
ABSTRACTIONS IN LOGIC PROGRAMS

Dale Miller
Department of Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104–6389 USA

February 1993

1. Introduction

Most logic programming languages have the first-order, classical theory
of Horn clauses as their logical foundation. Purely proof-theoretical consid-
erations show that Horn clauses are not rich enough to naturally provide the
abstraction mechanisms that are common in most modern, general purpose
programming languages. For example, Horn clauses do not incorporate the
important software abstraction mechanisms of modules, data type abstrac-
tions, and higher-order programming.

As a result of this lack, implementers of logic programming languages
based on Horn clauses generally add several nonlogical primitives on top of
Horn clauses to provide these missing abstraction mechanisms. Although
the missing features are often captured in this fashion, formal semantics of
the resulting languages are often lacking or are very complex. Another ap-
proach to providing these missing features is to enrich the underlying logical
foundation of logic programming. This latter approach to providing logic
programs with these missing abstraction mechanisms is taken in this paper.
The enrichments we will consider have simple and direct operational and
proof theoretical semantics.

In Section 2, we present a first-order sorted logic and define sequen-
tial proof systems. These proof systems are used to define provability in
classical and intuitionistic logics. In Section 3, we present first-order Horn
clauses and describe certain aspects of their proof theory. In Section 4, Horn
clauses are extended by permitting implications into the bodies of program
clauses. The intuitionistic interpretation of clauses of this extension can pro-
vide a foundation for developing modular programming facilities for logic
programs. In Sections 5 and 6, universal quantifiers, as well as implications,
are added to the bodies of program clauses. The addition of this new form of
quantification permits constants to be given local scope in the evaluation of
logic programs. Such scoping of constants can be exploited to provide forms

To appear in the volume Logic and Computer Science edited by P. Odifreddi
and published by Academic Press.

1

2. A First-Order Logic

of data abstractions. This enrichment of Horn clauses, containing implica-
tions and universal quantifiers in the body of program clauses, is known as
hereditary Harrop formulas.

A higher-order logic is presented in Section 7 and higher-order gener-
alizations to Horn clauses and hereditary Harrop formulas are presented in
Section 8. Several examples of higher-order logic programs are provided in
Section 9. We conclude in Section 10.

This paper is essentially an overview and summary of the work the
author and his colleagues have been engaged in over the past four years. All
the main results and theorems reported in this paper have appeared in the
papers [20, 21, 22, 25, 26, 27, 28].

2. A First-Order Logic

Let S be a fixed, finite set of primitive types (also called sorts). We
assume that the symbol o is always a member of S. Following Church [4],
o is the type for propositions. The set of types is the smallest set of expres-
sions that contains the primitive types and is closed under the construction
of function types, denoted by the binary, infix symbol →. The Greek let-
ters τ and σ are used as syntactic variables ranging over types. The type
constructor → associates to the right: read τ1 → τ2 → τ3 as τ1 → (τ2 → τ3).

Let τ be the type τ1 → · · · → τn → τ0 where τ0 ∈ S and n ≥ 0. (By
convention, if n = 0 then τ is simply the type τ0.) The types τ1, . . . , τn are
the argument types of τ while the type τ0 is the target type of τ . The order
of a type τ is defined as follows: If τ ∈ S then τ has order 0; otherwise, the
order of τ is one greater than the maximum order of the argument types of τ .
Thus, τ has order 1 exactly when τ is of the form τ1 → · · · → τn → τ0 where
n ≥ 1 and {τ0, τ1, . . . , τn} ⊆ S. We say, however, that τ is a first-order type
if the order of τ is either 0 or 1 and that no argument type of τ is o. The
target type of a first-order type may be o.

For each type τ , we assume that there are denumerably many constants
and variables of that type. Constants and variables do not overlap and if
two constants (or variables) have different types, they are different constants
(or variables). A signature (over S) is a finite set Σ of constants. We often
enumerate signatures by listing their members as pairs, written a: τ , where a

is a constant of type τ . Although attaching a type in this way is redundant, it
makes reading signatures easier. A signature is first-order if all its constants
are of first-order type.

We can now define the first-order logic F . The logical constants of F are
the symbols ∧ (conjunction), ∨ (disjunction), ⊃ (implication), > (truth), ⊥
(absurdity), and for every τ ∈ S−{o}, ∀τ (universal quantification over type

2

2. A First-Order Logic

τ), and ∃τ (existential quantification over type τ). Thus, F has only a finite
number of logical constants. Negation will not be of much interest in this
paper, but when needed, the negation of a formula B is written as B ⊃ ⊥.

Let τ be a type of the form τ1 → · · · → τn → τ0 where τ0 is a primitive
type and n ≥ 0. If τ0 is o, a constant of type τ is a predicate constant
of arity n. If τ0 is not o, then a constant of type τ is either an individual
constant if n = 0 or a function constant of arity n if n ≥ 1. Similarly, we can
define predicate variable of arity n, individual variable, and function variable
of arity n.

Boldface letters are used for syntactic variables as follows: a,b, c range
over individual constants; x,y, z range over individual variables; f ,g,h range
over function constants; and p,q range over predicate constants. It is not
until Section 6 that we are interested in function and predicate variables.

Let τ be a primitive type different from o. A first-order term of type τ

is either a constant or variable of type τ , or of the form (f t1 . . . tn) where
f is a function constant of type τ1 → · · · → τn → τ and, for i = 1, . . . , n, ti

is a term of type τi. In the latter case, f is the head and t1, . . . , tn are the
arguments of this term.

A first-order formula is either atomic or non-atomics. An atomic formula
is of the form (p t1 . . . tn), where n ≥ 0, p is a predicate constant of the first-
order type τ1 → · · · → τn → o, and t1, . . . , tn are first-order terms of the
types τ1, . . . , τn, respectively. The predicate constant p is the head of this
atomic formula. Non-atomic formulas are of the form >, ⊥, B1∧B2, B1∨B2,
B1 ⊃ B2, ∀τx B, or ∃τx B, where B, B1, and B2 are formulas and τ is a
primitive type different from o. The usual notions of free and bound variables
and of open and closed terms and formulas are assumed.

The boldface letters t, s range over terms; the roman letters B, C range
over formulas; A ranges over atomic formulas; and the Greek letters Γ, ∆
range over sets of formulas.

Let s be a first-order term of type τ and let x be a variable of type
τ . The operation of substituting s for free occurrences of x is written as
[x 7→ s]. Bound variables are assumed to be changed in a systematic fashion
in order to avoid variable capture. Simultaneous substitution is written as
the operator [x1 7→ s1, . . . ,xn 7→ sn].

Let Σ be a first-order signature. A Σ-term is a closed term all of whose
constants are members of Σ. Likewise, a Σ-formula is a closed formula all of
whose nonlogical constants are members of Σ.

Provability for F is given in terms of sequent calculus proofs [9]. A
sequent of F is a triple Σ ; Γ −→ ∆, where Σ is a first-order signature over
S and Γ and ∆ are finite (possibly empty) sets of Σ-formulas. The set Γ
is this sequent’s antecedent and ∆ is its succedent. The expressions Γ, B

3

2. A First-Order Logic

Σ ; Γ −→ ∆, B Σ ; Γ −→ ∆, C ∧-R
Σ ; Γ −→ ∆, B ∧ C

Σ ; B, C, ∆ −→ Θ ∧-L
Σ ; B ∧ C, ∆ −→ Θ

Σ ; B, ∆ −→ Θ Σ ; C, ∆ −→ Θ ∨-L
Σ ; B ∨ C, ∆ −→ Θ

Σ ; Γ −→ ∆, B ∨-R
Σ ; Γ −→ ∆, B ∨ C

Σ ; Γ −→ ∆, C ∨-R
Σ ; Γ −→ ∆, B ∨ C

Σ ; Γ −→ Θ, B Σ ; C, Γ −→ ∆ ⊃-L
Σ ; B ⊃ C, Γ −→ Θ ∪∆

Σ ; B, Γ −→ Θ, C ⊃-R
Σ ; Γ −→ Θ, B ⊃ C

Σ ; Γ, [x 7→ t]B −→ Θ ∀-L
Σ ; Γ, ∀τx B −→ Θ

Σ ; Γ −→ Θ, [x 7→ t]B ∃-R
Σ ; Γ −→ Θ,∃x B

Σ ∪ {c: τ} ; Γ, [x 7→ c]B −→ Θ ∃-L
Σ ; Γ, ∃τx B −→ Θ

Σ ∪ {c: τ} ; Γ −→ Θ, [x 7→ c]B ∀-R
Σ ; Γ −→ Θ, ∀τx B

Σ ; Γ −→ Θ,⊥ ⊥-R
Σ ; Γ −→ Θ, B

Figure 1: Inference rules for F

and B, Γ denote the set Γ ∪ {B}; this notation is used even if B ∈ Γ. The
inference rules for sequents are presented in Figure 1. The following provisos
are also attached to the four inference rules for quantifier introduction: in
∀-R and ∃-L, the constant c is not in Σ, and, in ∀-L and ∃-R, t is a Σ-term
of type τ .

A proof of the sequent Σ ; Γ −→ Θ is a finite tree constructed using
these inference rules such that the root is labeled with Σ ; Γ −→ Θ and
the leaves are labeled with initial sequents, that is, sequents Σ′ ; Γ′ −→ Θ′

such that either > is a member of Θ′ or the intersection Γ′ ∩ Θ′ contains
either ⊥ or an atomic formula.

Sequent systems generally have three structural rules that are not listed
here. Two such rules, interchange and contraction, are not necessary here
because the antecedents and succedents of sequents are sets instead of lists.
Hence, the order and multiplicity of formulas in sequents are not made ex-
plicit. The third common structural rule is that of thinning: from a given se-

4

2. A First-Order Logic

quent one may add any additional formulas to the succedent and antecedent.
Thinning could be added as a derived inference rule, but it is not needed in
this paper.

Any proof is also called a C-proof. Any C-proof in which the succedent
of every sequent in it is a singleton set is also called an I-proof. Furthermore,
an I-proof in which no instance of the⊥-R inference rule appears is also called
an M-proof. Sequent proofs in classical, intuitionistic, and minimal logics are
represented by, respectively, C-proofs, I-proofs, and M-proofs. Finally, let
Σ be a given first-order signature over S, let Γ be a finite set of Σ-formulas,
and let B be a Σ-formula. We write Σ; Γ `C B, Σ; Γ `I B, and Σ; Γ `M B

if the sequent Σ ; Γ −→ B has, respectively, a C-proof, an I-proof, or an
M-proof. It follows immediately that Σ; Γ `M B implies Σ; Γ `I B, and this
in turn implies Σ; Γ `C B.

The notions of provability defined here are not equivalent to the more
usual presentations of classical, intuitionistic, and minimal logic [7, 9, 32,
36] in which signatures are not made explicit and substitution terms (the
terms used in ∀-L and ∃-R) are not constrained to be taken from such signa-
tures. The main reason they are not equivalent is illustrated by the following
example. Let S be the set {i, o} and consider the sequent

{p: i → o} ; ∀ix (px) −→ ∃ix (px).

This sequent has no proof even though ∃ix (px) follows from ∀ix (px) in the
traditional presentations of classical, intuitutionistic, and minimal logics.
The reason for this difference is that there are no {p: i → o}-terms of type
i: that is, the type i is empty in this signature. Thus we need an additional
definition: the signature Σ inhabits the set of primitive types S if for every
τ ∈ S different than o, there is a Σ-term of type τ . When Σ inhabits S,
the notions of provability defined above coincide with the more traditional
presentations.

Let D0 be the finite set of formulas that satisfy the inductive definition
of D-formulas given by

D ::= A | B ⊃ A | ∀τx D | D1 ∧D2,

where the syntactic variable B ranges over arbitrary first-order formulas. In
this paper, first-order logic programs are always subsets of D0. In particu-
lar, the various first-order logic programming languages presented here are
defined by simply restricting the set of formulas over which B is permitted
to range. The formula B is called the body of the clause B ⊃ A.

Let Γ be a finite subset of D0. The set of formulas |Γ|Σ is defined to be
the smallest subset of D0 such that

5

3. First-order Horn clauses

◦ Γ ⊆ |Γ|Σ,
◦ if D1 ∧D2 ∈ |Γ|Σ then {D1, D2} ⊆ |Γ|Σ, and
◦ if ∀τxD ∈ |Γ|Σ and t is a Σ-term, then [x 7→ t]D ∈ |Γ|Σ.

If Γ is a set of Σ-formulas, then so is |Γ|Σ.
Whenever the antecedent of a sequent is a subset of D0, it is convenient

to introduce the backchaining inference rule, shown in Figure 2. The proviso
for this rule is that B ⊃ A ∈ |Γ|Σ. We also extend the class of initial formulas
to include those sequents Σ ; Γ −→ ∆, A such that A ∈ |Γ|Σ. Notice that
any M-proof, I-proof, or C-proof containing the BC inference rule or this
new kind of initial sequent can be directly converted to an M-proof, I-proof,
or C-proof without these extensions by replacing them with repeated uses
of the ∀-L, ∧-L, and ⊃-L inference rules.

Σ ; Γ −→ ∆, B
BC

Σ ; Γ −→ ∆, A

Figure 2: The backchaining inference rule

The function pred associate to every formula in D0 a set of predicate
constants. This function is defined by induction as follows: pred(D1∧D2) =
pred(D1)∪pred(D2); pred(∀τx D) = pred(D); pred(B ⊃ A) = pred(A); and
pred(A), for atomic A, is the singleton set containing the predicate constant
at the head of A.

3. First-order Horn clauses

Consider the two classes of first-order formulas defined by the following
recursive definitions for the syntactic variables G and D:

G ::= > | A | G1 ∧G2 | G1 ∨G2 | ∃τx G

D ::= A | G ⊃ A | ∀τx D | D1 ∧D2.

Any formula satisfying the recursion for G is called a goal formula, while
any formula satisfying the recursion for D is called a Horn clause. Horn
clauses are also called definite formulas. The classifications into goal and
definite formulas are both extended to incorporate additional formulas in
later sections. In the literature on the theory of Horn clauses, goal formulas
generalize “negative” Horn clauses while what are called Horn clauses here
generalize “positive” Horn clauses (see, for example, [3]). Finite sets of Horn
clauses, denoted by the syntactic variable P, are called Horn clause programs.

6

3. First-order Horn clauses

Assume that Σ is some fixed, first-order signature over S. Computations
with Horn clauses can be specified as follows. Let x1, . . . ,xn(n ≥ 0) be a list
of individual variables of primitive type τ1, . . . , τn, respectively. Let P be a
finite set of Horn clauses that are also Σ-formulas. Let G be a formula whose
nonlogical constants are in the signature Σ and all of whose free variables
are in the list x1, . . . ,xn. A result of solving G with respect to P is a list of
Σ-terms t1, . . . , tn such that for i = 1, . . . , n, ti has type τi and the sequent

Σ ; P −→ [x1 7→ t1, . . . ,xn 7→ tn]G

has a C-proof. Clearly, there may be no such result or many, including
infinitely many.

One way to understand how Horn clauses can be used in computations is
to examine the structure of proofs involving Horn clauses and goal formulas.
The following theorem provides a computationally useful characterization of
such proofs.

Theorem 1. Let Σ be a first-order signature over S that also inhabits

S, let P be a Horn clause program, and let G be a goal formula. Also

assume that P ∪ {G} is a set of Σ-formulas. Then, Σ;P `C G if and only

if the sequent Σ ; P −→ G has a proof Ξ satisfying the following three

conditions.

(i) The succedents of all sequents occurring in Ξ contain just a single for-

mula.

(ii) If a sequent occurrence in Ξ has a non-atomic formula in its succedent,

that sequent occurrence is the conclusion of the inference rule that in-

troduces the logical connective into the succedent.

(iii) If a sequent occurrence in Ξ has an atomic formula in its succedent,

that sequent occurrence is either initial or is the conclusion of the BC

inference rule.

This characterization of proofs is intentionally abstract since we shall
use it in situations that extend Horn clauses. The following statements are
all immediate conclusions of this theorem.
◦ All sequents occurring in Ξ are of the form Σ ; P −→ G′, where G′ is

some goal formula. Thus, in proving a goal formula, different signatures
and antecedents (programs) need not be considered.

◦ Σ;P `C G if and only if Σ;P `I G if and only if Σ;P `M G.
◦ Σ;P `C G1 ∧G2 if and only if Σ;P `C G1 and Σ;P `C G2.
◦ Σ;P `C G1 ∨G2 if and only if Σ;P `C G1 or Σ;P `C G2.
◦ Σ;P `C ∃τxG if and only if there is a Σ-term t such that Σ;P `C [x 7→

t]G.
Any proof that satisfies the three conditions of Theorem 1 is called a

uniform proof. The fact that uniform proofs are complete for the classical

7

3. First-order Horn clauses

theory of Horn clauses makes it possible to implement very simple theorem
provers (also called interpreters) to do computations involving Horn clauses.
In particular, the search for uniform proofs can be done in a goal-directed
manner. That is, if a goal (the succedent of the sequent) is non-atomic,
then the top-level logical connective of the goal determines which inference
rule can be used to prove that sequent. For example, an attempt to prove
a conjunction means that the interpreter should attempt an AND search
to prove both conjuncts; to prove a disjunction means that the interpreter
should attempt an OR search to prove either disjunct; and to prove an
existential means that the interpreter should attempt to find a substitution
instance. If the sequent is Σ ; P −→ A, where A is atomic, the program
P must be consulted via the backchaining inference rule. The set |P|Σ must
contain some member, say D, such that pred(D) is the set containing only
the predicate that is the head of A. If no such D exists, then there is no
proof of this sequent. Otherwise, D can be taken to be either of the form A,
in which case, the sequent is proved immediately, or of the form G′ ⊃ A, in
which case, this sequent is provable if the sequent Σ ; P −→ G′ is provable
It has been argued elsewhere [25] that uniform proofs can provide a general
and abstract characterization of which logical systems make suitable logic
programming languages.

We can now modify the definition of a result of a Horn clause program.
Let the set of Σ-formulas P be a Horn clause program and let the goal
formula ∃τ1x1 . . . ∃τnxnG (n ≥ 0) be a Σ-formula. Given a uniform proof of
the sequent

Σ ; P −→ ∃τ1x1 . . . ∃τnxnG,

a result of solving G with respect of P can be read off of the proof: by
Theorem 1, the last n inference rules of this proof are instances of the ∃-R
inference rule; a result is, therefore, the list of the substitution terms used
in these ∃-R rules.

If Horn clauses were extended into a richer collection of formulas, uni-
form proofs would not generally be complete for even minimal logic. For
example, let p be a predicate constant of type i → o and let a and b be
constants of type i. If (p a) ∨ (p b) was allowed to be a program clause then
from this program clause both the disjunct (p a) ∨ (p b) and the existential
∃ix (p x) have M-proofs but neither have uniform proofs. Thus, the interpre-
tation of a disjunctive goal as a disjunctive computation specification would
break down in the presence of such a program clause. Also, proofs would fail
to yield results for computations as before since existential goals cannot be
proved directly by the ∃-R inference rule.

In the next several sections, we present extensions to Horn clauses and,
in each case, we require that uniform proofs are complete since we desire

8

4. Providing Scope to Program Clauses

that any logical foundation for a logic programming language should admit
goal-directed interpretation. Theorem 1, therefore, can be interpreted as
stating that the classical theory of Horn clauses is a suitable (although weak)
foundation for a logic programming language. There are, fortunately, other
more expressive foundations.

4. Providing Scope to Program Clauses

Horn clause programs do not possess any mechanisms for providing
scope to program clauses. During a computation (a search for a uniform
proof) involving Horn clauses, the antecedents of all sequents remain un-
changed: in a sense, the logic program is global. Thus, if several programs
(sets of Horn clauses) are needed for a particular computation, those sets
must all be unioned together at the start of the computation. This has the
obvious disadvantage that, in large programs, there may be name clashes
between different parts of a program, that is, two different programs may
use the same constant in two different and mutually inconsistent fashions.
This lack of modularization makes many aspects of program development
and verification difficult to address.

Prolog implementations have dealt with this lack in their logical foun-
dations by providing several nonlogical and side-effect primitives [34]. For
example, the consult program primitive loads program clauses from disk
storage and adds them to the current program. There is no intended scope
to this augmentation: it is permanent until some additional side-effect is
used to undo it. The assert primitive of Prolog takes a term and, trans-
lating it as a program clause, adds the latter to the current program, again
with no intended scope to the addition. The added clause is available until
the nonlogical primitive retract removes it. In essence, the pair, assert
and retract, are editing commands for the current program space. Since
they are so general, scoping facilities for Prolog can be built using them.
This situation in Prolog is rather unfortunate since it should be possible, as
in most programming languages that have scoping mechanisms, to separate
scoping from side-effects.

Fortunately, logic provides a very simple scoping mechanism for program
clauses. Using the definition of uniform proofs in the last section, consider
a uniform proof of a sequent with succedent D ⊃ G. This sequent must be
the conclusion of the inference rule ⊃-R. Thus, to prove this goal from, say
program P, it is necessary to prove G from the program P ∪ {D}. This use
of implication to denote the operation that augments the antecedent (the
current program) leads immediately to a stack based scoping mechanism for
program clauses. For example, let D1 and D2 be two Horn clauses and let

9

4. Providing Scope to Program Clauses

G1 and G2 be two goals. A uniform proof of the sequent

Σ ; −→ D1 ⊃ ((D2 ⊃ G1) ∧G2)

would contain uniform proofs of the two sequents

Σ ; D1, D2 −→ G1 and Σ ; D1 −→ G2.

That is, the goals G1 and G2 are attempted with respect to two different
programs.

In order to capitalize on this use of implications in goal formulas, we
must also permit them in the body of clauses. This leads to the following
extension of the classes of goal formulas and definite clauses, given by the
mutually recursive definitions for the syntactic variables G and D:

G ::= > | A | G1 ∧G2 | G1 ∨G2 | ∃τx G | D ⊃ G

D ::= A | G ⊃ A | ∀τx D | D1 ∧D2.
(∗)

We will now extend our use of the terms definite formula and goal formula
to be D- and G-formulas in this new sense. Notice that Horn clauses are still
definite clauses.

The classical logic interpretation of logical connectives does not support
the scoping interpretation of implication that we have just described. For
example, there is no uniform proof of the goal formula p ∨ (p ⊃ q) from the
empty program since neither does p follow from the empty program nor does
q follow from p. This formula, however, is a classical logic tautology since it
is truth-functionally equivalent to (p ⊃ p) ∨ q. Intuitutionistic and minimal
logics, however, do support this scoping interpretation of implications. The
following theorem is proved in [20].

Theorem 2. Let Σ be a first-order signature over S that also inhabits S.

With respect to (∗) above, let P be a finite set of definite formulas and let

G be a goal formula such that P ∪ {G} is a set of Σ-formulas. Σ;P `I G if

and only if the sequent Σ ; P −→ G has a uniform proof.

Similar to the previous section, all the following statements are imme-
diate conclusions of Theorem 2.
◦ All sequents occurring in a uniform proof of the sequent

Σ ; P −→ G

are of the form Σ ; P ′ −→ G′, where G′ is some goal formula and P ′ is
a set of definite formulas containing P. The signatures do not change.

◦ Σ;P `I G if and only if Σ;P `M G.
◦ Σ;P `I G1 ∧G2 if and only if Σ;P `I G1 and Σ;P `I G2.

10

4. Providing Scope to Program Clauses

◦ Σ;P `I G1 ∨G2 if and only if Σ;P `I G1 or Σ;P `I G2.
◦ Σ;P `I ∃τx G if and only if there is a Σ-term t such that Σ;P `I [x 7→

t]G.
◦ Σ;P `I D ⊃ G if and only if Σ;P ∪ {D} `I G.

The following example illustrates the use of an implication in the body
of a program clause. Let S be the set {i, l, o} and let Σ be some first-order
signature that contains the signature

{nil: l, cons: i → l → l, a: i, b: i, reverse: l → l → o, r: l → l → o}.

Lists of the individual constants a and b are denoted by Σ-terms of type l.
For example, the term

(cons a (cons b nil))

denotes the list with first member a and second member b. To make terms
denoting lists more compact and suggestive of the lists they denote, we use
the usual Prolog syntax for lists [34]: the expression [a1, . . . , an|k] denotes
the term

(cons a1 . . . (cons an k) . . .).

Finally, the expression [a1, . . . , an|nil] is simply written as [a1, . . . , an]. Thus
[] denotes nil. Below is a program clause that defines the binary relation of
two lists being reverses of each other.

∀ll∀lk
({[

(r [] k) ∧ ∀ix∀lm∀ln((r n [x|m]) ⊃ (r [x|n] m))
] ⊃ (r l [])

}
⊃ (reverse l k)

)

Name this one clause as Dr and consider using this clause to check that the
reverse of the list [a, b] is the list [b, a]. This is done by attempting a uniform
proof of the sequent

Σ ; Dr −→ (reverse [a, b] [b, a]).

This sequent has a uniform proof only if the sequent

Σ ; Dr, (r [] [b, a]), ∀ix∀lm∀ln[(r n [x|m]) ⊃ (r [x|n] m)] −→ (r [a, b] [])

has a uniform proof. A uniform proof of this sequent essentially involves
using only backchaining over the two Horn clauses that define the meaning
of the r predicate.

This way of defining reverse is very natural and symmetric: two lists,
say terms t and s, are reverses of each other if we can move from the pair of
terms ([], s) to the pair (t, []) by successively moving the first list member
of the second component to the front of the first component.

11

5. Providing Scope to Individual Constants

From the definition of reverse, it is clear that the embedded two clauses
for r are available only during the search of proofs for goals of the form
(reverse t s). It is not possible, however, to guarantee that during such
a search, only those two clause for r are available. If the program was
larger, that is, of the form P ∪{Dr}, and if pred(P) contained the predicate
r, then the atomic goal (r [a, b] []) will be attempted with more than the
two clauses intended to define the predicate r. In certain programs, this
accumulation may be exactly what is intended. In other programs, such as
the one presented here, it serves the wrong purpose. The additional scoping
declarations described in the next two sections provides a way to address
this problem.

5. Providing Scope to Individual Constants

In both Horn clauses and the extension to them made in the previous
section, no provisions have been made for giving scope to constants. This
follows from a simple analysis of the structure of uniform proofs involving
these formulas. For example, a uniform proof of the sequent Σ ; P −→ G,
where P is a set of definite clauses and G is a goal (with respect to the
definitions in the previous section), contains sequents all with the same sig-
nature component, namely Σ. It is not possible to specify programs that
make use of different signatures at different parts of a computation (proof):
signatures are essentially global. For a constant to be used one place in a
computation, it must be present at the start of the computation (in the root
sequent); thus, since constants are used to build data structures, it is not
possible for a program to build data structures that are used to solve en-
tirely local problems. One part of a program might ascribe special meaning
to certain data constructors but there is no formal mechanism to guarantee
that other parts of the program would not ascribe it other meanings. These
logic programming languages lack support for what is generally called data
abstraction.

Again, logic provides a very simple mechanism for providing constants
with scope. With respect to the notion of definite clauses and goals defined
in the previous section, let P be a set of Σ-formulas that are also definite
formulas and let G be a Σ-formula and a goal formula in which x occurs free.
Consider attempting to find a uniform proof for the sequent

Σ ; P −→ ∀τx G.

This has a uniform proof only if it is the conclusion of the ∀-R inference rule,
that is, only if the sequent

Σ ∪ {c: τ} ; P −→ [x 7→ c]G,

12

5. Providing Scope to Individual Constants

where c is a constant not in Σ, has a uniform proof. The search for a proof
of this sequent thus has an expanded signature.

This use of the universal quantifier suggests the following enrichment of
the notions of goals and definite clauses:

G ::= > | A | G1 ∧G2 | G1 ∨G2 | ∃τx G | D ⊃ G | ∀τy G

D ::= A | G ⊃ A | ∀τx D | D1 ∧ D2.
(∗∗)

In [14], Harrop studied a class of formulas that can be defined as follows.
Let B be a syntactic variables for arbitrary first-order formulas and let H be
defined by

H ::= A | B ⊃ H | ∀τx H | H1 ∧ H2.

An H-formula is often called a Harrop formula. Clearly, all definite clauses
in (∗∗) are Harrop formulas. Such definite clauses also satisfy an additional
constraint: all positive subformula occurrences of a definite clause are also
Harrop formulas. For this reason, the definite clauses in (∗∗) are referred to
as first-order hereditary Harrop formulas. The following theorem is proved
in [25].

Theorem 3. Let Σ be a first-order signature over S that also inhabits

S. Let P be a finite set of hereditary Harrop formulas and let G be a goal

formula in (∗∗) such that P ∪ {G} is a set of Σ-formulas. Then Σ;P `I G if

and only if the sequent Σ ; P −→ G has a uniform proof.

This theorem is similar to Theorem 2. All the observations listed after
that theorem are true of this extension as well. The following additional
observation can be made.
◦ Let Σ and P be as in the statement of theorem. Let ∀τxG be a Σ-

formula and a goal formula of (∗∗). Then Σ;P `I ∀τxG if and only if
for some constant c of type τ not in Σ, Σ ∪ {c: τ};P `I [x 7→ c]G.
Thus, the search for a proof of a universally quantified goal leads to a

proof in which the signature is augmented. Consider, for example, a uniform
proof of a sequent that has the Σ-formula ∃τx∀τy∃τzG as its succedent. This
proof instantiates ∃τx with a Σ-term, and instantiates ∃τz with a Σ∪{c: τ}-
term, where c is the constant (not in Σ) that is used to instantiate ∀τy.
Thus, the two existential quantifiers are distinguished by the fact that the
second one can be instantiated by more substitution terms.

Unification is often used to implement interpreters for logic program-
ming language since it provides a means for delaying the selection of sub-
stitution terms. The possibility of such quantifier alternation forces such
implementations to use unification algorithms that are slightly more com-
plex than the unification algorithm needed for implementing Horn clauses.
If substitution terms are replaced by free variables instead of closed terms (as

13

6. Providing Scopes to Function and Predicate Symbols

required in our proof systems) then the signature from which substitution
terms for such variables can be drawn must be somehow attached to those
free variables. See [21] for a description of how unification can be modified
to directly deal with quantifier alternation.

First-order hereditary Harrop formulas, as presented here, do not pro-
vide a strong enough notion of scoping to adequately deal with data abstrac-
tion because these formulas only allow the scoping of constants of primitive
types. Data types in logic programming involve not only individual con-
stants but also function and predicate constants. The next section extends
first-order hereditary Harrop formulas to provide for the required stronger
scoping notion.

6. Providing Scopes to Function and Predicate Symbols

There is an unfortunate asymmetry in the use of universal goals to aug-
ment signatures: while signatures contain constants with types of both order
0 and 1, universal goals can only be used to introduce new constants of order
0. Thus, it is natural to consider allowing universal goals to also quantify
over types of order 1. That is, universal quantifiers should be allowed to
quantify over function and predicate constants as well as simply individual
constants. Thus, we will simply extend the definition (∗∗) of hereditary Har-
rop formulas to permit τ in the ∀τy G case to be of order 0 or 1. From the
proof-theoretic point-of-view, this is not a serious departure from first-order
logic. For example, let σ be a type of order 1. A search for a uniform proof
of the sequent

Σ ; P −→ ∀σk G

(where k is a syntactic variable for function variables) yields a search for a
uniform proof for the sequent

Σ ∪ {f : σ} ; P −→ [k 7→ f]G,

provided f is not in Σ. The augmented signature, Σ ∪ {f :σ}, is still a first-
order signature.

With this extension of hereditary Harrop formulas, we can improve on
the definition of reverse from the Section 4. Consider the following definite
clause.

∀ll∀lk
[∀l→l→or

(
(r [] k)∧
∀ix∀lm∀ln[(r n [x|m]) ⊃ (r [x|n] m)] ⊃ (r l [])

)
⊃ (reverse l k)

]
.

14

6. Providing Scopes to Function and Predicate Symbols

This clause is a formula over the signature

{nil: l, cons: i → l → l, a: i, b: i, reverse: l → l → o},

that is, no auxiliary predicate constant is needed in this definition of reverse:
just those constants needed to build lists and to designate the reverse pro-
gram are required to build this clause. During a computation involving this
clause, an auxiliary constant is introduced via the ∀l→l→or quantifier, but
this constant must be new to the signature current at the time it is intro-
duced. Thus, there is no way for the environment (the current list of definite
clauses or signature) to interfere with the internal workings of this version
of reverse.

Before we illustrate how universal goals can be used to provide for data
abstraction, it is convenient to make the following sugared extension to defi-
nite clauses. It would be very useful if the scoping that universal quantifiers
provide to goals could also be provided to definite clauses. Consider, for
example, the following three definite (Horn) clauses. Here, the primitive sort
s informally denotes the type for the data type of stacks.

∀ix∀ss(pop x (stk x s) s)
∀ix∀ss(push x s (stk x s))

empty(emp)

With such an implementation of stacks, it might be desirable if the con-
stants emp, for the empty stack, and stk, for the constructor that adds a
stack element, were local to this definition. That is, goals and other definite
clauses written using this implementation of stacks should formally be ex-
cluded from using these two constants: stack manipulations would need to
be done exclusively via the three predicates pop, push, and empty.

Existential quantification over definite clauses can provide for this style
of local declaration. For example, if Ds denotes the conjunction of the above
three clauses that implement stacks, then ∃i→s→sstk ∃sempDs should cap-
ture the desired notion of local scoping. Such a use of existential quantifiers,
however, is not formally permitted in the definition of hereditary Harrop
formulas above for a good reason. When existential quantifiers are allowed
over program clauses, uniform proofs are no longer complete. For example,
the sequent

{p: i → o} ; −→ ∃τx (p x) ⊃ ∃τx (p x)

has an M-proof but has no uniform proof. Thus, the proposal to use exis-
tential quantifiers in program clauses must be qualified carefully.

Let D1 and ∀τxD2 be closed definite clauses and let G be a goal formula.
While the formula (D1 ∧ ∃τxD2) ⊃ G is not a goal in the extended logic of

15

7. A Higher-Order Logic

this section, it is intuitutionistic (and minimally) equivalent to the formula
∀τx((D1 ∧ D2) ⊃ G), which is a legal goal formula. This suggests that
existential quantifiers can be allowed in a definite clause only if they are
either at the top level of that definite clause or are in the scope of either
conjunctions or other existential quantifiers. Such occurrences of existential
quantifiers can rewritten in this fashion to be given a greater scope and
made into occurrences of universal quantifiers over a goal formula. Thus the
sequent above should be identified with the sequent

{p: i → o} ; −→ ∀τx ((p x) ⊃ ∃τx (p x)),

which has a uniform proof.
If we return to the example of stacks above and use this identification,

the search for a uniform proof of the sequent

Σ ; P −→ (∃i→s→sstk ∃sempDs) ⊃ G

would lead to the search for a uniform proof of the sequent

Σ ∪ {stk′: i → s → s, emp′: s} ; P, [stk 7→ stk′, emp 7→ emp′]Ds −→ G

where stk′ and emp′ are constants assumed not to be in Σ. The fact that
stk′ and emp′ are “new” constants formally guarantees that the only meaning
given to these constants is given to them by the clauses in [stk 7→ stk′, emp 7→
emp′]Ds.

7. A Higher-Order Logic

A form of abstraction we have not yet considered is that of higher-
order programming. In the functional programming setting, this style of
programming requires that functions be treated as values; that is, they can
be constructed, applied, and bound to variables. In the logic programming
setting, higher-order programming is characterized similarly except predi-
cates instead of functions need to be treated as values. The logic F does
not support computations with predicates since during the construction of a
proof in F logic, the only substitution terms allowed are terms of primitive
type, and such primitive types are different from o.

In the remainder of this paper we consider logic programming within
a logic that permits predicate quantification and the construction of substi-
tution terms for compound predicate expressions. This higher-order logic is
essentially a sublogic of Church’s Simple Theory of Types [4]. Terms are
permitted to contain λ-abstractions and quantification is allowed over all
types.

16

7. A Higher-Order Logic

Let S be a set of primitive types, again containing the type o. The
terms and formula of our higher-order logic, named T , are defined with
respect to signatures of arbitrary order over S. The logical constants of T
are like those of F except that the quantifiers, ∀τ and ∃τ , are taken to be
constants instead of special binding operators. We also assume that there
are denumerably many constants and variables for every type.

In F , the class of terms and formulas intersect in the class of atomic
formulas, that is, an atomic formula is essentially a term of type o. Because
terms will now contain λ-abstractions, it is possible to defined the class of
terms in such a way that they contain all formulas. In particular, a formula is
defined to be a term of type o. To achieve this uniform treatment, the logical
constants are given the following types: ∧,∨,⊃ are all of type o → o → o;
>,⊥ are of type o; and ∀τ and ∃τ are of type (τ → o) → o, for all types τ .
These latter two symbols are now considered to be constants and not binders
as they were in F . The binding associated to quantifiers will be captured by
λ-abstractions.

A constant or variable of type τ is a term of type τ . If t is a term of
type τ → σ and s is a term of type τ , then the application (t s) is a term of
type σ. Application associates to the left, that is, the expression (t1 t2 t3)
is read as ((t1 t2) t3). Finally, if x is a variable of type τ and t is a term of
type σ, then the abstraction λx t is a term of type τ → σ.

A formula is a term of type o. The logical constants ∧,∨,⊃ are written
in the familiar infix form whenever they occur in an expression with two
arguments present. The expressions ∀τ (λz t) and ∃τ (λz t) are written simply
as ∀τz t and ∃τz t.

If x and s are terms of the same type then [x 7→ s] denotes the operation
of substituting s for all free occurrences of x, systematically changing bound
variables in order to avoid variable capture.

Terms are related to other terms by following conversion rules.
◦ The term s α-converts to the term s′ if s contains a subformula oc-

currence of the form λx t and s′ arises from replacing that subformula
occurrence with λy [x 7→ y]t, provided y is not free in t.

◦ The term s β-converts to the term s′ if s contains a subformula occur-
rence of the form (λx t)t′ and s′ arises from replacing that subformula
occurrence with [x 7→ t′]t.

◦ The term s η-converts to s′ if s contains a subformula occurrence of the
form λx (t x), where x is not free in t, and s′ arises from replacing that
subformula occurrence with t.
The binary relation conv, denoting λ-conversion, is defined so that

t conv s if there is a list of terms t1, . . . , tn, with n ≥ 1, t equal to t1,
s equal to tn, and for i = 1, . . . , n − 1, either ti converts to ti+1 or ti+1

17

7. A Higher-Order Logic

converts to ti by α, β, or η. Expressions of the form λx (t x) are called η-
redexes (provide x is not free in t) while expressions of the form (λx t)s are
called β-redexes. A term is in λ-normal form if it contains no β or η-redexes.
Every term can be converted to a λ-normal term, and that normal term is
unique up to the name of bound variables. See [15] for a fuller discussion of
these basic properties of the simply typed λ-calculus.

Let Σ be a signature of unrestricted order. A term is a Σ-term if all of its
nonlogical constants are members of Σ. Similarly, a formula is a Σ-formula
if all of its nonlogical constants are members of Σ. It should be clear that
if Σ is a first-order signature, then every Σ-term and Σ-formula of F corre-
sponds directly to a λ-normal Σ-term and Σ-formula of T . The substitution
operation in F is naturally extended by the substitution operation of T .

All the inference rules given in Section 2 can be interpreted as inference
rules for T , where, of course, the signatures allowed in sequents is now per-
mitted to be of arbitrary order. To have a complete inference system for T
we need only add the inference rule

Σ ; Γ −→ ∆
λ,

Σ ; Γ′ −→ ∆′

where the pair Γ and Γ′ and the pair ∆ and ∆′ different only modulo λ-
conversion.

A λ-normal term, say t, is of the form

λx1 . . . λxn(h t1 · · · tm)

where n,m ≥ 0, h is either a constant or variable, and the terms t1, . . . , tn are
λ-normal. The head of t is h, the arguments of t are the terms t1, . . . , tm,
and the binder of t is the list of variables x1, . . . ,xn. If B is a λ-normal
formula, then its binder is empty and its head is either a logical constant, a
nonlogical constant, or a variable. If the head of B is not a logical constant
then B is an atomic formula. An atomic formula is rigid if its head is a
nonlogical constant, otherwise the head is a variable and it is flexible.

T is much more complex than F for several reasons. By virtue of the λ

inference rule, the notion of equality of terms is that of λ-conversion, which is
a much richer notion of equality than the simple syntactic identity used in F .
Also, since quantification can now be over types of any order and formulas
can contain flexible atoms, it is possible for the structure of formulas to
change drastically under substitutions. For example, consider the formula
∀i→op∀ix(p x ⊃ q x), where q is a constant of type i → o. Let B be some
formula in which the variable x may be free. The result of substituting λxB

for p, and then normalizing, yields the formula ∀ix(B ⊃ q x). Thus, unlike

18

8. Two Higher-Order Logic Programming Languages

in F , the number of occurrences of logical constants can increase arbitrarily
as a result of universal instantiation. This fact alone makes theorem proving
in T particularly difficult. As we observe in the next section, this aspect of
substitution makes higher-order extensions to logic programming languages
more expressive and significantly complicates the proof that uniform proofs
can be complete. For more about higher-order logics similar to T , see [1, 4].

8. Two Higher-Order Logic Programming Languages

There are several way to generalize Horn clauses from F to T . The
approach used here is to permit quantification over all occurrences of func-
tion symbols and some occurrences of predicate symbols, and to replace
first-order terms by simply typed λ-terms within which there may be em-
bedded occurrences of logical connectives. Thus, predicates and functions
are treated as first-class values. As we mentioned earlier, it is having predi-
cates as values that gives rise to higher-order programming in logic programs.
Thus, to achieve our ends, we do not need to permit quantification over func-
tion symbols in Horn clause. We will, however, permit such quantification
since it does not complicate our proof-theoretic considerations in this sec-
tions and since, as is briefly mentioned in Section 10, this extension provides
logic programs with programming techniques not easily achieved in other
programming languages.

Let H1 be the set of all λ-normal terms that do not contain occur-
rences of the logical constants ⊃, ∀, and ⊥; that is, the only logical constants
these terms may contain are >,∧,∨, and ∃. Let the syntactic variable A

now denote an atomic formula in H1. Such a formula must have the form
(h t1 . . . tn), where h is either a variable or non-logical constant and t1, . . . , tn

are members of H1. The syntactic variable Ar is used for rigid atomic for-
mulas in H1. A goal formula in the logic of higher-order Horn clauses is any
formula in H1. Notice that goal formulas satisfy the clause

G ::= > | A | G1 ∧G2 | G1 ∨G2 | ∃τx G

just as is the case with the goals attached to first-order Horn clauses. This
clause, however, does not serve to define the entire structure of these goals
since it does not reveal the structure of logical connectives that can appear
inside atomic formulas. The set of higher-order Horn clauses is defined by
the following clause:

D ::= Ar | G ⊃ Ar | D1 ∧D2 | ∀τx D.

The quantification in both G- and D-formulas may, of course, be over vari-
ables of any type.

19

8. Two Higher-Order Logic Programming Languages

The use of rigid atoms in the definition of higher-order Horn clauses has
two simple motivations. First, if we generalize the function pred from first-
order to higher-order formulas in the obvious manner, then the restriction
to rigid atoms implies that pred always return a set of predicate constants.
Thus, it is still possible to identify a program clause as partially defining
specific procedures, namely, those returned by the pred function. Second,
this requirement also makes it impossible for a collection of higher-order
Horn clauses to be inconsistent. As a corollary of Theorem 4 (below), a
sequent of the form Σ ; P −→ Ar is provable only if the top-level predicate
constant of Ar is a member of pred(P). If the condition on occurrences of
predicate variables is relaxed, however, programs can become inconsistent.
Arbitrary formulas are provable, for instance, from the set {p,∀x(p ⊃ x)}.

The following theorem was first proved in [26]. Details of the proof can
be found either there or in the paper [28].

Theorem 4. Let Σ be a signature of arbitrary order over S such that Σ
inhabits S. Let P be a finite set of higher-order Horn clauses and let G be

a goal formula such that P ∪ {G} is a set of Σ-formulas. Σ;P `C G if and

only if the sequent Σ ; P −→ G has a uniform proof.

A proof of this theorem is not a immediate generalize of the proof for the
theorem concerning first-order Horn clauses (Theorem 1) since proofs in the
higher-order setting can be very complex. For example, Figure 3 contains a
derivation (taken from [28]) of the goal formula ∃iy (p y) from the higher-
order Horn clause ∀ox (x ⊃ p a). We assume here that p is of type i → o,
that a and b are constants of type i, and that q is of type o. (Signatures are
not listed in the sequents of Figures 3 and 4 since they are all the same.) This
derivation illustrates that the substitution instance of a higher-order Horn
clause may not be a higher-order Horn clause. A straightforward induction
on the structure of proofs cannot be employed to prove Theorem 4.

p b −→ q, p b ⊃-R
−→ p b ⊃ q, p b p a −→ p a ⊃-L

(p b ⊃ q) ⊃ p a −→ p a, p b ∃-R
(p b ⊃ q) ⊃ p a −→ p a, ∃y p y ∃-R

(p b ⊃ q) ⊃ p a −→ ∃y p y ∀-L
∀x (x ⊃ p a) −→ ∃y p y

Figure 3: A non-uniform proof

20

8. Two Higher-Order Logic Programming Languages

The first step in proving Theorem 4 is to prove the following lemma:
In constructing C-proofs of the sequents involving higher-order Horn clauses
and their corresponding goal formulas, the only substitution terms needed are
terms from the set H1. In other words, H1 is a kind of Herbrand Universe
for higher-order Horn Clauses. Once this lemma is established, it follows
that the only substitution instances of higher-order Horn clauses that need
to be considered are also higher-order Horn clauses. Given this, the induc-
tive argument used to prove Theorem 1 will work here also. The proof of
this lemma employs a proof transformation that maps certain occurrence of
implicational subformulas to >. The result of applying this transformation
to the proof in Figure 3 yields the proof in Figure 4. While the transformed
proof is not uniform, it is easy to extract a uniform proof from it.

−→ >, p b p a −→ p a ⊃-L
> ⊃ p a −→ p a, p b ∃-R
> ⊃ p a −→ p a, ∃y p y ∃-R
> ⊃ p a −→ ∃y p y ∀-L

∀x (x ⊃ p a) −→ ∃y p y

Figure 4: A modified proof

In the next section we will present several examples of higher-order logic
programs. For now, we present two very simple examples. Let exists be a
constant of type (i → o) → o and let or be a constant of type o → o → o.
The three clauses

∀i→op∀ix (p x ⊃ exists p)
∀op∀oq (p ⊃ or p q)
∀op∀oq (q ⊃ or p q)

define, in a sense, existential quantification over type i and disjunction in goal
formulas. That is, let P be a higher-order Horn clause program containing
these three classes such that for every other member D of P, pred(D) does
not contain exists or or. Then (suppressing signatures) P `C (or G1 G2)
if and only if P `C G1 or P `C G2. Similarly, P `C (exists λx G) if and
only if there exists a term t of type i such that P `C [x 7→ t]G. Of course,
existential quantifiers of other types could similarly be defined in this way.

We now describe a higher-order version of hereditary Harrop formulas.
There are several choices in how such an extension can be made. One critical

21

8. Two Higher-Order Logic Programming Languages

choice concerns the richness of the logical expressions that may be embed-
ded in atomic formulas. In making Horn clauses higher-order, the logical
connectives >,∧,∨, and ∃τ are permitted to be embedded in atomic for-
mulas. These are also the same logical constants allowed as the top-level
connectives of the goals attached to Horn clauses. It would be natural to
allow this parallel: that is, to permit atomic, higher-order hereditary Harrop
formulas to contain embedded logic that included not only the connectives
>, ∨, ∧, and ∃τ that are permitted in H1 but also the connectives ⊃ and ∀τ .
As we show below, if implications are permitted to be embedded in atomic
formulas, uniform proofs will no longer be complete.

Let H2 be the set of λ-normal terms that do not contain occurrences
of the logical constants ⊃ and ⊥. In other words, H2 only extends H1 by
permitting the constants ∀τ (for all types τ). Let the syntactic variable A

denote atomic formulas in H2 and let the syntactic variable Ar denote rigid
atomic formulas in H2. Define the notions of goal formulas and definite
formulas by the following mutual recursion:

G ::= > | A | G1 ∧G2 | G1 ∨G2 | ∀x G | ∃x G | D ⊃ G

D ::= Ar | G ⊃ Ar | ∀x D | D1 ∧D2.

These D-formulas are called higher-order hereditary Harrop formulas. Clearly,
every higher-order Horn clause is a higher-order hereditary Harrop formula.
Similarly, every first-order hereditary Harrop formula is also a higher-order
hereditary Harrop formula. It should be pointed out, however, that the
definite clauses defined in Section 6 are not instances of higher-order hered-
itary Harrop formulas: the quantification over predicates that is allowed in
Section 6 is richer than what is permitted here.

The proof of the following theorem can be found in [25].

Theorem 5. Let Σ be a signature of arbitrary order over S such that Σ
inhabits S. Let P be a finite set of higher-order hereditary Harrop formulas

and let G be a goal formula such that P∪{G} is a set of Σ-formulas. Σ;P `I

G if and only if the sequent Σ ; P −→ G has a uniform proof.

A logic programming language based on higher-order hereditary Harrop
formulas does provide both higher-order programming as well as most of the
program structuring mechanism described in Sections 4, 5, and 6. As hinted
above, these two kinds of programming abstractions cannot be mixed as fully
as one might like since uniform, goal-directed proofs are no longer complete.
Permitting implications into the terms that appear as arguments of atomic
formulas can result in “goal” formulas that are theorems of minimal logic
but do not have uniform proofs. In operational terms, if implications are
permitted inside atomic formulas then it can no longer be guaranteed that

22

8. Two Higher-Order Logic Programming Languages

embedded logical connectives will move into the top-level logical structure of
formulas in a manner respecting the syntactic restrictions on goal formulas
and definite clauses. For example, consider the following formula (taken from
[25]):

∃Q[∀p∀q[R(p ⊃ q) ⊃ R(Qpq)] ∧Q(t ∨ s)(s ∨ t)],

where R is a constant of type o → o, s and t are constants of type o, Q is a
variable of type o → o → o, and p and q are variables of type o. This formula
has exactly one M-proof, which is obtained by substituting λxλy(x ⊃ y) for
the bound variable Q. This proof must contain within it a proof of the se-
quent t ∨ s −→ s ∨ t. Since there is no uniform proof of this sequent, there
can be no uniform proof for the original sequent. In this example, the sub-
formula t∨s has an occurrence in a goal formula (inside an atomic formula).
Once the substitution of an implication for Q is made, this disjunction ap-
pears on the left-hand side of an implication as an “illegitimate” program
clause. It is this movement of a disjunction from a positive to a negative
occurrence that spoils the completeness of uniform proofs.

One of the possible uses for higher-order features in a programming
language is that part of a computation might build programs that later parts
of the computation might use. The restriction that requires rigid atoms at
various positions in D-formulas, however, greatly restricts the possibility of
this kind of computation within the logic programming languages presented
here. For example, it is impossible for a set of higher-order hereditary Harrop
formulas to build new terms and then directly “evaluate” them. Consider,
for example, the sequent

P −→ ∃Q[(compile d Q) ∧ (Q ⊃ g)],

where d and g are some terms of type o and Q is a variable of type o.
This sequent can be thought of as describing the computation that uses
the information in the term d to build (compile) a program clause Q, and
then to use that new clause to help solve the goal g. Here, we assume that
the program P contains clauses that describe how to compute the relation
compile. The succedent of this sequent, however, is not a valid hereditary
Harrop formula since the left-hand side of the implication Q ⊃ g is not a
rigid atom. This language, therefore, does not seem to have a feature that,
for example, corresponds directly to the eval function of Lisp.

In a practical system, both of these restrictions (rigid atoms and no em-
bedded implications) can be a hindrance to a programmer. One way around
this would be to simply remove these restrictions and allow sequents like the
one above. There is no problem with permitting this sequent as long as the
terms that are related by compile to d are legal program clauses. This is,

23

9. Higher-Order Programming

however, a rather deep question about the nature of the user-defined pred-
icate compile and such a property can be very hard to establish in general.
Instead, an implementation of a higher-order version of hereditary Harrop
formulas might not check these syntactic restrictions of goal formulas prior
to attempting to interpret them. Such an interpreter would need to be pre-
pared to generate runtime errors if it were ever asked to consider a sequent in
which the antecedent was not a collection of higher-order hereditary Harrop
formulas. An advantage of using hereditary Harrop formulas exclusively is
that Theorem 5 guarantees that there will be no such runtime errors. Such
a restriction, however, would disallow meaningful computations.

9. Higher-Order Programming

Below we present several simple examples of higher-order programming
using higher-order Horn clauses. Consider the following four constants, each
of which is of order 2 and takes a first-order predicate as their first argument.

mappred : (i → i → o) → list → list → o

forsome : (i → o) → list → o

forevery : (i → o) → list → o

trans : (i → i → o) → i → i → o

We assume that these predicates are specified by the following higher-order
Horn clauses.

∀P (mappred P [] [])
∀P, x, y, l, k (P x y ∧mappred P l k ⊃ mappred P [x|l] [y|k])

∀P, x, l (P x ⊃ forsome P [x|l])
∀P, x, l (forsome P l ⊃ forsome P [x|l])

∀P (forevery P [])
∀P, x, l (P x ∧ forevery P l ⊃ forevery P [x|l])

∀R, x, y (R x y ⊃ trans R x y)
∀R, x, y, z (trans R x y ∧ trans R y z ⊃ trans R x z)

The intended meaning of these higher-order predicates is very simple. A goal
of the form (mappred P l k) is provable given the code above if l and k are
lists of equal length and corresponding members of these lists are P -related.
This predicate seems to correspond most closely to the mapcar function of
Lisp. Similarly, the goal (forsome P l) is provable if l is a list in which some

24

9. Higher-Order Programming

member satisfies the predicate P . The goal (forevery P l) is provable if l

is a list all of whose members satisfy the predicate P . A goal of the form
(trans R x y) is provable given the code above if x and y are members of the
transitive closure of the binary relation R.

For a final example of higher-order programming, we consider a speci-
fication of tactics and tacticals. As described in [10], a tactic is a primitive
method for decomposing a goal into a list of goals, and a tactical is a high-
level method for composing these tactics into meaningful and large scale
problem solvers. The functional programming language ML has often been
used to implement tactics and tacticals. Below we present a specification
(given in [5]) of them as a collection of higher-order Horn clauses.

Let g be a new primitive type that denotes expressions encoding object-
level goals (not to be confused with “meta-level” goals, which are terms of
type o). The exact nature of the terms of this type depends on the problem
domain. For example, if the application is that of attempting to find sequent
proofs for formulas in first-order logic, then terms of type g need to encode
the succedent and antecedent of a sequent. If the goal is to show that an
equality is provable, the goal must encode that equality. In any case, we
assume that there are always two constants that can be used to build goals,
namely, truegoal of type g, which denotes the trivially satisfied goal, and
andgoal of type g → g → g, which denotes the conjunction or pairing of two
goals. A term of type g that is conjunctive is also called a compound goal;
otherwise it is a primitive goal. In ML implementations of these concepts,
nonempty lists of goals are used to denote compound goals and the empty
list of goals is used to denote truegoal. While this approach can easily be
adopted here, it is natural to consider other ways of combining goals besides
conjunction and, hence, identifying compound goals with lists of goals is not
sufficiently general [5].

In this setting then, a tactic is a binary relation between a primitive goal
and another goal, possibly compound or primitive. Thus tactics are coded
as predicates of type g → g → o. Abstractly, if a tactic denotes the relation
R, then R(g1, g2) is true if satisfying goal g2 is sufficient to satisfy goal g1.
For example, assume that the formulas of a propositional logic are identified
with terms of type bool: the constants p, q, r, and s are of type bool and
denote propositional constants and the constants and, or, imp are of type
bool → bool → bool and denote conjunction, disjunction, and implication at
the propositional level. Let true be a constant of type bool → g. Then an
expression of the form (true A) denotes the object-level goal of demonstrating
that the propositional formula A is true. Given this encoding of propositional
logic into (first-order) λ-terms of type bool, the following are examples of

25

9. Higher-Order Programming

some simple tactics.

∀A, B (andtac (true (and A B)) (andgoal (true A) (true B)))
∀A, B (ortac (true (or A B) (true A))
∀A, B (ortac (true (or A B) (true B))
∀A, B (backchain (true A) (andgoal (true (imp B A)) (true B)))

Before presenting the clauses for tacticals, we need to present an auxilary
function named maptac of type (g → g → o) → g → g → o that applies a
tactic to all primitive goals in a given goal. In the remaining clauses used
to specify aspects of this example, we do not explicitly universally quantify
variables around displayed Horn clauses. Instead, when the symbols R and
G, with possible subscripts, are present in a clause, we assume that they are
implicitly universally quantified over the clause in which they occur.

maptac R truegoal truegoal

maptac R G1 G3 ∧maptac R G2 G4 ⊃
maptac R (andgoal G1 G2) (andgoal G3 G4)

R G1 G2 ⊃ maptac R G1 G2

Given these clauses, we can now specify several common tacticals. The new
constants in the following higher-order Horn clauses have the following types.

then : (g → g → o) → (g → g → o) → g → g → o

orelse : (g → g → o) → (g → g → o) → g → g → o

idtac : g → g → o

try : (g → g → o) → g → g → o

complete : (g → g → o) → g → g → o

goalreduce : g → g → o

In the clauses below, the variables R, R1, R2 denote tactics while the variables
G,G1, G2, G3, G4 denote object-level goals.

R1 G1 G3 ∧maptac R2 G3 G2 ⊃ then R1 R2 G1 G2

R1 G1 G2 ⊃ orelse R1 R2 G1 G2

R2 G1 G2 ⊃ orelse R1 R2 G1 G2

idtac G G

orelse (then R (repeat R)) idtac G1 G2 ⊃ repeat R G1 G2

orelse R idtac G1 G2 ⊃ try R G1 G2

R G1 G2 ∧ goalreduce G2 truegoal ⊃ complete R G1 truegoal

26

9. Higher-Order Programming

goalreduce G1 G2 ⊃ goalreduce (andgoal truegoal G1) G2

goalreduce G1 G2 ⊃ goalreduce (andgoal G1 truegoal) G2

goalreduce G G

The then tactical performs the composition of tactics. The tactic R1 is
applied to the (primitive) “input” goal G1 and then tactic R2 is applied to
the resulting goal. The predicate maptac is used in this second application
since the application of R1 can result in a compound goal. This tactical plays
a fundamental role in combining the results of step-by-step goal reduction.
The orelse tactical attempts to apply either the tactic R1 or the tactic R2.
The third tactical, idtac, simply returns the input goal unchanged. The
repeat tactical is defined recursively using these previous three tacticals. The
try tactical forms the reflexive closure of a given tactic. In operational terms,
the tactic, try R, can be used to first reduce a goal using R and, if that fails,
to simply return the given goal unchanged. Finally, the complete tactical
succeeds if its given tactic can completely solve (that is, reduce to truegoal) a
given goal. If a complete reduction is not possible, the given goal is returned
unchanged. This tactical requires the auxiliary procedure goalreduce that
simplifies compound goal expressions by removing occurrences of truegoal

from them. Although the complete tactical is the only one that requires the
use of the goalreduce procedure, it is also possible and probably desirable
to modify the other tacticals so that they use it to similarly simplify their
output goal structures whenever possible.

The examples above demonstrate how predicate variables can be used in
logic programs. The higher-order clauses examined in the previous section,
however, permitted predicate as well as function variables. Thus we can,
for example, write the following higher-order Horn clauses that define the
predicate mapfun of type (i → i) → list → list → o.

∀f (mapfun f [] [])
∀f, x, l, k (mapfun f l k ⊃ mapfun f [x|l] [f x|k])

A goal (mapfun f l k) is provable from these clauses if l and k are lists of
the same length and if f is applied to a member in the first list the result is
λ-convertible to the corresponding element in the second list. Thus, if g is a
constant of type i → i → i and a and b are constants of type i, then the goal

∃l (mapfun λx (g x x) [a, b] l)

has a proof with the existential witness [(g a a), (g b b)]. Similarly, the goal

∃f (mapfun f [a, b] [(g a a), (g b b)])

27

10. Conclusion

has a proof with the existential witness λx (g x x). The kind of pattern
matching that this example illustrates does not correspond to any conven-
tional notions of higher-order programming that derive their origins from
functional programming languages. In order for an implementation of higher-
order Horn clause to be complete and thus find abstractions in this fashion, it
must implement unification of simply typed λ-terms containing variables of
functional (higher-order) types. Such unification is a significant enrichment
of first-order term unification. It has been studied by various researchers
(see, for example, [16,35]) and implementations of it have been used in var-
ious theorem proving and logic programming settings [2, 27, 29]. Further
discussion of the use of functional variables in logic programming is, how-
ever, beyond the scope of this paper. The interested reader is referred to the
papers [5, 12, 17, 23, 31].

10. Conclusion

In this paper, logic programming has been presented at a very high-
level. Our focus has been on the declarative and proof-theoretic meaning of
logic connectives and quantifiers. Unification, which plays a crucial role in
understanding an actual interpreter or compiler of programming languages
such as Prolog, was hardly mentioned in this paper. The reason for this is
that our approach for providing Horn clauses with abstractions has been to
understand various kinds of abstractions as phenomena of provability. Once
abstractions can be understood in terms of provability, traditional theorem
proving techniques can be employed to help implement such extensions to
logic programs. From this point of view, unification is only an implemen-
tation technique used to interpret logic programs. In fact, implementing
interpreters for the logics described in this paper requires roughly three dif-
ferent kinds of unification processes. Specifically, the programming languages
outlined in Sections 3 and 4 requires the notion of unification of first-order
terms. The languages described in Sections 5 and 6 require that usual first-
order term unification be modified so that certain constants cannot appear
in the substitution terms for certain free variables: this constraint is neces-
sary to guarantee that constants introduced for universal quantifiers in goals
are indeed “new.” Finally, the languages described in Section 8 require the
unification of simply typed λ-terms.

Clearly, there is a rather large gap between presenting logic systems as
we have here and developing and implementing real programming languages
that incorporate the enhanced logics. The experimental language, λProlog
[27], is an attempt to base a Prolog-like language on higher-order hereditary
Harrop formulas. λProlog uses a depth-first search discipline to implement

28

11. References

not only clause selection (used also by Prolog) but also unifier selection.
Since the unification of simply typed λ-terms with functional variables may
yield multiple unifiers, these must also be selected in some order and any
choice here may need to be backtracked over. There are currently two imple-
mentation of λProlog: one implemented in Prolog [24] and one in Common
Lisp [6].

The classes of formulas similar to first-order hereditary Harrop formulas
have been developed by various other researchers from different points of
view. For example, both Gabbay and Reyle [8] and McCarty [18, 19] are
concerned with extending logic programming with hypothetical reasoning.
Hallnäs and Schroeder-Heister [11] also use proof-theoretic arguments of a
kind different than those used here to similarly extend Horn clauses.

Logics similar to higher-order hereditary Harrop formulas have also been
used as meta languages in specifying and implementing theorem provers [5,
29, 30] and program transformation and manipulation systems [12, 13, 23].

Acknowledgements. I am very grateful to Eva Ma for her editorial com-
ments on an earlier draft of this paper and to Felix Wu for catching several
typos. The work reported here has been supported in part by grants ONR
N00014-88-K-0633, NSF CCR-87-05596, and DARPA N00014-85-K-0018.

11. References

[1] P. Andrews, An Introduction to Mathematical Logic and Type Theory,
Academic Press, 1986.

[2] P. Andrews, D. Miller, E. Cohen, and F. Pfenning, “Automating Higher-
Order Logic” in Automated Theorem Proving: After 25 Years, AMS
Contemporary Mathematics Series 29, 1984.

[3] K. Apt and M. van Emden, Contributions to the Theory of Logic Pro-
gramming, Journal of the ACM 29 (1982) 841 – 862.

[4] A. Church, A Formulation of the Simple Theory of Types, Journal of
Symbolic Logic 5 (1940) 56 – 68.

[5] A. Felty and D. Miller, Specifying Theorem Provers in a Higher-Order
Logic Programming Language, Proceedings of the Ninth International
Conference on Automated Deduction, Argonne, IL, 23 – 26 May1988,
eds. E. Lusk and R. Overbeek, Springer-Verlag Lecture Notes in Com-
puter Science, Vol. 310, 61 – 80.

[6] C. Elliott and F. Pfenning, eLP, a Common Lisp implementation of
λProlog, January 1989.

[7] M. Fitting, Intuitionistic Logic Model Theory and Forcing, North-Holland
Pub. Co., 1969.

29

11. References

[8] D. Gabbay and U. Reyle, N-Prolog: An Extension to Prolog with Hy-
pothetical Implications. I, Journal of Logic Programming 1 (1984) 319
– 355.

[9] G. Gentzen, Investigations into Logical Deductions, in: M. E. Szabo
(ed.), The Collected Papers of Gerhard Gentzen, North-Holland Pub-
lishing Co., Amsterdam, 1969, 68 – 131.

[10] M. J. Gordon, A. J. Milner, and C. P. Wadsworth, Edinburgh LCF: A
Mechanised Logic of Computation, Lecture Notes in Computer Science,
Vol. 78, Springer-Verlag, 1979.

[11] L. Hallnäs and P. Schroeder-Heister, A Proof-Theoretic Approach to
Logic Programming. I. Generalized Horn Clauses (unpublished) 1988.

[12] J. Hannan and D. Miller, Uses of Higher-Order Unification for Im-
plementing Program Transformers, Fifth International Conference and
Symposium on Logic Programming, ed. K. Bowen and R. Kowalski, MIT
Press, 1988, 942 – 959.

[13] J. Hannan and D. Miller, A Meta Language for Functional Programs,
Proceedings of the 1988 Workshop on Meta Programming, Bristol, UK,
eds. H. Rogers and H. Abramson, MIT Press (to appear).

[14] R. Harrop, Concerning Formulas of the types A → B∨C, A → (Ex)B(x)
in Intuitionistic Formal Systems, Journal of Symbolic Logic, 25 (1960)
27 — 32.

[15] J. Hindley and J. Seldin, Introduction to Combinators and λ-calculus,
Cambridge University Press, 1986.

[16] G. Huet, A Unification Algorithm for Typed λ-Calculus, Theoretical
Computer Science 1 (1975) 27 – 57.

[17] G. Huet and B. Lang, Proving and Applying Program Transformations
Expressed with Second-Order Logic, Acta Informatica 11 (1978) 31–55.

[18] L. McCarty, Clausal Intuitionistic Logic I. Fixed Point Semantics, Jour-
nal of Logic Programming 5 (1988) 1 – 31.

[19] L. McCarty, Clausal Intuitionistic Logic II. Tableau Proof Procedure,
Journal of Logic Programming, 5 (1988) 93 – 132.

[20] D. Miller, A Logical Analysis of Modules in Logic Programming, Journal
of Logic Programming 6 (1989) 79 – 108.

[21] D. Miller, Lexical Scoping as Universal Quantification, Sixth Interna-
tional Logic Programming Conference, Lisbon, June 1989, eds. G. Levi
and M. Martelli, MIT Press, 268 – 283.

[22] D. Miller and G. Nadathur, Higher-Order Logic Programming, Proceed-
ings of the Third International Logic Programming Conference, London,
June 1986, ed. E. Shapiro, Sringer-Verlag, 448 – 462.

[23] D. Miller and G. Nadathur, A Logic Programming Approach to Ma-
nipulating Formulas and Programs, Proceedings of the IEEE Fourth

30

11. References

Symposium on Logic Programming, IEEE Press, 1987, 379 – 388.
[24] D. Miller and G. Nadathur, LP2.6 (August 1987) and LP2.7 (July 1988)

implementations of λProlog, distribution in C-Prolog and Quintus Pro-
log source code.

[25] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov, Uniform Proofs
as a Foundation for Logic Programming, Annals of Pure and Applied
Logic (to appear).

[26] G. Nadathur, A Higher-Order Logic as the Basis for Logic Programming,
Ph. D. dissertation, University of Pennsylvania, May 1987.

[27] G. Nadathur and D. Miller, An Overview of λProlog, Fifth International
Conference on Logic Programming, eds. R. Kowlaski and K. Bowen,
MIT Press, 1988, 810 – 827.

[28] G. Nadathur and D. Miller, Higher-Order Horn Clauses, Journal of the
ACM (to appear).

[29] L. Pauslon, The Foundation of a Generic Theorem Prover, Journal of
Automated Reasoning, Vol. 5, September 1989, 363 – 397.

[30] F. Pfenning, Partial Polymorphic Type Inference and Higher-Order
Unification, Proceedings of the 1988 ACM Conference on Lisp and Func-
tional Programming, ed. Jerome Chailloux, ACM Press, 153 – 163.

[31] F. Pfenning and C. Elliot, Higher-Order Abstract Syntax, Proceedings
of the ACM-SIGPLAN Conference on Programming Language Design
and Implementation, ACM Press, 1988, 199 – 208.

[32] D. Prawitz, Natural Deduction, Almqvist & Wiksell, Uppsala, 1965.
[33] C. Smorynski, Applications of Kripke models, pp. 324 – 391 in [36].
[34] L. Sterling and E. Shapiro, The art of Prolog: advanced programming

techniques, MIT Press, Cambridge MA, 1986.
[35] W. Snyder and J. H. Gallier, Higher Order Unification Revisited: Com-

plete Sets of Transformations, Journal of Symbolic Computation, Vol.
8, 1989, 101 – 140.

[36] A. Troelstra, Metamathematical Investigations of Intuitionistic Arith-
metic and Analysis, Lecture Notes in Mathematics 344, Springer-Verlag,
Berlin, 1973.

31

