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The sequent calculus

I assume everyone here is familiar with Gentzen’s LJ and LK
sequents. I mention only some highlights.
• Gentzen used lists as the left and right contexts. He also used

the exchange rule.
• In this talk, contexts will be either multisets or lists: exchange

is never used.
• Proofs without cuts are analytic (involving only subformulas):

there are no cut-free proofs of false.
• Introducing the cut rule meant that all of first-order logic was

captured. Cut-elimination was a kind of completeness result:
analytic proofs were sufficient.



Unity of logic

LJ proofs are LK proofs in which the right hand side has at most
one formula.

Gentzen’s sequent calculus work was an early attempt at a “unity
of logic”. Making structural rules explicit—especially on the
right—is critical.

Girard’s linear logic makes structural rules also explicit on the left.

Sequent calculus is an appealing tool to study proof theory and
computational logic since it captures and relates these three logics.



Applications of sequent calculus

Besides cut-elimination and the consistency of classical and
intuitionistic logics, sequent calculus has been used in:

Proof theory

I Herbrand’s theorem

I Midsequent theorem

I Interpolation

I Negative translations

Computer Science

I foundations for logic programming:

I explicit substitutions in the λ-calculus

I syntactic correctness of Skolemization

I etc.



However: Sequent calculus proofs are chaotic, painful, etc

Sequent calculus proofs are formless.

Any structure they might contain about a proof needs to be pulled
out by extensive inference-rule permutation arguments.

It is common to say that
• a sequent calculus proof is a computation of a proof while
• a natural deduction proof is the actual proof.

We can be more sophisticated than that in this talk.



Permutation of inference rules illustrated

Let Γ be a multiset of 998 formulas and consider searching for a
proof of the sequent Γ,B1 ∨ B2,C1 ∧ C2 ` A.

There are 1000 choices for the left introduction rule to attempt
this proof and the resulting premises can be attempted using 1000
left-introduction rules.

For example,

Γ,B1,C1,C2 ` A

Γ,B1,C1 ∧ C2 ` A
∧L

Γ,B2,C1,C2 ` A

Γ,B2,C1 ∧ C2 ` A
∧L

Γ,B1 ∨ B2,C1 ∧ C2 ` A
∨L

is one is about a million choices.
• Another choice switches the order of ∨L and ∧L: that switch is
not important.
• Also these two inference rules are invertible and can be applied

automatically; without needing to reconsider them.



Problems with the sequent calculus

Inference rules in the sequent calculus are
• too tiny,
• too independent from each other, and
• not the right inference rules is many settings.

For example, it is more common to need inference rules such as
one of the following pairs of rules.

Γ ` adj x y

Γ ` path x y

Γ ` path x z Γ ` path z y

Γ ` path x y

Γ, adj x y , path x y ` A

Γ, adj x y ` A

Γ, path x z , path z y , path x y ` A

Γ, path x z , path z y ` A

NB: these inference rules mention no occurrences of logical
connectives.



A better perspective on sequent calculus proofs

Describe this situation to a computer scientist and he will say

Give sequent calculus the distinguished role of assembly
language for proof systems. Our job is to compile a wide
range of inference rules into that assembly language.

Describe this situation to a proof theorist and she will say

We need to develop an approach to synthetic inference
rules.

Hopefully,
• the results from both perspectives formally yields the same

thing, and
• the good properties (e.g., cut-elimination) also hold for the

higher-level proof systems.



Main ingredients in focused proof systems

• Specific control on weakening and contraction
• Additive and multiplicative distinctions for some inference rules

becomes apparent (and we want both).

Γ ` B1 Γ ` B2

Γ ` B1 ∧ B2
additive vs multiplicative

Γ1 ` B1 Γ2 ` B2

Γ1, Γ2 ` B1 ∧ B2

• Identify and always apply invertible introduction rules.
• The non-invertible rules can consume external information.

Chain these rules one after another.

Γ ` Bi

Γ ` B0 ∨ B1
needs a bit from an oracle

The first focused proof system with these ingredients was given by
Andreoli in JLC, 1992.



Polarization terminology: an apology

• invertible — asynchronous — negative — ⇑
• non-invertible — synchronous — positive — ⇓

Do not confuse with “negative occurrence” and “positive
occurrence”.

In linear logic, the de Morgan dual of an asynchronous connective
is a synchronous connective.

In classical and intuitionistic logic, the polarized connectives are
the following:
• positive: ∃, ∧+, t+, ∨+, f +,
• negative: ∀, ∧−, t−,
• In classical logic: ∨−, f −,
• In intuitionistic logic: ⊃,



Even atomic formulas are polarized

Γ ` a Γ, b ` G

Γ, a ⊃ b ` G
where a, b are atoms

Negative protocol: The right branch is trivial; i.e., b = G .
Continue with Γ ` a (backward chaining).
Positive protocol: The left branch is trivial; i.e., Γ = Γ′, a.
Continue with Γ′, a, b ` G (forward chaining).

Let Γ contain fib(0, 0), fib(1, 1), and

∀n∀f ∀f ′[fib(n, f ) ⊃ fib(n + 1, f ′) ⊃ fib(n + 2, f + f ′)].

The nth Fibonacci number is F iff Γ ` fib(n,F ).

Negative protocol: the unique proof is exponential in n.
Positive protocol: the shortest proof is linear in n.



LJF: Two kinds of focused sequent

⇓ sequents, used to specify the formula under focus

Γ ⇓ B ` E with a left focus on B
Γ ` B ⇓ with a right focus on B

If such a sequent is the conclusion of an introduction rule, then
that rule introduced B.

⇑ sequents used with invertible introduction rules

Γ ⇑Θ ` ∆1 ⇑∆2

The multiset union of ∆1 and ∆2 contains at most one formula.
The two zones Θ and ∆1 are treated as lists: if the zone Θ is
non-empty, introduce the first member of Θ; otherwise introduce
the first member of ∆1.

The sequent Γ ⇑ · ` · ⇑∆ is called a border sequent.



LJF: Asynchronous Introduction Rules

Γ ⇑ B1 ` B2 ⇑
Γ ⇑ · ` B1 ⊃ B2 ⇑

Γ ⇑ · ` B1 ⇑ Γ ⇑ · ` B2 ⇑
Γ ⇑ · ` B1 ∧− B2 ⇑ Γ ⇑ · ` t− ⇑

Γ ⇑Θ, f + ` ∆1 ⇑∆2

Γ ⇑Θ,B1 ` ∆1 ⇑∆2 Γ ⇑Θ,B2 ` ∆1 ⇑∆2

Γ ⇑Θ,B1 ∨+ B2 ` ∆1 ⇑∆2

Γ ⇑Θ,B1,B2 ` ∆1 ⇑∆2

Γ ⇑Θ,B1 ∧+ B2 ` ∆1 ⇑∆2

Γ ⇑Θ ` ∆1 ⇑∆2

Γ ⇑Θ, t+ ` ∆1 ⇑∆2

Γ ⇑ · ` [y/x ]B ⇑
Γ ⇑ · ` ∀x .B ⇑ †

Γ ⇑Θ, [y/x ]B ` ∆1 ⇑∆2

Γ ⇑Θ, ∃x .B ` ∆1 ⇑∆2
†

Here, Γ and ∆2 ranges over multisets of polarized formulas,
Θ and ∆1 ranges over lists of polarized formulas

† The usual eigenvariable restriction applies to y .



LJF: Synchronous Introduction Rules

Γ ⇓ [t/x ]B ` E

Γ ⇓ ∀x .B ` E

Γ ` [t/x ]B ⇓
Γ ` ∃x .B ⇓

Γ ` Bi ⇓
Γ ` B1 ∨+ B2 ⇓

Γ ⇓ Bi ` E

Γ ⇓ B1 ∧− B2 ` E
i ∈ {1, 2}

Γ ` B1 ⇓ Γ ⇓ B2 ` E

Γ ⇓ B1 ⊃ B2 ` E

Γ ` t+ ⇓
‡ Γ ` B1 ⇓ Γ ` B2 ⇓

Γ ` B1 ∧+ B2 ⇓

Here, E denotes either a positive formula or a negative atom.



LJF: Identity rules and Structural rules

Initial: N atomic
Γ ⇓ N ` N

Il
P atomic

Γ,P ` P ⇓ Ir

Cut: Γ ⇑ · ` B ⇑ · Γ ⇑ B ` · ⇑ E

Γ ⇑ · ` · ⇑ E
Cut

Decide: Γ,N ⇓ N ` E

Γ,N ⇑ · ` · ⇑ E
Dl

Γ ` P ⇓
Γ ⇑ · ` · ⇑ P

Dr

Release: Γ ⇑ P ` · ⇑ E

Γ ⇓ P ` E
Rl

Γ ⇑ · ` N ⇑ ·
Γ ` N ⇓ Rr

Store: Γ,C ⇑Θ ` ∆1 ⇑∆2

Γ ⇑Θ,C ` ∆1 ⇑∆2
Sl

Γ ⇑ · ` · ⇑ E

Γ ⇑ · ` E ⇑ · Sr

Here, P is a positive formula; N is a negative formula; C is either a
negative formula or a positive atom; E is either a positive formula
or a negative atom; and B is an unrestricted polarized formula.



How to polarize a formula

• atomic formulas are labeled either “positive” or “negative”
• replace all occurrences of true with either t+ or t− and of

conjunction with either ∧+ or ∧−. (If there are n occurrences of
truth and conjunction in B, there are 2n ways to do this
replacement.)
• rename false and disjunction as f + and ∨+

positive connectives are f +, ∨+, t+, ∧+, and ∃
negative connectives are t−, ∧−, ⊃, and ∀.

A formula is positive if it is a positive atom or has a top-level
positive connective; a formula is negative if it is a negative atom or
has a top-level negative connective.



Formal results about LJF

Theorem: Let B be a first-order intuitionistic logic formula.
• If ` B then for every polarization B̂ of B, · ⇑ · ` B̂ ⇑ ·.
• If B̂ is a polarized version of B and · ⇑ · ` B̂ ⇑ ·, then ` B.

Proof: See Liang & M [TCS 2009]. Based on linear logic.

Polarization does not affect provability but can make a big impact
on the structure of proofs.

LJF generalizes the MJ sequent system of J. M. Howe’s 1998 PhD.
The completeness of LJF yields the completeness:
• LJT [Herbelin’s PhD, 1995]
• LJQ/LJQ’ [Dyckhoff & Lengrand, CiE, 2006]
• λRCC [Jagadeesan, Nadathur & Saraswat, 2005, FSTTCS]
• LKF, a focused proof system for classical logic



Synthetic rules

Synthetic rules result from looking only at border sequents. That
is, a synthetic rule is built from a collect of focused rules in which
the conclusion and the premises are border sequents.

. . . Γi ⇑ · ` · ⇑∆i . . .
. . . ⇑ . . .

. . .
... . . .

. . . ⇓ . . .

Γ ⇑ · ` · ⇑∆
decide

The corresponding synthetic rule is of the form

. . . Γi ` ∆i . . .

Γ ` ∆

Of course, the polarized formulas here need to be replaced by their
corresponding unpolarized form.



Geometric formulas

∀z(P1 ∧ . . . ∧ Pm ⊃

(∃x1(Q11 ∧ . . . ∧ Q1k1) ∨ . . . ∨ ∃xn(Qn1 ∧ . . . ∧ Qnkn)))

This geometric formula can be polarized in LJF as

∀z(P1 ∧+ . . . ∧+ Pm ⊃

(∃x1(Q11 ∧+ . . . ∧+ Q1k1) ∨+ . . . ∨+ ∃xn(Qn1 ∧+ . . . ∧+ Qnkn)))

Here, Pi and Qjk are relational atoms.
This polarized formula is a bipole: outermost negative connectives
around positive formulas. The resulting synthetic rule:

Q1(y1/x1),P, Γ ` ∆ . . . Qn(yn/xn),P, Γ ` ∆

P, Γ ` ∆

See: S. Negri. Proof analysis in modal logic. J. Philos. Logic, 2005



Compiling modal logic proof systems
We can “compile” many modal logics inference rules faithfully.
[The following illustrates what is possible.]

xRy , Γ ` ∆, x : ♦A, y : A

xRy , Γ ` ∆, x : ♦A
R♦

where Γ′ = [Γ]∂
+

and ∆′ = [∆]∂
+

. Compiled this into LKF
inferences. These rule yield a synthetic rule.

` ¬Γ′,∆′, ∂+([♦A◦]x ) ⇓ R(x , y)
init

` ¬Γ′,∆′, ∂+([♦A◦]x ), [A◦]y
∂+
⇑ ·

` ¬Γ′,∆′, ∂+([♦A◦]x ) ⇑ [A◦]y
∂+

store

` ¬Γ′,∆′, ∂+([♦A◦]x ) ⇑ ∂−([A◦]y
∂+

)
∂−

` ¬Γ′,∆′, ∂+([♦A◦]x ) ⇓ ∂−([A◦]y
∂+

)
release

` ¬Γ′,∆′, ∂+([♦A◦]x ) ⇓ R(x , y) ∧+ ∂−([A◦]y
∂+

)
∧+

` ¬Γ′,∆′, ∂+([♦A◦]x ) ⇓ ∃y(R(x , y) ∧+ ∂−([A◦]y
∂+

))
∃

` ¬Γ′,∆′, ∂+([♦A◦]x ) ⇓ ∂+(∃y(R(x , y) ∧+ ∂−([A◦]y
∂+

)))
∂+

` ¬Γ′,∆′, ∂+([♦A◦]x ) ⇑ ·
decide

See papers by Marin, M, & Volpe in LPAR 2015, AiML 2016.



Delays: ∂+(B) and ∂−(B)

quantifiers additive multiplicative

∂+(B) ∃x .B f + ∨+ B t+ ∧+ B
∂−(B) ∀x .B t− ∧− B f − ∨− B or t+ ⊃ B

Here, x is not free in B.

It is natural to think of delays as 1-arty logical connectives just as
units are 0-ary logical connectives.

Delays are useful for shortening ⇑ and ⇓ phases.



Negative translations

LK −→ X -translation −→ LJ
↓ ↓

X -polarization fixed polarization
↓ ↓

LKF −→ fixed hosting mapping −→ LJF

Here X can be picked from the set

{ Gödel-Gentzen, Kuroda, Krivine, Kolmogorov}

The proof structures in LKF and LJF are essentially identical.

This suggests that negative translations are, in fact, not needed:
instead work inside LKF.

See HAL technical report by Chihani, Ilik, & M, March 2016.



Parallelism in proofs
Example:

D1 : (a ∧ b ⊃ c)
a, b, c `

a, b `

D2 : (a ∧ d ⊃ e)
a, d , e `

a, d `

D3 : (c ∧ d ⊃ g)
c , d , g `

c , d `
Γ, a, b, c , d , e, g ` E

Γ, a, b, c, d , e ` E
D3

Γ, a, b, c, d ` E
D2

Γ, a, b, d ` E
D1

But: D1 and D2 can be applied in the other order as well as in
parallel. It is possible to allow multifocusing: e.g.,

Γ, a, b, c , d , e ⇑ · ` · ⇑ E

Γ, a, b, d ⇓ D1,D2 ` E
various rules

Γ, a, b, d ⇑ · ` · ⇑ E
decide



Maximal multifocusing

The multifocus zone is treated linearly (no structural rules).

Soundness and completeness for multifocusing is trivial.
What meta-theorems can we expect about multifocusing?

(Informal) Definition: A maximal multifocused (MMF) proof is a
multifocusing proof where no decide rule can be permuted down
further in the proof.

Theorems:
• Proof nets in linear logic can be described as MMF in MALL.
• Expansion proofs in classical logic can be described as MMF in
LKF.

Thus, instead of treating parallelism by a revolutionary proof
system, we can evolve them by starting with sequent calculus.
See: Chaudhuri, Hetzl, & M, JLC, 2016; Chaudhuri, M, & Saurin
IFIP TCS 2008.



Related and future topics

Redo other standard proof theory results: after proving the
completeness of LJF and LKF, major permutations arguments
should disappear.

Focusing in Peano/Heyting arithmetics: µMALL, µLJF, µLKF (?).

Computer science applications:
• Proof certificates: these are “oracles” to proof checkers.

Focused proofs can structure the communications between
proof checkers and the certificate.
• Separation of computation (⇑ phase) and deduction (⇓ phase).
• The proof theory of model checking as µMALL (Heath & M,

JAR 2018).


