ver Tacs (allgoal C) (allgoal I) Out :-
pi T\(copy_ver Tacs (CT) (I T) (0 T)),
goalred (allgoal 0) Out.

copy_ver Tacs Copy In Out :-
memb Tac Tacs,
Tac Copy NewC, Tac In Mid,
maptac (copy_ver Tacs NewC) Mid Out.

copy_ver Tacs Copy Goal Goal.
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