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New Language Designs 

Focus of this presentation. 



A Proof System for Linear Logic 

Here, A and r are multisets of proposi- 
tional formulas, and comma denotes mul- 
tiset union. 



A Proof Systems for Linear Logic (continued) 

Intuitionistic implication B > C is coded 
as !B-oC.  
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Proofs Involving Horn Clauses 

The search for a proof of !A A. re- 
duces to the search for proofs of 

!A A l  . . .  !A --t A,. 

The program (the left-hand side) stays the 
same; the goal (the right-hand side) has 
been reduced. 



Another Presentation of Horn Clauses 

Translate the syntax 

Ao:-A1,. . . 7 An (n 2 0) 
as the formula !V%[(A1 28 28 A,) -0 Ao]. 
In particular, if n = 0 then the translated 
formula is !VZ[I -0 Ao]. 

AO AO !A -+ Al, .  . . 9 A n , r  

!A,Ao A. !A --+ A128 * * -  q A , , r  

!A, (Al 28 * *  T A,) -0 A. -+ A o , r  

!A A o , r  
Such a reduction never ends in an initial se- 
quent: at best it ends in the sequent !A 
I. For the propositional calculus, the fol- 
lowing holds: the list of goal (GI, . . . , Gn) 
reduces via SLD-resolution to the list of goals 
( H  . . . , H )  if and only if 

!A, HI 38 Hm t- G1 28 2s Gn. 

In other words, goal reduction corresponds 
to implied-by. 



Multiple-Conclusion Horn Clauses 

Notice that goals in the list (GI) 9 Gn) do 
not interact with each other. 

If we admit clauses of the the form 

Vz[A1 T * * *  28 A, -0 B1 28 m e -  28 B,] 

then we can describe some interactions. 

When A1, . . . , A,, B1, . . . 7 Bm are atomic and 
m > 0, such clauses are multi-conclusion 
Horn clauses. 



INTER-SPACE INTERACTION 

Each space can broadcast (typed) waves 
to all surrounding spaces. . 

L "Thanks to J-M. Andreoli and R.. Pareschi for this and the follo~ving three slides." J 
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INTRA-SPACE INTERACTION 

LINEAR OBJECTS Informal Presentation 



INTRA-SPACE INTERACTION 

Characteristics 

Concurrent and Competitive 
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be 1 comes 

LINEAR OBJECTS Informal Presentation 



COMPUTING WITH MULTIPLE SPACES 

L 
LINEAR OBJECTS 

1C with 

a Space Creation: Operator & (cloning) 

I /  'OP 

a Space Termination: Operator T 

Informal Presentation 



CCS as an Example 

Now allow quantification over propositions. 
If P is a formula and a is a constant then 
a.P is a proposition and a.P. 

VaVPVQ [P 28 Q -0 a.P 28 a.Q] 
VPVQ [P -0 P + Q] 
VPVQ [Q -0 P + Q] 

VP [I -o!P] 
VP [!P 28 ! P-o! PI 

VP [P-o!P] 

Notice that 28 corresponds to parallel com- 
position I in CCS. 



Work on Multiple-Conclusion Clauses 

V ~ [ B o d y  -0 A1 28 28 A,] 

1. Andreoli & Pareschi have developed LO 
(Linear Objects) on multiple-conlcusion 
clauses. Body  may contain 28 , T, &. 

2. Miller has a presentation of CCS and 
the T-calculus using multiple-conclusion 
clauses. Body  may contain 9 ,l, V. 

3. Saraswat & Lincoln have considered a 
dual translation (using 8 instead of T ). 

4. See other papers in these proceedings. 

All of these systems propose a setting for 
addressing concurrency. 



Single-Conclusion Clauses 

The fragment of intuitionistic linear logic 
restricted to formulas freely generated by 

has been proposed by Hodas & Miller [In- 
formation and Computation, 19921 as a re- 
finement to the logic underlying XProlog 
(that logic is based on T , &, > , V) . Positive 
occurrences of CB, 3,@, ! ,1  can be admitted 
and described using the clauses 

VPVQ[P  -0 (P CB Q)] 
vPQQ[Q -O ( P  @ Q)I 
VBVT[(B T) -0 (M)] 

T * 1  
VPVQ[P -0 Q -O (P @ Q)] 

VP[P * !PI 

These rules describe the right-hand behav- 
ior of these connectives. 



Proof Rules for T,&, -0, >,V 

identity 
r ; A - A  r ;A--+T 

I?, B; A, B ---+ C 
absorb 
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A Proof System for the 1-0 Interpretation 



What is Logic Programming? 

Programs are collections of logical formulas 
(theories) . 
Computation is a search for cut-free proofs. 

Constract this to functional programming 
where programs are proofs and computa- 
tion is proof reduction (cut-elimination). 

Search for arbitary cut-free proofs, however, 
does not seem to capture the full spirit of 
logic programming. 

In logic programming languages, the "search 
semantics" of a logical connective in a goal 
is independent from its surrounding con- 
text, which are only relevant for proving 
atomic formulas. 



Formalizing Goal-Directed Search 

A cut-free sequent proof E is uniform if 

for every subproof XP of B and 

for every non-atomic formula occurrence 
B in the right-hand side of the endse- 
quent of Q, 

there is a proof q' that is 

equal to 9 up to permutation of infer- 
ence rules and 

is such that the last inference rule in !PIr' 
introduces the t op-level logical connec- 
tive occurring in B. 

The given logic and proof system is called 
an abstract logic programming language if a 
sequent has a proof if and only if it has a 
uniform proof. 
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A Brief Guide to Linear Logic 

A N D R E  SCEDROV* 

Department of Mathematics, University of Pennsylvania 

Philadelphia, PA 19104-6395, USA 

Abstract 

An overview of linear logic is given, including an extensive bibli- 
ography and a simple example of the close relationship between linear 
logic and computation. 

1 Overview 

Linear logic, introduced by Girard [41], is a refinement of classical logic. 
Linear logic is sometimes described as resource sensitive because it provides 
an intrinsic and natural accounting of resources. This is indicated by the 
fact that in linear logic, two assumptions of a formula A are distinguished 
from a single assumption of A. Informally, on the level of basic intuition, one 
might say that classical logic is about truth, that intuitionistic logic is about 
construction of proofs, and that linear logic is about process states, events, 
or resources, which must be carefully accounted for. 

A convenient way to present the syntax of linear logic is by modifying the 
traditional Gentzen-style sequent calculus axiomatization of classical logic, 

*andreQcis .upenn. edu. Research partially supported by NSF Grant CCR-91-02753 
and by ONR Grant N00014-92-J-1916. This is an updated version of the article that has 
originally appeared in the Bulletin of  the European Association for Theoretical Computer 
Science vol. 41, June, 1990, pp. 154-165 in the column "Logic in Computer Science" 
edited by Yuri Gurevich. This version will appear in a collection of articles published by 
World Scientific and edited by G. Rozenberg. 



which may be found in e.g., Girard et al. [49] or in Gallier [38]. The modifi- 
cation may be briefly described in three steps, bearing in mind that assump- 
tions are viewed as resources, and conclusions as requirements to be met by 
spending the given resources. In this reading the formula A i m p l i e s  A, for 
instance, means that the resource A is spent to meet the requirement A. This 
is an axiom in linear logic. 

The first step in presenting linear logic as a modification of classical logic is 
to remove two "structural" rules, contraction and weakening, which manipu- 
late the use of assumptions and conclusions in logical deductions. For expos- 
itory purposes let us concentrate on the treatment of assumptions. The con- 
traction rule states that if a property follows from two assumptions of a for- 
mula, then that property can be derived just from a single assumption of that 
formula. In effect, this means that any assumption, once stated, may then 
be reused as often as desired. For instance, the formula A i m p l i e s  (A and A) 
is derivable from contraction. The weakening rule makes it possible to form 
deductions that have dummy assumptions, i.e., weakening allows us to carry 
out a deduction without using all of the assumptions. For instance, the for- 
mula ( A  and B) i m p l i e s  A is derivable from weakening. Because contraction 
and weakening together make it possible to use an assumption as often or 
as little as desired, these rules are responsible for what one may see in hind- 
sight as a loss of control over resources in classical (and in intuitionistic) 
logic. This realization is the starting point of linear logic. Removing the 
rules of contraction and weakening produces a linear system in which each 
assumption must be used, nay, spent exactly once. In the resulting linear 
logic, formulas indicate finite resources that cannot necessarily be discarded 
or duplicated without effort. 

The second step in deriving linear logic involves the propositional connec- 
tives. Briefly, the removal of structural rules just mentioned leads naturally 
to two forms of conjunction, one called multiplicative and the other additive, 
and similarly to two forms of disjunction. A proof of the multiplicative con- 
junction as a conclusion forbids any sharing between the resources used to 
establish each conjunct, whereas the additive conjunction requires the shar- 
ing of all of the resources. We should mention that unlike this distinction 
between the two forms of conjunction and disjunction, the quantifier rules 
remain the same as in classical logic. 

The third step in the presentation of linear logic involves adding a kind 
of modality: a storage or reuse operator, ! . Intuitively, the assumption ! A  



provides unlimited use of the resource A. A computational metaphor that 
describes the meaning of !A quite well is that "the datum A is stored in 
the memory and may be referenced an unlimited number of times". There 
is also a dual modal operator,?, which is definable from ! using negation. 
Intuitively, while !A provides unlimited creation of A, the formula ?B allows 
the unlimited consumption of B. 

Because the basic framework remains linear, unbounded consumption or 
reuse is allowed "locally", only at formulas specifically marked with ? or 
! , respectively. In effect, the structural rules of contraction and weakening 
are replaced by the explicit logical rules about the modalities. The resulting 
logical system is remarkably natural and well-structured, and it brings logical 
form and content closer together. Linear logic also indicates a relationship 
between classical logic and intuitionistic logic that is more subtle than the 
standard negative interpretation, see Girard [45, 461. 

Detailed descriptions of linear logic rules may be found in, e.g., [41, 68, 
851. Let us mention that the nonmodal fragment of linear logic was antic- 
ipated by a calculus proposed by Lambek [62, 631, motivated by linguistic 
considerations of syntax of natural languages. 

A remarkable result of Lincoln and Winkler [71] shows that there is no 
simple minded truth table characterization of provability even for the mul- 
tiplicative fragment of linear logic, unless P = N P  (see below). In this sense 
semantics of linear logic is necessarily involved. Basic linear algebra construc- 
tions on finite dimensional vector spaces provide a first, naive interpretation 
of some of the linear logic connectives, much as the basic operations on sets 
provide an interpretation of the usual logical connectives. For instance, mul- 
tiplicative conjunction may be interpreted as tensor product of vector spaces 
and linear negation may be interpreted as the dual vector space. More subtle 
aspects of linear logic, however, originate in so-called coherence domains [41], 
which maintain a notion of finite basis and isomorphism with the double dual 
without imposing isomorphism with the dual. Indeed, an important turning 
point in the discovery of linear logic was Girard's insight that in coherence 
domains, function type A + B could be decomposed as !A-oB , where ! 
is the reuse operator mentioned above, and -o is linear implication, which 
provides the type of functions that "use" their argument exactly once. 

Similar phenomena had been previously observed by Blass in certain nat- 
ural set-theoretic operations on infinite games [23] and by Barr in so-called *- 
autonomous categories [16]. Both settings, in addition to coherent domains, 



are now understood to yield mathematical models for linear logic proofs, 
more precisely, for the relation " t is a linear logic proof of a formula A " 
[24, 84, 171. Other versions of game semantics are given by Abramsky and 
Jagadeesan [2] and by Lafont and Streicher [61]. Event spaces, which come 
about from Pratt's work in semantics of concurrency, also provide models for 
certain linear logic proofs [78]. Models investigated by de Paiva [35] are moti- 
vated by import ant proof- theoretic transformat ions. A mathematical model 
for the linear logic provability relation is given by phase spaces, discussed by 
Girard [41] and by Avron [14, 151. Kripke-style models are investigated by 
Allwein and Dunn [6]. 

A mathematical structure underlying linear logic proof reduction and 
normalization is provided by proof nets, introduced by Girard [41,42,47] and 
studied by Danos and Regnier [34], Blute [25, 261, and others. A significant 
insight into dynamic, operational semantics of linear logic proof reduction 
(cut elimination) is provided by geometry of interaction, proposed by Girard 
[43, 441; an exposition is in Danos [32]. Geometry of interaction is further 
investigated in the work of Danos [33], Regnier [79], Malacaria and Regnier 
[74], Abramsky and Jagadeesan [3], and Gonthier et al. [51, 521 (see below). 

Linear logic continues to be a very active field of research. Up-to-date 
developments are discussed on the electronic forum "Linear". One subscribes 
by sending an email message to linear-request@cs.stanford.edu. An introduc- 
tory description of linear logic is in Lincoln [65]. The first book on linear 
logic, by Troelstra [85], was published in 1992. It provides a valuable first 
reference for anyone interested in studying the subject. 

2 Computational Aspects 

Computer science ramifications of linear logic may be generally divided into 
two kinds. In what may be broadly called functional programming ramifi- 
cat ions (often involving certain aspects of concurrency), computation is seen 
as term reduction corresponding to proof reduction (cut elimination). On 
the other hand, in what may be broadly called logic programming ramifica- 
tions (again, often involving concurrency), computation is expressed by cut 
free proof search in certain linear logic theories. From the latter perspective, 
the cut elimination property is used simply to allow one to concentrate on 
cut free proofs without loss of generality. Certain permutabi l i ty  properties, 



which yield optimized presentations of cut free proofs play a central role in 
the proof search paradigm, see Lincoln [72], Andreoli (71. 

2. I Proof Reduction Paradigm 

The earliest work in this direction was Lafont's investigation of a functional 
programming language implementation in which garbage collection was re- 
placed by explicit duplication operations based on linear logic [59]. An- 
other possible application in functional programming is in optimization of 
copying in lazy functional programming language implementation ("single- 
threadedness"), studied by GuzmAn and Hudak [54]. Recent topics involve 
linear lambda calculus and memory allocation, investigated by Lincoln and 
Mitchell [66], Chirimar et al. [30], Wadler [86], Mackie [73], and Benton et 
al. [22]. 

A strong relationship of the multiplicative fragment of linear logic to Petri 
nets has been demonstrated by Gehlot and Gunter [53, 40, 391, Asperti et 
al. [ l l ,  131, Engberg and Winskel [37], Marti-Oliet and Meseguer [75], and 
Brown and Gurr [27]. Interpretations of linear logic proofs in concurrent 
paradigms such as the chemical abstract machine or Milner's x-calculus are 
given by Abramsky [l] and by Bellin and P.J. Scott [21]. With regard to 
concurrency, we also note a remarkable similarity between a programming 
paradigm based on proof nets and developed by Lafont [60] and connection 
graphs, which were designed by Bawden to model the massively parallel 
connection machine computations [18]. 

A modular setting for polynomial time computations can be given in a 
bounded linear logic, studied by Girard et al. [50]. In this system unlimited 
reuse is not allowed. Instead, bounded linear logic contains bounded or 
limited reuse operators. A bounded reuse operator of order n indicates that a 
datum is stored in the memory and may be referenced at most n times, where 
variable n is the bound. Proof-rules of the sequent calculus then naturally 
generate polynomial bounds. Bounded linear logic has polynomial t ime cut 
elimination. This system might serve as a basis for a modular calculus of 
efficient algorithms. 

Recent topics include the use of geometry of interaction by Gonthier et 
al. [51, 521 in a correctness proof for Lamping's graph reduction. ( A  com- 
panion reference is Asperti [12].) Lamping [64] discovered an optimal graph- 



reduction implementation of the lambda calculus, independently of Girard's 
work on geometry of interaction (see above). Gonthier et  al. show how the 
geometry of interaction provides a suitable semantic basis for explaining and 
improving Lamping's system. On the other hand, Gonthier et a!. show that 
graphs similar to Lamping's and related to Lafont's nets (see above) provide 
a concrete representation of the geometry of interaction. 

2.2 Proof Search Paradigm 

Linear logic is also related to computation in another way, namely, computa- 
tion may be expressed by cut free proof search in certain linear logic theories. 
The remarkable expressiveness of this computational paradigm is brought to 
light in a body of research accumulated over the past three years. In a num- 
ber of papers Andreoli and Pareschi develop a declarative treatment of object 
communication and concurrent object-oriented computation [8, 9, 7, 101. A 
treatment of linear logic programming is given by Hodas and Miller [55]. A 
role of linear logic in a declarative semantics of SLDNF-resolution is consid- 
ered by Cerrito [29]. An approach that spans both the proof reduction and 
the proof search paradigms is proposed by Girard [48]. 

Recent topics include a treatment of concurrent constraint programming 
by Saraswat and Lincoln [82] and a closely related treatment of Milner's 
a-calculus of communicating processes by Miller [76]. In Miller's work the 
agent expressions of the T-calculus are translated into a theory of linear logic 
in such a way that the a-calculus reductions are identified, step by step, 
with cut free proof search in the linear logic theory. The nonlogical axioms 
of the theory resemble Horn clauses except that they may have multiple 
conclusions. In particular, their heads may be the multiplicative disjunction 
of atomic formulas. Such multiple conclusion clauses are used to  axiomatize 
communications among agents. 

The striking expressiveness of cut free linear logic proof search as a com- 
putational paradigm is also indicated by the complexity and undecidability 
of (provability in) the natural fragments of linear logic. This comes about 
as a consequence of direct, lockstep simulations of computations on generic 
machines by cut free proof search in fragments of linear logic, see Section 
3 below. The simulations reveal a structural relationship between the nat- 
ural fragments of linear logic on the one hand and the standard computa- 



tional complexity classes on the other. Lincoln et al. [68] show that the full 
propositional (i.e., quantifier free) linear logic is undecidable. However, even 
the fragment of propositional linear logic that does not allow modalities is 
unexpectedly expressive. Kanovich [57] shows that the multiplicative frag- 
ment is NP-complete. Furthermore, in a marked contrast to the standard 
NP-completeness of the satisfiability of propositional formulas in classical 
logic, in linear logic even the decision problem for constant-only multiplica- 
tive propositional formulas is NP-complete. This result, obtained by Lincoln 
and Winkler 1711, shows that a simple minded, efficient, truth-table style 
characterization of provability in the multiplicative fragment of linear logic 
would imply that p = NP. Beyond the multiplicatives, Lincoln et al. [68] 
show ~ ~ ~ ~ ~ ~ - c o r n p l e t e n e s s  of the nonmodal propositional fragment (i.e., the 
multiplicative-additive propositional fragment). Lincoln et al. [70] exhibit 
a structural embedding of a cut free proof system for implicational proposi- 
tional intuitionistic logic in the nonmodal propositional linear logic. Lincoln 
and Scedrov [69] obtain NEXPTIME-hardness of nonmodal linear logic with 
first order quantifiers and function symbols. 

Example 

This section describes an example of the ability of linear logic to express 
computational features. A simple computation on an ordinary two counter 
machine with zero-test instruction is simulated, step by step, by cut free 
proof search in propositional linear logic. A key insight is that searching for 
a certain kind of proof of a linear logic formula from finitely many nonlogical 
axioms that involve only multiplicative conjuction 8 and additive disjunc- 
tion $ corresponds directly to searching for an accepting computation. The 
product of a successful search is an accepting computation. This example is 
taken from Lincoln et al. [68, 671. 

Suppose the transition relation S of a standard two counter machine with 
zero-test consists of the following: 

h1 : : = QI  Increment A Q2 
S2 : : = Q3 Decrement A QF 
S3 : : = Q2 Zero-Test B Q3 

The machine may perform the following transitions, where an instantaneous 



description of a two counter machine is given by the triple consisting of Qj, 
the current state, and the values of counters A and B. 

This computation starts in state Qr, increments the A counter and steps to 
state Q2. Then it tests the B counter for zero, and moves to Q3, where it 
then decrements the A counter, moves to QF, and accepts. 

The transition relation S may be transformed into a transition relation 
S' for an equivalent and-branching two counter machine without zero-test, or 
briefly ACM. The modified relation 6' (shown on the left below), may then 
be encoded as a linear logic theory (shown on the right): 

Transitions Theory Axioms 
6; : : = Q I  Increment A Q2 ql F (q2 @ a) 
6; : : = Q3 Decrement A QF q3, a I- q~ 
5; : : = Qz Fork ZB, Q3 42 t- ( Z B  @ 43) 
6; : : = ZB Decrement A ZB zg, a t- ZB 

62 ::= ZB Fork QF,QF ZB (QF @ QF) 

Notice how the first two transitions (S1 and S2) of the standard two counter 
machine are preserved in the translation from S to 6'. Also, the Zero-Test 
instruction S3 is encoded as three ACM transitions - 64, 6:, and 62. The 
transition 6; is a fork to a special state ZB, and one other state, Q3. The 
two extra transitions, Si, and 6:, force the computation branch starting in 
state ZB to verify that counter B is zero. Given the above transitions, the 
and-branching machine without zero-test may then perform these moves: 

Note that an instantaneous description of this and-branching machine is a list 
of triples, and the machine accepts if and only if it is able to reach (QF, 0,O) 
in all branches of its computation. This particular computation starts in 
state QI, increments the A counter and steps to state Q2. Then it forks into 
two separate computations; one which verifies that the B counter is zero, and 
the other which proceeds to state Q3. The B counter is zero, so the proof of 
that branch proceeds by decrementing the A counter to zero, and jumping 



to the final state QF. The other branch from state Qg simply decrements A 
and moves to QF. Thus all branches of the computation terminate in the 
final state with both counters at zero, resulting in an accepting computation. 

The linear logic proof corresponding to this computation is displayed in 
Figures 1 and 2, and is explained in the following paragraphs. In these 
proofs, each application of a theory axiom corresponds to one step of ACM 

computation. We represent the values of the ACM counters in unary by copies 
of the formulas a and b. In this example the B counter is always zero, so 
there are no occurrences of b. 

The proof shown in Figure 1 of z ~ , a  I- q~ in the above linear logic 
theory corresponds to the ACM verifying that the B counter is zero. Reading 
the proof bottom up, it begins with a directed cut. The sequent z~ t- q~ is 
left as an intermediate step. The next step is to use another directed cut, 
and after application of the $ L rule, we have two sequents left to prove: 
q~ t- q~ and q~ t- q ~ .  Both of these correspond to the ACM triple (QF, 0,O) 
which is the accepting triple, and are provable by the identity rule. If we 
had attempted to prove this sequent with some occurrences of b, we would 
be unable to complete the proof. 

!IF I- QF QF I- Q F * ~  

Ii? t- (BF @ q ~ ) "  (QF @ QF) QF 
I Cut 

ZB, a t- zBS4 ZB t QF Cut 

Figure 1: Zero-test proof 

The proof shown in Figure 2 of qr t- q~ in the same theory demon- 
strates the remainder of the ACM machinery. The lowermost introduction 
of a theory axiom, Cut, and @I L together correspond to the application 
of the increment instruction 6;. That is, the qr has been "traded in" for qz 
along with a .  The application of a directed cut and @ L correspond to the 
fork instruction, 6; which requires that both branches of the proof be suc- 
cessful in the same way that and-branching machines require all branches to 
reach an accepting configuration. The indicated proof of zg, a I- q~ appears 
in Figure 1, and corresponds to the verification that the B counter is zero. 



zB,a k QF 43, a I- qF $L 
(ZB @ 43), a qF Cut 

q27a k q ~  

91 t (92 8 a)6; 
L 

Cut 

Figure 2: Proof corresponding to computation 

The application of Cut ,  theory axiom, and identity correspond to the final 
decrement instruction of the computation, and complete the proof. 
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A Synopsis on the Identification of Linear Logic 
Programming Languages 

(Extended ~bstract  )' 
James Harland David P y m  

University of Melbourne University of Edinburgh 
Australia Scotland, U.K. 

We investigate the definition of logic programming languages within linear logic [Gir87]. 
We take as our point of conceptual departure the uniform proofs of Miller et al., [MNPS91], 
[Mi1891 and the class of hereditary Harrop formulae of intuitionistic logic, although our 
aims are more foundational. In particular, we assume that the characteristic feature of 
logic programming is goal-directed proof-search. More precisely, there is a search operation 
corresponding to each logical connective, and when searching for a proof of a given goal 
one applies the search operation that corresponds to the outermost connective of that goal, 
and then to the outermost connective of each subgoal so generated, etc.. Furthermore, 
we assume that it  must be possible to rewrite the program so that just one left rule, an 
appropriate notion of resolution2 rule is required. 

In linear logic, the identification of a class of computationally appealing proofs, uniform 
proofs, is somewhat more intricate than in logics that have been considered previously. 
For example, in first-order intuitionistic or minimal hereditary Harrop formulae [MNPS91], 
[Mi189], the search operation corresponding to each connective that can occur in a goal is 
given by the right rule for that connective. It turns out that for the whole intuitionistic 
hereditary Harrop fragment, in which just A, > and V may occur negatively (the definite 
formulae) and A, V, >, V and 3 may occur positively (the goal formulae), the strategy of 
constructing proofs (from root to leaves) by applying a right rule wherever one is applicable 
is complete. This property arises from the permutability properties of the rules of the 
(classical and) intuitionistic sequent calculus first studied by (Curry and) Kleene [Kle52, 
MNPS91, HP91, HP921. 

The main novelty in linear logic is that for the desired classes of definite formulae and 
goal formulae, it may be necessary, under certain circumstances, to apply a left rule in the 
middle of a sequence of right rules in order to maintain completeness. In particular, we 
need to allow the 8 - L  and C!-L (contraction on the left) rules to occur immediately after 
the 8-R rule, and various left rules after the !-R rule [HP91, HP921. One solution to this 
problem would be to exclude 8 and ! from the class of definite formulae in linear logic. 
However, this is both undesirable and unnecessary. It turns out that these exceptions to 
the strategy of applying right rules wherever they are applicable can be eliminated in the 

'This work was supported in part by ESPRIT BRA, "Logical Frameworks"; and U.K. SERC grant GR/G 
58588, "Logical and Semantical Frameworksn; and by a grant of the Australian Research Council. 

2We stress that our notion of resolution is an analytic one; cf. classical Horn clause resolution, in which 
resolution amounts to cut together with unification. 



next step of our analysis, in which, just as in the setting of intuitionistic hereditary Harrop 
formulae, we rewrite the antecedents to  a certain clausal form for which a single left rule, 
the appropriate notion of resolution rule, is complete. 

Thus we show in [HP91, HP921 how an analysis of the permutability properties of the 
two-sided linear sequent calculus can be used to  determine fragments of linear logic for which 
a suitable notion of resolution proof can be defined. A summary of this analysis consists 
in essentially two, mutually dependent, steps: (i) The identification of the class of formulae 
such that the strategy of constructing proofs (considering rules to be reduction operators, 
in the sense of Kleene) [Kle68] by applying right rules wherever they are applicable is 
complete, subject to  certain exceptions to this strategy, which must be handled, i.e., made 
goal-directed, by the second step. This class of proofs, constructed by the application of 
the right rules wherever possible, subject to the exceptions to be handled by step (ii), is 
the appropriate class of uniform proofs; (ii) The exploitation of the structural properties 
of the antecedents of linear sequents so that exceptions to the right rule-first strategy can 
be eliminated and so that we can invoke a single left rule, a resolution rule whilst retaining 
(soundness and) completeness with respect to linear sequent calculus. This is achieved by 
introducing a mapping which reduces antecedents to multisets of clauses. 

This analysis leads us to  identify the following classes of formulae as being available for 
use as a linear logic programming language: 

Definite formulae D ::= A ) ~ ( I I D & D I D @ D I D ~ E D I G - ~ A I  A x . D I ! D  
Goal formulae G ::= A I ~ I I I T I D ~ ~ G @ G J G @ G I G ~ E G I G & G  

I D - o G I  A x . G I  V x . G ( ! G I ? G ,  

where A ranges over atomic formulae. Programs are linear antecedents that consist of 
just closed definite formulae and goals are linear succedents that consist of just closed goal 
formulae. 

Of course, there are other, more pragmatically motivated, influences on the choices of 
definite formulae, and indeed on the choices of goal formulae. We remark here that if we 
were to restrict definite formulae to  be just the clauses permitted by (ii), above, we should 
be forced to  constrain goal formulae rather more than is essential. 

It remains an open problem to determine precisely the maximal class of linear formulae 
for which suitable notions of goal-directed proof are complete. However, some upper and 
lower bounds may be given. The main omissions from the class of definite formulae are 
those of the form Dl $ D2, V x.D and ?D, as well as the constant 0. The first two cases 
should not be surprising; note that in the intuitionistic case, the formulae Dl V D2 and 
3x.D are not allowed in definite formulae, as the relevant permutation properties do not 
hold otherwise. The same property holds in the linear case for Dl $ D2 and Vx.D, and 
also for ?D. The omission of 0 is also not peculiar to linear logic, but essentially a denial of 
the principle of ex nihil quodlibet; it seems difficult to reconcile the notion of goal-directed 
provability with the provability of r, 0 I- A for an arbitrary A. Thus it would seem that the 
omission of these four cases is necessary to preserve the notion of goal-directed provability. 

The situation is less clear cut for some of the other omissions. Whilst the permutation 
properties appear to disqualify GI as a definite formula on the same grounds as Dl $ D2, 



V x.D and ?D, G I  is linearly equivalent to G -o I, and as I may appear in goals, it seems 
reasonable to  suggest that formulae of the form G -0 I may be included in the class of 
definite formulae. This form of negated formulae may considered as a way of ensuring that 
definite formulae containing negations may only be "used" at particular places in a proof. 

Another "grey area" is for formulae of the form G -0 D, rather than merely G -o A 
where A is an atom. In the intuitionistic case, it is known that a formula of the form 
G > D may be converted into an equivalent set of definite formulae in which only formulae 
of the form G 3 A appear. However, this property does not hold in linear logic - for 
example, p -o (q @ r )  is not linearly equivalent to  (p -0 q) @ ( p  -0 r ) .  Hence in the linear 
case, the addition of formulae of the form G -0 D increases both expressibility and power. 
The main reason that formulae of the form G -o A are desirable is that they allow simple 
proofs to be used, i.e., that the 3 -L  rule need only be used as a unary rule, which in turn 
leads to the familiar notion of unifying an atom with the head of a clause. Clearly such a 
notion of proof cannot be used in the presence of formulae of the form G -o D. However, 
uniform provability remains complete for such formulae, and so we may choose to maintain 
either simple proofs or formulae of the form G 4 D, but not both. In this sense the notion 
of maximality will depend upon whether we consider goal-directed provability to include the 
notion of simple proof or not. Another possibility is to restrict D to a subclass of definite 
formulae with a correspondingly restricted class of subproofs appearing on the right of 
-o -L, such as allowing the subproof to contain only the rules Cf? -L, & -L and @-L. Such a 
straightforward modification of our notion of uniform proof permits the presence of definite 
formulae of the form G 4 (A1 Cf? . . . Cf? A,), for example. This seems to be an interesting 
compromise between simple proofs and allowing arbitrary (uniform) proofs on the right of 
-o -L; in particular, no right rules or occurrences of -o -L will appear in such subproofs, and 
so the subproof resembles a particularly simple form of clausal decomposition. Whatever 
choice is made, it is clear that the answer to the maximality question depends very much 
on the the way in which we allow the 4 -L rule to be used. 

Hence the above class of formulae may not be the "ultimate" linear logic programming 
language, but it would seem that it is not very far from it, and that it will be a subtle and/or 
intricate task to  expand the language in significant ways. The more abstract problem of 
identifying, for a given class of proofs (such as uniform proofs), the maximal class of formulae 
for which that class of proofs is complete with respect to provability remains an intriguing 
open problem and the subject of active research. 

Whilst resolution proofs determine the nature of the search primitives needed to me- 
chanically implement this language as far as is possible logically, they are not, in operational 
terms, deterministic. In order describe interpreters we must have a suitably deterministic, 
operational characterization of proofs. For example, consider the @-rule of [HP92]: 

where C E 2) and {Vo,Dh bR GI @ Gz, Go, Q;) U U~=l{Vi G;) is a multiset of C- 
components of the sequent 2) GI @G2, G. In this rule, read from conclusion to premisses, 



the program V and goal G are, roughly speaking, split, via C-components, into the parts 
Do, DL, 221,. . . , Dn and Go, G;, GI,. . . , Gn, respectively. The reader might easily verify that 
the following is an example of the @-rule: 

But the rule provides no determination of how this splitting is to be calculated. A similar 
problem arises with resolution rule in linear logic programming [HP92]: a clause may need 
to be deleted after it has been used, i.e., after a resolution step has been performed. Indeed, 
on consideration of the resolution rule (below), the reader will see that both of these issues 
arise: 

where UZ1{V; kR G;} is a resolvant of V FR A, 6: a resolvant3, for a particular choice of 
clause G -o A E V which does not appear in 221,. . . , V,, determines how to split V ((7) into 
vl,...,vn (Gl,---,Gn)- 

The definition of the resolution rule is not as complicated as the reader might at first 
suppose. For example, the reader might easily check that the following, in which-we write c 
for the formula !((p -o r )  43 ((ql @ q2) -o s)), is an instance of the resolution rule (2) (above): 

Again, the rule provides no determination of how this splitting is to be calculated. 
Our solution [HP91, HP921, at the abstract level, to the problem of how to calculate 

splittings is to adopt a lazy approach, and to this end we permit an interpreter to  construct 
proto-proofs by modifying the rules of resolution proof to  delay the calculation of splittings 
(so that, for example, all suitable formulae in the antecedent and succedent go each way 
at a @-rule). In order to maintain the soundness, we introduce the notion of path in such 
proto-proofs. Paths can be considered to be proto-proof-objects - they are the appropriate 
notion of proof-object for our computational purposes and are related to proof-nets [Gir87]. 

We sketch the definition of the construction of a pdh4 in such a proto-proof as follows: 
(I) The endsequent is in every path; (11) Traverse the proto-proof tree towards the leaves, 
starting at the endsequent: (i) Whenever a &-rule is reached, choose a branch and proceed; 
(ii) Whenever a @- or resolution rule is reached, proceed along all branches; (111) Continue 
until all branches of the path have reached a leaf. The proto-proof determines a proof just in 
case for each possible path in it, there are expansions (at the appropriate rule applications) 
of the antecedent and succedent that are compatible with leaves in the path. 

We illustrate the notion of path with an example of a proto-proof involving both the 
8- and resolution rules. (As above, we denote the formula ! ( ( p  -o r)  0 ((ql @ q2) -a s)) as c 

where convenient .) 

31n a simple propositional setting. 
'Such a construction proceeds dynamically, during the construction of a proto-proof. 



t f C,P,!?l,q2 k R ~  c , p , q l , q 2 , ( ~ 1  8 ~ 2 ) ~ s ~ k q l  CjP,41,92 k ~ q 2  
res. €4 

c , p , q l j q 2 , p - o r k k r  c , p , q l , q 2 , ( ~ 1 ~ 3 q z ) - o s k k  q 1 ~ 9 2  
res. 

p, q 1 , q 2 , ! ( ( p 4 r )  tf4 ( ( q 1 ~ 9  ~ 2 1 4 9 ) )  k k  r , S  

There is just one path (marked by j) in this proto-proof and the reader might easily verify 
that suitable splittings and expansions5 exist for a resolution proof to be determined, i.e., 
that there is indeed a resolution proof of this endsequent. To see this, consider that the leaves 
on the path require exactly one occurrence of each of q l ,  q2 and p; that the implicational 
subformulae of c are each used exactly once; and that these conditions are compatible 
with the proto-proof. It should be noted that the input/output model of [HM91] can be 
considered to be a particular computational method of determining paths. 

The full theory of paths, which has much in common with the work of Andrews, Bibel 
and Wallen on the use of matrices and matings for proof-search [And81, Bib82, Wal891, 
remains to be developed in detail. Such a theory provides the transition from the logical 
characterization of goal-directed proof-search given by resolution proofs to a truly opera- 
tional account, whilst making no inessential commitment to a particular implementation 
strategy. 

We remark that it will be important and interesting to study broader classes of relevance 
logics. 
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Given a set D of clauses of the form 
F * A, 

where F is a formula of some logic and A is an atom, it is natural to  extend the sequent 
calculus for that logic by a rule like 

F I - F  
r I- a (I- D), 

yielding a logic over D .  This idea has been used in proof-theoretic interpretations and ex- 
tensions of definite Horn clause programming, notably A-Prolog, by giving a computational 
reading to (I- D), which corresponds to resolution if the clauses in D are of a particular 
form. 

In systems like GCLA, a principle dual to (t- D) is considered in addition, yielding 
a fully symmetric sequent calculus. It is called "definitional reflection" since it is based 
on reading the database D as a definition. There are two main options for formulating 
definitional reflection. The rule on which GCLA is based is the following: 

An alternative rule which has been considered by Eriksson and which seems also to be the 
one Girard is favoring, has the following form: 

{Fa, Fa I- Go : F =+ 3 E D and a = mgu(A, B)) 
I',A I- G 

(D t)*. 

As they stand, (D  I-)* is stronger than (D I-) (in the non-propositional case) - a standard 
example being the derivations of the axioms of ordinary first-order equality theory. Compu- 
tationally, however, they rest on different intuitions. The first rule considers free variables 
as ezistentially quantified from outside, for which an appropriate substitution has to be 
computed. The second rule considers them as erniversally quantified from outside rather 
than something for which an substitution has still to be found. By means of unification it 
takes into account all possible substitution instances of the atom A, which can be inferred 
according to the given definition D ,  thus corresponding to some kind of w-rule. 



Therefore, the extension of logic programming systems by computational variants of 
(D I-) and ( D  I-)* leads to conceptually different approaches. A combination of (D I-) and 
( D  I-)* with both existential and universal variables, as proposed by Eriksson, would be a 
most desirable feature of a logic programming system with definitional reflection. There are 
certain algorithmic problems involved in such a combination that have still to be solved. 

In any case, whether one considers (D I-) or (D I-)* or a combination of both, cut- 
elimination fails for the full system but holds if the definition D does not contain implications 
in clause bodies or if the underlying logic is contraction-free (e.g., linear). We argue that 
the failure of cut-elimination is a matter of the definition D considered rather than a defect 
of the underlying logic. 
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The "logic grammar" framework [PW80, Per81, DA89] has proven to be an effective 
tool in computational linguistics [Joh87, Sta88, Dah89, DP901. Rather than offering specific 
linguistic theories themselves, logic grammars offer clear and declarative ways to implement 
linguistic theories. 

Studies of the foundations of logic grammars have suggested that they have a relation- 
ship to relevance logic, the brand of logic which refuses to recognize an implication as valid 
unless the assumptions are relevant to the conclusion. Similar connections have been estab- 
lished to linear logic [Gir87], which with relevance logic falls under the banner of so-called 
"substructural logics". 

In this talk and its associated paper ([ADPSI], submitted to the Journal of Logic Pro- 
gramming), we will describe how a specific logic grammar formalism, Dahl's Static Discon- 
tinuity Grammars, can be given a precise characterisation by a logic which is very similar in 
spirit to traditional relevance logics [AB75], but which also incorporates elements of linear 
logic. 

1 "Parsing as Deduction" and its Difficulties 

The parsing-as-deduction approach to syntax views the problem of parsing a sentence as 
the problem of deducing the assertion "we have heard (or read, or input) a sentence" from 
assertions of the form "we have heard (read, input) a certain word." We encode such 
premisses and the conclusion in some formal logic, following whatever linguistic principles 
we have in mind; then we give axioms and/or rules of inference which allow all and only 
our desired sentences to be parsed. 

For instance, one possible way to encode the parsing of the sentence "Evelyn loves 
books" might be 

'Research supported by operating grants OGP0002436 and OGP0041910 from the Natural Sciences and 
Engineering Research Council of Canada (NSERC), and by the BC Advanced Systems Institute. We are 
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That is, "if we have heard the three words 'evelyn', 'loves', and 'books', we have heard a 
sentence." The logical system associated with this encoding would give axioms and rules 
which allow us to parse the sentence, by asserting that if we have heard certain tokens we 
have heard corresponding parts of speech, and so on. 

However, if we interpret I- as the classical consequence relation, we have problems; if 
the above statement is provable, so should be 

because the set of assumptions which allowed us to conclude that we had heard a sentence 
originally is still a subset of the set of assumptions in all three cases. 

We could sdlve this problem by putting some temporal information explicitly into the 
logical encoding, by doing such things as labelling the words with the "times" at which 
they were heard, or (as in the encoding of DCGs into Horn clauses [PW80]) building such 
information into data structures. However, this solution may burden the axioms, rules of 
inference, and grammar rules with clumsy notational trivia. It would be more in the spirit 
of the parsing-as-deduction approach to encode this information at a basic level in the logic. 

2 Relevance Logic 

Relevance logic [AB75, Rea881 seems to be useful in solving the problems associated with 
parsing as deduction, in part because it can express the needed occurrence and ordering 
information in a way that is less notationally burdened than the ways given above. 

Relevance logic arises from the view that one should be able to deduce a conclusion 
from assumptions only if the assumptions are relevant to the conclusion and made in a 
relevant order. Relevance logic therefore treats a list of assumptions as a sequence rather 
than a set, and rejects the "structural rules" of permutation (which says that the order of 
assumptions is irrelevant), contraction (which says that we can duplicate any assumption), 
and weakening (which says that if we add assumptions we can still prove the same things). 

"Substructural logics" in general (those logics which reject some structural rules) seem 
to be connected to parsing as deduction. Evidence of this is given by work to do with linear 
logic [Gir87], another substructural logic. The sequent calculus version of the Lambek 
calculus for categorial grammars [Lam881 has been proven equivalent to a fragment of 
intuitionistic linear logic by Abrusci [AbrSO] and independently by de Paiva [DP91]; and 
Hodas and Miller [HM91] have used linear logic to extend Definite Clause Grammars via a 
linear logic programming language. 

3 The Approach of This Paper 

In this paper, we make explicit the connection between substructural logic and logic gram- 
mars by a concrete example. 



The logic grammar framework which we study is Dahl's Static Discontinuity Grammars 
(SDGs) [DPSO], which grew out of Definite Clause Grammars [PW80] and Extraposition 
Grammars [Per811 in a desire to handle discontinuous constituents and "movement" at 
a more fundamental level. We show that both of the interpretations of SDGs can be 
characterized in a sound and complete manner by a relevance-logic sequent calculus. Since 
DCGs, Scattered Context Grammars [GH69], and so on are encompassed by the SDG 
formalism, this characterization also applies to them. 

3.1 Static Discontinuity Grammars 

A static discontinuity grammar (SDG) is a collection of rules, each of which is a tuple 
of clauses. A clause is an expression of the form (t  + A1,. . . ,Am),  for m 2 1, where 
(essentially) t is a non-terminal, and each of the Ai's is a terminal, non-terminal, or empty 
sequence marker ("[I"). 

An SDG in which each rule contains only one clause is interpreted exactly as if it were 
a DCG. Rules containing more than one clause are interpreted as stating that whenever 
an instance of the rule is used, each clause instance must be applied exactly once, in a 
left-to-right manner across the parse tree. 

There are two interpretations of SDGs, one broader than the other. They differ only in 
their restrictions on the positions in the parse tree at which clauses of a multi-clause rule 
can be applied. In the "rewriting" interpretation, the "cut" in the parse tree corresponding 
to a rule application (informally, a line drawn across the parse tree going through each head 
node involved) must not cross any other rule's cut; in the "tree admissibility" interpretation, 
crossing cuts are allowed. Each interpretation has some advantages and disadvantages. Both 
interpretations are characterized by the logic given in the paper. 

3.2 The Sequent Calculus Characterization 

The sequent calculus which characterizes SDGs makes use of several features of relevance 
and/or linear logic: 

1. The "splitting" conjunction 8, found in both relevance and linear logic; 

2. The relevance-logic "bunch" construct (Al,.  . . , A,), which groups together formulae 
to preserve their order within a sequent; and 

3. The unary linear-logic "of course" connective "!", which represents 0 or more copies 
of a formula. 

However, the sequent calculus interprets bunches in a manner which is connected to, but 
not the same as, the standard interpretation in relevance logic. 

The first step in the characterization of SDGs is to give a translation of an SDG and a 
parsing problem into formulae. A clause (t + A1,. . . , A,) is translated into the formula 
( t  t A1@- - -@A,). A rule (Cl, . . . ,C,) is translated into the formula !(t(Cl)@- - .@t(C,)), 



! r ,  !R, !rt, A, (R), A/ I- B 
V/1: 

!r, A, (R[X := ti), A/ I- B 
Cont/l: 

! r ,  !R, !rl, A, A/ I- B !r, A, (VXR), at I- B 

("copy SDG rule") ("choose substitutions") 

("separate rule clauses") 

("allocate clauses across tree") 

!I?, A, At I- B 
Refl: !r, A, (t + B), at I- t 

("call clause") ("match terminal") 

( "ignore empty rule" ) ("match empty sequence") 

Figure 1: Rules for sequent calculus Rsa. 

where t(C) is the translation of clause C. Finally, the problem of parsing a sequence of 
terminals tl ,  . . . , tk as a non-terminal s in a grammar G is translated into the sequent 

where t(G) is the translation of the rules of G. 
With this translation given, we have only to give the rules for the sequent calculus, 

called Rsa (Figure 1). We have the result that a sentence is accepted by an SDG under 
the "admissibility" interpretation iff the translation of the parsing problem is a theorem of 
Rsa. Furthermore, there is a variant of Rsa, called Rsr, which characterizes the "rewriting" 
interpretation in the same way: it is the restriction of Rsa in which the indicated bunch of 
the c / l  rule must be the leftmost one. 

The formal definitions, theorems, and proofs are given in [ADPSI]. 
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It has always been a major research goal in lntellecticss to model in a formal system the 
remarkable ability of human agents to reason about situations and actions [7]. But despite 
all efforts the goal is far from being reached. Recently three new deductive approaches were 
proposed [I, 5, 61, where the facts describing situations are treated as resources. In fact, 
a situation is a multiset of facts. The facts are consumed when the conditions of action 
are to be satisfied and are produced as the effects of an action. None of these approaches 
requires to  state frame axioms explicitely and even though they are based on very different 
paradigms, they are essentially equivalent [4]. 

In more realistic examples situations are not just multisets of facts but there are usually 
alternatives and, even worse, an agent may not even be aware of all alternatives. In this pa- 
per we consider alternatives but restrict ourselves to the case where the agent has complete 
knowledge about the various possibilities. We also assume that the agent is quite cautious 
in the sense that she is only interested in plans - ie. sequences of actions - which solve 
her goals no matter which one of the alternatives holds in the real world. Technically, this 
amounts to an extension of the previously mentioned approaches. In this paper we extend 
two approaches - the equational logic approach of [5] and the linear connection method of 
[I] - and allow situations to be described by formulae containing (non-idempotent) con- 
junctions and (idempotent) disjunctions. The conjunctions model the multisets of resources 
as before whereas the disjunctions model the alternatives. We give a semantics for these 
extensions and show that they are equivalent. Thereby it will turn out that Bibel7s linear- 
ity constraint - ie. the requirement that in a connection proof of a planning problem each 
literal is connected at most once - is insufficient for handling disjunction. We introduce 
a new linearity constraint and demonstrate that this new constraint guarantees the proper 
treatment of disjunction. 

Disjunctive Planning Problems 

The use of disjunction in planning is best explained by formalizing a short story which we 
want to call the tragic king's problem. Once upon a time the king of an old country suflered 
from the kidnapping of his only son by the wizzard. There was no hope until a young and 
brave lady crossed the country. As she heard about the king's suflering and saw a beautiful 
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painting of his lovely son she knew what to do. There were two ways to release him. The 
first one was to fight an enormous dragon. The second one was to kill the wizzard. For 
both tasks she needed the stiletto she got from the mother of her gmndmother, But to kill 
the dragon she needed also a lance and to kill the wizzard she needed also a magic wand. 
Fortunately, the lady had a blue fairy, who has always fulfilled her wishes, and she asked 
her for help. Did the king see his lovely son ever again? 

In our formal treatment we use the strings s ,  w, d, dw, dd,  I ,  m to represent the 
stiletto, the wizzard, the dragon, the dead wizzard, the dead dragon, the lance, and the 
magic wand, respectively. A situation is described by a multiset of facts, eg. the multiset 
{ s ,  w, 6) models a situation in which the stiletto, the wizzard, and the dragon are present. 
A disjunctive planning problem consists of an initial set of situations Z - here { { s ,  w, d)} , 
a set of actions A - here 

b f :  w - + { # ) , { m ) )  for asking the blue fairy, 
kd : s ,  1 ,  H { d d }  for killing the dragon, 
kw : { s ,  m ,  w] H { { d w ) }  for killing the wizzard, 

and a set of goal situations 9 - here { { d w ) ,  { d d ) )  . One should observe that the goal as 
well as the effects of the first action contain alternatives. Receiving either a lance or a magic 
wand is expressed by a set consisting of two multisets. Throughout the paper we assume 
the condition of the actions to consist of only one situation. In this case, a rule containing 
alternatives as condition can easily be expanded to an equivalent set of actions where the 
condition of each rule corresponds to one alternative. 

An action A :  C H { E l , .  . .,En} is applicable to a set of situation S = {S1,. . . , S,} 
iff C S; for all S; E S . If A is applicable to S then the application of A to S yields 
the set of situations {(Si I C )  u Ej I 1 5 i < m, 1 < j 5 n )  . A plan is a tree whose 
nodes represent sets of situations and whose edges represent actions. A plan p is called 
permitted with respect to a set A of actions iff for all inner nodes S of p the following 
condition holds. If S has k successors S;, . . . , Si , k > 1 , then there exist disjoint sets 
Sl, . . . , Sk such that S = S1 U . . . U Sk and for all i = 1 , .  . . , k ,  if the edge from S to Si 
is labelled with action A; E A then A; is applicable to S; and yields S;' . A plan p solves 
a given disjunctive planning problem (1, A, G) iff p is permitted with respect to the set 
A of actions, the root of p represents the set Z of initial situations, and each element of 
each set of situations represented by a leaf of p contains one element of the set 6 of goal 
situations. 

The following figure shows a plan which solves the tragic king's problem. One should 
observe, that after asking the blue fairy the lady must observe the answer before she can 
decide on which action to take next. This can be expressed by introducing a conditional 
in a linearized version of the plan. For the tragic king's problem we obtain the linearized 
plan [bf ,  cond(1, kd, m ,  kw)] , which should be read as ask the blue fairy first, and then, if 

'~u l t i se t s  are denoted by the brackets 4 and ] whereas sets are denoted as usual by { and ). The 
operations c ,  ir and I denote the multiset extensions of the usual operations C , U, and - defined on 
sets. 



she hands you a lance, kill the dragon, otherwise, if she hands you a magic wand, kill the 
wizzard. 

Disjunction in Equational Logic Programming 

In [5], situations are represented as terms built from the facts and the constant 0 using 
the binary function symbol o . For example, the empty situation is denoted by 0 and the 
initial situation in the tragic king's problem can be represented by the term s o w o d .  
Such a term models a multiset if o is commutative, associative, and has 0 as a unit 
element. In other words, o represents an AC1-function. Planning problems are specified 
using a predicate pIan(s,p,t) which is interpreted declaratively as the execution of plan p 
transforms situation s into situation t . Actions are defined by rules of the form 

plan(conditions o V, [action, PI, W) : - pIan(e8ects o V, P, W). 

Such an action is applicable if the term conditions o V unifies with the term representing 
the current situation under the equational theory for o . The planning process terminates 
if the goal situation is contained in the current situation, ie. 

Extending this approach to handle disjunctive planning problems, we first have to rep- 
resent sets of alternative situations. This is done with the help of a binary function symbol 
I , which is associative, commutative, idempotent, and admits a unit element I. In other 
words, I represents an ACI1-function whose intended meaning is to  denote alternatives. For 
instance, the term I I m denotes the set {{I), {m)}  obtained when receiving a gift from 
the fairy, whereas the term I I I denotes the set { { l ) }  , which contains the only alternative 
if the fairy only hase two lances to choose from. If we regard facts as resources and a term 
of the form X I Y as having either the resources contained in X or the resources contained 
in Y but not both, then it is natural to require that o distributes over I , ie. that the law 
of distibutivity (D) 



holds. Using this equation every term can be transformed into disjunctive normal form. 
One should observe that I does not distribute over o as this contradicts the intended 
interpret ation. 

The rules to express disjunctive planning problems have the same form as the rules in 
[5] except that now the function symbol I may also be used to specify situations. Hence, 
the rules 

plan(V1, [bf,Pll,Wl) :- plan((l I m) 0 Vl,Pl,Wl), (4) 

encode the actions in the tragic king's problem. The planning process is triggered by 
formulating the planning problem as a query to the logic program. 

? - plan(s o w o d, P, dw I dd). (7) 

As in [5] ,  queries are answered using SLDE-resolution, where the union of the equational 
theory AC1 of the operator o , the theory ACIl of the operator 1, and the law of distribu- 
tivity (D) are built into a special unification procedure. Resolving the goal clause (7) with 
rule (4) yields the binding {P I+ [bf, PI]) for P and the resolvent 

?-plan((sowodo1) I (sowodom),Pl ,dw I dd). (8) 

As our lady may have received either the lance or the magic wand, there are now two 
alternative situations. Since we intend to model cautious agents, which are looking for plans 
such that their goals are achieved no matter which situation they are in, we have to solve 
the problem in both alternatives. This can be done by splitting goal (8) using the following 
rule. 

plan((X2 I Xi>oVz,cond(Xz,P2,Xi,P~),Wz) :- plan(XzoV2,Pz,Wz), 
plan(X4 o VZ, Pi, WZ). (9) 

The term cond(X2, P2, Xi, Pi) is a conditional and should be read as if the agent observes 
X2 then plan P2 solves the problem, otherwise, if the agent observes X i  then plan Pi 
solves the problem. Resolving (8) and (9) yields the binding {PI H cond(1, P2, m, Pi)} for 
PI and the resolvent 

?- plan(s o w o d o  I, P2, dw I dd), plan(s o w o d o  m, Pi, dw I dd). (10) 

The subgoals of this query can be resolved with the rules (5) and (6), respectively, leading 
to the bindings {P2 I+ [kd, P3], Pi H [kw, P4]) for P2 and Pi and the resolvent 

? - plan(w o dd, P3, dw I dd), plan(d o dw, P4, dw 1 dd). (11) 



The tragic king's problem is almost solved. The agent is in a situation where either 
the dragon or the wizzard is dead. However, the fact (3) cannot immediately be used to 
terminate the refutation because the goal situation contains alternatives. However, if we 
use the fact plan(X o Y, [I, X ( X') instead, then P3 and P4 are bound to the empty plan 
[] . Composing the substitutions obtained in the refutation of (7), we obtain the computed 
answer substitution {P H [bf, cond(1, [kd, []],m, [kw, [I])]) which is precisely the desired 
answer. 

Disjunction in the Linear Connection Method 

We know from [8] or [2] that a proof for a first order formula consists of a set of connections 
such that all connected literals are simultaneously unifiable. In [I] it was shown that such 
proofs solve planning problems if each literal is engaged in at most one connection. Although 
in a l l  examples given in [I] the conditions and effects of actions were conjunctions of atoms, 
the so-called linear connection method is not restricted to such conjunctions. 

In this section we want to illustrate with the help of the tragic king's problem how 
Bibel's linear connection method handles disjunctions. The initial set Z of situations is 
encoded as the formula 

I ~ 3 P : s A w A d A s t ( P ) ,  

where st(P)  is the so-called state literal, whose only purpose is to record the actions taken 
in order to  achieve a goal. The set G of goal situations is encoded as 

G = [dw v dd] A st([]), 

where [] is a constant denoting the empty plan. The set A of actions is represented by 
A -  B F A K D A  K W ,  where 

B F  r VP1,P2:st([t,cond(n,Pl,l,P2)])~[1hst(P~)]~[m~st(P~)], 
KW r VY : st([kw,Y]) A s A w A m + dw A st(Y), and 
KD = VZ : st([kd, 21) A s A d A 1 =+ dd A st(Z). 

A linear connection proof of the formula I A A + G should yield the desired plan. The 
following figure shows a connection proof. This proof generates this plan as the binding 

{ P  [bf ,  cond(l, [h, [I], m, [kd, [11)11 for P - 
Unfortunately, the proof is not linear. The literals 7s and st([]) are connected twice. The 
literal st([]) can be duplicated with the help of a distributivity law similar to (D), whereas 
the literal 1s cannot be duplicated as this would contradict the concept of resources. 
However, the proof shows an interesting feature. For every alternative plan - viz. the 
plans [bf, cond(1, [kw, [I])] and [bf, cond(m, [kd, [I])] - a linear connection proof can be 
found if we split the alternatives in the set of goal situations as well as in the rule B F  into 
two submatrices as shown in the following figure, and proof each goal situation separately. 
In this figure the proof of [bf, cond(1, [kw, [I])] is shown in the usual way, whereas the 
connections of the proof of [bf, cond(m, [kd, [I])] are drawn with dotted lines. 



This observations suggests a modified linearity constraint under which disjunctive plan- 
ning problems can be solved by the linear connection method. A connection proof of a 
matrix M is said to  be glohlly linear iff each subproof of M is linear, where the subproofs 
are obtained by splitting the alternatives in the effects of actions and in the initial situation 
and proofing alternative goal situations separately. 

Results 

In the talk we discuss the soundness and completeness of the equational logic approach 
as well as its equivalence to the modified linear connection method. Whether it is also 
equivalent to  a corresponding extension of the linear logic approach in [6] remains to be 
seen. 
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Abstract 

We present a simple semantics of noncommutative linear logic based on the observa- 
tion of labeled transition systems, which is familiar notion in the study of concurrency. 
In this interpretation a little similar to Kripke semantics of modal logics, 8 will be 
viewed as sequential composition. We also show that many process equivalences dis- 
cussed so far in concurrency theory can be characterized by using linear logic formulas, 
which is an analogue of modal characterization theorems. This exhibits a relationship 
between linear logic and process observation of calculi like CCS or CSP. 

4 Transition System Semantics 

Linear logic was proposed by Girard as a logic of action [Girard]. The departure of linear 
logic from (ordinary) classical logic is the abondonment of the structural rules. It is Girard7s 
crucial observation that structural rules may lose the control of cut-elimination of the logic 
and injure the constructiveness. 

From its birth, linear logic has been expected to be significant in the study of parallelism 
or concurrency. In this note, we will consider an aspect of linear logic as observational logic. 
The semantics we discuss is based on the observation of labeled transition systems, which 
is a common notion in the study of concurrency. 

A labeled transition system over a given set A is a pair (X, S), where 

r X is a set, called the set of processes; 

6 : A x ~ - + 2 ~  is any function, called the transition function (2X denotes the power 
set of X.); 

We denote by x 5 y the condition that y E S(a, x). In this note, we tacitly impose image- 
finiteness condition, i.e. 6(a, x) is finite for all (a, x) f A x X. 

For the definition of noncommutative linear logic, the reader is referred to  [BrownGurr] 
or [Yetter]. We identify A with the set of atomic propositions of linear formulas. Given an 
equivalence relation N on X, we will interpret linear formulas as relations that are right 
and left-invariant with respect to N. (On the analogy with Bainbridge et al [BFSS], we call 
such relations saturated.) For example, an atomic proposition a will be interpreted by the 
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saturated relation {(x, y))3xt3y'(x N x', x' -5 y', y' N y)), which is the smallest among sat- 
urated relations that contain {(x, y)lx -5 y}. The satisfaction relation of noncommutative 
linear logic (without modalities ! and ?) is defined as follows: 

( x , y ) I = l  = X N Y  

( x , y ) b T  5 true 

(x, y) b 0 - false 

(x ,y) I=L - X ~ L Y  
(x, y) a - 3x'3y'(x N x', x' 5 y', y' N y) 

(x ,y) I=aL = ( y , x ) P a  

7 Y k 4 8 $ = 3 4 2 ,  d) i= 4 and (2, Y) I= $) 
(x, Y) I= 4p$ - Vz((x, 4 t= 4 or (z, Y) t= $1 
(x, Y) k 4&$ (x, y)  /= 4 and (x, Y) b $ 

( x , Y > I = # $ $  ' (",Y)I=4or(x,Y)I=$ 

(We here use p for "multiplicative or.") It is easy to see that all the relations that interpret 
linear formulas are saturated. The interpretation of additive connectives & and $ follows 
Tarskian semantics, but the interpretation of multiplicative connectives 8 and p is similar to 
that in Kripke semantics of modal logics. And linear negation is interpreted as "reaction." 

A linear logic formula 4 is called valid if (x, x) I= 4 for any x E X and will be denoted 

by (X, 6, N) 4. It is easy to check the following claim. 

Theorem 1 Let ( X ,  6) be a transition system over A and N be an equivalence relation on 
X .  If 4 is provable in noncommutative linear logic, then ( X ,  6, N) b 4. 

(The logic is not complete with respect to this interpretation. For example, & is distributive 
over $ because of the set- theoretic definiton.) 

5 Linear Characterization Theorem 

In the study of concurrency, many notions of process classification have been proposed. 
Probably, the most famous among them are bisimilarity and trace equivalence. Different 
process equivalences represent behavioral equivalence under different notions of processe 
observation. 

Hennessy and Milner [HennMil] introduced Hennessy-Milner logic (HML), a kind of 
modal logic, and showed that bisimilarity is characterized by the satisfaction relation of 
HML formuals. Two processes are bisimilar if and only if the set of HML formulas they sat- 
isfy coincide. It has been shown that many other process preorders are characterized by the 
satisfaction relation of fragments of HML ("modal characterization theorems" [AbrVick]). 
Modal characterization theorems are one of central topics in concurrency theory. 



As the labeled transition systems can be seen as models of linear logic, it is natural to 
expect that Linear logic model may be useful for the understanding of such process preorders. 
By the construction, the following proposition is obvious. 

Proposition 1 Let (X, 6 )  be a labeled transition system over A and .v be an equivalence 
relation on X .  If x N y and x' N y', then, for any linear formula $, we have 

In particular, if x N y, for any linear formula $, we have 

We will exploit the possibility of the opposite implication. That is, we will consider whether 
the equivalence relation N is characterized by satisfaction relation of linear formulas. 

We give a brief review of the definition of HML. The syntax is given as follows: 

The satisfaction relation x $ is defined following the line of Kripke semantics. It is 
sufficient to  display the definiton of modalities. 

An equivalence relation .v on X is said to be characterized by a set S of HML formulas 
if the following holds: 

x y * V$ E S.(x (= $ iff y + $) 

For example, it is known that bisimilarity is characterized by the set of all HML formulas 
and that trace equivalence is characterized by the set of all HML formulas of the form 

(a1) . . - (an) t .  
We now give a translation of HML into noncommutative linear logic. The translation 

is based on the induction of the construction of HML formulas. The translation of logical 
connectives in HML are rather direct. We will translate HML formulas t and f into T and 
0, respectively. If an HML formula $ (resp. 4) is translated into (resp. $), then Il, A 4 
(resp. $ V 4) will be trasnlated into $&$ (resp. $ $3).  The modalities of HML will be 
encoded by multiplicatives 8 or p. If an HML formula $ is translated into g, then (a)$  
(resp. [a]$)  will be translated into a 8 (?&I) 8 T (resp.op(3$ l ) p a L . )  By definition, we 
can check that 



Notice that [a]-free fragment of HML will be translated into the intuitionistic fragment of 
linear logic. 

When the equivalence relation N is the equality on X, we easily see that, for any HML 
formula $, x i= $ * (x, x) /= $. But, in general, the situation can be more complicated. 
The following lemma shows how the interpretation of HML formulas is related to that of 
translated linear formulas. Notice that we here pose a special restriction on the occurrence 
of [a]. Interestingly, the same restriction appears in the modal charcterization theorem of 
ready simulation preorder. 

Lemma 1 Let - be an equivalence relation characterized by an HML fragment S i n  which 
[a] occurs only i n  subformulas of the form [alf. Suppose that S satisfies the following 
conditions: 

Then, for $ E S, x b + if and only if (x, x) + T. 

The proof will be done by induction on the structure of HML formulas. 
As bisimilarity is characterized by the set of all HML formulas, the above lemma is not 

applicable to  bisimilarity. But, we can establish the same conclusion in this case. 

Lemma 2 Let - denote bisimilarity. Then we have x b $ u (x,x) /= 3 for any HML 
formula $. 

Now we state our main result, which is a linear logic analogue of modal characterization 
theorems. This theorem applies to all process preorders listed on page 15 of [AbrVick]. 

Theorem 2 Let an equivalence relation N on X be bisimilarity or satisfy the conditions 
listed in  Lemma 1. Then, 

Proof We already observed the implication J. Suppose that x and y satisfy the condition 
of the RHS. In the case that N is bisimilarity, let S be the set of all HML formulas. In 
the case that N satisfies the conditions in Lemma 1, let S be as in the lemma. By the 
assumption, for any HML formula $ S, (x, x) 3 * ( y ,  y )  3. By the above lemmas, 
this is equivalent to V$ E S.(x b $ u y + $), which means x - y by the definition of S. 



6 Conclusion and Related Work 

The applications of linear logic to concurrency theory obtained so far are mainly concen- 
trated in Petri-net theory (e.g. [EngWin]). In this note, we proposed a simple semantics of 
noncommutative linear logic and showed that the model can be related to  observations in 
process calculi like CCS or CSP. We expect that our result may shed some light on further 
relationship between linear logic and concurrency theory. 

Technically speaking, the model we discused here can be viewed as a kind of relational 
quantale model according to  the terminology of [BrownGurr]. Brown and Gurr discussed 
the relational quantale model and showed that noncommutative linear logic was complete 
with respect t o  their semantics. But their technique heavily relies on representation theorem 
of quantales and their result is little suggestive for the relationship between linear logic and 
concurrency theory. 

Abramsky and Vickers [AbrVick] discussed an algebraic formulation of concurrency 
theory. They constructed quantales corresponding to  various process preorders and viewed 
processes as modules over quantales. Compared to  their work, ours is more logical rather 
than algebraic. We hope our formulation is easier to understand and gives intuitive picture. 
And our formulation is also applicable to  bisimilarity, but they were not able to construct the 
quantale for bisimilarity. On the other hand, they established characterization theorem for 
process preorders, but our characterization theorem is for the corresponding equivalences. 

References 

[AbrVick] S. Abramsky and S. Vickers, Quantales, Observational Logic, and Process Se- 
mantics, Imperial College Research Report DOC 9011, 1990. 

[BFSS] E. S. Bainbridge, P. J. Freyd, A. Scedrov, and P. J. Scott, Functorial polymorphism, 
Theomtical Computer Science, 70:35-64, 1990. 

[BrownGurr] C. Brown and D. Gurr, Relations and Non-commutative Linear Logic, Uni- 
versity of Arhus Technical Report DAIMI PB-372, 1991. 

[EngWin] U. Engberg and G .  Winskel, Petri nets and models of linear logic, in A. Arnold 
(ed) CAAP'SO, 147-161, LNCS 431, Springer Verlag, 1990. 

[Girard] J-Y. Girard, Linear logic, Theoretical Computer Science, 50:l-102, 1987. 

[HennMil] M. C. B. Hennessy and R. Milner, Algebraic laws for nondeterminism and 
concurrency, J. of ACM, 32(1):137-161, 1985. 

[Yetter] D. N. Yetter, Quantales and (noncommutative) linear logic, J. of Symbolic Logic, 
55(1):41-64, 1990. 



Asynchronous Communucation Model Based on 
Linear Logic 

(Extended Abstract) 
Naoki Kobayashi Akinori Yonezawa 

Department of Information Science 
The University of Tokyo 

7-3- 1 Hongo Bunkyo-ku Tokyo, 113 Japan 
{koba, yonezawa)@is.s.u-tokyo.ac.jp 

7 Introduction 

Recently, several applications of Girard7s linear logic[Gir87] to logic programming were 
proposed and shown that they correspond to reactive paradigms[AP9la][AP91b][Mi192]. 
We propose a new framework called ACL[KY92] for concurrent computation along this 
line. 

Computation in ACL is described in terms of proof construction in linear logic. We 
restrict inference rules and formulas in linear sequent calculus so that restricted rules have 
a proof power equivalent to the original rules for the restricted formulas(given in the defi- 
nition 1). The resulting computational framework contains rich mechanisms for concurrent 
computation, such as message-passing style asynchronous communication, identifier cre- 
ation, and hiding operator. They are all described in a pure logical form. We also give a 
model-theoretic semantics as a natural extension of phase semantics, a model of linear logic. 
ACL inference rules can be proven to be sound and complete w.r.t. this model-theoretic 
semantics. Our framework well captures concurrent computation based on asynchronous 
communication. It will, therefore, provide us a new insight into other models of concurrent 
computation from a logical point of view. In fact, the actor model[Agh86] and asynchronous 
CCS[Mi183] can be directly translated into our ACL framework. We also expect ACL to 
become a formal framework for verification, reasoning, and transformation of concurrent 
programs with techniques used in traditional logic programming. ACL also exhibits attrac- 
tive features as a programming language. 

8 ACL Framework 

In this section, we introduce the basic (propositional) fragment of ACL. We give transition 
rules in a form of restricted inference rules of linear sequent calculus. 

8.1 Program Syntax 

First, we define the ACL progmrn clause. 



Definition 1 A program is a set of clauses, which are defined as follows: 

Clause ::= Head Q- Body 
Head ::= Ap 
Body ::= Statement I Choice 
Choice ::= Guarded-Statement1 Choice $ Guarded-Statement 
Guardedstatement ::= Guard 8 Statement 
Guard ::= AA I Guard 8 A; 
Statement ::= T I I 1 Ap I A, I Body @ Body I Body & Body 1 ?A, 
Ap ::= P, Q , R, . . . (process predicates) 

..- A, ..- m, n, . . . (message predicates) 

Example. A buffer process with one capacity can be defined in ACL as follows: 

EmptyBu f f er O - ~ U ~ '  @I FullBu f f e r  

FuIlBu f f e r  ~ - ~ e t '  8 (reply Q EmptyBuf fe r )  

This definition is quite similar t o  the following description in CCS[Mil89a], 

EmptyBuf f e r  = put.FullBuf f e r  

FullBu f f e r  = get.reply.EmptyBu f fe r )  

though there is a significant difference that communication in ACL is asynchronous as is 
described below, whereas it is synchronous in CCS. 

8.2 Operational Semantics 

Transition rules are given as a restricted form of inference rules in linear sequent calculus. 
Please note that the rules should be read that the conclusion of an inference rule transits to  
its premise formula. For instance, rule (C2) should be read as ~ ~ ( r n j l  @Aj), m;, F - A;, I'. 

ACL Inference rules are given as follows: 

a Structural Rules 

k A (Sl) =(A is a permutation of I') . . . (Exchange) 

a Parallel 

I - A B I '  (PI) . . . (parallel) 
7 

(P2) ' B'rB' I' - . . (fork) 
9 

A 8 B is an ordinary parallel composition of A and B, whereas A & B is a process 
which copies the entire environment and executes A and B independently. 



Communication Rules 

I - m B I '  
(C l )  - - - (message send) 

? 

(C2) I- ' 7  I- ' I' (normal message reception) 
I- CBj(mj 8 Aj)ymiyI' 

(C3) 
I- mj,mf I- Ai,?m;,I' 

(modal message reception) 
I- bj(m: @ Aj), ?mi, 

a Termination Rules 

(TI) . . (program termination) 
9 

I- A (T2) A. . . (suicide) 

a Clause Rule 

I - B r  (Cll)  -( if A 0-B E P) 
? 

Context Rule 

(Col) =(if is derived from the other rules) 

C[ 1, called positive context, is defined as follows: 

where F is any formula of linear logic. 

Rules (C1)-(C3) are rules for communication. m @ A in rule (Cl)  represents a sender 
process which sends message m. This operation is asynchronous, because I- m, A and I- m@A 
are logically equivalent in linear logic. $ j(m; @Aj) in rule (C2) represents a receiver process 
which waits any one of messages ml, . . . , mk and becomes A; when receiving m;. ?m, which 
we call a modal message, is a message which can be copied unboundly, hence may be used 
several times by several processes. 

The following proposition states that the above inference rules have an equivalent proof 
power to the original inference rules in linear sequent calculus for the restricted formula. 

Proposition 3 Let P be a program and A be a body formula. I- A is provable by the above 
inference rules if and only if I-?PI, A is provable in linear sequent calculus. 

9 Model based on Phase Semantics 

In this section, we give a model for the body formulas defined in the previous section by 
extending the phase semantics[Gir87] of linear logic. 



9.1 Model for ACL 

A set of program clauses is written in the form of 

where F is a monotonic function on phase space, which is composed of projection, product, 
and connectives of linear logic (0, &, $, @, ?). 

Given a phase model (M, T, m*) where m* is an assignment of facts to message predi- 
cates, we define the model P*, Q*, R*, . . . of process predicates P, Q, R, . . . by the following 
equation: 

< P*, Q*, R*, . . . >= @ (P)"(O'*) 
nEw 

We can prove that the ACL inference rules are sound and complete w.r.t. this model. 
Proofs are given in [KY92]. 

Proposition 4 (Soundness) The ACL inference rules are sound w.r.t. extended phase 
model in  the following sense: Let G be a body formula. If G is provable, then G is valid 
(i.e., 1 E G*) in  all the extended phase models. 

Proposition 5 (Completeness) ACL inference rules are complete w.r.t. the extended 
phase model i n  the following sense: Let G be a body formula. If G is valid (i.e., 1 E G*) in  
all the extended phase models, G is provable by ACL inference rubes. 

10 Extensions of ACL 

10.1 First Order Extension 

First order existential quantification and universal quantification provide mechanisms for 
value passing and identifier creation respectively. 

10.1.1 First-Order Existential Quantification for Value Passing 

We introduce first-order existential quantification to the receiver part of a message. Then, 
communication rules (C2)-(C3) are modified as follows: 

The formula 3 ~ ( m ( ~ ) l  @ P(X)) represents a process which waits for the values of X 
via m, and becomes P(a) after receiving message m(a). This extension allows processes to 
send values in messages. 



10.1.2 First-Order Universal Quantification for Identifier Creation 

First-order universal quantification works as a mechanism for identiper creation. Identi- 
fier creation is often very important in concurrent computing environment [Agh86][Mi189b]. 
Identifiers work as pointers to access resources including processes such that resources can 
be accessed only by processes which know their pointers. By passing identifiers in messages, 
acquaintences can be dynamically changed. 

Let us look at V-rule in linear sequent calculus: 

x not free in T 
t- VX.A(X), I' 

We modify this rule as 

where id is a unique identifier which does not appear in A(X) and r. 

10.2 Second-Order Universal Quantification as Hiding Operator 

In this section, we introduce second-order universal quantification for message formulas. It 
works as a hiding operator as in CCS.  Here is an original rule in linear sequent calculus: 

I- A , r  
X not free in I' 

I- AX.A, I' 

We use the symbol A, instead of V to distinguish from the first-order universal quantifi- 
cation. Notice the side condition. Quantified variable cannot be free outside the scope of 
A. It is, therefore, invisible from outside. We introduce the following ACL rules instead of 
the above original rules in linear sequent calculus. 

Hiding Rules 

(HI) where n contains neither m nor process predicates. 

(332) ' Am'[A)7 y, I' 
t- Am. A, n , I' 

C [  ] in context rules are also extended to include the form hrn.(C[ I). Then, again this 
extension can be proven to be equivalent to linear sequent calculus. 



11 ACL as a Programming Paradigm 

ACL has the following attractive features as a progarmming paradigm. 

1. Waiting multiple messages 

2. Encapsulation mechansim by hiding operator 

3. Modal messages for sharing information 

4. Dynamic restructuring of processes 

Details are given in [KY92]. 

12 Conclusion 

We have proposed a logical framework ACL for concurernt programming languages based on 
linear logic. We gave the operational semantics of ACL by restricting inference rules in lin- 
ear sequent calculus and model theoretic semantics by extending phase semantics. In ACL, 
message passing style communication, identifier creation, and hiding operator are formu- 
lated pure logically, hence these mechanisms are uniformly treated by the logical semantics. 
Future work includes the application of techniques for traditional logic programming to  
transformation, reasoning and verification of concurrent programs written in ACL. More 
detailed accounts of our ACL are given in [KY92]. 
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