
Proof theory, proof search,

and logic programming

a monograph
Draft: 17-09-2022

This version of the monograph does not include Chapter 8 (Higher-order quan-

tification), Chapter 10 (Formalizing operational semantics), Chapter 11 (Col-

lection analysis for Horn clauses), and Chapter 12 (Proof checking).

Comments and corrections are welcome.

© Dale Miller

Inria Saclay & Laboratoire d’Informatique (LIX)

1 rue Honoré d’Estienne d’Orves

Campus de l’École Polytechnique

91120 Palaiseau France

dale.miller at inria.fr

ii

Contents

Preface 1

1 Introduction 3

1.1 A spectrum of logics . 3

1.2 Logic and the specification of computations 5

1.3 Proof search and logic programming 6

1.4 Designing logic programming languages 7

1.5 Why use logic to write programs? 8

1.6 Bibliographic notes . 8

2 Terms, formulas, and sequents 11

2.1 Untyped λ-terms . 11

2.2 Types . 13

2.3 Signatures and typed terms . 14

2.4 Formulas . 15

2.5 Sequents . 18

2.6 Bibliographic notes . 19

3 Sequents calculus proofs rules 21

3.1 Sequent calculus and proof search 21

3.2 Inference rules . 23

3.2.1 Structural rules . 24

3.2.2 Identity rules . 25

3.2.3 Introduction rules . 25

3.3 Additive and multiplication inference rules 27

3.4 Sequent calculus proofs . 28

3.5 Permutations of inference rules 29

3.6 Cut-elimination and its consequences 31

3.7 Bibliographic notes . 34

iv Contents

4 Classical and intuitionistic logics 35

4.1 Classical and intuitionistic inference rules 36

4.2 The identity rules and their elimination 41

4.3 Logical equivalence . 47

4.4 Invertible introduction rules . 48

4.5 Negation, false, and minimal logic 50

4.6 Choices to consider during the search for proofs 52

4.7 Bibliographic notes . 53

5 Two abstract logic programming languages 55

5.1 Goal-directed search . 55

5.2 Horn clauses . 57

5.3 Hereditary Harrop formulas . 60

5.4 Backchaining as focused rule application 64

5.5 Formal properties of focused proofs 66

5.6 Kripke model semantics . 77

5.7 Backchaining as a single left rule 80

5.8 Synthetic inference rules . 81

5.9 Disjunctive and existential goals 83

5.10 Examples of fohc logic programs 84

5.11 Dynamics of proof search for fohc 86

5.12 Examples of fohh logic programs 88

5.13 Dynamics of proof search for fohh 90

5.14 Limitations to fohc and fohh logic programs 90

5.15 Bibliographic notes . 93

6 Linear logic 97

6.1 Reflections on the structural inference rules 97

6.2 LK vs LJ: An origin story for linear logic 100

6.3 Sequent calculus proof systems for linear logic 101

6.3.1 Multiplicative additive linear logic 101

6.3.2 Linear logic as MALL plus exponentials 103

6.3.3 Duality and polarity . 104

6.3.4 Introducing implications 108

6.4 Single conclusion sequents with two zones 109

6.5 Embedding fohh into intuitionistic linear logic 113

6.6 Multiple conclusion uniform proofs 116

6.7 Formal properties of Forum proofs 120

6.7.1 Paths and synthetic inference rules 120

6.7.2 Admissibility of the general initial rule 125

6.7.3 Cut rules and Cut-elimination 126

6.7.4 Soundness and completeness of the focused proof system 133

Contents v

6.8 Bibliographic notes . 141

7 Linear logic programming 145

7.1 Encoding multisets as formulas 145

7.2 A syntax for Lolli programs . 146

7.3 Permuting a list . 147

7.4 Multiset rewriting . 148

7.5 Context management in a theorem prover 151

7.6 Multiset rewriting in Forum . 153

7.7 Specification of sequent calculus proof systems 154

7.8 Bibliographic notes . 157

8 Higher-order quantification 159

8.1 Higher type quantification . 161

8.2 Higher-order Horn clauses . 162

8.3 Higher-order Hereditary Harrop Formulas 166

8.4 Uniformity proof search in hohh 169

8.5 Examples of higher-order logic programs 175

8.6 Support for abstract data types 175

8.7 Higher-order quantification and linear logic 175

8.8 Bibliographic notes . 176

9 Encoding security protocols 177

9.1 Communicating processes . 177

9.2 A conventional presentation of protocols 181

9.3 A linear logic formulation . 183

9.4 Encryption as an abstract data type 185

9.5 Abstracting internal states . 187

9.6 Roles as nested implications . 189

9.7 Bibliographic notes . 192

10 Formalizing operational semantic 193

10.1 Three frameworks for operational semantics 193

10.2 The abstract syntax of programs as terms 195

10.2.1 Encoding the untyped λ-calculus 195

10.2.2 Encoding the π-calculus expressions 195

10.3 Big step semantics: call-by-value evaluation 196

10.4 Small step semantics: π-calculus transitions 198

10.5 Binary clauses . 201

10.5.1 Continuation passing in logic programming 201

10.5.2 Abstract Machines . 202

10.6 Linear logic . 205

10.6.1 Adding a counter to evaluation 205

vi Contents

10.6.2 Specification of Concurrency primitives 207

10.7 Static semantics . 210

10.8 Bibliographic notes . 210

11 Collection analysis for Horn clauses 213

11.1 Introduction . 213

11.2 The undercurrents . 214

11.2.1 If typing is important, why use only one? 214

11.2.2 Viewing constants and variables as one 215

11.2.3 Linear logic underlies computational logic 216

11.3 Abstraction and substitution in proof theory 216

11.3.1 Substituting for types 216

11.3.2 Substituting for non-logical constants 217

11.3.3 Substituting for assumptions 217

11.4 Proving that reverse is symmetric 218

11.5 Multisets approximations . 220

11.6 Formalizing the method . 223

11.7 Sets approximations . 224

11.8 Automation of deduction . 226

11.9 List approximations . 229

11.10Difference list approximations 230

11.11Future work . 231

11.12Bibliographic notes . 232

12 Proof checking 233

12.1 Introduction . 233

12.1.1 Validate proofs, not provers 234

12.1.2 Proof checking vs proof reconstruction 235

12.2 Proof theory as a framework . 235

12.3 Focused versions of sequent calculi 236

12.3.1 Polarizing connectives 237

12.3.2 Grouping don’t-care and don’t-know non-determinism . 239

12.3.3 Identity and Structural rules 240

12.3.4 Synthetic inference rules 240

12.3.5 Soundness and completeness of focusing 241

12.4 Foundational proof certificates 241

12.5 A proof checker as a logic program 243

12.6 Non-determinism in proof checking 245

13 Solutions to selected exercises 249

Bibliography 258

Contents vii

Index 278

viii Contents

Preface

This monograph examines the theory and design of logic programming lan-

guages using basic concepts from Gentzen’s theory of proofs. In particular,

we shall view the computation of logic programs as the search for a specific

kind of proof. During the search for a proof, the current logic program P
and the current goal G are recorded using the simple pairing construction,

P ` G, formally called a sequent. Of all the many ways one might attempt a

proof of P ` G, we shall limit ourselves to analytic (cut-free) proofs that are

goal-directed. We shall capture the notion of goal-directed proof search using

the technical notion of uniform proof in which sequent calculus proofs are

built by alternating phases performing goal-reduction steps and backchaining

steps.The completeness of uniform proofs is a formal criterion for judging if

a particular choice of goal formulas G and logic programs P yields a logic

programming language.

Using this proof theory foundations, we shall define a few logic program-

ming languages based on first-order and higher-order classical, intuitionistic,

and linear logics. In this way, we provide a proof-theoretic foundations for

Prolog (using first-order Horn clauses in classical logic), λProlog (using higher-

order hereditary Harrop formulas in intuitionistic logic), and two linear logic

programming languages (Lolli and Forum). These increasingly expressive logic

programming languages add to the logic programming paradigm abilities to ex-

press modular programming, higher-order programming, abstract datatypes,

state encapsulation, and concurrency.

As we shall see, the relationship between logic programming and the se-

quent calculus is immediate and natural. In fact, the intuitive operational

reading of logic programs motivates an important revision of sequent calculus

proof systems, called focused proofs, not initially envisioned by Gentzen. When

we encounter focused proof systems, we shall develop their proof theory (e.g.,

we prove they satisfy cut-elimination) in order to connect logic programming

tightly to the more general topic of proof theory.

2 Preface

The reader of this monograph should be familiar with the basic syntactic

properties of first-order logic and the (simply typed) λ-calculus. No back-

ground in the formal representation of proofs is needed, although such a back-

ground is useful. We shall occasionally present examples of logic programs

to help illustrate proof-theoretic concepts: such examples will be presented

using the syntactic conventions of the λProlog [Miller and Nadathur, 2012].

While some familiarity with Prolog or λProlog is useful for understanding the

examples, it should be possible for the reader unfamiliar with those program-

ming languages to learn the basic operational and declarative meaning of logic

programming from the underlying theory and from the examples provided.

The search for proofs has many dimensions that we shall not address here.

In particular, this monograph does not cover topics related to the implemen-

tation of proof search: for example, unification and backtracking search are

not explicitly discussed. We shall also not consider the more general problems

of searching for proofs in interactive and automatic theorem provers.

The first part of this monograph, namely Chapters 1 to 8, describes how

the sequent calculus can be used to design and reason about various logic

programming languages based on classical, intuitionistic, and linear logics. In

the second part of this monograph, namely Chapters 9 to 12, we turn our

attention to describing a few applications of some of these logic programming

languages.

Most chapters contain exercises that have been designed to illustrate and

explore ideas related to the main text. Generally, these exercises should not be

difficult to solve. Exercises marked by (‡) have partial or complete solutions

in Chapter 13.

Acknowledgments. Versions of this monograph have been used in graduate-

level courses in Paris, Copenhagen, Venice, Bertinoro, and Pisa. I thank the

many students from these courses and Gopalan Nadathur for their comments

on earlier drafts of this monograph.

Chapter1
Introduction

There are many ways to specify and reason about computation. The early

work of Church, Turing, Gödel, Curry, and others revealed that several dif-

ferent specification devices—such as the λ-calculus, Turing machines, and re-

cursive equations—all specified the same set of computable functions. Many

programming languages—such as LISP, C, Pascal, and Ada—have been de-

signed that can be used to implement (in principle) this same set of computable

functions. Apparently, no programming language can be viewed as canonical:

the choice of which programming language one uses comes down to issues such

as which language has compilers for a particular piece of computer hardware,

which language is being used by one’s collaborators, etc.

Given that logic can be seen as arising from foundational concerns within

mathematics and computer science, it is interesting to consider using logical

expressions themselves as programs. The logic programming paradigm arises

from directly addressing questions such as: How might logic be used directly

as a programming language? How expressive can such logic programming

languages be? What benefits arise from basing the syntax and operational

meaning of programs on techniques and ideas formulated by logicians in the

first half of the 20th century?

This monograph addresses this latter set of questions. But first, we address

the fact that there are many logics and kinds of proof by organizing them into

a conceptually clean framework before attempting to deliver a foundation for

logic-based programming.

1.1 A spectrum of logics

The syntax for terms and formulas will be given in Chapter 2 using the frame-

work provided by Church in his Simple Theory of Types [1940]: in particular,

both terms and formulas are simply typed λ-terms, and the equality of terms

4 Chapter 1. Introduction

and formulas is identified with the equality of such λ-terms (i.e., by the equa-

tions of α, β, and η conversion). Terms that have a particular primitive formula

type—the Greek letter omicron o (following [Church, 1940])—are classified, in

fact, as formulas.

In this monograph, logics are classified along two major axes. The first

axis involves the universal ∀ and existential ∃ quantifiers. A logic with no

quantifiers is a propositional logic. A logic with quantifiers is a quantificational

logic. Quantifiers in this monograph will bind typed variables (again following

Church [1940]). A logic in which the type of a quantified variable is limited

to primitive and non-propositional types is first-order. A higher-order logic

allows quantification at all types, including propositional and functional types.

The second axis consists of the following three logics.

1. Classical logic is a logic of truth values. For example, propositional

formulas are either true or false depending on the truth value of the

propositional variables it contains. Such a truth value can be computed

using truth tables. For example, the formulas p ∨ ¬p and ((p ⊃ q) ⊃
p) ⊃ p are true no matter what truth value is given to p and q.

2. Intuitionistic logic can be seen as a logic based on a constructive ap-

proach to proof. For example, a proof that the formula ∃x.B(x) is a

theorem must contain a specific term, say t, and a proof that B(t) is a

theorem. Similarly, a proof that B1 ∨ B2 is a theorem contains a spe-

cific value of i ∈ {1, 2} and a proof of Bi. For this reason, the formula

p ∨ ¬p may not be a theorem since, without more information about p,

we might not be able to provide a proof of either p or ¬p. If p is a state-

ment such as 3 = 4 then we can prove p ∨ ¬p since we can presumably

prove ¬(3 = 4). However, if we know nothing about p, then we cannot

prove either of these disjuncts.

3. Linear logic, introduced by Girard [1987], can be seen as a logic of re-

sources. For example, having one occurrence of p can be different from

having two occurrences, as in p ∧ p. As such, it is possible to model

vending machines (e.g., two 50 cent coins yields one coffee), Petri nets,

and process calculi.

Gentzen [1935] introduced the sequent calculus as a technical device to

represent proofs in both classical and intuitionistic logics. The sequent calculus

also provides an ideal setting for describing proofs for linear logic. As a result,

we adopt the sequent calculus here and stress the modular and straightforward

way in which it can be used to describe provability in these three logics. Our

approach here does not attempt to merge classical, intuitionistic, and linear

logics into one logic: instead, we view these logics as having different but

closely related proof systems.

1.2 Logic and the specification of computations 5

1.2 Logic and the specification of computations

Logic can be applied to the specification of computing in a few ways. We give

an overview of these roles for logic in order to identify the particular niche

that is our focus in this monograph.

In the specification of computation, logic is generally used in one of two ap-

proaches. In the computation-as-model approach, computations are encoded

as mathematical structures, containing such items as nodes, transitions, and

states. Logic is used in an external sense to make statements about those

structures. That is, computations are used as models for logical formulas.

Intensional operators, such as the triples of Hoare logic or the modals of tem-

poral and dynamic logics, are often employed to express propositions about

state changes. This use of logic to represent and reason about computation

is probably the oldest and most broadly successful use of logic specifications

with computation.

The computation-as-deduction approach uses pieces of logic’s syntax (such

as formulas, terms, types, and proofs) as elements of the specified computa-

tion. In this more rarefied setting, there are two different approaches to how

computation is modeled.

The proof normalization approach views the state of a computation as a

proof term and the process of computing as normalization (know variously as

β-reduction or cut-elimination). Functional programming can be explained us-

ing proof-normalization as its theoretical basis [Martin-Löf, 1982] and has been

used to justify the design of new functional programming languages [Abram-

sky, 1993].

The proof search approach views the state of a computation as a sequent (a

structured collection of formulas) and the process of computing as the process

of searching for a proof of a sequent: the changes that take place in sequents

capture the dynamics of computation. This perspective on computation is the

subject of this monograph.

Both of these programming paradigms include non-determinism in their

computational mechanisms. When functional programming languages are de-

signed based on proof normalization, explicit control of the order in which

redexes are rewritten are usually carefully described: such controls are often

associated with either call-by-value or the call-by-name. In general, evaluation

in functional programming languages is so tightly controlled that evaluation

becomes deterministic. Computation based on searching for proofs is also non-

deterministic. Removing some elements of non-determinism is often a design

goal of most logic programming languages and their interpreters. In general,

however, some non-determinism is retained in logic programming languages:

it presence and exploitation provides some of the expressiveness of the logic

programming paradigm.

6 Chapter 1. Introduction

The separation of proof normalization from proof search given above is in-

formal and suggestive: such a division helps point out different sets of concerns

represented by these two broad approaches. For example, proof normalization

focuses on describing rewritings and their confluence, while proof search fo-

cuses on unification and backtracking search. Of course, new advances in

computational logic and proof theory might allow us to merge or reorganize

this classification.

1.3 Proof search and logic programming

The earliest theoretical framework for logic programming was not an analysis

of proofs but rather of resolution refutations [Robinson, 1965] and, in partic-

ular, SLD-resolution. This choice of foundations for logic programming was

unfortunate for at least the following reasons.

1. Resolution is used to refute: that is, it attempts to derive a contradiction.

This choice is counterintuitive since logic programming certainly seems

to be about proving a goal formula from a collection of other formulas

(the logic program).

2. Most refutation systems work with formulas that are in conjunctive nor-

mal form and Skolem normal form. Unfortunately, the only logic we

wish to study for which restricting to such normal forms is possible is

classical logic. Furthermore, these normal forms are not preserved when

higher-order, predicate variables are substituted with expressions con-

taining quantifiers and connectives.

3. A key inference step in resolution is the computation of most general

unifiers. In many ways, unification seems to be part of the implementa-

tion behind the interplay of quantification and equality. It seems more

natural first to try to understand that interplay before forcing one to

implement it.

It is thus appealing to find a different approach to describing logic pro-

gramming that is cast in terms of proving and in which normal forms and

unification are not required. The sequent calculus provides just such a set-

ting. Furthermore, removing unification from the abstract notion of proof

search has a couple of benefits. First, it makes it possible for the interplay

between universal and existential quantifiers to be explored without forcing

the use of Skolem functions. Second, the use of most general unifiers within

resolution means that it cannot handle those situations where most general

unifiers do not exist (which can happen when attempting to unify simply typed

λ-terms [Huet, 1975]).

1.4 Designing logic programming languages 7

1.4 Designing logic programming languages

A concern in the early history in the development of Prolog focused on how

best to control search within a Prolog interpreter. For example, Kowalski

[1979] proposed the equation

Algorithm = Logic + Control,

which makes the important point that there is a gap between logic (here, first-

order Horn clause specifications) and algorithms. For example, the naive Horn

clause specification of the Fibonacci series could yield both the exponential-

time algorithm and the linear time algorithm depending on whether a top-

down (goal-directed) or a bottom-up (program-directed) proof search is em-

ployed. Clearly, the programmer must be able to have some control over which

of these algorithms ultimately arises from this single logic specification. Var-

ious non-logical features have also been added to Prolog—such as the cut !

and negation-as-failure—in order to allow for some explicit control of search.

Given that the logical foundation of Prolog is rather weak (see the dis-

cussion in Section 5.13), the design of new logic programming languages have

made several additional extensions to logic, yielding a equation more like the

following.

Programming = Logic + Control + Input/Output

+ Higher-order programming

+ Data abstractions

+ Modules

+ Concurrency +

Such extensions are generally made in an ad hoc fashion and logic, which was

the motivation and the intriguing starting point for a language like Prolog,

was moved from center stage. With such an approach to building a program-

ming language, the features added to address, say, higher-order programming

can interact in complex ways with features that were added to address, say,

modules. Describing such interaction of features can greatly complicate the

design, implementation, and semantics of a programming language.

A interesting project is to see how one might satisfy the equation

Programming = Logic.

If this equation is at all possible, then one will certainly need to rethink what

is meant by “Programming” and by “Logic.” This monograph explores rein-

terpreting “Logic” by moving from first-order classical logic of Horn clauses to

intuitionistic and linear logics possibly based on higher-order quantification.

Chapters 9 through 12 provide several extended examples in which the task

of programming and the use of rich logics coincide.

8 Chapter 1. Introduction

1.5 Why use logic to write programs?

Several benefits arise from writing programs as logic formulas and viewing

computation as the construction of proofs. We list several here.

1. Logical formulas come with various operations on them that generally

satisfy useful properties. For example, applying substitutions into for-

mulas or replacing a subformula with a logically equivalence subformula

is meaningful. Thus, applying substitutions into programs and then ap-

plying, say, modus ponens to two program clauses could well be expected

to return a new, meaning-preserving program element.

2. There are generally multiple ways to describe central concepts in logic.

For example, the set of theorems can usually be described as both the

set of all provable formulas and the set of all true formulas (based on

some suitable model theory). Also, provability might be characterized

in strikingly different ways: via, for example, sequent calculus proofs,

natural deduction, resolution refutations, tableaux, etc. Thus, different

models of logic program execution might be structured in different ways

while preserving the original declarative meaning of the program.

3. Proof theory generally comes with various kinds of abstractions, and a

suitably designed logic programming language can harness these. For ex-

ample, higher-order intuitionistic logic can provide logic programs with

abstract data types, modular programming, and higher-order program-

ming. Furthermore, all new features do not have undefined or complex

interactions.

4. The meaning of logics we consider here have universally accepted de-

scriptions. Thus, logic programs can, in principle, be meaningful many

years in the future even if no particular compiler or interpreter used to

execute them today is available in that future time.

Such benefits from using logic as a programming language are rather strik-

ing and worthy of additional exploration.

1.6 Bibliographic notes

The Stanford Encyclopedia of Philosophy has good, overview articles on proof

theory [Rathjen and Sieg, 2020], the development of proof theory [Plato, 2018],

intuitionistic logic [Moschovakis, 2021], linear logic [Cosmo and Miller, 2019],

and Church’s Simple Theory of Types [Benzmüller and Andrews, 2019].

For more about the use of resolution and SLD-resolution to describe logic

programming based on Horn clauses in first-order classical logic, see the early

papers [Apt and Emden, 1982] and [Emden and Kowalski, 1976], as well as

1.6 Bibliographic notes 9

textbooks such as [Gallier, 1986] and [Lloyd, 1987]. The author has written

about the mutual influences between logic programming and proof theory

[2021a] as well as a survey [2021b] describing several decades of research into

using proof theory as a foundation for logic programming.

10 Chapter 1. Introduction

Chapter2
Terms, formulas, and sequents

This monograph covers topics in both first-order and higher-order logic. Only

first-order quantification is used in Chapters 3 through 7 while higher-order

quantification will be used in the remaining chapters. This chapter provides

the basic syntactic definitions and operations for higher-order quantification

and higher-order substitutions: the first-order variants of quantification and

substitution can be seen as a natural restriction on the general setting.

In his 1940 paper, Church presented the simple theory of types (STT) as a

higher-order version of classical logic in which the simply typed λ-calculus is

used to organize its syntax. Since Church’s goal for STT was to formulate a

logical foundation for mathematics, he also added to STT various mathemat-

ically motivated axioms, such as those for choice, extensionality, and infinity.

By ignoring these mathematical axioms, one has a logical system, called ele-

mentary theory of types (ETT) [Andrews, 1974], that is useful for exploring

the nature of higher-order quantification within logic. The approach to spec-

ifying terms and formulas in ETT is a popular choice in the construction of

modern theorem prover systems: for example, ETT is used in the HOL fam-

ily of provers [Gordon, 2000] as well as in Isabelle [Paulson, 1994], Abella

[Baelde et al., 2014], and the logic programming language λProlog [Miller and

Nadathur, 2012].

2.1 Untyped λ-terms

While we will employ simply typed λ-terms throughout this monograph, we

briefly consider the untyped λ-calculus, which shares an equality theory with

the simply typed terms.

We shall start our syntax presentation by assuming that there is a fixed

and denumerably infinite set of tokens (or identifiers). In this section, we

will use the term token and variable interchangeable. Later in this chapter,

12 Chapter 2. Terms, formulas, and sequents

when we introduce different ways to declare the type and scope of bindings for

tokens, we shall distinguish between token-as-variable and token-as-constant.

Such tokens are considered as variables in the λ-calculus. There are two other

ways to build λ-term. Given two terms, say M and N , their application is

(MN) (applications is the infix juxtaposition operation and it associates to

the left). Given a term M and a token x, the abstraction of x over M is

(λx.M). Here, the token x is a bound variable with scope M . We shall often

drop the outermost parentheses and the period to improve readability.

The usual notions of free and bound occurrences of variables are assumed.

If two terms differ up to an alphabetic change of their bound variables, we say

that these terms are α-convert. We identify two terms up to such α-conversion.

A subexpression of the form (λx.M)N is a β-redex and a subexpression of

the form (λx.(Mx)), where x has no free occurrence in M , is an η-redex.

Replacing an occurrence of the β-redex ((λx.M)N) with the capture-avoiding

substitution of N for x in M , also written as M [x/N], is called β-reduction.

The converse relation is called β-expansion. A term is β-convertible to a term

s if there is a sequence (including the empty sequence) of β-reductions and

β-expansions steps that rewrites t to s. Replacing an occurrence of an η-redex

(λx.(Mx)) with M is called η-reduction. The converse relation is called η-

expansion. A term is η-convertible to a term s if there is a sequence (including

the empty sequence) of η-reductions and η-expansions steps that rewrites t to

s. A term M is βη-convertible to N if there is a sequence of β-conversion and

η-conversion steps that carries M to N . When we use the terms β-conversion

and βη-conversion, we always assume the α-conversion rule is implicit.

A term is β-normal if it does not contain a β-redex. Stated in a positive

form, a term is β-normal if it has the form λx1 . . . λxn.(ht1 . . . tm) where n,m ≥
0 and where h, x1, . . . , xn are tokens, and the terms t1, . . . , tm are all in β-

normal form. In this case, we call the list x1, . . . , xn the binder, the token h

the head, and the list t1, . . . , tm the arguments of the term.

Exercise 2.1. Not all λ-terms are β-convertible to a term that is β-normal.

Of the following terms, determine which is not β-convertible to a β-normal

term and which are. In the latter case, compute that normal form.

1. ((λx.y)(λx.x))

2. ((λx.x)(λx.x))

3. ((λx.(xx))(λx.x))

4. ((λx.(xx))(λx.(xx)))

5. ((λx.y)((λx.(xx))(λx.(xx))))

Exercise 2.2. Church numerals are the following sequence of closed λ-terms:

(λfλx.x) (λfλx.(fx)) (λfλx.(f(fx))) (λfλx.(f(f(fx)))) . . .

2.2 Types 13

These terms can be used to encode the natural numbers 0, 1, 2, 3, The two

λ-terms

S = λNλMλfλx.((Nf)(Mfx)) P = λNλMλfλx.((N(Mf))x)

can be used to compute the sum (using S) and product (using P) of two

Church numerals. Check this claim by computing the β-normal forms of the

following two λ-terms, which encode 2 + 3 and 2× 3.

((S (λf.λx.(f(fx)))) (λf.λx.(f(f(fx)))))

((P (λf.λx.(f(fx)))) (λf.λx.(f(f(fx)))))

Exercise 2.3.(‡) Computing β-normal forms can cause the size of terms to

grow quickly. For example, consider the following sequence of λ-terms.

E0 =
((

(λgλe.e) (λeλf(e(ef)))
)

(λfλx(f(fx)))
)

E1 =
((

(λgλe.(ge)) (λeλf(e(ef)))
)

(λfλx(f(fx)))
)

E2 =
((

(λgλe.(g(ge))) (λeλf(e(ef)))
)

(λfλx(f(fx)))
)

E3 =
((

(λgλe.(g(g(ge)))) (λeλf(e(ef)))
)

(λfλx(f(fx)))
)

The term En is the Church numeral encoding n applied twice to the encoding

of 2. The β-normal form of E0 encodes 2 while E1 reduces to the encoding of

4. What number is encoded by the β-normal form of En?

As the previous two exercises show, it is possible to use λ-terms to compute.

That observation is often used as a starting point for describing functional

programming based on λ-terms. While the dynamics of β-reduction will be

important for us here, we shall employ those dynamics in a straightforward

fashion: β-reduction will usually be used to instantiate quantified expressions.

Exercise 2.4.(‡) Is there an expression N such that (λx.w)[N/w] is equal to

λy.y (modulo α-conversion, of course)? Phrased slightly differently, is there

an expression N such that ((λwλx.w)N) has (λy.y) as a β-normal form? The

expression N may or may not have free occurrences of variables.

2.2 Types

Let S be a fixed, non-empty set of tokens. The tokens in S will be used as

primitive types (also called sorts). The set of types is the smallest set of expres-

sions that contains the primitive types and is closed under the construction of

arrow types, denoted by the binary, infix symbol →. The Greek letters τ and

σ are used as syntactic variables ranging over types. The type constructor →
associates to the right: read τ1 → τ2 → τ3 as τ1 → (τ2 → τ3).

14 Chapter 2. Terms, formulas, and sequents

These types are called simple types. Such type expressions do not contain

binders nor are they polymorphic. Instead, these types are used as syntactic

types in order to separate expressions of different syntactic categories. For

example, in Section 10.2, the syntax of the π-calculus is encoded using two

primitive types n (for names) and p (for process). The type n → p is a

syntactic type denoting a name abstraction over a process. This type is not

intended to denote all functions from names to processes. Of course, every

abstraction of type n → p does indeed represent a function from names to

processes: for example, if M : n → p and N is a name, then the β-normal

form of (MN) is a process (the result of substituting N for the abstracted

variable of M). However, there are functions from names to processes that do

not correspond to an actual syntactic expression of type n→ p: for example,

the function that maps a particular name, say a, to the process expression P1

and all other names to a different process P2 is not encoded in the syntax as

an expression of type n→ p.

Let τ be the type τ1 → · · · → τn → τ0 where τ0 ∈ S and n ≥ 0. The types

τ1, . . . , τn are the argument types of τ while the type τ0 is the target type of τ .

If n = 0 then τ is τ0 and the list of argument types is empty. The order of a

type τ is defined as follows: If τ is primitive then τ has order 0; otherwise, the

order of τ is one greater than the maximum order of the argument types of τ .

As a recursive definition, the order of a type, written ord(τ), can be defined

by the following two clauses.

ord(τ) = 0 provided τ ∈ S
ord(τ1 → τ2) = max(ord(τ1) + 1, ord(τ2))

Note that τ has order 0 or 1 if and only if all the argument types of τ are

primitive types.

2.3 Signatures and typed terms

Signatures are used to formally declare that certain tokens are assigned a

certain type. In particular, a signature (over S) is a set Σ (possibly empty)

of pairs, written as x : τ , where τ is a type and x is a token. We require

signatures to be determinate in the sense that for every token x, if x : τ and

x : σ are members of Σ then τ and σ are the same type expression.

A signature Σ is said to have order n if every type associated to a token

in Σ has order less than or equal to n. Thus, Σ is a first-order signature if

whenever h : τ is a member of Σ, ord(τ) ≤ 1.

A typing judgment, Σ `̀ t : τ , relates a signature Σ, a λ-term t, and a

type τ . We consider the variables in Σ as being bound over such a judgment.

2.4 Formulas 15

Σ, x1 : τ1, . . . , xn : τn `̀ t : τ0

Σ `̀λx1 . . . λxn.t : τ1 → · · · → τn → τ0

Σ `̀ t1 : σ1 · · · Σ `̀ tn : σn h : σ1 → · · · → σn → τ0 ∈ Σ

Σ `̀ (h t1 · · · tn) : τ0

Figure 2.1: Typing judgment for Σ-terms of type τ . Here, both rules are

restricted so that τo ∈ S and n ≥ 0. Also, the variables x1, . . . , xn are

assumed to not occur in Σ.

Common inference rules for determining such typing rules are the following.

Σ, x : τ `̀x : τ
Σ `̀ t : σ → τ Σ `̀ s : σ

Σ `̀ (t s) : τ

Σ, x : τ `̀M : σ

Σ `̀ (λx.M) : τ → σ

In the last inference rule, it is assumed that the bound variable x does not

occur in Σ. These three typing rules can be used with terms not in β-normal

form. However, in this monograph, we shall restrict the typing judgment

so that only β-normal formulas are given types. Thus, we shall adopt the

inference rules in Figure 2.1 as the official rules for this judgment.

When the judgment Σ `̀ t : τ is provable, we say that t is a Σ-term

of type τ . Note that if a term is given a type, then that term is β-normal.

Furthermore, any term that is given a type is also said to be in βη-long normal

form. This normal form can be arrived at by first computing the β-normal

form, and then applying some η-expansion steps. For example, if i ∈ S, then

the judgment Σ `̀λx.x : (i→ i)→ i→ i is not provable, but the judgment

Σ `̀λxλy.xy : (i→ i)→ i→ i,

based on the η-expanded version of the term, is provable.

Exercise 2.5.(‡) Fix a set of sorts S and a signature Σ over S. Prove that

if there are primitive types τ and τ ′ such that Σ `̀ t : τ and Σ `̀ t : τ ′,

then τ = τ ′. Show that this statement is not true if we allow τ and τ ′ to be

non-primitive.

2.4 Formulas

Most descriptions of predicate logic first present terms and then present formu-

las as a separate structure that incorporates terms. Following Church [1940],

we shall instead define formulas as terms of the particular type o (the Greek

letter omicron).

16 Chapter 2. Terms, formulas, and sequents

When defining the formulas of a given logic (e.g., first-order classical logic),

we shall first fix the declaration of the logical constants. That signature, which

we denote as Σ−1 (the signature of the basement), attributes to various tokens

types which have target type o.

These logical constants are divided into two groups: propositional con-

stants and quantifiers. The propositional constants are given types that only

use the primitive type o and that have order 0 or 1. For example, in Chapter 4,

the propositional connectives in the formulas for classical and intuitionistic

first-order logic are declared by the following signature.

{t : o, f : o, ∧ : o→ o→ o, ∨ : o→ o→ o, ⊃: o→ o→ o}

The binary symbols ∧, ∨, and ⊃ are written as infix operators. For example,

the λ-term ((∧ P) Q) is written in the more common form (P ∧Q). Also, ∧
and ∨ associating to the left and ⊃ associating to the right and ∧ has higher

priority than ∨, which has higher priority than ⊃.

There are two classes of quantifiers we consider in this monograph, namely,

∀τ , for universal quantification for type τ , and ∃τ , for existential quantifica-

tion for type τ . Both ∀τ and ∃τ are assigned the type (τ → o) → o. In

principle, there are denumerably infinite many such quantifiers, one for each

type τ . The expressions ∀τ (λx.B) and ∃τ (λx.B) are abbreviated as ∀τx.B
and ∃τx.B, respectively, or as simply ∀x.B and ∃x.B if the value of the type

subscript is not important or can easily be inferred from context. Note that

the binding operation of quantification is identified as the binding operation

of the underlying λ-calculus.

After fixing the set of logical constants, we generally fix the non-logical

symbols by picking another signature Σ0. Let c : τ1 → · · · → τn → τ0 ∈ Σ0,

where τ0 is a primitive type and n ≥ 0. If τ0 is o, then c is a predicate symbol

of arity n. If τ0 ∈ S\{o} (i.e., τ0 is not o), then c is a function symbol of

arity n. A Σ−1 ∪Σ0-term of type o is also called a Σ−1 ∪Σ0-formula, or more

usually either a Σ0-formula (since Σ−1 is usually fixed) or just a formula (if

Σ0 is understood).

A logic is propositional if the only logical connectives it contains are propo-

sitional connectives (i.e., no quantifiers). A logic is first-order if the only

quantifiers allowed in its formulas are contained in the set

{∀τ : (τ → o)→ o | τ ∈ S\{o}} ∪ {∃τ : (τ → o)→ o | τ ∈ S\{o}}.

The types in this signature are of order 2. The restriction on the type of

quantifiers, namely τ ∈ S\{o}, implies that in a first-order formula, the only

quantification is over primitive (and non-formula) types. A logic that provides

no restriction on the types used in quantification is a higher-order logic.

Assume that Σ−1 declares logical connectives for a first-order logic and

that Σ0 is a first-order signature. Let τ be a primitive type different from o.

2.4 Formulas 17

A first-order term t of type τ is either a token of type τ or it is of the form

(f t1 . . . tn) where f is a function symbol of type τ1 → · · · → τn → τ and,

for i = 1, . . . , n, ti is a term of type τi. In the latter case, f is the head and

t1, . . . , tn are the arguments of this term. Similarly, a first-order formula either

has a logical symbol as its head, in which case, it is said to be non-atomic, or

a non-logical symbol at its head, in which case it is atomic.

As mentioned above, formulas in both classical and intuitionistic first-order

logic make use of the same set of logical connectives, namely, ∧ (conjunction),

∨ (disjunction), ⊃ (implication), t (truth), f (absurdity), ∀τ (universal quan-

tification over type τ), and ∃τ (existential quantification over type τ). The

negation of B, sometimes written as ¬B, is an abbreviation for the formula

B ⊃ f .

The nesting of implications within formulas will prove to be a useful feature

of formulas to quantify. We define clausal order of formulas using the following

recursion on formulas in classical and intuitionistic logic.

order(A) = 0 provided A is atomic, t , or f

order(B1 ∧B2) = max(order(B1), order(B2))

order(B1 ∨B2) = max(order(B1), order(B2))

order(B1 ⊃ B2) = max(order(B1) + 1, order(B2))

order(∀x.B) = order(B)

order(∃x.B) = order(B)

This measure counts the number of times implications are nested to the left of

implications. In particular, order(¬B) = order(B) + 1. The clausal order of a

finite set or multiset of formulas is the maximum clausal order of any formula

in that set or multiset. Note the similarity to the way the order of types is

given in Section 2.2.

The polarity of a subformula occurrence within a formula is defined as

follows. If a subformula C of B occurs to the left of an even number of

occurrences of implications in B, then C is a positive subformula occurrence

of B. On the other hand, if a subformula C occurs to the left of an odd number

of occurrences of implication in a formula B, then C is a negative subformula

occurrence of B. More formally:

1. B is a positive subformula occurrence of B.

2. If C is a positive subformula occurrence of B then C is a positive sub-

formula occurrence in B ∧ B′, B′ ∧ B, B ∨ B′, B′ ∨ B, B′ ⊃ B, ∀τx.B,

and ∃τx.B; C is also a negative subformula occurrence in B ⊃ B′.
3. If C is a negative subformula occurrence of B then C is a negative

subformula occurrence in B∧B′, B′∧B, B∨B′, B′∨B, B′ ⊃ B, ∀τx.B,

and ∃τx.B; C is also a positive subformula occurrence in B ⊃ B′.

18 Chapter 2. Terms, formulas, and sequents

2.5 Sequents

Proof and provability generally need to be given for a collection of formulas

instead of a single, isolated formula. For example, a typical way to describe

the provability of the implication B ⊃ C is to pose the hypothetical judgment

involving two formulas: if B then C. The sequents introduced by Gentzen

[1935] are one way to organize the multiple formulas that are involved in

stating a provable statement. In their simplest form, sequents are a pair,

written Γ ` ∆, of the two collections of formula Γ and ∆. Gentzen used −→
instead of ` for building a sequent but we will follow the more traditional

approach and use ` largely since the arrow notion is used in many other

computational-oriented situations (see, for example, Chapter 10). Consider

a mathematician’s attempt at a proof: at the top of her page, she lists the

formulas in Γ as assumptions, and at the bottom of the page, she displays the

formula B that is her goal to prove. The sequent Γ ` B, in which there is

exactly one formula to the right of the `, can be used to encode that state of

her proof attempt. More intuition about sequents and logical reasoning will

be given in Section 3.1.

Within this monograph, sequents will vary somewhat in structure: we

outline here these variations.

Collections of formulas in sequents will be either lists or multisets or sets.

Sequents can also be one-sided or two-sided. One-sided sequents are usually

written as ` ∆ and two-sided sequents are usually written as Γ ` ∆: here, Γ

and ∆ are one of the three kinds of collections of formulas mentioned above.

Sometimes we shall see multiple collections of formulas, separated by a semi-

colon, on both the left and right sides of sequents; for example, Γ; Γ ` ∆; ∆′

and ` ∆; ∆′. In the two-sided sequent Γ ` ∆, we shall say that Γ is this se-

quent’s antecedent or left-hand side and that ∆ is its succedent or right-hand

side. Finally, we will add ⇓ to certain sequents when we discussed focused proof

systems: in particular, Σ : Γ ⇓ D ` A in Section 5.4 and Σ : Ψ; ∆ ⇓ B ` Γ; Υ

in Section 6.6.

The formulas in a sequent are typed, and the signatures that declare the

type of the token in those formulas must be clearly specified. As in the pre-

vious section, we shall generally assume that once we pick a particular logic

(classical, intuitionistic, or linear), we have fixed the signature Σ−1. Further-

more, a set of non-logical constants Σ0 will often be fixed as well. Finally, the

rules that Gentzen gives for the treatment of quantifiers involves the introduc-

tion of eigenvariables: these variables may appear free in the formulas of some

sequents. To properly declare those variables and their types, we shall often

prefix a sequent with a signature: for example, Σ : ` ∆ and Σ : Γ ` ∆. In all

these cases, a formula that appears in ∆ or Γ must be given type o using the

union of the three signatures Σ−1, Σ0, and Σ.

2.6 Bibliographic notes 19

We note some issues concerning matching expressions with schematic vari-

ables. For example, let B denote a formula and let Γ and Γ′ denote collections

of formulas. Considering what it means to match the expressions B,Γ′ and

Γ′,Γ′′ to a given collection, which we assume contains n ≥ 0 formulas.

1. If the given collection is a list, then B,Γ′ matches if the list is non-empty

and B is the first formula and Γ′ is the remaining list. The expression

Γ′,Γ′′ matches if Γ′ is some prefix and Γ′′ is the remaining suffix of that

list: there are n+ 1 possible matches.

2. If the given collection is a multiset then B,Γ′ matches if the multiset

is non-empty and B is a formula in the multiset and Γ′ is the multi-

set resulting from deleting one occurrence of B. The expression Γ′,Γ′′

matches if the multiset union of Γ′ and Γ′′ is Γ: there can be as many

as 2n possible matches since each member of Γ can be placed in either

Γ′ or Γ′′.

3. If the given collection is a set then B,Γ′ matches if the set is non-empty

and B is a formula in the set and Γ′ is either the given set or the set

resulting from removing B from the set. The expression Γ′,Γ′′ matches

if the set union of Γ′ and Γ′′ is Γ: there can be as many as 3n possible

matches, since each member of Γ can be placed in either Γ′ or Γ′′ or in

both.

2.6 Bibliographic notes

For a comprehensive treatments of the untyped λ-calculus, see [Barendregt,

1984], and of the typed λ-calculus, see [Krivine, 1990; Barendregt et al., 2013].

The use of untyped λ-terms here is similar to the so-called “Curry-style” of

typed λ-terms: bound variables are not assumed globally to have types but

are provided a type when they are initially bound. This approach to typing

contrasts that used by Church, where variables have types independently of

whether or not they are bound. For more about these different approaches to

types in the λ-calculus, see [Pfenning, 2008].

The perspective that (natural deduction) proofs correspond to (depen-

dently) typed λ-terms and that β-reductions correspond to (functional) com-

putation is part of the well known Curry-Howard correspondence approach to

modeling computation (see [Sørensen and Urzyczyn, 2006]). This approach to

computation is not used in this monograph: instead, we model computation

as the search for (cut-free) proofs, an approach that is often referred to as the

proof search approach to computation.

Richer types than the simple ones introduced in this chapter are indeed

useful within logical formulas and logic programming more specifically. For

20 Chapter 2. Terms, formulas, and sequents

example, the programming language λProlog has a form of polymorphic typ-

ing [Nadathur and Pfenning, 1992; Appel and Felty, 2004; Miller and Na-

dathur, 2012] and the Elf logic programming language (based on the LF logi-

cal framework) uses dependently type λ-terms [Pfenning, 1989; Pfenning and

Schürmann, 1999].

Chapter3
Sequents calculus proofs rules

A familiar form of formal proof, often attributed to Frege and Hilbert, accepts

certain formulas as axioms (e.g., (p ⊃ (q ⊃ p)) and (((p ⊃ q ⊃ r) ⊃ (p ⊃ q) ⊃
(p ⊃ r)))) and certain inference rules (e.g., from p and (p ⊃ q) conclude q).

A formal Frege proof is a list of formulas such that every formula occurrence

in that list is either an axiom or the result of applying an inference rule to

previous formulas in the list. Such proof structures are easy to trust: any

provable formula (i.e., by appearing in such a list of formulas) must be as

trustworthy as the trust one puts into the axioms and inference rules. However,

such proof objects have so little structure that it is hard to imagine effective

proof search mechanisms for them. In contrast, the notion of sequent calculus

proofs provides a much more valuable way of structuring proofs. As we shall

see, such proof structures are natural for modeling abstract execution models

in the logic programming paradigm.

3.1 Sequent calculus and proof search

The sequent calculus makes at least two significant departures from Frege

proofs. First, while inference rules are applied to formulas in Frege proofs, they

are applied to sequents—a more complex structure—in the sequent calculus.

Second, there are no axioms used within the sequent calculus proof systems we

study here: the burden of proof falls entirely on inference rules over sequents.

In Section 2.5, we presented sequents as formal, syntactic structures that

contain one or more collections of formulas with an outer layer of variable

bindings (denoted by the associated eigenvariable signature). Before formally

presenting inference rules in Section 3.2 involving such sequents, we provide

an intuitive reading of sequents by providing an informal reading of two-sided

sequents in which the right-hand side is a collection containing exactly one

occurrence of a formula. Consider, for example, attempting to prove that for

22 Chapter 3. Sequents calculus proofs rules

every natural number n, the product n(n + 1) is even. An informal proof of

this fact can be organized as follows. To prove that this is true for all natural

numbers, pick some arbitrary number, say, m. Now, m is either even or odd.

If m is even, then the product m(m + 1) is even. If m is odd, then m + 1 is

even and, again, the produce m(m + 1) is even. Hence, in either case, this

product is even.

A first step in formalizing this proof would be to identify (and name)

three lemmas about natural numbers that this argument accepts as previously

proved.

L1 ∀n.(even n) ∨ (odd n)

L2 ∀n.(odd n) ⊃ (even (s n))

L3 ∀n,m, p.((even n) ∨ (even m)) ⊃ (times n m p) ⊃ (even p)

For these lemmas to be proper formulas as defined in the previous chapter, we

must assume that the set of sorts contains a primitive type nat ∈ S and that

the signature of non-logical constants Σ0 must contain the following declara-

tions:

z : nat, s : nat→ nat,

even : nat→ o, odd : nat→ o, times : nat→ nat→ nat→ o

We assume that natural numbers are encoded as z, (s z), (s (s z)), etc and

that the predicate (times n m p) hold precisely when p is the product n×m.

Imagine that we now take a blank sheet of a paper and write at the top the

three lemmas that we accept as assumptions and write at the bottom of that

sheet the formula ∀n, p.(times n (s n) p) ⊃ (even p). Our task is to fill in the

gap between the assumptions at the top and the conclusion at the bottom. A

sequent is essentially a representation of the status of that sheet of paper: in

this case, that sequent (named T1) would be

T1 ·;L1, L2, L3 ` ∀n, p.(times n (s n) p) ⊃ (even p).

The prefix, which is just the dot ·, is meant to show that there are no variables

bound over this particular sequent. One way to make progress on finishing

a proof of this sequent is to take a new sheet of paper on which we write

the assumptions L1, L2, L3 and (times n (s n) p) at the top and write the

conclusion (even p) at the bottom of that sheet. Thus, we now have an addi-

tional assumption that p is the product n(n+ 1) and the different conclusion

(even p). This new state in the construction of a formal proof is represented

by the sequent

T2 n, p;L1, L2, L3, (times n (s n) p) ` (even p).

Note here that the variables n and p are bound over this sequent. The next

step in building proof uses lemma L1 to add the assumption (even n)∨(odd n).

3.2 Inference rules 23

That is, our sheet of paper now have five formulas at the top: it is encoded as

the sequent

T3 n, p;L1, L2, L3, (times n (s n) p), (even n) ∨ (odd n) ` (even p).

The case analysis induced by the disjunctive assumption leads the proof to

have two subproofs. That is, the current sheet of paper can be replaced by

two sheets that are identical except that one of those sheets replaces that

disjunction with (even n) and the other sheet replaces it with (odd n). These

two sheets are encoded with the two sequents

T4 n, p;L1, L2, L3, (times n (s n) p), (even n) ` (even p)

T5 n, p;L1, L2, L3, (times n (s n) p), (odd n) ` (even p)

One way to represent the status of a proof’s development is to organize these

sequents into the tree
T4 T5

T3

T2

T1

To complete the formal description of this proof, we need to label each hor-

izontal line by the name of an inference rule. For example, the uppermost

horizontal line is justified by the “rule of cases” (also called the ∨L rule in

Chapter 4). As this tree shows, the process of proving sequent T1 has reduced

it to attempting to prove the two sequent T4 and T5.

This proof can be completed by appealing to lemma L3 to justify sequent

T4 and appealing to lemmas L2 and L3 to justify sequent T5.

Our subsequent study of sequent calculus proofs will not, however, focus

on capturing natural or human-readable proofs. Instead, we focus on low-level

aspects of proof that will ultimately make it possible to automate proof search

for, at least, some fragments of logic. The analysis of sequent calculus proofs

by Gentzen and others has led to richer sequents than those motivated above.

In particular, a sequent of the form x, y : B1, B2, B3 ` C can naturally be

linked to the single formula ∀x∀y.[(B1 ∧B2 ∧B3) ⊃ C]. The usual treatment

of the sequent calculus also allows for the more general (albeit less intuitive)

multiple-conclusion sequent. In particular, the comma on the left can be

viewed as a conjunction, while the comma on the right can be viewed as a

disjunction. For example, the sequent x, y : B1, B2, B3 ` C1, C2 is linked to

the formula ∀x∀y.[(B1 ∧B2 ∧B3) ⊃ (C1 ∨ C2)].

3.2 Inference rules

An inference rule in a sequent calculus proof system has a single sequent as

its conclusion and zero or more sequents as its premises. Of the numerous in-

ference rules used in the various sequent calculi presentations we meet in this

24 Chapter 3. Sequents calculus proofs rules

Σ : Γ, B,C,Γ′ ` ∆

Σ : Γ, C,B,Γ′ ` ∆
xL

Σ : Γ ` ∆, B, C,∆′

Σ : Γ ` ∆, C,B,∆′
xR

Σ : Γ, B,B ` ∆

Σ : Γ, B ` ∆
cL

Σ : Γ ` ∆, B,B

Σ : Γ ` ∆, B
cR

Σ : Γ ` ∆

Σ : Γ, B ` ∆
wL

Σ : Γ ` ∆

Σ : Γ ` ∆, B
wR

Figure 3.1: Structural rules.

monograph, all inference rules belong to exactly one of the following three

broad classes of rules: the structural rules, the identity rules, and the intro-

duction rules. We examine each of these classes separately below by showing

examples of each of these classes of rules.

3.2.1 Structural rules

Since sequents describe relationships among formulas, the nature of a formula’s

context is an important feature of proofs. To analyze the interplay between

a formula and its context, it is sometimes desirable to explore the structural

differences provided by lists, multisets, and sets. For example, one might

want an inference rule to permute items explicitly in a context or to replace

two occurrences of the same formula with one occurrence. There are three

standard structural rules, called exchange, contraction, and weakening, and

they are presented in Figure 3.1 in both left and right side versions. All

these structural rules can be used with contexts that are list structures. The

exchange rules, xL and xR, allows exchanging two consecutive elements. This

structural rule does not make sense when contexts are multisets or sets. The

contraction rules, cL and cR, can be used on lists and multisets to replace

two occurrences of the same formula with one occurrence: this structural

rule is not invoked on set contexts. The weakening rules, wL and wR, can

insert a formula into a context. If used with a list, these rules insert the new

formula occurrence only at the end of the context. If contexts are sets, the

only structural rules that make sense to specify are the weakening rules.

In this monograph, we shall never use the exchange rules, and contexts

will almost always be either multisets or sets.

Exercise 3.1. Let ∆′ be a permutation of the list ∆. Show that a sequence

of xR rules can derive the sequent Σ : Γ ` ∆ from the sequent Σ : Γ ` ∆′.

3.2 Inference rules 25

Σ : B ` B init
Σ : Γ ` ∆, B Σ : B,Γ′ ` ∆′

Σ : Γ,Γ′ ` ∆,∆′
cut

Figure 3.2: The two identity rules: initial and cut.

3.2.2 Identity rules

The identity rules consist of the initial rule and the cut rule, examples of

which are displayed in Figure 3.2. Both of these rules contain repeated occur-

rences of schema variables: in the initial rule, the variable B is repeated in

the conclusion, and in the cut rule, the variable B is repeated in the premises.

Checking if an application of one of these rules is correct requires comparing

the identity of two occurrences of formulas. While the structural rules ad-

dress the structure of the contexts used in forming sequents, the identity rules

address the meaning of the sequent symbol `. In particular, these two rules

can be seen as stating that ` is reflexive and transitive. In Section 4.2, we

illustrate that, in a certain sense, these two rules describe dual aspects of `.

Sometimes, an inference rule with zero premises is called an axiom. We

shall reserve that term for a formula that is accepted as the starting point

of some forms of proofs (e.g., the Frege proofs describe at the start of this

chapter). Since sequents are not formulas, we use other names (e.g., initial

sequents) for leaves in sequent calculus proof trees.

3.2.3 Introduction rules

The final group of inference rules contains the introduction rules, so called

because they introduce one occurrence of a logical connective into the conclu-

sion of the inference rule. In two-side sequent systems, a logical connective

is introduced on the left and right by two different, small sets of inference

rules. Here, the term “a small collection” means a collection of 0, 1, or 2

rules. (In the informal reading of sequents provided in Section 3.1, a left-

introduction rule describes how to reason from a logical connective while the

right-introduction rule describes how to reason to a logical connective.) If the

sequent is one-sided, then the left-introduction rules are usually replaced by a

right-introduction for the connective that is its De Morgan dual. Thus, one-

sided systems are usually limited to those logics where all connectives have De

Morgan duals. The only one-sided sequent proof system in this monograph

appears in Chapter 6 when we present linear logic.

Figure 3.3 presents a few examples of introduction rules for some logical

connectives. That figure provides two left introduction rules and one right in-

26 Chapter 3. Sequents calculus proofs rules

Σ : B,Γ ` ∆

Σ : B ∧ C,Γ ` ∆
∧L

Σ : C,Γ ` ∆

Σ : B ∧ C,Γ ` ∆
∧L

Σ : Γ ` ∆, B Σ : Γ ` ∆, C

Σ : Γ ` ∆, B ∧ C ∧R
Σ : Γ ` ∆, t

tR

Σ : Γ1 ` ∆1, B Σ : C,Γ2 ` ∆2

Σ : B ⊃ C,Γ1,Γ2 ` ∆1,∆2
⊃L

Σ : B,Γ ` ∆, C

Σ : Γ ` ∆, B ⊃ C ⊃R

Σ `̀ t : τ Σ : Γ, B[t/x] ` ∆

Σ : Γ, ∀τx B ` ∆
∀L

Σ, y : τ : Γ ` ∆, B[y/x]

Σ : Γ ` ∆, ∀τx B
∀R

Figure 3.3: Examples of left and right introduction rules.

troduction rule for conjunction, whereas both implication and universal quan-

tification are given one left and one right introduction rule each. There is one

right introduction rule and zero left introduction rule for t .

Also illustrated in Figure 3.3 is the role that the signature Σ plays in

the specification of the quantifier introduction rules. In particular, the in-

troduction of the universal quantifier ∀ on the left uses the signature and the

judgment Σ `̀ t : τ to determine the range of suitable substitution terms t. On

the other hand, the right introduction rule for ∀ changes the signature from

Σ∪{y : τ} above the line to Σ below the line. Note that if we were to think of

signatures as lists of distinct typed variables, we must maintain that the vari-

able y is not free in any formula in the rule’s conclusion. By viewing quantifiers

as bindings in formulas and signatures as binders for sequents, the inference

rule ∀R essentially allows for the mobility of a binder: reading this inference

rule from premise to conclusion, the binder for y moves from a sequent-level

binding to the formula level binding for x. At no point is the binder replaced

with a “free variable.” Of course, this movement of the binder is only allowed

if no occurrences of the bound variable above the line are unbound below the

line. Thus, all occurrences of y in the upper sequent must appear in the dis-

played occurrence of B[y/x]. Such a sequent-level bound variable is called an

eigenvariable. Note that since we identify all binding structures that differ by

only an alphabetic change of variables, the ∀R rule could also be written as

Σ, x : τ : Γ ` ∆, B

Σ : Γ ` ∆, ∀τx B
∀R.

In this form, the mobility of the binder for x is more apparent.

The premise Σ `̀ t : τ for the ∀L rule should actually be written as

Σ−1 ∪ Σ0 ∪ Σ `̀ t : τ where Σ−1 and Σ0 are the signatures for the logical and

3.3 Additive and multiplication inference rules 27

non-logical constants, respectively. Since both these signatures are global for

any particular proof, we write this condition with only the smaller signature for

convenience. Also, one has the choice to either include this typing judgment

as a part of the proof (hence, the proof of the typing judgment is a subproof

of a proof of the conclusion to this rule) or as a side condition, namely, the

requirement that that premise is provable (in this case, the proof of that side

condition is not incorporated into the sequent proof).

3.3 Additive and multiplication inference rules

When an inference rule has two premises, there are two natural ways to relate

the contexts in the two premises with the context in the conclusion. An

inference rule is multiplicative if contexts in the premises are merged to form

the context in the conclusion. The cut rule in Figure 3.2 and the ⊃L rule

in Figure 3.3 are examples of multiplicative rules. A rule is additive if the

contexts in the premises are the same as the context in the conclusion. An

additive version of the cut inference rule can be written as

Σ : Γ ` ∆, B Σ : B,Γ ` ∆

Σ : Γ ` ∆
.

The ∧R rule in Figure 3.3 is another example of an additive rule. The use of

the terms multiplicative and additive will be explained when the exponentials

of linear logic are presented in Section 6.3.2.

Another way to describe the difference between additive and multiplicative

rules is the following. We call a formula occurring in the conclusion of an

inference rule that is not introduced in that rule a context formula. In an

additive rule, every occurrence of a context formula in the concluding sequent

appears in both premise sequents (and on the same side of those sequents). In

a multiplicative rule, every occurrence of a context formula in the concluding

sequent appears in exactly one premise sequents (and on the same side of those

sequents).

It is interesting to comment on the relative costs of naive implementations

of additive versus multiplicative binary inference rules. There are two direc-

tions for implementing such applications. The proof building direction works

by being given two premises and building the conclusion. The proof search di-

rection works by being given the conclusion and non-deterministically building

premises. Applying the proof building direction to a given additive inference

rule can be expensive since one must check that the context formulas are the

same (as multisets or sets) in the two premises: this check on equality of mul-

tisets can involve thousands of formulas (at least in the logic programming

setting we are targeting). At the same time, the proof search direction is in-

expensive for additive rules: given the conclusion, we need to build premises

28 Chapter 3. Sequents calculus proofs rules

that contain pointers to the same object that forms the contexts in the con-

clusion. On the other hand, applying the proof building direction to a given

multiplicative inference rule can be inexpensive since one can build the con-

clusion by pairing together the pointers to contexts in the premises: there is

no need to check equality of context formulas. At the same time, the proof

search direction can be expensive since there are exponentially many possible

splittings of contexts that may need to be considered.

Exercise 3.2. (‡) Write the multiplicative version of the ∧R rule, assuming

that both the left and right contexts are multisets. Show that if the struc-

tural rules of weakening and contraction are available, then the additive and

multiplicative rules can be derived from one another.

Exercise 3.3. Consider a (trivial) sequent calculus proof system containing

just the cut and initial inference rules. Describe what can be proved using

just those two rules. Show that every provable sequent can be proved without

the cut rule.

3.4 Sequent calculus proofs

Given the definitions of formulas and sequents in Chapter 2 and the presen-

tation of inference rules in the previous section, we are can now define proofs,

in particular, sequent calculus proofs. Unlike terms and sequents, such proof

structures do not introduce new notions of bindings. This observation con-

trasts the usual Curry-Howard correspondence approach, where proofs are

identified with natural deduction proofs, which, themselves, are encoded by

various kinds of λ-terms.

Assume that a signature of logical constants Σ−1 is given and that a collec-

tion of inference rules are specified. Derivations and proofs will be represented

by finite trees with labeled nodes and edges containing at least one edge. Nodes

are labeled by occurrences of inference rules or by two improper rules, open

and root. All trees contain exactly one node labeled root, called the root node.

Let N be another node in the tree. The edge leading from N to the root node

(via some path of edges) is called its out-arc while the other n ≥ 0 arcs termi-

nating at N are called its in-arcs: in this case, n is the in-degree of the node

N . If N is labeled with open, then N must have zero in-arcs. If N is labeled

by an occurrence of a proper inference rule, the out-arc must be labeled with

the conclusion of the inference rule occurrence, and the in-arcs must be la-

beled with the premise sequents. Of course, sequent labels are determined to

be equal using the rules of λ-expression.

Let S be a sequent. A derivation for S is such a labeled tree in which

the in-arc to the root is labeled with S. The smallest open derivation for S

is a tree with two nodes, one labeled with root and one labeled with open

3.5 Permutations of inference rules 29

and with the edge between them labeled with S. A derivation for S without

any nodes labeled open is a proof of S. In these cases, the sequent S is also

called the endsequent of the derivation or the proof. Given these definitions,

a derivation can also be considered a “partial proof.”

When we write derivation trees, leaves with no line over them are taken

as ending in an open node. If there is a line, then we assume that that line

denotes an inference rule with no premises: in other words, the tree ends with

a proper inference rule that has an in-degree of zero.

Assume that we have picked a particular style of sequent (e.g., one-sided,

two-sided, etc). By a proof system for such sequents, we mean a collection

of inference rules for those sequents, such as those described in Section 3.2.

Let X be such a set of rules for two-sided sequent. We write Σ : Γ X̀ ∆ to

denote the fact that the sequent Σ : Γ ` ∆ has a proof in X . If Σ is empty,

we write just Γ X̀ ∆. If Γ is also empty, we write X̀ ∆. If the proof system is

assumed, the subscript X is not written. Thus, ` ∆ will mean that the sequent

· : · ` ∆ is provable. If a one-sided proof system is used instead, the same

conventions apply except that we do not write the left-hand context (keeping

just the signature). Note that the ` symbol is used in two different ways: it

is used to mark a syntactic expression as being a sequent, and it is used to be

the proposition that a certain sequent is provable. The reader should be able

to always disambiguate between these two senses of the ` symbol.

3.5 Permutations of inference rules

Sequent calculus inference rules can often be permuted over each other. For

example, assume that the following three introduction rules are part of a proof

system.

Σ : Γ1 ` ∆1, B Σ : C,Γ2 ` ∆2

Σ : B ⊃ C,Γ1,Γ2 ` ∆1,∆2
⊃L

Σ : B,Γ ` ∆, C

Σ : Γ ` ∆, B ⊃ C ⊃R

Σ : B,Γ ` ∆ Σ : C,Γ ` ∆

Σ : B ∨ C,Γ ` ∆
∨L

Here, the left and right-hand contexts are assumed to be multisets. In the first

derivation in Figure 3.4, the right introduction rule for implication is below

the left introduction of a disjunction. The second derivation in that figure has

the same root and leaf sequents but introduction rules are switched. (Note

that the latter derivation uses two occurrences of the right introduction of

implication while the former proof uses only one occurrence of that rule.)

Sometimes inference rules can be permuted if additional structural rules

are employed. For example, consider the first derivation in Figure 3.5. It is

possible to switch the order of the two introduction rules it contains, but this

30 Chapter 3. Sequents calculus proofs rules

Σ : Γ, p, r ` s,∆ Σ : Γ, q, r ` s,∆
Σ : Γ, p ∨ q, r ` s,∆ ∨L

Σ : Γ, p ∨ q ` r ⊃ s,∆ ⊃R

Σ : Γ, p, r ` s,∆
Σ : Γ, p ` r ⊃ s,∆ ⊃R

Σ : Γ, q, r ` s,∆
Σ : Γ, q ` r ⊃ s,∆ ⊃R

Σ : Γ, p ∨ q ` r ⊃ s,∆ ∨L

Figure 3.4: Two derivations that differ in the order of two inference rules.

Σ : Γ1, r ` ∆1, p Σ : Γ2, q ` ∆2, s

Σ : Γ1,Γ2, p ⊃ q, r ` ∆1,∆2, s
⊃L

Σ : Γ1,Γ2, p ⊃ q ` ∆1,∆2, r ⊃ s
⊃R

Σ : Γ1, r ` ∆1, p

Σ : Γ1, r ` ∆1, p, s
wR

Σ : Γ1 ` ∆1, p, r ⊃ s
⊃R

Σ : Γ2, q ` ∆2, s

Σ : Γ2, q, r ` ∆2, s
wL

Σ : Γ2, q ` ∆2, r ⊃ s
⊃R

Σ : Γ1,Γ2, p ⊃ q ` ∆1,∆2, r ⊃ s, r ⊃ s
⊃L

Σ : Γ1,Γ2, p ⊃ q ` ∆1,∆2, r ⊃ s
cR

Figure 3.5: Two derivations that illustrate the permutation of inference

rules supported by structural rules.

requires introducing some weakenings and a contraction, as is witnessed by the

second derivation in that figure. If these additional structural rules are not

permitted in a given proof system (as we shall see is the case in intuitionistic

logic), then the original two inference rules cannot be permuted.

Understanding when inference rules can be permuted over each other can

make it possible to improve the effectiveness of searching for proofs. Consider

again, for example, the derivations in Figure 3.4. Imagine attempting to find

a proof of the sequent Σ : Γ, p ∨ q ` r ⊃ s,∆ following the development of

the first derivation in that figure: namely, we first do an ⊃R rule followed by

the ∨L rule. Additionally, assume that there is, in fact, no proof of the left

premise Σ : Γ, p, r ` s,∆: that is, an exhaustive search fails to find a proof

of this sequent. If we employ a naive proof search strategy, we might make

another attempt to find a proof of the endsequent by switching the application

of the ∨L and the ⊃R rules. As it is clear from the second derivation, this

other order of rule applications will lead to an attempt to prove the same left

premise for which we already know no proof exists. Clearly, this particular

second attempt at proving this endsequent does not need to be made.

An inference rule asserts that whenever its premises are provable, its con-

3.6 Cut-elimination and its consequences 31

clusion is provable. The converse—that is, if the conclusion is provable then

all the premises are provable—does not always hold. In the event that this

converse does hold for an inference rule, we say that that rule is invertible.

From the point of view of searching for a proof, whenever invertible introduc-

tion rules are available to prove a given sequent, they can be applied in any

order and without considering any other order of applying them. One way

to show that an inference rule is invertible is to show that for every pair of

inference rules for which the rule in question appears above another inference

rule, the order of that pair of rules can be switched.

As we shall see, sequent calculus proofs are composed of tiny rules. Also,

given a sequent calculus proof of an endsequent, many trivial variants of that

proof also exist: permuting inference rules can generate some of them. Also,

nothing prevents irrelevant steps to be inserted at almost any point. The

unstructured nature of sequent calculus proofs is useful for proving results such

as the cut-elimination theorem. But when one wants to apply sequent calculus

proof systems to various computer science projects (one of our goals here), we

must first attempt to find more structure within such proofs. Ultimately, we

shall describe such additional structure by introducing uniform proofs: these

are greatly constrained cut-free proofs where proof construction is divided into

two alternating phases that capture goal reduction and backward chaining,

two operations familiar to those working with logic programs. The notion

of uniform proofs will naturally lead to the closely related notion of focused

proofs: both of these style proofs are introduced in Chapter 5.

3.6 Cut-elimination and its consequences

In the construction of proofs in mathematics, discovering useful lemmas is a

key activity. For example, consider again the example from Section 3.1 where

the focus was on proving that the product n(n + 1) is even for all natural

numbers n. The part of the proof of this theorem that we illustrated was

particularly simple since we employed the three lemmas L1, L2, and L3. Of

course, these three lemmas needed to be discovered and proved. The inference

rule called cut in Figure 3.2 is used to formally allow lemmas to be proved

and used in a proof. For example, assume that L1, L2, and L3 have sequent

calculus proofs Ξ1, Ξ2, and Ξ3, respectively. The following derivation injects

those lemmas into the proof of our original theorem, (∀n, p.(times n (s n) p) ⊃

32 Chapter 3. Sequents calculus proofs rules

(even p)), which we abbreviate as the formula G.

Ξ1

·; · ` L1

Ξ2

·; · ` L2

Ξ3

·; · ` L3

...
·;L1, L2, L3 ` G

·;L1, L2 ` G
cut

·;L1 ` G
cut

·; · ` G cut

Thus, these instances of the cut-rule allow us to move from searching for a

proof of G to searching for a proof of G using L1, L2, and L3.

For all of the sequent calculus proof systems we consider in this monograph,

the cut-elimination theorem holds: that is, a sequent has a proof if and only

if it has a cut-free proof (a proof with no occurrences of the cut rule). We

shall prove two cut-elimination theorems in subsequent chapters: Section 5.5

provides one for intuitionistic logic, and Section 6.7 presents one for linear

logic. This central theorem of sequent calculus proof systems has several

consequences, some of which we describe below.

The consistency of a logic is usually a simple consequence of cut-elimina-

tion. For example, if a formula B and its negation B ⊃ f are provable, then

the sequents · ` B and · ` B ⊃ f are provable. Since the rule for introducing

implication on the right is invertible (as we shall see in Section 4.4), it must

be the case that the sequent B ` f is provable. By applying the cut inference

rule to proofs of the two sequents · ` B and B ` f yields a proof of · ` f . By

the cut-elimination theorem, however, the sequent · ` f has a proof without

cuts. Thus, the last inference rule of this proof must be either an introduction

rule or a structural rule. Generally, there is no introduction rule for f on the

right. Also, the structural rules will not yield a provable sequent either. Thus,

there can be no cut-free proof of · ` f , and hence a formula and its negation

cannot both be provable.

The success of proving the cut-elimination theorem also signals that certain

aspects of the logic’s proof system were well designed. For example, in two-

sided sequents, logical connectives generally have left-introduction and right-

introduction rules. If we think of a sequent as describing a sheet of paper

with the assumptions listed at the top of the page and the conclusion at the

bottom of the page, then the left and right introduction rules yield two senses

to how connectives are used within a proof. In particular, the left-introduction

rules describe how we argue from formulas while the right-introduction rules

describe how we argue to formulas. For example, the ⊃R rule in Figure 3.3

describes how one uses hypothetical reasoning to prove the formula B ⊃ C

while the ⊃L rule shows that we use B ⊃ C as an assumption by attempting

a proof of B and by attempting the original sequent again, but this time with

the additional assumption C added to the set of hypotheses. Of course, if we

consider the model-theoretic semantics of the connectives, they usually have

3.6 Cut-elimination and its consequences 33

only one sense: for example, B ∧ C is true if and only if B and C are true.

The cut-elimination theorem implies that the two senses attributed to a logical

connective work together to define one logical connective. We return to this

aspect of cut-elimination in Sections 4.2 and 5.6.

When formulas involve only first-order quantification, a formula occurring

in a sequent in a cut-free proof is always a subformula of some formula of

the endsequent. This invariant is the so-called subformula property of cut-free

proofs. When searching for a proof, one needs only to choose and rearrange

subformulas of the endsequent: of course, instantiations of quantified expres-

sions must also be considered as subformulas. In the first-order setting, all

proper subformulas of a given formula have fewer occurrences of logical con-

nectives and quantifiers. Thus, having proofs restricted to arrangements of

subformulas is an interesting and powerful restriction. However, in the higher-

order setting, instantiating a predicate variable can result in larger formulas

with many more occurrences of logical connectives and quantifiers. In that

setting, the subformula property fails, even for cut-free proofs.

When one attempts to use the sequent calculus to formalize proofs of math-

ematically interesting theorems, one discovers that the cut rule is used a great

deal. Eliminating cut in such a proof would necessarily yield a huge and low-

level proof where all lemmas are “in-lined” and reproved at every instance of

their use. Cut-free proofs can thus be very big objects. For example, if one

uses the number of nodes in a proof as a measure of its size, there are cases

where cut-free proofs are hyperexponentially bigger than proofs allowing cut

(see Exercise 2.3 for a similar explosive growth). Thus, sequents with proofs

of rather small size can have cut-free proofs that require more inference rules

than the number of sub-atomic particles in the universe. If a cut-free proof

is actually computed and stored in some computer memory, the theorem that

that proof proves is likely to be mathematically uninteresting. This observa-

tion does not disturb us here since we are interested in cut-free proofs as tools

for describing computation only. For us, cut-free proofs are not illuminating

and readable proofs but structures more akin to the classic notion of Tur-

ing machines configurations: they provide a low-level and detailed trace of a

computation.

Recording a computation as a cut-free proof can be superior to recording

Turing machine configurations, since there are several deep ways to reason

with actual proof structures. For example, assume that we have a cut-free

proof of the two-sided sequent P ` G for some logic, say, X . As we shall

see, in many approaches to proof search, it is natural to identify the left-hand

context P to the specification of a (logic) program and G as the goal or query

to be established. A cut-free proof of such a sequent is then a trace that this

goal can be established from this program. Now assume that we can prove

P ′ `+ P where P ′ is some other logic program and `+ is provability in X+

34 Chapter 3. Sequents calculus proofs rules

which is some strengthening of X in which, say, induction principles are added

(as well as cut). If the stronger logic satisfies cut elimination, then we know

that P ′ ` G has a cut-free proof in the stronger logic X+. If things have been

organized well, it can then become a simple matter to see that cut-free proofs

of such sequents do not make use of the stronger proof principles, and, hence,

P ′ ` G has a cut-free proof in X . Thus, using cut-elimination, we have been

able to move from a formal proof about programs P and P ′ immediately to the

conclusion that whatever goals can be established for P can be established for

P ′. Clearly, the ability to do such direct, logically principled reasoning about

programs and computations should be an interesting aspect of the proof search

paradigm to explore.

3.7 Bibliographic notes

In this chapter, we have presented a broad overview of sequent calculus proof

systems. In subsequent chapters, starting with the next one, we will present

specific sequent calculus proof systems. These proof systems will have a cut-

elimination theorem: we shall prove the cut-elimination theorem for a couple of

them using techniques that are not standard. There are several good references

for the more standard approaches that cover such results for logics other than

classical, intuitionistic, and linear logics. Gentzen’s original proof [1935] is

a good place to read about proving this result for classical and intuitionistic

logics. For more modern presentations, see [Gallier, 1986; Girard et al., 1989;

Negri and von Plato, 2001; Bimbó, 2015]. Mechanized approaches to proving

cut-elimination can be found in [Pfenning, 2000; Miller and Pimentel, 2013].

Kleene [1952] presents a detailed analysis of permutability of inference rules

for classical and intuitionistic sequent systems.

Statman [1978] showed that there exist a sequence H0, H1, H2, . . . of

theorems of first-order classical logic such that the size of Hn and of a sequent

calculus proof (with cut) of Hn is linear in n, while the size of the shortest cut-

free proof of Hn is hyperexponential in n. Here, the hyperexponential function

can be defined as h(0) = 1 and h(n+ 1) = 2h(n).

Chapter4
Classical and intuitionistic

logics

Classical and intuitionistic logics provide foundations to many formal sys-

tems used in computational logic, including interactive and automatic theo-

rem proving, logic programming, model checking, programming language type

systems, and formalized versions of mathematics. We shall assume that the

reader has some elementary familiarity with these two logics.

There are several formal ways to describe the difference between these two

logics. Two well-known ways to characterize their differences are the following.

1. Intuitionistic logic results from admitting only those proofs that can

be seen as providing constructive evidence of what is proved. Classical

logic admits these proofs as well as many others that do not need to

be constructive. For example, the axiom of the excluded middle is an

accepted proof principle in classical logic.

2. The semantics of intuitionistic logic is based on possible world semantics

or Kripke models [Kripke, 1965; Troelstra and van Dalen, 1988], in which

classical logic models are arranged to a tree structure and where the

truth value of implication at a given world relies on truth values in all

reachable worlds.

Gentzen provided a different characterization entirely, and it involves the

role of structural inference rules within the sequent calculus. This character-

ization plays an essential role in this monograph: in fact, a careful reading

of Gentzen’s characterization will help us motivate the introduction of linear

logic in Chapter 6.

This chapter presents sequent calculus proofs for classical and intuition-

istic logics that are small variations on Gentzen’s LK and LJ proof systems

36 Chapter 4. Classical and intuitionistic logics

[Gentzen, 1935]. After presenting some basic properties of those proof sys-

tems, we highlight some issues that arise when systematically searching for

proofs in those proof systems.

Exercise 4.1.(‡) Prove that there are irrational numbers, a and b such that

ab is rational. An easy, non-constructive proof starts with the observation

that
√

2
√

2
is either rational or irrational (an instance of the excluded middle).

Complete that proof. Can you provide a constructive proof of this statement?

4.1 Classical and intuitionistic inference rules

Both intuitionistic and classical logics will use the same connectives: in par-

ticular, the signature of logical connectives, Σ−1, for both of these logics is

{f : o, t : o,∧ : o→ o→ o,∨ : o→ o→ o,⊃: o→ o→ o} ∪
{∀τ : (τ → o)→ o, ∃τ : (τ → o)→ o}τ∈S\{o}

Here, the set of primitive types S is assumed to be fixed and to contain the

type o. Note that if we use {o} for S, then this signature does not contain any

quantifiers and is, therefore, the signature for a propositional logic.

To provide a proof system for provability in classical and intuitionistic

logics, we use sequents of the form Σ : Γ ` ∆, where both Γ and ∆ are

multisets of Σ-formulas. The introduction, identity, and the structural rules

for this proof system are given in Figure 4.1, 4.2, and 4.3, respectively. Of

the four inference rules with two premises, ⊃L and cut are multiplicative rules

while ∧R and ∨L are additive.

The left and right introduction rules for t and f can be derived from the

binary connective for which they are the unit. In particular, the ∧R has two

premises for the binary connective. The n-ary generalization of the ∧R will

have n premises. Since t is the unit for ∧, we can interpret it as the 0-ary

conjunction. Thus, the tR rule has 0 premises. Furthermore, the n-ary version

of the ∧L rule has n instances, one for each of its n conjuncts. Thus, there is

no left-introduction rule for t since it is the 0-ary version of ∧. A similar but

dual argument illustrates how to derive the introduction rules for f from the

rules for ∨.

Provability in classical logic is given using the notion of a C-proof, which

is any proof using inference rules in Figure 4.1, Figure 4.2, and Figure 4.3.

Provability in intuitionistic logic is given using the notion of an I-proof, which

is any C-proof in which the right-hand side of all sequents contain exactly one

formula. A proof system that can only use such restricted sequents is called

a single-conclusion proof system. When no such restriction is imposed on

sequents (as in C-proofs), such a proof system is called a multiple-conclusion

proof system.

4.1 Classical and intuitionistic inference rules 37

Σ : B,Γ ` ∆

Σ : B ∧ C,Γ ` ∆
∧L

Σ : C,Γ ` ∆

Σ : B ∧ C,Γ ` ∆
∧L

Σ : Γ ` ∆, t
tR

Σ : B,Γ ` ∆ Σ : C,Γ ` ∆

Σ : B ∨ C,Γ ` ∆
∨L

Σ : Γ ` ∆, B Σ : Γ ` ∆, C

Σ : Γ ` ∆, B ∧ C ∧R

Σ : Γ, f ` ∆
f L

Σ : Γ ` ∆, B

Σ : Γ ` ∆, B ∨ C ∨R
Σ : Γ ` ∆, C

Σ : Γ ` ∆, B ∨ C ∨R

Σ `̀ t : τ Σ : Γ, B[t/x] ` ∆

Σ : Γ, ∀τx B ` ∆
∀L

Σ, c : τ : Γ ` ∆, B[c/x]

Σ : Γ ` ∆, ∀τx B
∀R

Σ, c : τ : Γ, B[c/x] ` ∆

Σ : Γ, ∃τx B ` ∆
∃L

Σ `̀ t : τ Σ : Γ ` ∆, B[t/x]

Σ : Γ ` ∆, ∃τx B
∃R

Σ : Γ1 ` ∆1, B Σ : C,Γ2 ` ∆2

Σ : B ⊃ C,Γ1,Γ2 ` ∆1,∆2
⊃L

Σ : B,Γ ` ∆, C

Σ : Γ ` ∆, B ⊃ C ⊃R

Figure 4.1: Introduction rules.

Σ : B ` B init
Σ : Γ1 ` ∆1, B Σ : B,Γ2 ` ∆2

Σ : Γ1,Γ2 ` ∆1,∆2
cut

Figure 4.2: Identity rules.

Σ : Γ ` ∆

Σ : Γ, B ` ∆
wL

Σ : Γ ` ∆

Σ : Γ ` ∆, B
wR

Σ : Γ, B,B ` ∆

Σ : Γ, B ` ∆
cL

Σ : Γ ` ∆, B,B

Σ : Γ ` ∆, B
cR

Figure 4.3: Structural rules: contraction and weakening.

38 Chapter 4. Classical and intuitionistic logics

Let Σ be a given first-order signature over the primitive types in S, let ∆

and Γ be a finite multisets of Σ-formulas, and let B be a Σ-formula. We write

Σ; ∆ C̀ Γ if the sequent Σ : ∆ ` Γ has a C-proof. We write Σ; ∆ Ì B if the

sequent Σ : ∆ ` B has an I-proof.

The restriction on I-proofs (that all sequents in the proof have singleton

right-hand sides) implies that I-proofs do not contain occurrences of structural

rules on the right (i.e., no occurrences of cR and wR) and that every occurrence

of the ⊃L rule and the cut rule are instances of the following two inference

rules.

Σ : Γ1 ` B Σ : C,Γ2 ` E
Σ : B ⊃ C,Γ1,Γ2 ` E

⊃L
Σ : Γ1 ` B Σ : B,Γ2 ` E

Σ : Γ1,Γ2 ` E
cut

(That is, the formula on the right-hand side of the conclusion must move to

the right premise and not to the left premise.) These observations can give an

alternative characterization of I-proofs.

The following proposition is easily proved by induction on the structure of

sequent calculus proofs.

Proposition 4.2. Let Ξ be a C-proof of Σ : Γ ` B. Then Ξ is an I-proof

if and only if Ξ contains no occurrences of either cR or wR and, in every

occurrence in Ξ of an ⊃L and a cut rule, the right-hand side of the conclusion

is the same as the right-hand side of the right premise.

Proof. The forward direction is immediate. Thus, assume that the C-proof

Ξ of Σ : Γ ` B satisfies the two conditions of the converse. We proceed by

induction on the structure of proofs. Consider the last inference rule of Ξ. If

that rule is an instance of either the init, tR, or f L rule, the conclusion is

immediate. Otherwise, if that last inference rule is an instance of either ⊃L

or cut then, given the inductive restrictions, the premises have proofs satisfy-

ing the same restrictions, namely that the two premises are single-conclusion

sequents. Thus, by the inductive assumption, the proofs of the premises must

be I-proofs. If the last rule of Ξ is any other inference rule (the wR and cR

rules are not possible), the inductive argument holds trivially.

This alternative characterization of I-proofs as restricted C-proofs prefig-

ures two important features of linear logic (Chapter 6). The first condition

(on the absence of wR and cR) means that the contexts used to describe intu-

itionistic logic are hybrid : the left-hand-side of sequents allow the structural

rules while right-hand-side of sequents do not allow structural rules. This kind

of hybrid use of contexts will be exploited in richer ways in linear logic. The

second condition means that there is something special hidden in the intu-

itionistic implication and, as we shall see in Section 6.5, that special feature

is captured by the ! exponential of linear logic.

4.1 Classical and intuitionistic inference rules 39

B ` B init

B ` B, f wR

` B,B ⊃ f
⊃R

` B,B ∨ (B ⊃ f)
∨R

` B ∨ (B ⊃ f), B ∨ (B ⊃ f)
∨R

` B ∨ (B ⊃ f)
cR

Figure 4.4: A C-proof of the excluded middle.

One difference we have with Gentzen’s formulation of sequent calculus is

that he had negation as a logical connective. Here, when we write the negation

of a formula, ¬B, we shall mean B ⊃ f . In Section 4.5, we return to these

two different treatments of negation.

A formula of the form B ∨ ¬B is an example of an excluded middle: in

terms of truth values, B is either true or false, and there is no third possibility.

Figure 4.4 contains a C-proof for this formula. A slight variation of this proof

yields a C-proof of B ∨ (B ⊃ C) for any formulas B and C.

Exercise 4.3. (‡) Provide proofs for each of the following sequents. If an

I-proof exists, present that proof. Assume that the signature for non-logical

constants is Σ0 = {p : o, q : o, r : i→ o, s : i→ i→ o, a : i, b : i}.

1. (p ∧ (p ⊃ q) ∧ (p ∧ q ⊃ r)) ⊃ r

2. (p ⊃ q) ⊃ (¬q ⊃ ¬p)

3. (¬q ⊃ ¬p) ⊃ (p ⊃ q)

4. p ∨ (p ⊃ q)

5. ((p ⊃ q) ⊃ p) ⊃ p

6. (r a ∧ r b ⊃ q) ⊃ ∃x(r x ⊃ q)

7. ∃y∀x(r x ⊃ r y)

8. ∀x∀y(s x y) ⊃ ∀z(s z z)

Exercise 4.4. Take the formulas in Exercise 4.3 which have C-proofs but no

I-proof and reorganize them into I-proofs in which appropriate instances of

the excluded middle are added to the left-hand context. For example, give an

I-proof of the sequent

Σ : r a ∨ ¬r a ` (r a ∧ r b ⊃ q) ⊃ ∃x(r x ⊃ q).

40 Chapter 4. Classical and intuitionistic logics

Exercise 4.5.(‡) Let A be an atomic formula. Describe all pairs of formulas

〈B,C〉 where B and C are different members of the set

{A,¬A,¬¬A,¬¬¬A}

such that B ` C has a C-proof. Make the same list such that B ` C has an

I-proof.

Exercise 4.6. The multiplicative version of ∧R is the inference rule

Σ : Γ1 ` B,∆1 Σ : Γ2 ` C,∆2

Σ : Γ1,Γ2 ` B ∧ C,∆1,∆2

.

Show that a sequent has a C-proof (resp. I-proof) if and only if it has one

in the proof system that results from replacing ∧R with the multiplicative

version. Similarly, consider the multiplicative version of the ∨L rule, namely,

Σ : B,Γ1 ` ∆1 Σ : C,Γ2 ` ∆2

Σ : B ∨ C,Γ1,Γ2 ` ∆1,∆2

.

Show that a sequent has a C-proof if and only if it has a C-proof where the

additive ∨L is replaced with this multiplicative rule.

The notion of provability based on sequents given in this section is not

equivalent to the more usual presentations of classical and intuitionistic logic

[Fitting, 1969; Gentzen, 1935; Prawitz, 1965; Troelstra, 1973] in which sig-

natures are not made explicit, and substitution terms (the terms used in ∀L
and ∃R) are not constrained to be built from such signatures. The following

example illustrates the main reason they are not equivalent. Let S be the set

{i, o} of two sorts and let Σ0, the signature of non-logical constants, be just

{p : i→ o}. Now consider the sequent

· : ∀ix (p x) ` ∃ix (p x).

This sequent has no proof even though ∃ix (p x) follows from ∀ix (p x) in

the traditional presentations of classical and intuitionistic logics. The reason

for this difference is that there are no {p : i → o}-terms of type i: that is,

the type i is empty in this signature. Thus we need the following additional

definition. The signature Σ inhabits the set of primitive types S if for every

τ ∈ S different than o, there is a Σ-term of type τ . When Σ inhabits S,

the notion of provability defined above coincides with the more traditional

presentations.

Exercise 4.7.(‡) Assume that the set of sorts S contains the two tokens i and

j and that the only non-logical constant is f : i → j. In particular, assume

4.2 The identity rules and their elimination 41

that there are no constants of type i declared in the non-logical signature. Is

there an I-proof of

(∃jx t) ∨ (∀iy∃jx t).

Under the same assumption, does the formula

(∃jx t) ∨ (∀ix f)

have a C-proof? An I-proof? What comparison can you draw between proving

this formula and the formula in Exercise 4.3(4)?

The structural rule of weakening allows for adding a formula into the left or

right side of sequents (reading the inference rule from premise to conclusion).

A strengthening rule is an inference rule that allows for deleting a formula

from either the left or right side of a sequent. In general, strengthening is not

an admissible rule. The following exercise provides a simple instance of when

strengthening is possible.

Exercise 4.8. Show that if there is a C-proof (resp., an I-proof) of Σ : Γ, t ` ∆

then there is a C-proof (an I-proof) of Σ : Γ ` ∆.

As we noted at the beginning of this chapter, there are many ways to

describe the difference between classical and intuitionistic logic. The following

exercise contains yet another way to present this difference.

Exercise 4.9. (‡) Consider adding the following rule (taken from [Gabbay,

1985])
Σ : Γ ` B
Σ : Γ ` C restart

to I-proofs. This rules has the proviso that on the path from the occurrence

of this rule to the root of the proof, there is a sequent with B as its succedent.

The spirit of this rules is that during the search for a proof of single-conclusion

sequents, one can ignore the right-hand side of a sequent (here, C) and restart

an attempt to prove a previous right-hand side (here, B). Such a restart would

be useful during proof search if the previous occurrence of B was in a sequent

whose left-hand side was different from Γ. Prove that a formula has a C-proof

if and only if it has an I-proof with the restart rule added.

4.2 The identity rules and their elimination

As it turns out, almost all forms of identity rules can be eliminated from

proofs without losing completeness in both classical and intuitionistic logics.

In particular, all cuts can be eliminated and all initial rule involving non-

atomic formulas can be eliminated.

42 Chapter 4. Classical and intuitionistic logics

An occurrence of the initial rule of the form Σ : B ` B is an atomic initial

rule if B is an atomic formula. A proof is atomically closed if every occurrence

of the initial rule in it is an atomic initial rule. In classical and intuitionistic

logic, we can restrict the initial rule to be atomic initial rules only.

Proposition 4.10. If a sequent has a C-proof (resp, an I-proof) then it has

a C-proof (resp, an I-proof) in which all occurrence of the init rule are atomic

initial rules.

Proof. The theorem follows if we prove that every sequent of the form B ` B
has a proof containing only atomic initial rules. We proceed by induction on

the structure of B. Consider the cases where B is of the form B1 ⊃ B2 and of

the form ∀xτ .Bx and consider the following two derivations.

B1 ` B1 B2 ` B2

B1, B1 ⊃ B2 ` B2
⊃L

B1 ⊃ B2 ` B1 ⊃ B2
⊃R

Σ, y : τ : By ` By
Σ, y : τ : ∀xτ .Bx ` By

∀L

Σ : ∀xτ .Bx ` ∀xτ .Bx
∀R

Clearly, in these two cases, one instance of an initial rule can be replaced by

other instances of the initial rule involving smaller formulas. By applying the

inductive hypothesis on the premises of these derivations completes the proof

for these cases. We leave the remaining cases to the reader to complete.

The fact that the initial rules involving non-atomic formulas can be re-

placed by introduction rules and initial rules on subformulas is an important

and desirable property of a proof system. In general, however, atomic ini-

tial rules cannot be removed from proofs. Atoms are built from non-logical

constants, such as predicates and function systems, and their meaning comes

from outside logic. In particular, it is via non-logical symbols and atomic for-

mulas that we shall eventually specify logic programs to sort lists, represent

transition systems, etc. Atoms are the plugs for programmers to impact the

development of proofs (we turn our attention to logic programs in the next

chapter).

The following inference rule resembles the cut rule but at the level of terms.

Σ `̀ t : τ Σ, x : τ : ∆ ` Γ

Σ : ∆[t/x] ` Γ[t/x]
subst

The following exercise states that this rule is admissible.

Exercise 4.11. Let Ξ be a C-proof (resp., I-proof) of Σ, x : τ : Γ ` ∆ and

let t be a Σ-term. The result of substituting t for the bound variable x in this

sequent and the corresponding bound variables to x is all other sequents in Ξ

yields a C-proof (resp., I-proof) Ξ′ of the sequent Σ : Γ[t/x] ` ∆[t/x]. The

arrangement of inference rules in Ξ and in Ξ′ are the same.

4.2 The identity rules and their elimination 43

The cut rule can also be restricted to atomic formulas, although it is more

complex to prove that restriction. For example, consider the follow occurrence

of the cut rule.
Ξ1

Σ : Γ1 ` B,∆1

Ξ2

Σ : Γ2, B ` ∆2

Σ : Γ1,Γ2 ` ∆1,∆2
cut

To argue that this cut can be eliminated, we need to consider the many cases

that might arise when examining the last inference rule in both the Ξ1 and

Ξ2 subproofs. Ultimately, we hope to rewrite the proof displayed above into

another proof of the same endsequent in which the last inference rule is no

longer the cut rule. We highlight here only those cases where the last inference

rule in Ξ1 is the right-introduction rule for B and Ξ2 is the left-introduction

rule for B.

Consider a proof that contains the following cut with a conjunctive formula

in which the two occurrences of that conjunction are immediately introduced

in the two subproofs to cut.

Ξ1

Σ : Γ1 ` A1,∆1

Ξ2

Σ : Γ1 ` A2,∆1

Σ : Γ1 ` A1 ∧A2,∆1
∧R

Ξ3

Σ : Γ2, Ai ` ∆2

Σ : Γ2, A1 ∧A2 ` ∆2
∧L

Σ : Γ1,Γ2 ` ∆1,∆2
cut

Here, i is either 1 or 2. This derivation can be rewritten to

Ξi
Σ : Γ1 ` Ai,∆1

Ξ3

Σ : Γ2, Ai ` ∆2

Σ : Γ1,Γ2 ` ∆1,∆2
cut.

In the process of reorganizing the proof in this manner, either Ξ1 or Ξ2 is

discarded, and the new occurrence of cut is on a subformula of A1 ∧A2.

Consider a proof which contains the following cut on an implicational for-

mula and where the two occurrences of that implication are immediately in-

troduced in the two premises of the cut.

Ξ1

Σ : Γ1, A1 ` A2,∆1

Σ : Γ1 ` A1 ⊃ A2,∆1
⊃R

Ξ2

Σ : Γ2 ` A1,∆2

Ξ3

Σ : Γ3, A2 ` ∆3

Σ : Γ2,Γ3, A1 ⊃ A2 ` ∆2,∆3
⊃L

Σ : Γ1,Γ2,Γ3 ` ∆1,∆2,∆3
cut

This derivation can be rewritten to

Ξ2

Σ : Γ2 ` A1,∆2

Ξ1

Σ : Γ1, A1 ` A2,∆1

Σ : Γ1,Γ2 ` ∆1,∆2, A2
cut Ξ3

Σ : Γ3, A2 ` ∆3

Σ : Γ1,Γ2,Γ3 ` ∆1,∆2,∆3
cut

44 Chapter 4. Classical and intuitionistic logics

In the process of reorganizing the proof in this manner, the cut on A1 ⊃ A2 is

replaced by two instances of cut, one on A1 and the other one A2.

Consider a proof that contains the following cut with t in which the premise

where t is on the right-hand side is proved with the tR.

Σ : Γ1 ` t ,∆1
tR Ξ

Σ : Γ2, t ` ∆2

Σ : Γ1,Γ2 ` ∆1,∆2
cut

This proof can be changed to remove this occurrence of cut entirely as follows.

First, the proof Ξ of Σ : Γ2, t ` ∆2 can be rewritten to the proof Ξ′ of Σ : Γ2 `
∆2 by removing the occurrence of t in the endsequent and, hence, all the other

occurrences of t that can be traced to that occurrence. (See Exercise 4.8.)

Furthermore, Ξ′ can be transformed to a proof Ξ′′ of Σ : Γ1,Γ2 ` ∆1,∆2 by

simply adding weakening rules to it. The proof Ξ′′ contains one fewer instances

of the cut-rule than the original displayed proof above.

Consider a proof that contains the following cut with ∀ in which the two

occurrences of that quantifier are immediately introduced in the two subproofs

to cut.
Ξ1

Σ, x : Γ1 ` Bx,∆1

Σ : Γ1 ` ∀x.Bx,∆1
∀R

Ξ2

Σ : Γ2, Bt ` ∆2

Σ : Γ2, ∀x.Bx ` ∆2
∀L

Σ : Γ1,Γ2 ` ∆1,∆2
cut

Here, t is a Σ-term. By Exercise 4.11, the proof Ξ1 of Σ, x : Γ1 ` Bx,∆1 can

be transformed into a proof Ξ′1 of Σ : Γ1 ` Bt,∆1 (notice that x is not free in

any formula of Γ1 and ∆1 nor in the abstraction B). The above instance of

cut can now be rewritten as

Ξ′1
Σ : Γ1 ` Bt,∆1

Ξ2

Σ : Γ2, Bt ` ∆2

Σ : Γ1,Γ2 ` ∆1,∆2
cut

Exercise 4.12. Repeat the above rewriting of cut inference rules when the

cut formula is f , a disjunction, or an existential quantifier.

The above rewriting of cut rules suggests that each of the logical connec-

tives, in isolation, have been given the appropriate left and right introduction

rules. As mentioned in Section 3.6, each logical connective is given two senses:

introduction on the right provides the means to prove a logical connective;

introduction on the left provides the means to argue from a logical connective

as an assumption. The cut-elimination procedure (partially described above)

and the non-atomic-initial-sequent elimination procedure provide some of the

justification that these two senses are describing the same connective.

4.2 The identity rules and their elimination 45

Exercise 4.13. Define a new binary logical connective, written �, giving it

the left introduction rules for ∧ but the right introduction rules for ∨. Can cut

be eliminated from proofs involving �? Can init be restricted to only atomic

formulas? This connective is the “tonk” connective of Prior [1960].

Theorem 4.14 (Cut-elimination). If a sequent has a C-proof (respectively,

I-proof) then it has a cut-free C-proof (respectively, I-proof).

While we will not prove this theorem here, we will prove cut-elimination

theorems for focused versions of sequent calculi: see the proofs of cut-elimination

for a fragment of intuitionistic logic (Theorem 5.26) and for all of linear logic

(Theorem 6.37). For now, we point out some issues related to proving such

cut-elimination results as Theorem 4.14.

Sometimes cuts can be permuted locally although they cannot be elimi-

nated globally. Consider adding to sequent calculus a definition mechanism

for propositional formulas (the restriction to propositional formulas is only

to simplify the presentation). Specifically, let D be a finite set of definitions

which are pairs A := B of a propositional letter A and a propositional formula

B. Also add to the proof system in Section 4.1 the following two introduction

rules for defined atoms (assuming that the definition A := B is a member of

D).
Γ, B ` ∆

Γ, A ` ∆
defL

Γ ` ∆, B

Γ ` ∆, A
defR

Note that locally, the cut rule interacts well with these two introduction rules.

For example, if the cut formulas in the premise of a cut rule are immediately

introduced by these definition rules, we can have the following derivation.

Γ1 ` ∆1, B

Γ1 ` ∆1, A
defR

Γ2, B ` ∆2

Γ2, A ` ∆2
defL

Γ1,Γ2 ` ∆1,∆2
cut

The cut rule can be applied to the premises of defR and defL as follows.

Γ1 ` ∆1, B Γ2, B ` ∆2

Γ1,Γ2 ` ∆1,∆2
cut

In this case, one instance of cut on the atomic formula A is replaced by another

instance of cut on the possibly larger formula B. Without further restrictions

on the class of formulas allowed in definitions, cuts cannot be eliminated. A

logic extended with definitions can be inconsistent, as the following exercise

illustrates.

Exercise 4.15.(‡) Let p be a non-logical constant of type o (a propositional

constant). Let D contain just the definition p := (p ⊃ f). Show how it is

46 Chapter 4. Classical and intuitionistic logics

possible to write a cut-free proof for both p ` f and ` p. [Hint: the cR rule

is needed.] As a consequence, there is a proof with cut of ` f . Describe what

happens when one attempts to eliminate the cut in this proof of f .

We mentioned in Section 3.2.2 that the initial and cut rules can be seen as

expressing dual aspects of `. To illustrate that, let Σ be some signature and

let T be the set of formula {B ⊃ B | B is a Σ-term}. The init rule can be

used to prove all members of T . On the other hand, the cut rule can be seen

as using members of this set as an assumption. In particular, a cut-inference

rule can be replaced with an ⊃L rule as follows.

Σ : Γ ` ∆, B Σ : B,Γ′ ` ∆′

Σ : Γ,Γ′ ` ∆,∆′
cut

Σ : Γ ` ∆, B Σ : B,Γ′ ` ∆′

Σ : B ⊃ B,Γ,Γ′ ` ∆,∆′
⊃L

As a result of this observation, it is easy to see that a proof of Σ : Γ ` ∆ can

easily be converted to a cut-free proof of Σ : T ′,Γ ` ∆, where T ′ is a finite

subset of T .

The following example provides a simple illustration that shows that a

proof with cuts can be small while a cut-free proof of the same endsequent must

be much larger. Fix the non-logical signature to be {a : i, f : i→ i, p : i→ o}.
The notation (fn t) denotes the term that result from n applications of f

to the term t: i.e., (f (f . . . (f t) . . .)), where there are n occurrences of f

applied to t. Clearly, the sequent p a, ∀x(p x ⊃ p (f x)) ` p(fna) is provable

for all n ≥ 0. Let P be the multiset {p a,∀x(p x ⊃ p (f x))}. For example,

the following cut-free proof proves that p(f(f(f a))) is a consequence of P.

P ` pa P, p(fa) ` p(fa)

P, pa ⊃ p(fa) ` p(fa)

P ` p(fa)
†
P, p(f2a) ` p(f2a)

P, p(fa) ⊃ p(f2a) ` p(f2a)

P ` p(f2a)
†

P, p(f3a) ` p(f3a)

P, p(f2a) ⊃ p(f3a) ` p(f3a)

P ` p(f3a)
†

The key inference steps in this proof, marked with † involve cL and ∀L. This

style of proof could be generalized so that proving p(fna) involves n instances

of this combination of rules.

Exercise 4.16. Show that the shortest cut-free I-proof of P ` p(fna) has

height that is linear in n.

Exercise 4.17.(‡) Show that it is possible to have proofs with cut of p(f2na)

from P whose height is linear in n instead of in 2n (as in the style of proof

above). Do this by proving a series of lemmas in the construction of that

proof.

4.3 Logical equivalence 47

A consequence of these two exercises is the fact that cut can yield (at least)

exponentially shorter proofs.

4.3 Logical equivalence

Two Σ-formulas B and C are equivalent, written as B ≡ C, in classical (resp.,

intuitionistic) logic if the two sequents Σ : B ` C and Σ : C ` B are provable

in classical (resp., intuitionistic) logic. Clearly, if two formulas are equivalent

in intuitionistic logic, they are equivalent in classical logic. The converse is,

however, not true. For example, p ∨ (p ⊃ q) is classically equivalence to

(p ⊃ p) ∨ q but these are not equivalence in intuitionistic logic. The same

holds for the pair of formulas ∀x.(rx ⊃ p) and (∃x.rx) ⊃ p.
Equivalences can be used to rewrite one logical formula to another logical

formula so that equivalence is maintained. Thus, algebraic-style reasoning can

be done on formulas. Sequences of rewritings provide a flexible way to prove

equivalences without the explicit need to use the sequent calculus.

A common way to define the replacement of a subformula occurrence within

a formula is to introduce a syntax such as C[A] and to think of C[�] as a formula

with possibly several occurrences of the hole �. In that setting, if the formulas

C and D can be written as C[A] and C[B], respectively, then we say that D

results from replacing zero or more occurrences of the subformula A in C with

D. A simple and more formal definition, however, is offered by the inductive

definition given by the proof system in Figure 4.5. Let C and D be Σ-formulas.

We say that D arises from replacing zero or more subformula occurrences of

A in C with the formula B if Σ : C ./ D is provable. Note that we use Σ

as a binding mechanism for variables in the same style as we used Σ to bind

eigenvariables in sequents.

Proposition 4.18. Let A and B be Σ-formulas such that A ≡ B in classi-

cal (resp., intuitionistic) logic. If Σ : C ./ D is provable using the rules in

Figure 4.5, then C ≡ D in classical (resp., intuitionistic) logic.

Proof. Let A and B be Σ-formulas and assume that assume that A ≡ B in,

say, intuitionistic logic. Hence both Σ : A ` B and Σ : B ` A have I-proofs.

Also assume that Σ : C ./ D is provable using the inference rules in Figure 4.5.

The proof of this proposition follows from a straightforward induction on the

structure of such proofs. We illustrate with one case. Assume that the last

rule involved implications: thus, C is C ′ ⊃ C ′′ and D is D′ ⊃ D′′ and we know

that Σ : C ′ ./ D′ and Σ : C ′′ ./ D′′. The proof that Σ : C ′ ⊃ C ′′ ` D′ ⊃ D′′ is

built with the following derivation

Σ : D′ ` C ′ Σ : C ′′ ` D′′
Σ : C ′ ⊃ C ′′, D′ ` D′′ ⊃L

Σ : C ′ ⊃ C ′′ ` D′ ⊃ D′′ ⊃R

48 Chapter 4. Classical and intuitionistic logics

Σ : C ./ C

Σ : C ./ E Σ : D ./ F

Σ : C ∧D ./ E ∧ F
Σ : C ./ E Σ : D ./ F

Σ : C ∨D ./ E ∨ F

Σ : C ./ E Σ : D ./ F

Σ : C ⊃ D ./ E ⊃ F
x : τ,Σ : C ./ D

Σ : ∀τx.C ./ ∀τx.D
x : τ,Σ : C ./ D

Σ : ∃τx.C ./ ∃τx.D

Σ : A ./ B
†

Figure 4.5: The inductive definition of how to replace some occurrences

of A with B within a formula. The proviso † requires that A and B are

Σ-formulas. Note that C, D, E, and F are schematic variables quantified

per inference rule while A and B are given and fixed formulas.

and with the proofs that are guaranteed by the proofs of Σ : C ′ ./ D′ and Σ :

C ′′ ./ D′′. This case also holds for the other connectives and if we substitute

classical for intuitionistic provability.

We shall occasionally use such reasoning by logical equivalence, but we shall

not incorporate equivalences into inference rules within our sequent calculus

proof systems.

4.4 Invertible introduction rules

As defined in Section 3.5, an inference rule is invertible if whenever its con-

clusion is provable, all of its premises are provable.

Proposition 4.19. The inference rules tR, ∨L, ∧R, fL, ∀R, ∃L, and ⊃R

from Figure 4.1 are invertible.

Proof. The invertibility of tR and f L is immediate. We indicate how to prove

the invertibility of ⊃R here: the invertibility of the other inference rules is

proved similarly.

To show that the ⊃R rule is invertible, assume that Σ : Γ ` ∆, B ⊃ C

has a C-proof Ξ. Given Proposition 4.10, we can assume that Ξ is atomically

closed. We now proceed by induction on the structure of Ξ by considering all

cases for its the last inference rule (which cannot be initial). In the case that

this last inference rule is ∨L, then Ξ is of the form

Ξ1

Σ : Γ, P ` B ⊃ C,∆
Ξ2

Σ : Γ, Q ` B ⊃ C,∆
Σ : Γ, P ∨Q ` B ⊃ C,∆ ∨L.

4.4 Invertible introduction rules 49

By the inductive hypothesis applied to Ξ1 and Ξ2, the sequents Σ : Γ, P `
B ⊃ C,∆ and Σ : Γ, Q ` B ⊃ C,∆ must have proofs that introduce the

corresponding occurrences of B ⊃ C: let Ξ′1 and Ξ′2, respectively, be the

proofs of the corresponding premises of these occurrences of ⊃R. The proof

Ξ′1
Σ : Γ, P,B ` C,∆

Ξ′2
Σ : Γ, Q,B ` C,∆

Σ : Γ, P ∨Q,B ` C,∆ ∨L

Σ : Γ, P ∨Q ` B ⊃ C,∆ ⊃R

is a proof of the same sequent above but with ⊃R as its last inference: in other

words, we have managed to permute an occurrence of ⊃R over ∨L into an an

occurrence of ∨L over ⊃R. In order to treat the case where the last inference

rule of Ξ is the cut rule, consider the following collection of inference rules (in

which the signature for sequents is dropped).

Ξ1

Γ1 ` E,∆1

Ξ2

E,Γ2, B ` ∆2, C

E,Γ2 ` ∆2, B ⊃ C
⊃R

Γ1,Γ2 ` B ⊃ C,∆1,∆2
cut

−→

Ξ1

Γ1 ` E,∆1

Ξ2

E,Γ2, B ` ∆2, C

Γ1,Γ2, B ` C,∆1,∆2
cut

Γ1,Γ2 ` B ⊃ C,∆1,∆2
⊃R

Ξ1

Γ1, B ` E,∆1, C

Γ1 ` E,∆1, B ⊃ C
⊃R Ξ2

E,Γ2 ` ∆2

Γ1,Γ2 ` B ⊃ C,∆1,∆2
cut

−→

Ξ1

E,Γ1, B ` ∆1, C
Ξ2

Γ1 ` E,∆2

Γ1,Γ2, B ` C,∆1,∆2
cut

Γ1,Γ2 ` B ⊃ C,∆1,∆2
⊃R

Thus, we can permute an instance of ⊃R above cut to an instance of cut above

⊃R, no matter which premise the formula B ⊃ C was placed. All other cases

for the last inference rule in Ξ can be treated similarly.

By invoking uses of structural rules, it is sometimes possible to permute

additional instances of inference rules. For example, Figure 3.5 illustrates that

an occurrence of ⊃R above ⊃L can be permuted so that these two rules are

swapped. In order to perform that permutation, the structural rules of wL,

wR, and cR are used: thus, such a permutation might not generally be possible

within I-proofs.

It is possible to use cut-elimination to prove the invertibility of some in-

troduction rules within cut-free proofs. For example, let Ξ be a C-proof of

Γ ` B ⊃ C,∆ and consider the following proof involving both Ξ and the cut

inference rule.

Ξ
Γ ` B ⊃ C,∆

B ` B init
C ` C init

B,B ⊃ C ` C ⊃L

Γ, B ` C,∆ cut

Γ ` B ⊃ C,∆ ⊃R.

50 Chapter 4. Classical and intuitionistic logics

If we apply the cut-elimination procedure to this proof, only inference rules

above the cut are affected: in particular, the result of eliminating the cut will

yield a proof that ends with the introduction of B ⊃ C. In this way, we have

used cut elimination to transform Ξ into a proof that immediately introduces

an occurrence of ⊃, thereby proving the invertibility of ⊃R

Exercise 4.20. (‡) Repeat the argument above to prove the invertibility of

∨L, ∧R, ∀R, and ∃L.

4.5 Negation, false, and minimal logic

Our formalization of classical provability using C-proofs is essentially the

same as Gentzen’s use of the LK proof system. One important difference

between our presentation of classical logic here and that used by Gentzen is

that Gentzen chose not to use the units t and f within his sequent calculi.

In particular, Gentzen’s sequent system treats negation as a logical connec-

tive, meaning, of course, that he provided left and right introduction rules for

negation, namely,

Γ ` B,∆
¬B,Γ ` ∆

¬L and
Γ, B ` ∆

Γ ` ¬B,∆ ¬R.

These inference rules cannot be added directly to I-proofs since the ¬L rule

is inconsistent with the requirement that there is exactly one formula on the

right-hand side. Gentzen’s intuitionistic proof system LJ is defined as a re-

striction on LK in which all sequents have at most one formula on the right.

With that restriction, ¬L can be used whenever the concluding sequent has an

empty right-hand side. Instances of wR can also appear in Gentzen’s version

of LJ proofs.

Exercise 4.21. Minimal logic is sometimes defined as intuitionistic logic with-

out the ex falso quodlibet rule: from false, anything follows. Formally, we

define an M-proof as an I-proof in which the f L rule does not appear. Since

f L is the only inference rule for f in Figure 4.1, f is not treated as a logical

connective within M-proofs. In particular, let B be a formula, and let q be a

non-logical symbol of type o that does not occur in B. Let B′ be the result

of replacing all occurrences of f in B with q. Show that B has an M-proof if

and only if B′ has an I-proof.

The following lemma shows that the ex falso quodlibet inference rule is

admissible in I-proofs.

Lemma 4.22. If Ξ is an I-proof of Σ : Γ ` f then for any Σ-formula B, there

is an I-proof Ξ′ that has the same structure as Ξ but which proves Σ : Γ ` B.

4.5 Negation, false, and minimal logic 51

Proof. The proof is by induction on the structure of Ξ. Essentially, a few

occurrences of f on the right of sequents are changed to B. Ultimately, an

occurrence of a leaf sequent of the form Γ′, f ` f is converted to Γ′, f ` B.

Another way to view this transformation of Ξ to Ξ′ is to consider permuting

the following cut up into the left premise.

Ξ

Γ ` f f ` B
f L

Γ ` B cut

We can now show that Gentzen’s original LJ proof system, in which nega-

tion is a logical connective and where wR can appear, can be emulated directly

by I-proofs. Formally, define a G-proof as a C-proof in which the rules for

negation above are allowed and where the right-hand side of sequents are re-

stricted to have at most one formula. We now show that every G-proof can

be directly translated to an I-proof in which negation is replaced by “implies

false”. To this end, define the mapping (B)◦ that replaces every occurrence

of ¬C in B with C ⊃ f . Similarly, we extend this function to multisets of

formulas: (Γ)◦ = {(B)◦ | B ∈ Γ}. Finally, we further extend this mapping to

work on sequents, as follows:

(Γ ` ∆)◦ =

{
(Γ)◦ ` (∆)◦ if ∆ is not empty

(Γ)◦ ` f if ∆ is empty

Clearly, the image of a sequent in a G-proof is a sequent with exactly one

formula in the right-hand side.

Proposition 4.23. Every G-proof of the sequent Σ : Γ ` ∆ can be converted

to an I-proof of the sequent Σ : (Γ)◦ ` (∆)◦.

Proof. All identity and introduction rules other than those for negation trans-

late immediately from G-proofs to I-proofs. The case for negation rules is

simple as well:

Γ ` B
¬B,Γ ` · ¬L

−→ (Γ)◦ ` (B)◦ f ` f
f L

(B)◦ ⊃ f , (Γ)◦ ` f
⊃L

Γ, B ` ·
Γ ` ¬B ¬R

−→
(Γ)◦, (B)◦ ` f

(Γ)◦ ` (B)◦ ⊃ f
¬R

The only non-trivial change in proofs results when the G-proof ends with wR.

In that case, the G-proof inference rule

Γ ` ·
Γ ` B wR

52 Chapter 4. Classical and intuitionistic logics

would allow us to conclude that the translation of the upper sequent, i.e.,

(Γ)◦ ` f has an I-proof. By Lemma 4.22, we can conclude that (Γ)◦ ` (B)◦

has an I-proof.

Thus, we can translate away Gentzen’s use of negation in such a way that

the role of wR in his LJ system can be absorbed into the f L rule. As a result,

we have a proof system—namely, I-proofs—for intuitionistic logic that has

neither weakening nor contraction on the right. This observation is helpful

for motivating the design of linear logic in Chapter 6. Thus, I-proofs (and

the proof system for linear logic) will have the ex falso quodlibet rule while

not having wR: the G-proof system, on the contrary, has both the ex falso

quodlibet rule and the wR rule.

4.6 Choices to consider during the search for proofs

While Gentzen’s original calculus is a good setting to prove the elimination

of the cut rule (and, hence, also prove consistency), the direct application of

that calculus to computational tasks is problematic for several reasons. Since

we will be considering the search for proofs as a computation model, we now

examine the many choices that are present when searching for a proof. We shall

look for possible means to reduce some choices even if such reductions make

proofs less amendable for mathematical (i.e., not automated) proof. The many

choices in how one searches for sequent calculus proofs can be characterized

as follows.

1. It is always possible to apply the cut rule to any sequent. In that case,

we need to produce a cut-formula (lemma) to prove on one branch and

to use as an assumption on the other.

2. The structural rules of contractions and weakening can always be applied

to make additional copies of a formula or to remove formulas.

3. There may be many non-atomic formulas in a sequent, and we can gen-

erally apply an introduction rule for every one of these formulas.

4. One can also make the choice to check if a given sequent is initial.

Some of these choices produce sub-choices. For example, choosing the cut

rule requires finding a cut-formula; choosing ∨R requires selecting a disjunct;

choosing ∧L requires selecting a conjunct; choosing ∀L or ∃R requires choosing

a term t to instantiate a quantifier, and using the ⊃L or cut rules require

splitting the surrounding multiset contexts into pairs (for which there can be

exponentially many splits).

All this freedom in searching for proofs is not, however, needed, and greatly

reducing the sets of choices can still result in complete proof procedures. Most

of the choices above can be addressed as follows.

4.7 Bibliographic notes 53

1. Given the cut-elimination theorem, we do not need to consider the cut

rule and the problem of selecting a cut-formula. Such a choice forces us to

move into a domain where proofs are more like computation traces than

witnesses of mathematical arguments (see the discussion in Section 3.6).

But since our goal here is the specification of computation, we shall

generally live with this choice.

2. Often, structural rules can be built into inference rules. For example,

weakening can be delayed until the leaves of a proof and it can be built

into the init rule. Also, instead of attempting to split the contexts when

applying the ⊃L rule, we can use the contraction rule to duplicate all

the formulas and then place one copy on the left branch and one copy

on the right branch.

3. The problem of determining appropriate substitution terms in the ∀L
and ∃R rules is a serious problem whose solution falls outside our inves-

tigations here. When systems based on proof search are implemented,

they generally make use of various techniques, such as employing so-

called logic variables and unification to determine instantiation terms

lazily. Although such techniques are completely standard, we shall not

discuss them here.

4. While there is be significant nondeterminism involved in choosing among

many possible introduction rules, that nondeterminism can generally

be classified as either don’t-know nondeterminism—where choices might

need to be undone in order to find a complete proof and don’t-care non-

determinism—where choices do not need to be undone.

Examples of don’t-care nondeterminism are invertible rules (as defined in

Section 3.5). Applying such invertible introduction rules does not lose com-

pleteness. While non-invertible introduction rules represent genuine choices

(i.e., don’t-know nondeterminism) in the search for proofs, we will provide in

the next chapter some structure to those choices as well.

4.7 Bibliographic notes

In his 1935 paper, Gentzen introduced natural deduction. His plan in that

paper was to use natural deduction to show that proofs in intuitionistic and

classical logics can be analytic, i.e., that they can be limited to being free

of lemmas. Although it seems clear that Gentzen knew how to use natural

deduction to prove this result for intuitionistic logic [Plato, 2008], he did not

see how to use natural deduction to prove this same result for classical logic.

As a result, Gentzen invented the sequent calculus, and, in that setting, he was

able to provide a single cut-elimination procedure that worked for both logics.

From what we have illustrated in this chapter, it is not surprising that natural

54 Chapter 4. Classical and intuitionistic logics

deduction has not served as a unifying framework for these two logics since

(1) an important difference between sequent calculus proofs for classical and

intuitionistic logics is the presence or absence of contraction and weakening on

the right, and (2) natural deduction does not support those structural rules

since the conclusion of a natural deduction proof is always a single formula

(even when applied to classical logic).

There are many well-known proofs for cut-elimination for proof systems

such as the one given by Figures 4.1, 4.2, and 4.3. For the detailed proofs of

such cut-elimination theorems, see Gentzen’s original paper [1935] as well as

more modern treatments available in [Gallier, 1986, Chapter 6], [Girard et al.,

1989, Chapter 13], [Negri and von Plato, 2001], and [Bimbó, 2015].

In [Girard et al., 1989, Chapter 5], Girard points out that the initial rule

(recall Figure 4.2) implies that the left occurrence of B is stronger than the

right occurrence of B, whereas the meaning of the cut rule is the opposite: a

right occurrence of B is stronger than the left occurrence of B. This duality

is also apparent in other presentations of these inference rules, such as in

the Calculus of Structures [Guglielmi, 2007] and in uses of linear logic as a

meta-logic for the sequent calculus (see Section 7.7).

As was mentioned in Section 4.2, logic programs will be viewed in this

monograph as theories that attribute meaning to programmer-supplied non-

logical symbols. For example, suppose we wish to specify how to sort a list of

numbers. In that case, we introduce a binary predicate, say, sort, to denote the

relationship between lists of numbers and sorted lists of numbers. The logic

program that describes how to compute this sort predicate is, in fact, a theory

(collection of assumptions). (See Figure 5.6 for an explicit presentation of

a logic program for specifying sorting.) Different proof-theoretic approaches

to logic programming are available that do not use non-logical symbols in

this way. For example, Hallnäs and Schroeder-Heister [1991] encode logic

programs as definitions (which are given left and right introduction rules, as

in Section 4.2). Horn clause logic programs also have rather direct and elegant

encodings using fixed point expressions [McDowell and Miller, 2002; Tiu and

Miller, 2005].

Chapter5
Two abstract logic

programming languages

We now apply the C and I proof systems to the description of logic program-

ming languages in a high-level and implementation-independent fashion.

5.1 Goal-directed search

One approach to modeling logic programming is to view logic programs as

assumptions, goals as queries to ask of a logic program, and computation as

the process of attempting to prove goal from a program. The state of an

idealized interpreter can be represented as the two-sided sequent Σ : P ` G,

where Σ is the signature that declares a set of eigenvariables, P is a set of

Σ-formulas denoting a program, and G is a Σ-formula denoting the goal we

wish to prove from P.

Central to viewing computation in logic programming seems to require the

following restriction on the search for proofs. If G is not atomic, then its

top-level logical connective should determine which inference rules should be

used in an attempt to prove Σ : P ` G: in particular, a right-introduction rule

must be attempted. Thus, the search semantics for a logical connective at

the head of a goal is fixed by the logic and is independent of the program. It

is only when the goal is atomic, i.e., when its top-level symbol is non-logical,

that the program P is consulted: the program is available to provide meaning

for the non-logical, predicate constant at the head of atoms.

If we instantiate the above view of computation using the introduction

rules given in Figure 4.1, we derive the following natural set of strategies.

1. Reduce an attempt to prove Σ : P ` B1 ∧ B2 to the attempts to prove

the two sequents Σ : P ` B1 and Σ : P ` B2.

56 Chapter 5. Two abstract logic programming languages

2. Reduce an attempt to prove Σ : P ` B1 ∨ B2 to an attempt to prove

either Σ : P ` B1 or Σ : P ` B2.

3. Reduce an attempt to prove Σ : P ` ∃τx.B to an attempt to prove

Σ : P ` B[t/x], for some Σ-term t of type τ .

4. Reduce an attempt to prove Σ : P ` B1 ⊃ B2 to an attempt to prove

Σ : P, B1 ` B2.

5. Reduce an attempt to prove Σ : P ` ∀τx.B to an attempt to prove

Σ, c : τ : P ` B[c/x], where c is a token not in Σ.

6. Attempting to prove Σ : P ` t yields an immediate success.

These strategies suggest the following technical definition to formalize the

notion of goal-directed proof search: a cut-free I-proof Ξ is a uniform proof

if every occurrence of a sequent in Ξ that has a non-atomic right-hand side

is the conclusion of a right-introduction rule. Searching for uniform proofs

is now greatly restricted since building a uniform proof means applying right

rules when the succedent has a logical connective. No left-introduction rules,

no identity rules, and no structural rules can be considered when the right-

hand side is a non-atomic formula. The definition of uniform proof provides

no guidance for proof search when the right-hand side of a sequent is atomic.

Such guidance will, however, soon appear.

Exercise 5.1. Show that uniform proofs are always atomically closed.

There are provable sequents for which no uniform proof exists. For exam-

ple, let the non-logical constants be Σ0 = {p : o, q : o, r : i→ o, a : i, b : i} and

let Σ be an signature. The sequents

Σ : (r a ∧ r b) ⊃ q ` ∃ix(r x ⊃ q) and Σ : · ` p ∨ (p ⊃ q)

have C-proofs but no I-proofs (see Exercise 4.3), so clearly, they have no

uniform proofs. The two sequents

Σ : p ∨ q ` q ∨ p and Σ : ∃ix. r x ` ∃ix. r x

have I-proofs but no uniform proofs.

One high-level way to define logic programming is to consider those collec-

tions of programs and goals for which uniform proofs are, in fact, complete.

An abstract logic programming language is a triple 〈D,G,`〉 such that for all

first-order signatures Σ0, for all finite sets P of Σ0-formulas from D, and all

Σ0-formulas G of G, we have Σ0 : P ` G if and only if Σ0 : P ` G has a uni-

form proof. Here, ` is the provability relation associated to some particular

logic, say, first-order classical or intuitionistic logic.

Both the definitions of uniform proof and abstract logic programming lan-

guage are restricted to I-proofs. We shall refer to this as the single-conclusion

5.2 Horn clauses 57

version of these notions. After we introduce linear logic, we will present, in

Section 6.6, a generalization of uniform proofs to multiple conclusion proof

systems.

A theory ∆ is said to satisfy the disjunction property if the provability of

Σ : ∆ ` B ∨ C implies the provability of either Σ : ∆ ` B or Σ : ∆ ` C. A

theory ∆ is said to satisfy the existence property if the provability of Σ : ∆ `
∃τx. B implies the existence of a Σ-term t of type τ such that Σ : ∆ ` B[t/x]

is provable. Clearly, if uniform proofs are complete for a given theory and

a notion of provability, that theory has both the disjunctive and existential

properties. In a sense, when uniform proofs are complete, these properties are

satisfied at all points in building a cut-free proof.

5.2 Horn clauses

The first attempts to describe the provability of logic programs took place in

the setting of performing resolution refutations: the choice of refuting over

proving lead to a peculiar presentation of first-order Horn clauses. In that

setting, Horn clauses were generally defined as the universal closure of dis-

junctions of literals (atomic formulas or their negation) that contain at most

one positive literal (an atomic formula). That is, a clause is a closed formula

for the form

∀x1 . . . ∀xn[¬A1 ∨ · · · ∨ ¬Am ∨B1 ∨ · · · ∨Bp],

where A1, . . . , Am, B1, . . . , Bp are atomic formulas, n,m, p ≥ 0, and p ≤ 1. If

n = 0 then the quantifier prefix is not written and if m = p = 0 then the body

of the clause is considered to be f . If the clause contained exactly one positive

literal (p = 1), it is a positive Horn clause. If it contained no positive literal

(p = 0), it is a negative Horn clause.

When we shift from the search for refutations to the search for sequent

calculus proofs, it is natural to shift the presentation of Horn clauses to one

of the following. Let τ be a syntactic variable that ranges over S\{o} (i.e.,

primitive types other than the type of formulas) and let A be a syntactic

variable ranging over atomic formulas. Consider the following three, recursive

definitions of the two syntactic categories of program clauses (definite clause),

given by the syntactic variable D, and goals, given by the syntactic variable G.

G ::= A | G ∧G
D ::= A | G ⊃ A | ∀τx D. (5.1)

Program clauses using this presentation are of the form

∀x1 . . . ∀xn(A1 ∧ · · · ∧Am ⊃ A0),

58 Chapter 5. Two abstract logic programming languages

where we adopt the convention that if m = 0 then the implication is not

written. A second, richer definition of these syntactic classes is the following.

G ::= t | A | G ∧G | G ∨G | ∃τx G
D ::= t | A | G ⊃ D | D ∧D | ∀τx D. (5.2)

Finally, a compact presentation of program clauses and goals is possible using

only implication and universal quantification.

G ::= A

D ::= A | A ⊃ D | ∀τx D. (5.3)

This last definition describes a program clause as a formula built from impli-

cations and universals such that there are no occurrences of logical connectives

to the left of an implication. Program clauses using this presentation are of

the form

∀x̄1(A1 ⊃ ∀x̄2(A2 ⊃ · · · ⊃ ∀x̄m(Am ⊃ ∀x̄0A0) . . .)),

where x̄0, . . . , x̄m are (possibly empty) lists of variables.

We use the symbol fohc to informally refer to the logic programming lan-

guages based on one of these three descriptions of first-order Horn clauses.

Definition (5.1) above corresponds closely to the definition of Horn clauses

given using disjunction of literals. In this case, positive clauses correspond to

the D-formulas and the negation of G-formulas would all be negative clauses.

Let D1 be the set of D-formulas and G1 be the set of G-formulas satisfying the

recursion (5.2).

Exercise 5.2. For each of the three presentations of Horn clauses and goals

above, show that the clausal order (see Section 2.4) of a formulas in G1 is 0

and of formulas in D1 is 0 or 1.

The following intuitionistic logic equivalences are sometimes called the cur-

ry/uncurry equivalences.

1. t ⊃ E ≡ E
2. (B ∧ C) ⊃ E ≡ (B ⊃ C ⊃ E)

3. (B ∨ C) ⊃ E ≡ (B ⊃ E) ∧ (C ⊃ E)

4. (∃x.B) ⊃ E ≡ ∀x.(B ⊃ E)

They can be used (in part) to prove the following exercise.

Exercise 5.3. Let D be a Horn clause using (5.2). Show that there is a set

∆ of Horn clauses using description (5.1) or (5.3) (your pick) such that D

is equivalent to the conjunction of formulas in ∆. Show that this rewriting

might make the resulting conjunction exponentially larger than the original

clause. (Take as the measure of a formula the number of occurrences of logical

connectives it contains.)

5.2 Horn clauses 59

Exercise 5.4. Let Σ be a signature, let P be a set of Σ-formulas in D1, and

let G be a Σ-formula in G1. Let Ξ be a cut-free C-proof of Σ : P ` G. Show

that every sequent in Ξ is of the form Σ : P ′ ` ∆ such that P ′ is a subset of

D1 and ∆ is a subset of G1. Show also that the only introduction rules that

can appear in Ξ are ∀L, ∧L, ⊃L, ∧R, ∨R, ∃R, and tR.

Exercise 5.5. Prove that Horn clause programs are always consistent by

proving that for any signature Σ and any finite set of Horn clauses P, the

sequent Σ : P ` f is not provable. Show that an I-proof of Σ : P ` G for a

Horn goal G is also an M-proof.

We first show that in the Horn clause setting, classical provability is con-

servative over intuitionistic logic.

Proposition 5.6. Let Σ be a signature, let P be a set of Σ-formulas in D1,

and let G be a Σ-formula in G1. If Σ : P ` G has a C-proof then it has an

I-proof.

Proof. We show the following stronger result: if ∆ is a multiset of G-formulas

and Σ : P ` ∆ has a cut-free C-proof then there is a G ∈ ∆ such that

Σ : P ` G has an I-proof. We prove this by induction on the structure of a

cut-free C-proof Ξ for Σ : P ` ∆.

There are three base cases for Ξ: f L is not possible since f is not a member

of P and the two other cases of tR and init are immediate.

If the last inference rule in Ξ is a structural rule, the proof is straightfor-

ward again. For example, suppose the last inference in Ξ is a cR. In that case,

this proof is of the form

Σ : P ` G,G,∆
Σ : P ` G,∆ cR .

By the inductive hypothesis, there is an H in the multiset G,G,∆ such that

Σ : P ` H has an I-proof: clearly, H is also a member of the multiset G,∆.

Now consider all possible introduction rules that might be the last inference

rule of Ξ (see Exercise 5.4). If that last rule is ⊃L, then the proof has the

form
Σ : P1 ` ∆1, G Σ : D,P2 ` ∆2

Σ : G ⊃ D,P1,P2 ` ∆1,∆2
⊃L .

By the induction assumption, there is a formula H1 ∈ ∆1 ∪ {G} for which

Σ : P1 ` H1 has an I-proof and a formula H2 ∈ ∆2 for which Σ : D,P2 `
H2 has an I-proof. In the case that H1 ∈ ∆1, the I-proof of the sequent

Σ : P1 ` H1 can be extended with a series of wL rules to yield a proof of

Σ : G ⊃ D,P1,P2 ` H1. On the other hand, if H1 = G, then we build an

I-proof using the following instance of an inference rule

Σ : P1 ` G Σ : D,P2 ` H2

Σ : G ⊃ D,P1,P2 ` H2
⊃L ,

60 Chapter 5. Two abstract logic programming languages

and the two promised I-proofs of the premises.

All the remaining cases of introduction rules can be treated similarly.

Exercise 5.7.(‡) Assume that the Σ-formulas D0, . . . , Dn (n ≥ 0) are Horn

clauses using description (5.3). Prove that if the sequent Σ : D1, . . . , Dn ` D0

has a C-proof then it has an I-proof.

It is the case that 〈D1,G1,`〉 is an abstract logic programming language if

` is taken to be C̀ , Ì , or M̀ .

Note that uniform proofs in fohc are very constrained. In particular, if we

use the (5.2) presentation of Horn clauses, then it is only atoms or conjunctions

of atoms that are both goals and program clauses. All the other connectives are

either dismissed (such as f) or are restricted to just half their “meaning:” when

a disjunction and existential quantifier is encountered in proof search, only its

right introduction rule is needed, and when an implication and a universal

quantification is encountered, only its left-introduction rule is needed.

Exercise 5.8. (‡) Let I be the set of formulas using only implications and

atomic formulas that are classical theorems but do not have uniform proofs.

For example, Peirce’s formula ((p ⊃ q) ⊃ p) ⊃ p is a member of I. Prove that

the smallest formula in I has three occurrences of implications.

Readers unfamiliar with specifying computations using Horn clauses might

want to read Section 5.10 now to see examples of such specifications.

5.3 Hereditary Harrop formulas

A natural extension to Horn clauses, called the first-order hereditary Harrop

formulas, allows implications and universal quantifiers in goals (and, thus, in

the body of program clauses). Whereas cut-free proofs involving Horn clauses

contain left-introduction rules for implications and universal quantifiers, proofs

involving this extended set of formulas can contain also right-introduction rules

for implications and universal quantifiers. Parallel to the three presentations

of fohc in Section 5.2, the following three presentations of goals and program

clauses describe first-order hereditary Harrop formulas.

G ::= A | G ∧G | D ⊃ G | ∀x.G
D ::= A | G ⊃ A | ∀x.D (5.4)

The definitions of G- and D-formulas are mutually recursive. Note that a neg-

ative (resp, positive) subformula of a G-formula is a D-formula (G-formula),

and that a negative (positive) subformula of a D-formula is a G-formula (D-

formula). A richer formulation is given by

G ::= t | A | G ∧G | G ∨G | ∃x.G | D ⊃ G | ∀x.G
D ::= A | G ⊃ D | D ∧D | ∀x.D (5.5)

5.3 Hereditary Harrop formulas 61

When referring to first-order hereditary Harrop formulas and goals, we shall

assume this definition of formulas. We use D2 to denote the set of all such

D-formulas and G2 for the set of all G-formulas.

A completely symmetric presentation can be given as

G ::= t | A | D ⊃ G | G ∧G | ∀x.G
D ::= t | A | G ⊃ D | D ∧D | ∀x.D (5.6)

In this presentation, D and G formulas are the same set of formulas, and there

is no need for a definition that allows for mutual recursion. In Section 5.5,

these formulas—which are generated from the set of connectives {t ,∧,⊃, ∀}—
will be called L0-formulas.

We use the name fohh to denote first-order hereditary Harrop formulas:

this name will refer to one of the presentations above. If the text is not explicit

about which presentation is implied, we will assume the second presentation.

He shall also use fohh to denote, in particular, the corresponding D-formulas:

this is justified by the fact that the associated G-formulas are uniquely deter-

mined by the negative subformulas of D-formulas. The same comment also

applies to our use of the term fohc.

Exercise 5.9. Let D ∈ D2. Then D is a Horn clause (using definition (5.2))

if and only if order(D) < 2.

We shall use the term clause not just for Horn clauses but for any formula,

especially any formula that can be used as part of a logic program. Thus, for

example, we often refer to hereditary Harrop formulas also by this term.

The following proposition shows that identifying the right-hand side with

goals and the left-hand side with programs is maintained within cut-free I-

proofs.

Proposition 5.10. Let P be an fohh logic program and G an fohh goal and

let Ξ be a cut-free I-proof of Σ : P ` G. If Σ′ : Γ ` B is a sequent in Ξ then

Γ is a fohh logic program and B is an fohh goal formula.

This proposition is proved by a simple induction of the structure of cut-free

I-proofs.

The triple 〈D2,G2, C̀〉 is not an abstract logic programming language. For

example, the formulas numbered 4, 5, 6, and 7 in Exercise 4.3 are hereditary

Harrop goals that have classical proofs but no uniform proof.

We shall informally refer to the logic programming languages based on

intuitionistic logic and one of these three descriptions of first-order hereditary

Harrop formulas by simply fohh or as 〈D2,G2, Ì〉.

Lemma 5.11. Let G ∈ G2 be a non-atomic Σ-formula and let P be a finite

multiset, all of whose members are Σ-formulas in D2. Assume that Σ : P ` G

62 Chapter 5. Two abstract logic programming languages

has an I-proof in which the last inference rule is not a right-introduction rule,

and all premise sequents are proved by a uniform proof. There is a uniform

proof of Σ : P ` G.

Proof. Let Ξ be a proof of P ` G satisfying the assumptions of this lemma.

(For readability, we suppress explicitly writing the signature of a sequent.)

The last inference rule of this proof is either one of two structural rules (cL

or wL) or one of three left-introduction rules (∧L, ∀L, ⊃L). In every case,

the proof of the premises must be uniform proofs and, as a result, at least

one premise must be proved by one of five right-introduction rules (∧R, ∨R,

∀R, ∃R, ⊃R). We proceed by induction on the height of the uniform proof

of the right-most premise of this inference rule. All possible cases of left-rules

occurring below a right-introduction rule must be considered.

Consider the case when an implication-left rule is applied when the right-

hand side is a conjunction.

Ξ0

P1 ` G

Ξ1

D,P2 ` G1

Ξ2

D,P2 ` G2

D,P2 ` G1 ∧G2
∧R

G ⊃ D,P1,P2 ` G1 ∧G2
⊃L

These rules can be permuted to form the following proof.

Ξ0

P1 ` G
Ξ1

P2, D ` G1

G ⊃ D,P1,P2 ` G1
⊃L

Ξ0

P1 ` G
Ξ2

P2, D ` G2

G ⊃ D,P1,P2 ` G2
⊃L

G ⊃ D,P1,P2 ` G1 ∧G2
∧R

If this proof is not uniform, apply the inductive assumption to the two sub-

proofs with ⊃L as their last rule. That induction returns a uniform proof for

both G ⊃ D,P1,P2 ` G1 and G ⊃ D,P1,P2 ` G2 and a uniform proof for the

end-sequent comes from applying ∧R to those uniform proofs.

For another case, assume that ⊃L is applied to a sequent with an implica-

tion on the right-hand side.

Ξ1

P1 ` G

Ξ2

D′, D,P2 ` G′

D,P2 ` D′ ⊃ G′
⊃R

G ⊃ D,P1,P2 ` D′ ⊃ G′
⊃L

These rules can be permuted to form the following proof.

Ξ1

P1 ` G
Ξ2

D,D′,P2 ` G′

G ⊃ D,D′,P1,P2 ` G′
⊃L

G ⊃ D,P1,P2 ` D′ ⊃ G′
⊃R

5.3 Hereditary Harrop formulas 63

If this proof is not uniform, then apply the inductive hypothesis to the right

premise of the ⊃R rule.

All other cases can be proved similarly: permute a left-rule up over a

right-introduction rule and invoke the inductive hypothesis.

Proposition 5.12. Let Σ be a signature, let P be a finite multiset of Σ-

formulas in D2, and let G be a Σ-formula in G2. If Σ : P ` G has a cut-free

I-proof then Σ : P ` G has a uniform proof.

Proof. Assume that Σ : P ` G has a cut-free I-proof Ξ. By Proposition 4.10,

we can also assume that Ξ is an atomically closed I-proof. If Ξ is not uniform,

then there must be occurrences of left-rules (either left-introduction rules or

left-structural rule) in Ξ whose conclusion is a sequent with a non-atomic right-

hand side. Pick one of these occurrences so that the subproofs of its premises

do not have other such occurrences. Thus, the premises of this inference

rule occurrence are uniform. By Lemma 5.11, we can replace the subproof

determined by this left rule with a uniform proof. In this way, we can continue

to replace non-uniform subproofs with uniform proofs until such rewriting

yields a uniform proof.

This proposition formally asserts that the intuitionistic version of fohh is

an abstract logic programming language.

Consider the following class of first-order formulas given by

H := A | B ⊃ H | ∀x H | H1 ∧H2.

Here A ranges over atomic formulas and B over arbitrary first-order formulas.

These H-formulas are known as Harrop formulas. Clearly, hereditary Harrop

formulas are Harrop formulas.

Exercise 5.13. Consider the sequent Σ : P ` B where P is a set of Harrop for-

mulas and B is an arbitrary formula. Show that Harrop formulas are “uniform

at the root;” that is, if B is non-atomic, then this sequent is intuitionistically

provable if and only if it has a I-proof that ends in a right-introduction rule.

Are uniform proofs complete for such sequents?

Finally, note that since hereditary Harrop formulas do not have occurrences

of f in them, the triple 〈D2,G2, M̀〉 describes essentially the same abstract logic

programming language as fohh.

The reader, who wishes to see examples of logic programs in fohh before

considering more about their proof theory, can find some in Section 5.12.

64 Chapter 5. Two abstract logic programming languages

5.4 Backchaining as focused rule application

The restriction to uniform proofs provides some information on how to struc-

ture proofs: in the bottom-up search for proofs, right-introduction rules are

attempted whenever the antecedent is non-atomic, and left-rules are attempted

only when the succedent is atomic. We now present a restriction on the appli-

cation of left side rules, and we will eventually show that that restriction on

proofs does not result in the loss of completeness.

To better structure the rules on the left, we first make two simple changes

to the proof system for I-proofs. While wL can be applied at any point in the

search for a uniform proof, it is also possible to delay applications of that rule

until just before applying the init rule. This delay suggests that we can fold

weakening into the init rule, yielding the derived inference rule

Σ : Γ, B ` B
.

Another use of a structural rule on the left can improve the complexity of

the ⊃L rule when searching for a proof. As we mentioned in Section 3.3,

performing proof search with a multiplicative inference rule can be expensive

since there can be an exponential number of ways to split the side contexts

of the conclusion for use among the premises. The only multiplicative left-

introduction rule is ⊃L. Since contraction and weakening are available on the

left (but not the right), the following variant of that inference rule is easily

proved to be admissible (see Section 3.3).

Σ : Γ ` ∆1, B Σ : C,Γ ` ∆2

Σ : B ⊃ C,Γ ` ∆1,∆2

Here, the cL rule is used to double the Γ context before splitting the left

context. In this rule, the left context is treated additively, and the right

context is treated multiplicatively. Given that we are speaking of I-proofs

here, this rule can be simplified even further since the single formula on the

right of the concluding sequent must move to the right of the right premise.

Thus, we can rewrite this rule as

Σ : Γ ` B Σ : C,Γ ` E
Σ : B ⊃ C,Γ ` E

Now consider refining this last version of the left introduction of implication

in the setting of uniform proofs. That is, consider the derivation

Σ : P ` G Σ : D,P ` A
Σ : G ⊃ D,P ` A ⊃L

Σ : P ` A cL

5.4 Backchaining as focused rule application 65

Σ : P ` t
tR

Σ : P ` G1 Σ : P ` G2

Σ : P ` G1 ∧G2
∧R

y : τ,Σ : P ` G[y/x]

Σ : P ` ∀τx G
∀R

Σ : D,P ` G
Σ : P ` D ⊃ G ⊃R

Σ : P ` G1

Σ : P ` G1 ∨G2
∨R

Σ : P ` G2

Σ : P ` G1 ∨G2
∨R

Σ `̀ t : τ Σ : P ` G[t/x]

Σ : P ` ∃τx G
∃R

Σ : P ⇓ D ` A
Σ : P ` A decide

Σ : P ⇓ A ` A init

Σ : P ⇓ D1 ` A
Σ : P ⇓ D1 ∧D2 ` A

∧L
Σ : P ⇓ D2 ` A

Σ : P ⇓ D1 ∧D2 ` A
∧L

Σ : P ` G Σ : P ⇓ D ` A
Σ : P ⇓ G ⊃ D ` A ⊃L

Σ `̀ t : τ Σ : P ⇓ D[t/x] ` A
Σ : P ⇓ ∀τx.D ` A ∀L

Figure 5.1: The ⇓ fohh proof system. In the decide rule, D is a member

of P. In all these rules, A is atomic.

where A is atomic and where G ⊃ D is a member of the multiset P. Thus, to

employ G ⊃ D in backchaining, we first use cL to make a copy of it and then

apply ⊃L. Thus, we have reduced an attempt to prove the atomic formula A

from program P to attempting to prove two things, one of which is still an

attempt to prove A but this time from the larger multiset P ∪ {D}. It would

seem natural to expect these inference rules are used only because this new

instance of D is directly helpful in proving A. For example, D could itself be

A, or some sequence of additional left-rules applied to D might reduce it to

an occurrence of A.

We can formalize a proof system where left-introduction rules are used in

such a direct or focused fashion by introducing a new style of sequent, namely,

Σ : P ⇓ D ` A. While provability of this sequent will imply provable of the

sequent Σ : P, D ` A, the formula between the ⇓ and the `, called the focus

of this sequent, is the only formula on which left-introduction rules can be

applied. The sequents Σ : P ` G and Σ : P ⇓ D ` A have ⇓ fohh-proofs if

they have proofs using the ⇓ fohh-proof system in Figure 5.1. This new proof

system is an example of a focused proof system: we shall see two more such

focused proof systems when we introduce linear logic in Chapter 6.

All ⇓ fohh-proofs are composed of two phases. A right-introduction phase

is a derivation composed of only right-introduction rules and where all open

66 Chapter 5. Two abstract logic programming languages

premises are sequents with atomic formulas on their right-hand sides. Such

phases can be identified with the goal-reduction phase of proof search. A

right-introduction phase for Σ : P ` G is empty (i.e., contain no inference

rules) if and only if G is an atomic formula. A left-introduction phase is a

derivation composed of left-introduction rules as well as the init and decide

rules (see Figure 5.1) and where all open premises are sequents without the ⇓.

A left-introduction phase for Σ : Γ ⇓ B ` A can never be empty: that is, such

a phase must contain an inference rule (in particular, the decide rule). This

phase can be identified with the backchaining phase of proof search that we

have described earlier.

It is important to note the following relationship between determinism and

right-introduction phases and between nondeterminism and left-introduction

phases. Let Σ be a signature and let P and G be a logic program and a goal

formula, respectively, in fohh (all Σ-formulas). There always exists a right-

introduction phase that ends in Σ : P ` G, and that phase is unique up to

the change of names of the eigenvariables. Thus, a right-introduction phase

can be seen as a function that takes the endsequent Σ : P ` G as input and

returns the unique multiset of sequents of the form Σ′ : P ′ ` A (where A is an

atomic formulas) that are the premises of that right-introduction phase. On

the other hand, the left-introduction phase determines a non-deterministic

relation between its endsequent, say, Σ : P ⇓ D ` A, and the multiset of

sequents of the form Σ : P ` G that are the premises of a left-introduction

phase.

Exercise 5.14. Given the sequence a0, a1, . . . of atomic (propositional) for-

mulas, define the sequence of propositional Horn clauses

Dn = a0 ⊃ · · · ⊃ an−1 ⊃ an (n ≥ 0).

For example, D0 is a0, D1 is a0 ⊃ a1, and D2 is a0 ⊃ a1 ⊃ a2. For a given

n ≥ 0, there are a great many uniform proofs of the sequent D0, . . . , Dn `
an. Among these, consider those in which the left premise of the ⊃L rule

is trivial (proved by the initial rule). Those proofs use the formulas Di in

forwardchaining manner. How do such proofs differ in size to proofs based

only on backchaining, i.e., ⇓ fohh-proofs?

5.5 Formal properties of focused proofs

The proof system in Figure 5.1 is different from the original proof systems of

Gentzen in that there is a lot of control over the application of introduction

rules. In particular, the only way to prove a sequent that does not contain ⇓
is to perform a right-introduction rule or the decide rule. If a sequent contains

the ⇓ then that sequent must be the conclusion of a left-introduction rule or

5.5 Formal properties of focused proofs 67

the init rule. Furthermore, contraction and weakening are not separate rules

but are built into other rules.

The preceding sections in this chapter present various theorems about the

unfocused proof systems I and C and their relationship with Horn clauses

and hereditary Harrop formulas. In general, the focused proof system is much

more useful than those unfocused proof systems for our purposes here. Once

we have proved the main theorems about the focused proof system ⇓ fohh,

most of the results in the previous sections can be reproved immediately using

those theorems.

The following proposition states that whatever is provable using ⇓ fohh-

proofs is also provable in intuitionistic proofs.

Proposition 5.15 (Soundness of ⇓ fohh-proofs). Let Σ be a signature and let

Γ be a multiset of definite Σ-formulas and let G be a goal Σ-formula. If the

sequent Σ : Γ ` G has a ⇓ fohh-proof then it has an I-proof.

Proof. This is proved by a simple induction of the structure of ⇓ fohh-proofs.

In that induction, sequents of the form Γ ⇓ D ` A are mapped to standard

sequents of the form Γ, D ` A.

We will eventually prove that, for hereditary Harrop formulas, ⇓ fohh-

proofs are complete for intuitionistic logic (Proposition 5.37). Before proving

that theorem, we first develop some results about the inference rules in Fig-

ure 5.1. In particular, we note that the ⇓ fohh-proof system does not have

a cut rule, and its init rule is restricted to atomic formulas. It is natural to

ask if the cut rule and the general form of the init rule are admissible for

⇓ fohh-proofs. However, just to ask that question requires us to restrict our

attention to those formulas that are both goal formulas and definite clauses.

Within fohh, these are the only formulas that can appear on the left and the

right of the sequent arrow. Let L0 be the set of connectives {t ,∧,⊃, ∀} and let

an L0-formula be any first-order formula all of whose logical connectives come

from L0. In particular, such formulas do not contain occurrences of disjunc-

tions and existential quantifiers. Until we return to the issue of dealing with

disjunctions and existential quantifiers in Section 5.9, we restrict our attention

to L0 formulas, which are also the same as fohh using definition (5.6).

Since L0 formulas have no occurrences of f , provability in intuitionistic and

minimal logics coincide (see Section 4.5). Thus, for most of the rest of this

chapter, we could replace references to intuitionistic logic with minimal logic

when discussing the properties of ⇓ fohh-proofs. In addition, we emphasize

the role of L0 formulas in this section by using the name ⇓L0-proof system for

the proof system that results from removing the right-introduction rules for ∃
and ∨ from the ⇓ fohh-proof system.

68 Chapter 5. Two abstract logic programming languages

Let B be an L0 formula. The paths in B are those formulas P for which

the following two-place relation B ↑ P is provable (here, A denotes an atomic

formula).

A ↑ A
B ↑ P

B ∧ C ↑ P
C ↑ P

B ∧ C ↑ P
C ↑ P

B ⊃ C ↑ B ⊃ P
B ↑ P

∀τx.B ↑ ∀τx.P

A formula which is a path has the form

∀x̄1.(G1 ⊃ ∀x̄2.(G2 ⊃ . . . ⊃ ∀x̄n.(Gn ⊃ A) . . .)),

where n ≥ 0, A is an atomic formula, G1, . . . , Gn is a list of L0 of formulas,

and where for each i such that 0 < i ≤ n, x̄i is a list of variables. The formula

A is the target of this path, the formulas G1, . . . , Gn are the arguments of

this path, and the list that results from concatenating the lists of variables

x̄1, . . . , x̄n is the list of bound variables of this path. (We assume that all

these bound variables are distinct.) We shall also present such a path using

an associated sequent, namely, x̄1, . . . , x̄n : G1, . . . , Gn ` A.

For example, the paths in (p∧ q) ⊃ (r ∧ s) are (p∧ q) ⊃ r and (p∧ q) ⊃ s.
Similarly, the formula

∀x.p(x) ⊃ ((∀y.q(x, y) ⊃ (r(x, y) ∧ r(y, x))) ∧ p(x))

(where p, q, and r are predicates) has three paths, namely,

∀x.p(x) ⊃ ∀y.q(x, y) ⊃ r(x, y) x, y : p(x), q(x, y) ` r(x, y)

∀x.p(x) ⊃ ∀y.q(x, y) ⊃ r(y, x) x, y : p(x), q(x, y) ` r(y, x)

∀x.p(x) ⊃ p(x) x : p(x) ` p(x).

Here, we also display the associated sequent representation of the path. Note

that the formula t has no paths, and if the formula B contains no occurrences

of t and ∧ then the only path in B is B itself.

Exercise 5.16. Let D be a hereditary Harrop formula defined using (5.4).

Prove that D has exactly one path and that path is D.

Given the intuitionistically valid equivalences

B1 ⊃ (B2 ∧B3) ≡ (B1 ⊃ B2) ∧ (B1 ⊃ B3)

∀x. (B1 ∧B2) ≡ (∀x. B1) ∧ (∀x. B2),

5.5 Formal properties of focused proofs 69

it is easy to show the intuitionistic equivalence

B ≡
∧
B↑P

P.

We can even state the following two much stronger relationships between B

and the conjunction of all paths in B.

1. The right-introduction phase that has endsequent Σ : Γ ` B and the

right-introduction phase that has endsequent Σ : Γ `
∧
B↑P P have ex-

actly the same premises (modulo the order in which the premises are

listed and modulo alphabetic changes in the names of eigenvariables).

2. The set of left-introduction phases with endsequent Σ : Γ ⇓ B ` A

can be put in one-to-one correspondence with left-introduction phases

with endsequent Σ : Γ ⇓
∧
B↑P P ` A in such a way that corresponding

premises are equal (modulo the order in which the premises are listed

and modulo alphabetic changes in the names of eigenvariables).

These observations are stated more formally in the next two propositions.

Proposition 5.17. Let B be an L0 formula and let the sequent Σ : Γ ` B be

the endsequent of a right-introduction phase. The premises of that phase are

in one-to-one correspondence with paths in B such that the path P corresponds

to the premise Σ,X : Γ,B ` A, where the sequent associated to P is X : B ` A.

(The variables in X are chosen to be disjoint from Σ.)

Proof. We prove this proposition by induction on the structure of the L0

formula B. In the case that B is t , the set of paths in B is empty, and the set

of premises of the right-introduction phase is also empty. If B is atomic, the

end-sequent of the right-introduction phase is the same as its unique premise,

which corresponds to adding no bound variables and no argument formulas

(this phase is empty). If B is B1 ∧B2 then the right-introduction phase ends

with
Σ : Γ ` B1 Σ : Γ ` B2

Σ : Γ ` B1 ∧B2

.

The premises of this phase are divided into those which are premises of the

right-introduction phase with endsequent Σ : Γ ` B1 and the premises of the

right-introduction phase with endsequent Σ : Γ ` B2. Since the paths in P are

either paths in B1 or in B2, the inductive hypothesis immediately yields the

required correspondence. If B is B1 ⊃ B2 then the right-introduction phase

ends with
Σ : Γ, B1 ` B2

Σ : Γ ` B1 ⊃ B2

.

70 Chapter 5. Two abstract logic programming languages

The premises of this phase are also premises of the right-introduction phase

with endsequent Σ : Γ, B1 ` B2. By the inductive hypothesis, a path P ′ in B2

correspond to the premise Σ,X : Γ, B1,B ` A, where X : B ` A is the sequent

associated to P ′. By the definition of paths, the only difference between the

path P and P ′ is that the former has B1 as an additional argument. Thus,

the correspondence is satisfied. The case where B is ∀x.B′ is similar to the

previous case.

The proposition above states that an attempt to prove Σ : Γ ` B leads to

an attempt to prove a series of sequents, one for each path in B. The structure

of the left-introduction phases is described in the following proposition.

Proposition 5.18. Let B be an L0 formula and A an atomic formula. The

sequent Σ : Γ ⇓ B ` A is the endsequent of a left-introduction phase with

premises

Σ : Γ ` G1 , . . . , Σ : Γ ` Gn (n ≥ 0)

if and only if there is a path P in B with target A′, arguments {B1, . . . , Bn}
and bound variables X , and a substitution θ that maps the variables in X to

Σ-terms such that A′θ is equal to A and such that G1 = B1θ, . . . , Gn = Bnθ.

Proof. We prove this proposition by induction on the structure of the L0

formula B. The case that B is t is impossible since there is no left-introduction

rule for t . If B is atomic, then B and A are equal since we assume that

Σ : Γ ⇓ B ` A is the endsequent of a left-introduction phase (and the set of

arguments of B is the empty set).

If B is B1 ∧ B2, we first assume that there is a left-introduction phase

ending in Σ : Γ ⇓ B1∧B2 ` A. Thus, there is a left-introduction phase ending

in Σ : Γ ⇓ Bi ` A, where i = 1 or i = 2. By the inductive assumption,

there is a path in Bi with target A′, arguments B, and bound variables X ,

and a substitution θ that maps the variables in X to Σ-terms such that A′θ

is equal to A and such that every premise of that left-introduction phase can

be written as Σ : Γ ` Gθ for each G ∈ B. That same path is also a path in B,

which completes this case. The converse is proved similarly.

If B is B1 ⊃ B2, we first assume that there is a left-introduction phase

that ends with Σ : Γ ⇓ B1 ⊃ B2 ` A and the inference rule

Σ : Γ ` B1 Σ : Γ ⇓ B2 ` A
Σ : Γ ⇓ B1 ⊃ B2 ` A

.

By the inductive hypothesis, there is a path in B2 with target A′, arguments

B, bound variables X , and a substitution θ that maps the variables in X to

Σ-terms such that A′θ is equal to A and such that every premise of that left-

introduction phase can be written as Σ : Γ ` Gθ for each G ∈ B. If we add to

5.5 Formal properties of focused proofs 71

that path the argument B1 then that path satisfies the required condition for

a path in B. The converse is proved similarly.

Finally, assume that B is ∀τx.B′. First assume that there is a left-

introduction phase ending in ∀τx.B′. Thus, there is a left-introduction phase

ending in Σ : Γ ⇓ B′[t/x] ` A and inference rule

Σ : Γ ⇓ B′[t/x] ` A
Σ : Γ ⇓ ∀x.B′ ` A

.

for some Σ-term t. By the inductive assumption, there is a path in B′[t/x]

with target A′, arguments B, and bound variables X , and a substitution θ that

maps the variables in X to Σ-terms such that A′θ is equal to A and such that

every premise of that left-introduction phase can be written as Σ : Γ ` Gθ for

each G ∈ B. The required path through ∀x.B′ is then the same as for B′[t/x]

except that the required substitution is θ extended with the mapping of x to

t. The converse can be proved similarly.

Note the dual use of paths: all paths of B are used to describe the right-

introduction phase with endsequent Σ : Γ ` B, while some path of B is used

to describe the left-introduction phase with endsequent Σ : Γ ⇓ B ` A.

Exercise 5.19. Prove that if the sequent Σ : Γ, B ` G has a proof Ξ in

which no occurrences of decide pick the formula B as its focus, then there is a

proof Ξ′ of Σ : Γ ` G that has the same tree structure of inference rules: the

only difference is the sequents labeling those inference rules. This operation

of removing an assumption in a sequent is called strengthening.

We are now able to prove the three main theorems related to ⇓L0-proofs:

the admissibility of the (non-atomic) init rule, the admissibility of cut, and

the completeness of ⇓L0-proofs with respect to intuitionistic provability.

Theorem 5.20 (Admissibility of initial). Let Γ be a multiset of L0 Σ-formulas.

If B ∈ Γ then Σ : Γ ` B has an ⇓L0-proof.

Proof. We describe how to build an ⇓L0-proof of Σ : Γ ` B by induction on

the structure of the L0 formula B. We first consider the right-introduction

phase with the endsequent Σ : Γ ` B. By Proposition 5.17, for every path P

in B, there is a premise sequent of that right-introduction phase of the form

Σ,X : Γ,B ` A, where A, B, and X are, respectively, the target, arguments,

and bound variables of P . Now consider the premise that corresponds to P

and use the decide rule to select B ∈ Γ in order to initiate a left-introduction

phase. By Proposition 5.18, there is a left-introduction phase that corresponds

to P . By setting θ to the identity substitution on the variables in X , we

have A = Aθ and where the left-introduction phase has the premises (where,

B = {B1, . . . , Bn})

Σ,X : Γ,B ` B1 , . . . , Σ,X : Γ,B ` Bn (n ≥ 0).

72 Chapter 5. Two abstract logic programming languages

Σ : Γ ` B Σ : Γ, B ` C
Σ : Γ ` C cut

Figure 5.2: The cut inference rule used in ⇓L+
0-proofs. The cut-formula B

is restricted to be an L0-formula.

We can conclude now by using the inductive hypotheses on each of these

premises.

We next turn our attention to proving the cut-elimination theorem for

⇓L0-proofs. Figure 5.2 introduces the cut rule for the focused proof system

for L0. The cut rule involves three sequents, none of which contains the ⇓.

The proof system that combines the inference rules in the ⇓L0-proof system

and in Figure 5.2 is called the ⇓L+
0 proof system, and proofs in that system

will be called ⇓L+
0-proofs.

We introduce the following two measures. The size of a formula B, written

as |B|, is the number of occurrences of logical connectives in B. The size of a

formula is 0 if and only if that formula is an atom. The height of an ⇓L+
0-proof

Ξ, also written as |Ξ|, is the maximum number of inference rules on a path in

Ξ that does not go through a left premise of a cut rule: that is, the height of a

proof that ends in a cut rule is one more than the height of its right premise.

This height is always greater than or equal to 1.

The following two propositions can be proved by simple inductions on the

structure of ⇓L0-proofs.

Proposition 5.21 (Weakening ⇓L+
0-proofs). Let Σ and Σ′ be signatures such

that Σ ⊆ Σ′ and let Γ and Γ′ be two multisets of L0 formulas such that Γ ⊆ Γ′.

If Σ : Γ ` B has an ⇓L+
0-proof of height h then Σ′ : Γ′ ` B has an ⇓L+

0-proof

of height h.

Proposition 5.22 (Substitution into ⇓L0-proofs). Let Σ be a signature, x be

a variable not declared in Σ, and τ a primitive type. If Σ, x : τ : Γ ` B has an

⇓L+
0-proof of height h and t is a Σ-term of type τ then Σ : Γ[t/x] ` B[t/x] has

an ⇓L+
0-proof of height h.

To prove the cut-elimination theorem for ⇓L+
0 proofs, we introduce a second

cut rule, called the key cut rule (here, A is an atomic formula and B is an L0

formula).
Σ : Γ ` B Σ : Γ ⇓ B ` A

Σ : Γ ` A
cutk

This cut rule is only used as a technical device to help prove cut-elimination.

A cut-free proof is a proof that does not contain occurrences of either the cut

5.5 Formal properties of focused proofs 73

or cutk rule. Clearly, a cut-free ⇓L+
0-proof is an ⇓L0-proof. The height of

a proof containing cutk is defined as above but this time cut and cutk are

treated the same: in particular, the height of a proof that ends in the cutk
rule is one more than the height of its right premise.

Lemma 5.23. Consider an occurrence of the cut rule of the form

Ξl
Σ : Γ ` B

Ξr
Σ : Γ, B ` C

Σ : Γ ` C
cut,

where Ξl and Ξr are (cut-free) ⇓L0-proofs. We can transform this proof into

a proof of Σ : Γ ` C of smaller height in which there are no occurrences of the

cut rule, but there might be several occurrences of the cutk rule, all of which

have cut-formula B.

Proof. Let Ξl be a ⇓L0-proof of Σ : Γ ` B and let Ξr be a ⇓L0-proof of

Σ : Γ, B ` C. We first convert Ξr to a new proof Ξ′r also of Σ : Γ, B ` C
by replacing every occurrence of the decide rule applied to the cut formula B

within Ξr, such as
Ξ0

Σ′ : Γ′, B ⇓ B ` A
Σ′ : Γ′, B ` A decide

(where Σ ⊆ Σ′ and Γ ⊆ Γ′), with the following occurrence of a cutk rule

Ξ̂l
Σ′ : Γ′ ` B

Ξ0

Σ′ : Γ′, B ⇓ B ` A
Σ′ : Γ′, B ` A

cutk.

Here Ξ̂l is the result of weakening Ξl (Proposition 5.21). The resulting proof

Ξ′r has no occurrences of decide on B but many have several occurrences of

cutk with cut-formula B in Ξ′r. Note that the height of Ξr and Ξ′r is the

same and that Ξ′r is a proof of Σ : Γ, B ` C. Furthermore, since there are no

occurrences of decide on B in Ξ′r, we can strengthen Ξ′r to get a proof Ξs of

Σ : Γ ` C with the same height as Ξr (proved by a simple induction on the

structure of proofs, see Exercise 5.19). As a result, we can replace the original

proof of Σ : Γ ` C with the new proof Ξs with smaller height than Ξr.

Lemma 5.24. Consider an occurrence of the cutk rule of the form

Ξl
Σ : Γ ` B

Ξr
Σ : Γ ⇓ B ` C

Σ : Γ ` C
cutk,

where Ξl and Ξr are ⇓L+
0 proofs. We can transform this proof into a proof of

Σ : Γ ` C where this occurrence of cutk is replaced with occurrences of the cut

rule in which the cut-formulas are strictly smaller than B.

74 Chapter 5. Two abstract logic programming languages

Proof. Consider an occurrence of the cutk rule

Ξl
Σ : Γ ` B

Ξr
Γ ⇓ B ` A

Σ : Γ ` A
cutk,

where Ξl and Ξr are ⇓L+
0 proofs. If B is atomic, then B and A are equal and

the result of eliminating this cutk is Ξl. Thus, assume that B is not atomic.

In that case, Ξl ends in a non-empty right-introduction phase and Ξr ends in

a left-introduction phase. By Proposition 5.18, there is a path P in B with

associated sequent X : B1, . . . , Bn ` A′ such that the premises and subproofs

of that left-introduction phase are

Ξ1

Σ : Γ ` B1θ, . . . ,
Ξn

Σ : Γ ` Bnθ (n ≥ 0)

and where A′θ is A, for some substitution θ. By Proposition 5.17, there is a

premise in the right-introduction phase that corresponds to path P and is the

sequent Σ,X : Γ, B1, . . . , Bn ` A′ with its subproof Ξ0. By repeated applica-

tion of Proposition 5.22, we know that the sequent Σ : Γ, B1θ, . . . , Bnθ ` A′θ
has a ⇓L0-proof, say, Ξ0θ. If we take these various ⇓L+

0-proofs and arrange

them as follows, we have a proof in which the cut rule has n occurrences

(remembering that A is equal to A′θ).

Ξn
Σ : Γ ` Bnθ

Ξ1

Σ : Γ ` B1θ
Ξ0θ

Σ : Γ, B1θ, . . . , Bnθ ` A
Σ : Γ, B2θ, . . . , Bnθ ` A

cut

...

Σ : Γ, Bnθ ` A
Σ : Γ ` A cut

Note that the size of each of the cut formulas B1θ, . . . , Bnθ is strictly less than

the size of the original cut formula B.

Thus, Lemma 5.23 describes how one occurrence of cut on B can be re-

placed with several occurrences of cutk on B, and Lemma 5.24 describes how

an occurrence of cutk on B can be replaced by several occurrences of cut on

strictly smaller formulas than B.

Lemma 5.25. An ⇓L+
0 proof that ends with a cut rule in which both premises

have cut-free proofs can be replaced with a cut-free proof of the same endse-

quent.

Proof. Consider the following occurrence of the cut inference rule

Ξl
Σ : Γ ` B

Ξr
Σ : Γ, B ` C

Σ : Γ ` C cut

5.5 Formal properties of focused proofs 75

in which Ξl and Ξr are (cut-free) ⇓L0-proofs. We will show that the sequent

Σ : Γ ` C has a cut-free ⇓L0-proof by induction of the size of the cut formula

B. First, apply Lemma 5.23 to conclude that there is a proof Ξ′ of Σ : Γ ` C
that contains no occurrences of cut but which might have several instances

of the cutk rule with cut formula B. We can now do a second induction

on the number of occurrences of cutk in Ξ′. If that number is 0, then the

proof Ξ′ is the desired cut-free proof. Otherwise, assume that there is at

least one occurrence of cutk on B in Ξ′. If we pick an upper-most occurrence

of cutk and apply Lemma 5.24, we can convert that occurrence of cutk to

several occurrences of cut on strictly smaller formulas than B. By applying

the inductive assumption, all of these occurrences of cut can be eliminated.

We have now reduced the number of cutk inference rules, and, hence, we have

completed our proof.

We can bring these lemmas together to prove the main cut-elimination

theorem for ⇓L+
0 proofs.

Theorem 5.26 (Elimination of cuts). Let Γ ∪ {G} be a multiset of L0 Σ-

formulas. If the sequent Σ : Γ ` G has an ⇓L+
0-proof then it has an ⇓L0-proof.

Proof. The proof is now a simple induction on the number of occurrences of

the cut inference rules in a proof. In particular, pick an occurrence of the

cut rule, which is the endsequent of a subproof in which both premises have

cut-free proofs. By applying Lemma 5.25 to that occurrence of cut, we can

replace it for a cut-free proof of the same sequent. The proof now follows from

the inductive assumption.

A consequence of the cut-elimination theorem for ⇓L+
0 proofs is the com-

pleteness of ⇓L0-proofs with respect of I-proofs (when all formulas are re-

stricted to L0).

Theorem 5.27 (Completeness of ⇓L0-proofs for L0 formulas). Let Γ ∪ {G}
be a multiset of L0 formulas. If the sequent Σ : Γ ` G has a cut-free I-proof

then it has an ⇓L0-proof.

For convenience, we use the notation Σ : P ⇓̀ G to denote the proposition

that the sequent Σ : P ` G has a ⇓L0-proof.

Proof. We prove this by showing that the inference rules of the intuitionis-

tic proof system I are admissible in the ⇓L0-proof system. Since the right-

introduction rules of I are the same as those in ⇓ L0, these rules are triv-

ially admissible. The admissibility of the init rule for I follows immediately

from Proposition 5.20. The admissibility of the wL rule follows from Propo-

sition 5.21. The admissibility of the cL rule is easily argued as follows. In

an ⇓ L0-proof of Σ : Γ, B,B ` ∆, the decide rule may have been used on

76 Chapter 5. Two abstract logic programming languages

the two different occurrences of B. By changing all those decide rules to use

the same occurrence of B and then deleting the other occurrence of B, we

obtain an ⇓L0-proof of Σ : Γ, B ` ∆. All that remains to show is that the

left-introduction rules for the L0 connectives ∧, ⊃, and ∀ are admissible.

Admissibility of ∧L. Assume that B1 ∧B2 is an L0 Σ-formula. By Propo-

sition 5.20, we have Σ : B1 ∧ B2 ⇓̀ B1 ∧ B2. An ⇓ L0-proof of that se-

quent has immediate subproofs that yield both Σ : B1 ∧ B2 ⇓̀ B1 and

Σ : B1 ∧ B2 ⇓̀ B2. In order to prove that ∧L is admissible, assume that

Σ : B1,Γ ⇓̀ E. Using cut-admissibility (Theorem 5.26) with this sequent and

the sequent Σ : B1∧B2 ⇓̀ B1, we conclude that Σ : B1∧B2,Γ ⇓̀ E. A similar

argument also concludes that if Σ : B2,Γ ⇓̀ E, then Σ : B1 ∧ B2,Γ ⇓̀ E.

Hence, both ∧L rules in I are admissible.

Admissibility of ⊃L. Assume that B1 ⊃ B2 is an L0 Σ-formula. By

Proposition 5.20, we have Σ : B1 ⊃ B2 ⇓̀ B1 ⊃ B2. An ⇓L0-proof of that

sequent has an immediate subproof that proves Σ : B1, B1 ⊃ B2 ⇓̀ B2. In

order to prove that ⊃L is admissible, assume that both Σ : Γ1 ⇓̀ B1 and

Σ : B2,Γ2 ⇓̀ E. Using the Proposition 5.21, we have Σ : Γ1,Γ2 ⇓̀ B1 and

Σ : B2,Γ1,Γ2 ⇓̀ E. Using cut-admissibility (Theorem 5.26), we conclude that

Σ : Γ1,Γ2, B1 ⊃ B2 ⇓̀ B2 and Σ : B1 ⊃ B2,Γ1,Γ2 ⇓̀ E. Hence, the ⊃L rule

in I is admissible.

Admissibility of ∀L. Assume that ∀τx.B is an L0 Σ-formula and that τ

is a primitive type. By Proposition 5.20, we have Σ : ∀τx.B ⇓̀ ∀τx.B. An

⇓L0-proof of that sequent has an immediate subproof that proves Σ, y : τ :

∀x.B ⇓̀ B[y/x], for a variable y not present in Σ. By Proposition 5.22, we

have Σ : ∀x.B ⇓̀ B[t/x], for any Σ-term t. In order to prove that ∀L is

admissible, assume that Σ : B[t/x],Γ ` E has an ⇓L0-proof. Then using cut

elimination (Theorem 5.26), we can conclude that Σ : ∀x.B,Γ ` E has an

⇓L0-proof. Hence, the ∀L rule in I is admissible.

Another simple consequence of proving the cut-elimination for ⇓L+
0-proofs

is the admissibility of cut for I-proofs when restricted to L0 formulas.

Theorem 5.28 (Admissibility of cut for I-proofs restricted to L0 formulas).

The cut rule for I-proofs (Figure 4.2) is admissible for cut-free I-proofs when

restricted to L0 formulas.

Proof. We wish to prove that the single-conclusion version of the cut rule from

Figure 4.2, namely,

Σ : Γ1 ` B Σ : B,Γ2 ` E
Σ : Γ1,Γ2 ` E

cut

is admissible in the cut-free I-proof system. Thus, assume that Σ : Γ1 ` B
and Σ : B,Γ2 ` E have (cut-free) I-proofs. By Theorem 5.27, Σ : Γ1 ` B and

5.6 Kripke model semantics 77

Σ : B,Γ2 ` E have ⇓L0-proofs. Using Proposition 5.21, both Σ : Γ1,Γ2 ` B
and Σ : B,Γ1,Γ2 ` E have ⇓L0-proofs. Using the admissibility of the cut rule

(Proposition 5.26), we know that Σ : Γ1,Γ2 ` E has an ⇓L0-proof. Using the

soundness of ⇓L0-proofs (Proposition 5.15), we conclude that Σ : Γ1,Γ2 ` E
has an I-proof.

The inference rule (where all formulas are L0 formulas)

Σ `̀ t : τ Σ, x : τ : Γ ` B
Σ : Γ[t/x] ` B[t/x]

instan

is similar to the cut rule: the instan rule instantiates an eigenvariable while

the cut rule instantiates a hypothesis. The following theorem shows that this

inference rule is admissible for I-proofs. The proof of this theorem is similar

and more straightforward than the one for cut-elimination. This theorem is a

direct consequence of Proposition 5.22.

Theorem 5.29 (Substitution into I-proofs of L0 formulas). Let Σ be a sig-

nature, y be a variable not in Σ, τ be a primitive type, and Γ ∪ {B} are L0

formulas. If Σ, y : τ : Γ ` B has an I-proof and if Σ-term t of type τ , then

Σ : Γ[t/x] ` B[t/x] has an I-proof.

5.6 Kripke model semantics

In this monograph, we do not generally deal with model theory. There is,

however, a nice connection between a specific Kripke model and the proof

theory of intuitionistic logic. In this section, we recast the cut-elimination

result for ⇓L+
0 proofs in terms of truth in a minimal Kripke model for L0.

This model is minimal in the sense that whenever this model makes a given

L0-formula true, that formula is true in all Kripke models for L0.

A dependent pair is a pair 〈Σ,P〉 where Σ is a (finite) signature and P
is a (finite) set of L0 Σ-formulas. A dependent pair is also called a world.

The order relation on worlds 〈Σ,P〉 � 〈Σ′,P ′〉 is defined to hold whenever

Σ ⊆ Σ′ and P ⊆ P ′. A Kripke model is a pair, 〈W, I〉, where W is a (possibly

infinite) set of worlds and I is a function, called an interpretation, that maps

the worlds in W to sets of atomic formulas in such a way that I(〈Σ,P〉) is a

set of atomic Σ-formulas. The mapping I must also be order preserving: that

is, for all w,w′ ∈ W, if w � w′ then I(w) ⊆ I(w′).

Let the pair 〈W, I〉 be a Kripke model, let 〈Σ,P〉 ∈ W, and let B be a L0

Σ-formula. The three place satisfaction relation I, 〈Σ,P〉 ` B is defined by

induction on the structure of B as follows.

1. I, 〈Σ,P〉 ` B if B is atomic and B ∈ I(〈Σ,P〉).
2. I, w ` B ∧B′ if I, w ` B and I, w ` B′.

78 Chapter 5. Two abstract logic programming languages

3. I, w ` B ⊃ B′ if for every w′ ∈ W such that w � w′ and I, w′ ` B then

I, w′ ` B′.
4. I, 〈Σ,P〉 ` ∀τx.B if for every 〈Σ′,P ′〉 ∈ W such that 〈Σ,P〉 � 〈Σ′,P ′〉

and for every Σ′-term t of type τ , the relation I, 〈Σ′,P ′〉 ` B[t/x] holds.

Let 〈Σ,P〉 be a dependent pair. The minimal model for 〈Σ,P〉 is defined as

the Kripke model with the set of worlds {〈Σ′,P ′〉 | 〈Σ,P〉 � 〈Σ′,P ′〉} and the

interpretation I defined so that I(〈Σ′,P ′〉) is the set of all atomic Σ′-formulas

A such that Σ′ : P ′ ` A has an I-proof.

Note the rather different way provability and satisfaction treat an implica-

tional formula. In order to prove the formula B1 ⊃ B2 in the world 〈Σ,P〉 (i.e.,

that the sequent Σ : P ` B1 ⊃ B2 is provable), we need to move to a single

new world 〈Σ,P ∪ {B1}〉 and try to prove B2. In contrast, in order to show

that B1 ⊃ B2 is true in the world 〈Σ,P〉 we need to examine all extensions to

that world and check that B2 is true in that world if B1 is true in that world.

As we mentioned in Section 3.6, sequent calculus inference rules provide

logical connectives with two senses within a proof: namely, there are different

inference rules for introducing a given logical connective on the left and the

right of a sequent. On the other hand, in the model-theoretic setting, logical

connectives are given meaning in only one sense: there is only one clause defin-

ing the satisfiability of a given logical connective. The following lemma shows

how the cut-admissibility result allows us to relate these different approaches

to providing meaning to logical connectives.

Lemma 5.30. The cut rule (Figure 5.2) and the instan rule (defined at the

end of Section 5.5) are admissible for I-proofs if and only if the following

holds: For every dependent pair 〈Σ,P〉 and every Σ-formula B, it is the case

that Σ : P ` B has an I-proof if and only if I, 〈Σ,P〉 ` B, where I is the

minimal model for 〈Σ,P〉.

In other words, the admissibility of cut and instan is equivalent to the fact

that provability coincides with truth in the minimal model.

Proof. To prove the forward direction, assume that both the cut and instan

rules are admissible for I-proofs. We now prove by induction on the structure

of B that Σ : P Ì B if and only if I, 〈Σ,P〉 ` B.

Case: B is atomic. The equivalence is immediate.

Case: B is B1 ∧B2. This case is simple and immediate.

Case: B is B1 ⊃ B2. Assume first that Σ : P Ì B1 ⊃ B2. Hence, Σ :

P, B1 Ì B2 (using the soundness and completeness of ⇓L0-proofs). To show

I, 〈Σ,P〉 ` B1 ⊃ B2, assume that 〈Σ′,P ′〉 ∈ W is such that 〈Σ,P〉 � 〈Σ′,P ′〉
and I, 〈Σ′,P ′〉 ` B1. By the inductive hypothesis, Σ′ : P ′ Ì B1 and by cut

admissibility, Σ′ : P ′ Ì B2. By induction again, we have I, 〈Σ′,P ′〉 ` B2.

5.6 Kripke model semantics 79

Thus, I, 〈Σ,P〉 ` B1 ⊃ B2. For the converse, assume I, 〈Σ,P〉 ` B1 ⊃ B2.

Since Σ : P, B1 Ì B1, the inductive hypothesis yields I, 〈Σ,P ∪ {B1}〉 ` B1.

By the definition of satisfaction of implication we must have I, 〈Σ,P∪{B1}〉 `
B2. Using the inductive hypothesis again, Σ : P, B1 Ì B2, and Σ : P Ì B1 ⊃
B2.

Case: B is ∀τx.B1. Assume first that Σ : P Ì ∀τx.B1 and, hence, Σ, d : τ :

P Ì B1[d/x] for any variable d not in Σ. To show that I, 〈Σ,P〉 ` ∀τx.B1, let

〈Σ′,P ′〉 ∈ W be such that 〈Σ,P〉 � 〈Σ′,P ′〉 and t be a Σ′-term of type τ . By

the admissibility of the instan rule, we have Σ′;P ′ Ì B1[t/x]. By induction we

have I, 〈Σ′,P ′〉 ` B1[t/x]. Thus, I, 〈Σ,P〉 ` ∀τxB1. For the converse, assume

I, 〈Σ,P〉 ` ∀τxB1. Let d be a variable not a member of Σ. Since d is a Σ∪{d}-
term, I, 〈Σ ∪ {d},P〉 ` B1[d/x] by the definition of satisfaction of universal

quantification. But by the inductive hypothesis again, Σ, d : τ ;P Ì B1[d/x]

and Σ : P Ì ∀τxB1.

We now show the converse by assuming the equivalence: for every depen-

dent pair 〈Σ,P〉 and every Σ-formula B,

Σ : P Ì B if and only if I, 〈Σ,P〉 ` B,

where I is the minimal model for 〈Σ,P〉. We now show that any sequent that

can be proved using occurrences of the cut and instan rules can be proved

without such rules. In particular, we claim that if 〈Σ,P〉 � 〈Σ′,P ′〉 then each

of the following holds.

1. If Σ′;P ′ Ì B and Σ : P, B Ì C then Σ′;P ′ Ì C.

2. If t is a Σ′-term of type τ and Σ, x : τ : P Ì B then Σ′ : P ′ Ì B[t/x] (of

course, x does not occur in Σ).

To prove the first claim, assume that Σ′ : P ′ Ì B and Σ : P, B Ì C. Thus,

Σ : P Ì B ⊃ C. By the assumed equivalence, I, 〈Σ′,P ′〉 ` B and I, 〈Σ,P〉 `
B ⊃ C. By the definition of satisfaction for implication, I, 〈Σ′,P ′〉 ` C. By

the assumed equivalence again, this yields Σ′ : P ′ Ì C.

To prove the second claim above, assume that t is a Σ′-term of type τ and

that Σ, x : τ : P Ì C. Thus, Σ : P Ì ∀τx.B. By the assumed equivalence,

I, 〈Σ,P〉 ` ∀τx.B. By the definition of satisfaction for universal quantification,

we have I, 〈Σ′,P ′〉 ` B[t/x]. By the assumed equivalence again, this yields

Σ′ : P ′ Ì B[t/x].

Given Theorems 5.26 and 5.29, this lemma provides an immediate proof

of the following theorem.

Theorem 5.31. Let 〈Σ,P〉 be a dependent pair and let I be the minimal

model for 〈Σ,P〉. For all Σ-formulas B, Σ : P Ì B if and only if I ` B. In

particular, for every B ∈ P, I ` B.

80 Chapter 5. Two abstract logic programming languages

The following simple argument supports our use of the term “minimal

model”. While we have not given a general definition of Kripke models, what-

ever definition is used, they need to be sound: that is, if Ì B then B is true

in every Kripke model. Thus, if the L0 Σ-formula B is true in the minimal

model for 〈Σ, ∅〉 then Σ : · Ì B and, hence, B is true in every Kripke model.

5.7 Backchaining as a single left rule

We can use the ⇓L0-proof system to define backchaining as a single inference

rule instead of as a sequence of inference rules. In particular, let Σ be a

signature and let ∆ be a finite set of Σ-formulas. Define |∆|Σ to be the

smallest set of pairs 〈Γ, D〉, where Γ is a multiset of formulas and D is a

formula, such that

1. if D ∈ ∆ then 〈∅, D〉 ∈ |∆|Σ,

2. if 〈Γ, D1 ∧D2〉 ∈ |∆|Σ then 〈Γ, D1〉 ∈ |∆|Σ and 〈Γ, D2〉 ∈ |∆|Σ,

3. if 〈Γ, G ⊃ D〉 ∈ |∆|Σ then 〈Γ ∪ {G}, D〉 ∈ |∆|Σ, and

4. if 〈Γ, ∀τxD〉 ∈ |∆|Σ and t is a Σ-term of type τ then 〈Γ, D[t/x]〉 ∈ |∆|Σ.

Backchaining is now defined as the single inference rule

{Σ : ∆ ` G | G ∈ Γ}
Σ : ∆ ` A

BC, provided A is atomic and 〈Γ, A〉 ∈ |∆|Σ.

If Γ is empty, then this rule has no premises. Let the ⇓L′0-proof system contain

the right-introduction rules in Figure 4.1 and the BC rule.

Straightforward inductive arguments prove the following two lemmas and

proposition.

Lemma 5.32. If P is a path in D (i.e., D ↑ P holds), and θ is a substitution,

then Pθ is a path in Dθ.

Lemma 5.33. Let Σ be an eigenvariable signature, let Γ be a multiset of Σ-

formulas, and let D ∈ Γ. Then 〈Γ, A〉 ∈ |{D}|Σ if and only if there is a path

in D with bound variables x̄, arguments G1, . . . , Gn (n ≥ 0), and target A′ and

there is a substitution θ mapping the variables x̄ to Σ-terms such that Γ and

{G1θ, . . . , Gnθ} are equal and A and A′θ are equal.

Proposition 5.34. Let Σ be a signature, let P be a multiset of L0 Σ-formulas

program and G be a Σ-formula. The sequent Σ : P ` G has an ⇓L′0-proof if

and only if it has an I-proof.

Proposition 5.35. Let B be a propositional L0 formula: i.e., that is B con-

tains only the logical connectives {>,∧,⊃}. Show that it is decidable whether

or not Ì B holds.

5.8 Synthetic inference rules 81

Proof. Given the completeness of ⇓ L′0-proofs (Proposition 5.34), we only

need to find a decision procedure for ⇓L′0-proofs restricted to the connectives

{>,∧,⊃}. A systematic search for a such proofs can be described as follows.

First, the provability of a non-border sequent can be reduced uniquely to the

provability of border sequents. Second, the only inference rule in ⇓L′0 that

has a border sequent as a conclusion is an instance of the backchaining rule

BC and there are at most a finite number of such instances of BC that might

be applicable. Finally, the only thing left to show is that the search space

for this naive search procedure is finite. To show this, note that all border

sequents Σ : Γ ` A in an ⇓L′0-proof of ` B are such that A is an atomic

subformula of B and Γ is a finite multiset of subformulas of B. While there

are an infinite number of finite multisets of subformulas of B there are only

a finite number of finite sets of such subformulas. Also note that if Γ and Γ′

are two multisets of formulas that are equal as sets (i.e., they differ only in

the multiplicity of their members) then the border sequent Σ : Γ ` A has an

⇓L′0-proof if and only if Σ : Γ′ ` A has an ⇓L′0-proof. As a result, the search

space for determining whether or not ` B has an ⇓L′0-proof can be described

as the finite set of pairs 〈∆, A〉 where ∆ is a set of subformulas of B and A

is an atomic subformula of B. Thus, the naive search procedure can use this

observation to ensure that it never loops and, in fact, always terminates.

5.8 Synthetic inference rules

One use of the two-phase ⇓L0-proof system is to justify replacing program

clauses with inference rules. For example, consider a logic program P that

consists of the two first-order Horn clauses

∀x∀y [adj x y ⊃ path x y] and ∀x∀y∀z [adj x y ∧ path y z ⊃ path x z].

Here, we are assuming that the two predicates adj and path have type i→ i→
o. Using the decide rule on the second of these formulas leads to an attempt

to prove the sequent Σ : Γ,P ` path s t with the following derivation.

Γ,P ` adj s u Γ,P ` path u t
Γ,P ` adj s u ∧ path u t ∧L

Γ,P ⇓ path s t ` path s t init

Γ,P ⇓ (adj s u ∧ path u t ⊃ path s t) ` path s t ⊃ L

Γ,P ⇓ ∀x∀y∀z (adj x y ∧ path y z ⊃ path x z) ` path s t ∀L× 3

Γ,P ` path s t decide

(We suppressed the signatures associated with sequents for readability). If we

ignore the seven inference rules within this derivation, we have the inference

rule
Σ : Γ,P ` adj s u Σ : Γ,P ` path u t

Σ : Γ,P ` path s t
.

82 Chapter 5. Two abstract logic programming languages

Similarly, deciding to use the first of these two formulas results in the inference

rule
Σ : Γ,P ` adj s t

Σ : Γ,P ` path s t
.

These latter inference rules are rather appealing since they do not mention

any logical constants. Instead, they describe how an attempt to prove one

atomic formula can lead to the attempt to prove one or two additional atomic

formulas. Given this observation, we can remove these two Horn clauses from

the logic program (assumptions on the left-hand side) and insert in the I-proof

system the synthetic inference rules

Σ : Γ ` adj s t
Σ : Γ ` path s t and

Σ : Γ ` adj s u Σ : Γ ` path u t
Σ : Γ ` path s t

.

If we are using only Horn clauses, then it is possible to replace all program

clauses in the left-hand context with synthetic inference rules that mention

only atomic formulas.

More formally, we say that a sequent of the form Σ : Γ ` A, where A is an

atomic formula, is a border sequent since such sequents appear at the border

between a right-introduction phase (on the bottom) and a left-introduction

phase (at the top). A synthetic inference rule is the inference rule that results

from moving from a border sequent upwards through a decide rule and the

left-introduction phase to the right-introduction phases: any open sequents

will be border sequents.

While focusing on Horn clauses yields synthetic inference rules that only

mention atoms, focusing on formulas of higher clause order leads to synthetic

rules that contain logical connectives. For example, focusing on the proposi-

tional formula ((p ⊃ q) ⊃ r) ⊃ s, which we assume is a member of Γ, would

yield the synthetic inference rule

Γ, p ⊃ q ` r
Γ ` s

.

We say that a synthetic inference rule in L0 is a bipole if that rule contains

only atomic formulas in its conclusion and premises.

Exercise 5.36. Show that the synthetic inference rules that result from de-

ciding on an L0 formula of clausal order at most 2 are bipoles.

It can be shown that the proof system that results from adding on top of

the I-proof systems all the synthetic inference rules arising from a multiset of

formulas of order two or less satisfies the cut admissibility property.

5.9 Disjunctive and existential goals 83

5.9 Disjunctive and existential goals

Now that we have addressed the soundness and completeness of ⇓L0-proofs

for L0 formulas, we return to considering allowing disjunctions and existential

quantifiers into formulas in the restricted setting of definition (5.5) of fohh.

With this definition, I-proofs can have disjunctions and existential introduc-

tion rules on the right but not the left of its sequents. It turns out that we can

capture the right-hand side proof-search behavior of these logical constants

using non-logical constants as followings. Let ∨̂ be a non-logical constant of

type o → o → o and ∃̂τ be a non-logical constant of type (τ → o) → o for

every type τ . Consider the (infinite) set C of formulas that contains the two

clauses

∀oP ∀oQ [P ⊃ (P ∨̂Q)] ∀oP ∀oQ [Q ⊃ (P ∨̂Q)]

and, for every type τ , the clause

∀τ→oB ∀τ t [(B t) ⊃ (∃̂τ B)].

The members of C are Horn clauses, but they are not first-order Horn clauses

since they contain quantifiers that are not of first-order type (since that type

contains the type o). Such clauses are studied in more detail in Chapter 8

where we present higher-order Horn clauses. In that chapter, we will see that

these higher-order clauses yield the following synthetic inference rules

Σ : P, C ` P
Σ : P, C ` P ∨̂Q

, Σ : P, C ` Q
Σ : P, C ` P ∨̂Q

, and
Σ : P, C ` B t

Σ : P, C ` ∃̂τB
.

Note that these rules exactly correspond to the ∨R and ∃R rules. Given this

observation, we can now prove the following completeness theorem.

Proposition 5.37 (Completeness of ⇓ fohh-proofs for fohh). Let Γ be an fohh

logic program and G an fohh goal. If the sequent Σ : Γ ` G has an I-proof

then it has an ⇓ fohh-proof.

Proof. Assume that Σ : Γ ` G has an I-proof Ξ. Let C(Ξ) be the smallest

set of clauses such that the following holds. (When we write ∀Σ′ we mean a

string of universal quantifiers, one for each variable in Γ′.)

1. If Ξ contains the inference rule

Σ,Σ′ : Γ′ ` Bi
Σ,Σ′ : Γ′ ` B1 ∨B2

∨R

then C(Ξ) contains the clause ∀Σ′[Bi ⊃ (B1 ∨̂B2)].

84 Chapter 5. Two abstract logic programming languages

2. If Ξ contains the inference rule

Σ,Σ′ `̀ t : τ Σ,Σ′ : Γ′ ` B[t/x]

Σ,Σ′ : Γ′ ` ∃τx.B
∃R

then C(Ξ) contains the clause ∀Σ′[B[t/x] ⊃ (∃̂τx.B)].

The set C(Ξ) is a set of essentially first-order Horn clauses: the only reason

that they are not exactly members of fohc is that they can contain atomic

formulas that might contain logical connectives (such atomic formulas have

top-level symbols ∨̂ and ∃̂). Otherwise, only first-order quantification is used

within these clauses. We shall assume here that this mild extension to fohc

does not effect the proof theory results that we have already established for

them. Chapter 8 will formally justify this assumption.

Let Γ̂ and Ĝ be the result of replacing all occurrences of ∨ with ∨̂ and of

∃τ with ∃̂τ . It is now straightforward to convert the I-proof Ξ of Σ : Γ ` G
into an I-proof of Σ : C(Ξ), Γ̂ ` Ĝ. This conversion takes the rule

Σ,Σ′ : Γ′ ` Bi
Σ,Σ′ : Γ′ ` B1 ∨B2

∨R

and rewrites it into

Σ : C(Ξ), Γ̂ ` B̂i Σ : B̂1 ∨̂ B̂2 ` B̂1 ∨̂ B̂2

init

Σ : C(Ξ), Γ̂, B̂i ⊃ B̂1 ∨̂ B̂2 ` B̂1 ∨̂ B̂2

⊃L

Σ,Σ′ : C(Ξ), ∀Σ′[Bi ⊃ (B1 ∨̂B2)], Γ̂′ ` B̂1 ∨̂ B̂2

∀L

Σ,Σ′ : C(Ξ), Γ̂′ ` B̂1 ∨̂ B̂2

cL

A similar conversion must also be done with the ∃R inference rule. Thus, the

original proof can be converted into an I-proof involving only L0 formulas. By

Theorem 5.27, we know that the sequent Σ : C(Ξ), Γ̂ ` Ĝ also has an ⇓L0-

proof. Given that ∨ and ∃ cannot be top-level connectives of fohh program

clauses, the left-hand context Γ̂ will never get additional assumptions with

target atoms containing ∨̂ or ∃̂ as their predicate symbol. This ⇓L0-proof can

then be converted directly into an ⇓L0-proof of Σ : Γ ` B1∨B2 by noting that

the only times a decide rule is used with a formula from C(Ξ) occurs when we

are emulating either a ∨R or ∃R rule. The conversion of the proof is complete

by replacing such decide rules and the phase above them with the right rule

they are emulating.

5.10 Examples of fohc logic programs

Figure 5.3 presents some examples of Horn clauses, along with two kinds of

declarations. The syntax here is quite natural and follows the λProlog con-

ventions. The kind declaration is used to declare members of the set of sorts

5.10 Examples of fohc logic programs 85

kind nat type.

type z nat.

type s nat -> nat.

type sum nat -> nat -> nat -> o.

type leq , greater nat -> nat -> o.

sum z N N.

sum (s N) M (s P) :- sum N M P.

leq z N.

leq (s N) (s M) :- leq N M.

greater N M :- leq (s M) N.

Figure 5.3: fohc programs specifying relations over natural numbers.

S. In particular, the expression declares that tok is a token that is to be used

as a primitive type. The expressions

type tok <type expression >.

declares that the non-logical signature should contain the declaration of tok

at the associated type expression. Logic program clauses are the remaining

entries. In those entries, the infix symbol :- denotes the converse of ⊃, a

semicolon denotes a disjunction, a comma (which binds tighter than :- and the

semicolon) denotes a conjunction of G-formulas while & denotes a conjunction

of D-formulas. (In our current setting, both symbols denote the same logical

connective ∧. When we move to linear logic, these two conjunctions will

be mapped to different linear logic connectives: see Section 6.5.) Tokens with

initial capital letters are universally quantified with scope around an individual

clause (which is terminated by a period).

In Figure 5.3, the symbol nat is declared to be a primitive type and z

and s are used to construct natural numbers via zero and successor. The

symbol sum is declared to be a relation of three natural numbers while the

two symbols symbols leq and greater are declared to be binary relations on

natural numbers. The following lines describe the meaning for these three

predicates. For example, if the sum predicate holds for the triple M , N , and

P then N +M = P : this relation is described recursively using the facts that

0+N = N and if N+M = P then (N+1)+M = (P +1). Similarly, relations

describing N ≤M and N > M are also specified.

Similarly, Figure 5.4 introduces a primitive type for lists (of natural num-

bers) and two constructors for lists, namely, the empty list constructor nil

and the non-empty list constructor, the infix symbol ::. The binary predicate

sumup relates a list of natural numbers with the sum of those numbers. The

86 Chapter 5. Two abstract logic programming languages

binary predicate max relates a list of numbers with the largest number in that

list. The predicate maxx is an auxiliary predicate used to help compute the

max relation.

Exercise 5.38. Informally describe the predicates specified by the clauses in

Figures 5.5 and 5.6.

Exercise 5.39. Take a standard definition of Turing machine and show how

to define an interpreter for a Turing machine in fohc. The specification should

encode the fact that a given machine accepts a given word if and only if some

atomic formula is provable.

5.11 Dynamics of proof search for fohc

Let Γ be a fohc program and G is an fohc goal, and let Ξ be a ⇓L0-proof of

Σ : Γ ` G. Since there are no occurrences of ⊃R or ∀R in Ξ, every sequent

occurring in Ξ has Σ as its signature and Γ as its left-hand side. Thus, if a

program clause is ever needed (via the decide rule) during the search for a

proof, it must be present at the beginning of that computation, along with all

other clauses that might be needed during the computation. Thus, the logic

of fohc does not directly support hierarchical programming in which certain

program clauses are meant to be local within a particular scope. Similarly, all

data structures built using first-order terms are built from a non-logical, fixed

signature. Since signatures do not change during the search for proofs using

first-order Horn clauses, all the constructors for data structures that need to

be built during proof search must be available globally. In other words, fohc

does not directly support hiding the internal details of data structures, an

abstraction mechanism available in many programming languages via abstract

data types.

If we only look at border sequents in ⇓L0-proofs in fohc, the only thing that

changes when moving from border to border is the atomic right-hand sides.

Given that we allow first-order terms (which can encode structures such as

natural numbers, lists, trees, Turing machine tapes, etc.), it is easy to see that

proof search in fohc has sufficient dynamics to encode general computation.

Unfortunately, all of that dynamics takes place within non-logical contents,

namely, within atomic formulas. As a result, logical techniques for analyzing

computation via proof search have limited impact on what can be said di-

rectly about non-logical contexts. Thus, reasoning about properties of Horn

clause programs will benefit little from logical and proof-theoretic analysis:

most reasoning about Horn clause programs will almost always be based on

viewing such programs as defining inductive structures. Chapter 11 provides

an exception in which a static analysis of Horn clauses is given entirely rely-

5.11 Dynamics of proof search for fohc 87

kind nlist type.

type nil nlist.

type :: nat -> nlist -> nlist.

infixr :: 5.

type sumup , max nlist -> nat -> o.

type maxx nlist -> nat -> nat -> o.

sumup nil z.

sumup (N::L) S :- sumup L T, sum N T S.

max L M :- maxx L z M.

maxx nil A A.

maxx (X::L) A M :- leq X A, maxx L A M.

maxx (X::L) A M :- greater X A, maxx L X M.

Figure 5.4: Some relations between natural numbers and lists

kind node type.

type a, b, c, d, e, f node.

type adj , path node -> node -> o.

adj a b & adj b c & adj c d & adj a c & adj e f.

path X X.

path X Z :- adj X Y, path Y Z.

Figure 5.5: Encoding a directed graph

type memb nat -> nlist -> o.

type append nlist -> nlist -> nlist -> o.

type sort nlist -> nlist -> o.

type split nat -> nlist -> nlist -> nlist -> o.

memb X (X::L).

memb X (Y::L) :- memb X L.

append nil L L.

append (X::L) K (X::M) :- append L K M.

split X nil nil nil.

split X (A::L) (A::S) B :- leq A X, split X L S B.

split X (A::L) S (A::B) :- greater A X, split X L S B.

sort nil nil.

sort (X::L) S :- split X L Sm Big , sort Sm SmS ,

sort Big BigS , append SmS (X::BigS) S.

Figure 5.6: More examples of Horn clause programs

88 Chapter 5. Two abstract logic programming languages

kind jar , bacterium type.

type j jar.

type sterile , heated jar -> o.

type dead bacterium -> o.

type in bacterium -> jar -> o.

sterile X :- pi y\ in y X => dead y.

dead X :- heated Y, in X Y.

heated j.

Figure 5.7: Heating a jar makes it sterile.

ing on structural proof-theory instead of reducing Horn clause provability to

inductive reasoning.

5.12 Examples of fohh logic programs

McCarthy [1989] described the problem of specifying the notion that a jar

is sterile if every bacterium in it is dead. Consider proving that if a given

jar j is heated, then that jar is sterile (given the fact that heating a jar kills

all germs in that jar). Consider the fohh specification of this problem given

in Figure 5.7. The expression pi x\ denotes universal quantification of the

variable x with a scope that extends as far to the right as consistent with

parentheses or the end of the expression. The first of the clauses above can be

written as

∀x(∀y(in y x ⊃ dead y) ⊃ sterile x).

Note that no constructors for type germ are provided in Figure 5.7 and no

explicit assumptions about the binary predicate in is given. The synthetic

inference rule associate with this clause is

y : bacterium,Σ : P, in y x ` dead y
Σ : P ` sterile x

.

Exercise 5.40. Construct the ⇓L0-proof of the goal formula sterile j from

the logic program in Figure 5.7.

Another way to prove that a jar is sterile would be to use a microscope

and search out every bacterium in the jar and confirm that they are dead.

Unfortunately, this style of proof is not available in fohh. However, such proof

strategies are possible in the stronger setting of model checking.

A specification for the binary predicate that relates a list with the reverse

of that list can be given in fohc using the following program clauses.

5.12 Examples of fohh logic programs 89

reverse L K :- rev L nil K.

rev nil L L.

rev (X::M) N L :- rev M (X::N) L.

Here, reverse is a binary relation on lists and the auxiliary predicate rev

is a ternary relation on lists. By moving to fohh, it is possible to write the

following specification instead.

reverse L K :- rv nil K => rv L nil.

rv (X::M) N :- rv M (X::N).

Here, the auxiliary predicate rv is also a binary predicate on lists. With this

second specification, the use of non-logical context is slightly reduced in the

sense that the atomic formula (rev M K L) in the first specification is encoded

using the logical formula (rv [] L => rv M K) in the second specification.

Note that the definition of reverse above has clausal order 2. It is possible to

specify reverse with a clause of order 3 as follows.

reverse L K :-

(pi X\ pi M\ pi N\ rv (X::M) N :- rv M (X::N)) =>

rv nil K => rv L nil.

Here, not only the base case for rv is assumed in the body of reverse but also

the recursive case. Given this encoding of reverse, no other program clauses

can access either of these two clauses for rv.

Exercise 5.41. Reversing a pile of papers can informally be describing as:

start by allocating an additional empty pile and then systematically move

the top member of the original pile to the top of the newly allocated pile.

When the original pile is empty, the other list is the reverse. Using the last

specification of reverse above, show where, in the construction of a proof of

the reverse relation, this informal computation takes place.

Note that fohh allows for a simple notion of modular logic programming.

For example, let classify, scanner, and misc name (possibly large) collections

of program clauses that have some specific role within a larger programming

task: for example, scanner might contain code to convert a list of characters

into a list of tokens prior to parsing, etc. Consider the following goal formula.

misc ⊃ ((classify ⊃ G1) ∧ (scanner ⊃ G2) ∧G3)

Attempting a proof of this goal will cause attempts of the three goals G1, G2,

and G3 with respect to different programs: misc and classify are used to prove

G1; misc and scanner are used to prove G2; and misc is used to prove G3.

Thus, implicational goals can be used to structure the run-time environment

of a program. For example, the code present in classify is not available during

the proof attempt of G2.

90 Chapter 5. Two abstract logic programming languages

It is worth noting what it means to accumulating clauses from two different

sources. For example, assume that the predicate aux is described by two

different sets of clauses in misc and scanner, respectively. The description of

aux in the accumulation of misc and scanner is given by mixing the clauses in

these two separate sources. The resulting description of aux might not have a

simple relationship to its descriptions in misc and scanner separately.

Classical logic does not support this discipline for the scoping of clauses.

For example, the three goal formulas

D ⊃ (G1 ∨G2), (D ⊃ G1) ∨G2, and G1 ∨ (D ⊃ G2)

all provide different scopes for the clause D. However, in classical logic, the

scoping of D is the same for all of these goals: given the classical equivalence

B ⊃ C ≡ ¬B ∨C, all three of these formulas are equivalent to ¬D ∨G1 ∨G2.

In other words, classical logic allows for scope extrusion: while the scope of D

in (D ⊃ G1) ∨ G2 appears to be limited to G1, that scope actually extrudes

over the disjunction G1 ∨G2. Thus classical logic does not support the notion

of scope that one usually wants from a module system.

5.13 Dynamics of proof search for fohh

Proof search using fohh programs and goals is a bit more dynamic than for

fohc. In particular, both logic programs and signatures can grow. In this

setting, every sequent in an ⇓L0-proof of the sequent Σ : Γ ` G is either of

the form

Σ,Σ′ : Γ,Γ′ ` G′ or Σ,Σ′ : Γ,Γ′ ⇓ D ` A.

Thus, the signature can grow by the addition of Σ′ and the logic program can

grown by the addition of Γ′ (a fohh program over Σ ∪ Σ′). More generally, it

is the case that if the clausal order of Γ is n ≥ 1 and the clausal order of G is

at most n− 1, then the clausal order of Γ′ is at most n− 2.

Since the terms used to instantiate quantifiers in the concluding sequent

of the ∃R and ∀L inference rules range over the signature of that sequent,

more terms are available for instantiation as proof search progresses. These

additional terms include the eigenvariables of the proof that are introduced

by ∀R inference rules. Note that once an eigenvariable is introduced, it is not

instantiated by the proof search process. As a result, eigenvariables do not

actually vary and, hence, act as locally scoped constants.

5.14 Limitations to fohc and fohh logic programs

Both fohc and fohh have certain limitations in how they can be used to rep-

resent computations. These limitations can be compared to the pumping

5.14 Limitations to fohc and fohh logic programs 91

lemmas for finite state machines and regular languages, which help to circum-

scribe the expressive power of those machines and languages. An immediate

consequence of Proposition 5.21 is the following monotoncity property of intu-

itionistic provability: if Σ : Γ Ì G and if Γ′ is a set of Σ-formulas containing

Γ, then Σ : Γ′ Ì G. This proposition can be applied to solve the following two

exercises.

Exercise 5.42.(‡) Consider the collection of declarations that accumulates the

primitive types and non-logicals constants in Figure 5.3 along with declarations

for a and maxa which make them into predicates of one argument with sort

nat. Show that there is no fohh logic program Γ that satisfies the following

specification: For every nonempty set of natural numbers N = {n1, . . . , nk},
let A be the set of atomic formulas {a n1, . . . , a nk}. Then we require that Γ

is such that A,Γ ` maxa m has an I-proof if and only if m is the maximum

of the set N .

As was illustrated in Figure 5.4, the maximum of a set of numbers can

be computed in fohc if that set of numbers is stored as a list within the non-

logical context of an atomic formula and not in the logical context as require

by the exercise above.

Exercise 5.43.(‡) Given the encoding of directed graphs as is illustrated in

Figure 5.5, show that it is not possible to specify in fohh a predicate that is

true of two nodes if and only if there is no path between them. Similarly, show

that there is no specification in fohh of a predicate that holds of a node if and

only if that node is not adjacent to another node.

As this exercise illustrates, it is possible to capture reachability within a

graph but not, in general, non-reachability, at least when the adjacency graph

is encoded as a set of atomic formulas as is the case in Figure 5.5.

There is a second class of weaknesses of fohh specifications that the follow-

ing example illustrates. Consider the problem of specifying the removal of an

element from a list. In particular, assume that we have the following signature

Σ, written concretely as follows.

kind i type.

type a, b, c i.

kind list type.

type nil list.

type :: i -> list -> list.

type remove i -> list -> list -> o.

Here, list is the type of lists of elements of type i and that type i contains

three elements. It is easy to show that it is impossible to find a specification,

say P in fohh for the predicate remove such that

92 Chapter 5. Two abstract logic programming languages

1. (remove X L K) is provable from Σ and P if and only if the list K is the

result of removing all occurrences of X from L, and

2. the specification P does not contain occurrences of a, b, or c.

The last of these restrictions essentially says that remove should work no

matter what terms of the type i exist. The proof of impossibility is immedi-

ate. If such a specification P existed, then P would must necessarily prove

(remove a [a,b,a] [b]). Since a and b are not free in P, then the universal

quantification of such a goal is also provable: that is, P must also prove

pi a\ pi b\ remove a (a::b::a::nil) (b::nil)).

But since that goal is provable, any instance of these quantifiers is also prov-

able. Thus, (remove a [a,a,a] [a]) is provable, which should not be the

case.

This weakness results from the inability to specify the inequality of terms

within the logic without explicitly referring to the constructor of terms. Sup-

pose we allow the specification of remove to use the specific information about

the structure of type i. In that case, it is possible to write the following spec-

ification of remove, which first specifies inequality on the three terms of type

i.

type notequal i -> i -> o.

notequal a b & notequal b a.

notequal a c & notequal a c.

notequal b c & notequal c b.

remove X nil nil.

remove X (X::L) K :- remove X L K.

remove X (Y::L) (Y::K) :- notequal X Y, remove L K.

The following proposition is an immediate consequence of Exercise 4.11.

Proposition 5.44. Let τ be a primitive type and let t be a Σ-term of type τ .

If x : τ,Σ : Γ Ì G then Σ : Γ[t/x] Ì G[t/x].

Note that this proposition can be applied to non-logical constants of prim-

itive types in the following sense. Consider a non-logical signature, Σ0, that

contains the declaration that c : τ . Let Σ′0 be the result of removing c : τ from

Σ. Then the sequent Σ : Γ ` G is provable when the non-logical signature is Σ0

if and only if the sequent c : τ,Σ : Γ ` G is provable when the non-logical sig-

nature is Σ′0, which (by the above proposition) implies that Σ : Γ[t/c] ` G[t/c]

holds for t a Σ ∪ Σ′0-term of type τ .

To illustrate applying Proposition 5.44, consider the type declarations in

Figure 5.8: here i and j are primitive types. Note that terms of type i exist only

5.15 Bibliographic notes 93

type c j -> i.

type f i -> i.

type g i -> i -> i.

type subSome j -> i -> i -> i -> o.

subSome X T (c X) T.

subSome X T (c Y) (c Y).

subSome X T (f U) (f W) :- subSome X T U W.

subSome X T (g U V) (g W Y) :- subSome X T U W,

subSome X T V Y.

Figure 5.8: Substitution of some occurrences.

in contexts where constants or variables of type j are declared. Figure 5.8 con-

tains a specification of predicate subSome such that the goal (subSome x s t r)

is provable if and only if r is the result of substituting some occurrences of x

(actually, of (c x)) in t with s.

Exercise 5.45.(‡) Prove that it is not possible in fohh to write a specification

of subAll such that (subAll x s t r) is provable if and only if r is the result

of substituting all occurrences of x in t with s. Note that this specification

would need to work in any extension of the non-logical signature (in particu-

lar, for extensions that contain constants of type j that do not occur in the

specification of subAll).

Exercise 5.46. Write a fohh specification of subOne such that the goal

(subOne x s t r)

is provable if and only if r is the result of substituting exactly one occurrence

of x in t with s. One might think that subAll can be specified using repeated

calls to subOne. Given the previous exercise, this is not possible. Explain why.

5.15 Bibliographic notes

The early literature on logic programming did not use sequent calculus to

encode proofs using Horn clauses: in fact, that literature used refutations

instead of proof. For example, the papers by Emden and Kowalski [1976]

and by Apt and Emden [1982] described logic programming using a restricted

form of resolution refutation called SLD-resolution. The textbooks by Gallier

[1986] and Lloyd [1987] provide more details about this approach to logic

programming in classical logic.

94 Chapter 5. Two abstract logic programming languages

A central design choice in our description of logic programming is the

use of goal-directed proof search and the identification of the right-hand side

of sequents with the goal and left-hand side of sequents with logic programs.

This design choice goes back to 1986 [Miller and Nadathur, 1986; Miller, 1986].

A more general treatment of goal-directed proof search is given in the book

by Gabbay and Olivetti [2000]. The book by Miller and Nadathur [2012]

focuses on λProlog and presents several examples of logic programs written

using first-order (and higher-order) hereditary Harrop formulas.

The focused proof system ⇓L0 takes the use of the ⇓ and the term “focus”

from [Andreoli, 1992]. The first proofs of cut-elimination for focused proof

system were done with linear logic: see Section 6.8 for such references. The

proof theory of ⇓L0-proofs given in Section 5.5 uses techniques take from those

references.

Kripke models for intuitionistic logic were first introduced by Kripke in

1965, some years after he proposed such models for various modal logics in

[Kripke, 1959]. The minimal Kripke model described in Section 5.6 is a simpli-

fied version of a model construction given in [Miller, 1992]. The Kripke lambda

models built by Mitchell and Moggi [1991] are similar but more abstract and

much more general than the model presented here.

Gentzen [1935] used the cut-elimination theorem for intuitionistic proof to

help prove the decidability of propositional intuitionistic logic. His proof also

required showing that contractions can be constrained in a certain way. The

proof of decidability of intuitionistic provability over the connectives {>,∧,⊃}
(Proposition 5.35) follows a similar outline since using focused proof systems

greatly constrained the use of contraction.

One of the applications of hereditary Harrop formulas for logic program-

ming is to help design modular programming abstractions for logic program-

ming. Miller [1989b] proposed an early approach to modular programming in

logic programming which later developed into the module system for λProlog

[Kwon et al., 1993; Miller, 1994]. Numerous logic-based module designs for

logic programming are surveyed in [Bugliesi et al., 1994].

The notion that synthetic inference rules (Section 5.8) can systematically

be derived from formulas was an early project of Negri (see [Negri and von

Plato, 2001]). A more general form of that early work is given in [Marin et al.,

2022], where focused proof systems for both intuitionistic and classical logics

are used to build various kinds of synthetic inference rules for those two logics.

As pointed out in Section 5.14, many important queries about graphs can-

not be encoded using logic programs in fohh. The addition of fixed points to the

logic and proof theory of this section has been proposed by Girard [1992] and

Schroeder-Heister [1993]. That extension to logic permits capturing impor-

tant forms of negation-as-failure as well as properties such as non-reachability

and simulation [McDowell et al., 2003] as well as various other model checking

5.15 Bibliographic notes 95

problems [Heath and Miller, 2019].

As a result of Exercise 5.45, the implementation of substitution, typically

needed when specifying theorem provers or operations that transform pro-

grams, must be signature dependent. That is, the constructors of certain

types must be explicit in the specification. The notion of copy-clauses were

proposed in [Miller, 1991; Miller and Nadathur, 2012] as a flexible and general

avenue for making items in a signature available to a logic specification.

96 Chapter 5. Two abstract logic programming languages

Chapter6
Linear logic

The analysis of goal-directed proof search for classical and intuitionistic logics

provided in Chapter 5 has at least the following three problems.

First, that analysis does not extend to all of classical logic nor intuitionistic

logic. As we have seen, uniform provability, along with backchaining, provides

an analysis of proof search for the L0 = {t ,∧,⊃, ∀} fragment of intuitionistic

logic, which is not a complete set of connectives for intuitionistic logic when

quantification is restricted to be first-order.

Second, that analysis did not extend to multiple-conclusion sequents which

is unfortunate since that setting allowed for a unified view of classical and

intuitionistic proofs. Limiting proof search to single-conclusion sequents will

limit our ability to use negation and De Morgan dualities to reason about logic

programs.

Third, the proof search dynamics for our richest logic programming lan-

guage so far, fohh, is rather weak: the left-hand side can only increase during

proof search and, while the right-hand side can change, those changes occur

essentially within atomic formulas (i.e., non-logical contexts). If sequents were

able to change in more complex ways during proof search, logic programming

could be more expressive and allow more direct uses of logic to reason about

the computations specified.

As we shall see in this chapter, linear logic allows us to expand our analysis

of proof search in such a way that we can address all three of these limitations.

6.1 Reflections on the structural inference rules

Before we present linear logic, we present several issues related to the role of

contraction and weakening in C-proofs and I-proofs.

98 Chapter 6. Linear logic

Controlling contractions improves proof search If the contraction rules

are deleted from the classical and intuitionistic (unfocused) proof systems in

Section 4.1, then the number of inference rules in a path in a proof can be

bounded by the number of occurrences of logical connectives in the endse-

quent. Thus the search for cut-free proofs with such a modified proof system

can be shown to be decidable. Using a more clever set of observations, Gentzen

[1935] derived a decision procedure for propositional intuitionistic logic by see-

ing a way to limit the applications of contraction in that setting. The focused

proof system ⇓L0 is a significant improvement over unfocused I-proofs in part

because the structural rules are tightly regulated within ⇓L0 proofs: in par-

ticular, wL is built into the init rule and cL is built into the decide rule as

well as the ⊃L rule (in order to turn the usual multiplicative treatment of the

left context into an additive treatment).

Invertible rules and contraction There is an interplay between structural

rules and invertible introduction rules. Consider, for example, the following

two introduction rules taken from the C-proof system (Section 4.1).

Σ : B,∆ ` Γ Σ : C,∆ ` Γ

Σ : B ∨ C,∆ ` Γ
∨L

Σ : Bi,∆ ` Γ

Σ : B1 ∧B2,∆ ` Γ
∧L

The ∨L rule is invertible, meaning that if the conclusion is provable its two

premises are provable. In this case, cL never needs to be applied to the formula

B ∨C. On the other hand, the ∧L rule is clearly not invertible and one might

need to apply cL on this conjunction in order to access both conjunctions. For

example, the proof of the formula (p ∧ q) ⊃ (p ⊃ q ⊃ r) ⊃ r requires applying

cL to p ∧ q. Since controlling contraction can help one design proof-search

procedures, it is valuable to know that the applicability of contraction can be

limited to those formula occurrences with non-invertible introduction rules.

Selecting between multiplicative and additive connectives If one of

the introduction rules for a connective is multiplicative, we say that that con-

nective is multiplicative. If one of the introduction rules for a connective is

additive, we say that that connective is additive. In typical proof systems,

such as our I and C proof systems (as well as Gentzen’s LJ and LK), one

must select an additive or a multiplicative version of each connectives: in the

case of our proof system here, ∧ and ∨ are additive while ⊃ is multiplicative.

In a fuller picture of proof theory, it seems unfortunate that we need to pick

just one of these variants. While it is the case that the presence of weakening

and contraction allows one to move interchangeably between the additive and

multiplicative versions, we are considering proof systems where there are var-

ious restrictions on weakening and contraction. Thus, these different variants

might be expected to behave differently within such proofs.

6.1 Reflections on the structural inference rules 99

The collision of cut and the structural rules The interaction between

cut and the structural rules can lead to undesirable dynamics in the usual way

to perform cut-elimination. For example, consider the following instance of

the cut rule.
∆ ` C ∆′, C ` B

∆,∆′ ` B
cut (∗)

If the right premise is proved by a left-contraction rule from the sequent

∆′, C, C ` B, then cut-elimination proceeds by permuting the cut rule to

the right premises, yielding the derivation

∆ ` C
∆ ` C ∆′, C, C ` B

∆,∆′, C ` B cut

∆,∆,∆′ ` B cut

∆,∆′ ` B cL.

In the intuitionistic variant of the sequent calculus, it is not possible for the

occurrence of C in the left premise of (∗) to be contracted. If the cut inference

in (∗) takes place in the classical proof system LK, it is possible that the left

premise is the conclusion of a contraction applied to ∆ ` C,C. In that case,

cut-elimination can also proceed by permuting the cut rule to the left premise.

∆ ` C,C ∆′, C ` B
∆,∆′ ` C,B cut

∆′, C ` B
∆,∆′,∆′ ` B,B cut

∆,∆′ ` B
cL, cR

Thus, in LK, it is possible for both occurrences of C in (∗) to be contracted and,

hence, the elimination of cut is non-deterministic since the cut rule can move

to both the left and right premises. Such non-determinism in cut-elimination

is even more pronounced when we consider the collision of the cut rule with

weakening in the following derivation.

Ξ1

` B
` C,B wR

Ξ2

` B
C ` B wL

` B,B cut

` B cR

Cut-elimination here can yield either Ξ1 or Ξ2: thus, non-determinism arising

from weakening can lead to completely different proofs of B. This kind of ex-

ample does not occur in the intuitionistic (single-sided) version of the sequent

calculus.

Linear logic will make it possible to address these various issues, especially

once we present focused proof systems for all of linear logic in Sections 6.6.

100 Chapter 6. Linear logic

6.2 LK vs LJ: An origin story for linear logic

Gentzen restricted his LJ proof system for intuitionistic logic to be LK proofs

in which there is at most one formula on the right. As we argued in Section 4.5,

this restriction translates to the restriction that I-proofs are C-proofs in which

the right-hand side of all sequents have exactly one formula. As we proved in

Proposition 4.2, the following two restrictions guarantee that all sequents in

a C-proof of the endsequent ` B have exactly one formula in the right-hand

context.

1. No structural rules are permitted on the right: i.e., proofs do not contain

occurrences of wR and cR.

2. The two multiplicative rules, ⊃L and cut, are restricted so that the

formula on the right-hand side of the conclusion must also be the formula

on the right-hand side of the rightmost premise.

To illustrate again this second restriction, recall the form of the ⊃L rule.

Σ : ∆1 ` Γ1, B Σ : C,∆2 ` Γ2

Σ : B ⊃ C,∆1,∆2 ` Γ1,Γ2
⊃L

If the right-hand side of the conclusion contains one formula, that formula

can move to the right-hand side of either the left or right premise. This ex-

tra condition, however, forces that formula to move only to the right premise

and not to the left. Thus, the ⊃L rule is doing two things: it introduces

a connective and moves a side formula to a particular place. In this sense,

implication within intuitionistic logic is different from all other logic connec-

tives: the introduction rules of these other connectives are only involved in

introducing a connective (in either an additive or multiplicative fashion). In

Section 4.2, we noted that the cut rule can be emulated using the ⊃L rule and

a trivial implication: using this observation, the restriction on ⊃L can explain

the similar restriction on cut. In summary, the restriction on I-proofs can be

used to say that (1) structural rules are only allowed on the left of the sequent

and (2) implication seems to have more internal structure than is immediately

apparent.

These two restrictions can be used to motivate a central and novel fea-

ture of linear logic. In particular, the fact that in intuitionistic proofs, some

occurrences of formulas in a proof can be contracted while some cannot be con-

tracted, will be captured in linear logic by the use of the two operators ! and

?. In particular, a formula of the form !B on the left-hand side and a formula

of the form ?B on the right-hand side can have weakening and contraction

applied to them. In linear logic, these structural rules will not be applicable

to any other occurrences of formulas. Thus, sequents in C-proofs can be en-

coded in linear logic using sequents of the form !B1, . . . , !Bn ` ?C1, . . . , ?Cm

6.3 Sequent calculus proof systems for linear logic 101

(n,m ≥ 0) and sequents in I-proofs can be encoded in linear logic using se-

quents of the form !B1, . . . , !Bn ` B0, where B0 does not have ? as its top-level

connective.

The ! operator can also be used to explain the behavior of the intuitionistic

implication. Since the ⊃R rule applied to the formula B ⊃ C moves B to the

right-hand side, it seems necessary to encode such an implication as, say,

(!B)(C, where (is the linear implication. Such an encoding ensures that

! is affixed to B as a new member of the right-hand side. This decomposition of

the intuitionistic implication also explains the second restriction listed above.

In particular, consider the following inference rule in which the conclusion is

a single-conclusion sequent encoded as described above.

Σ : ∆1 ` Γ1, !B Σ : C,∆2 ` Γ2

Σ : (!B)(C,∆1,∆2 ` Γ1,Γ2
(L

As is described in more detail in Section 6.3.2, the right-introduction rule for

! when applied to the premise ∆1 ` Γ1, !B is only permitted if ∆1 contains

only !’ed formulas and Γ1 contains only ?’ed formulas. Given our encoding,

the right-hand side will have one formula that is not a top-level ?: thus, Γ1

must be empty and Γ2 must be that single formula. In this way, the second

restriction on the structure of ⊃L in I-proofs can be explained.

6.3 Sequent calculus proof systems for linear logic

The two-side proof system for linear logic is formed by putting together all of

the inference rules in Figure 6.1, 6.2, 6.3, and 6.4. Before considering this full

system, we first consider the following interesting subset of linear logic.

6.3.1 Multiplicative additive linear logic

Multiplicative additive linear logic or MALL for short is the subset of linear

logic that results from collecting together the inference rules in Figure 6.1 and

6.2. MALL contains the additive and multiplicative versions of the classi-

cal disjunction, conjunction, and their units. Since MALL does not contain

weakening or contraction, the additive and multiplicative versions of these con-

nections are not inter-admissible within proofs (see Exercise 4.6). The eight

logical connectives of MALL are listed in the following table by showing which

is the additive or multiplicative variant of the associated classical connective.

Classical Linear Additive Linear Multiplicative

t > 1

f 0 ⊥
∧ & ⊗
∨ ⊕ `

102 Chapter 6. Linear logic

Σ : Γ ` ∆

Σ : Γ,1 ` ∆
1L

Σ : · ` 1
1R

Σ : Γ ` >,∆ >R

Σ : Γ,0 ` ∆
0L

Σ : ⊥ ` · ⊥L
Σ : Γ ` ∆

Σ : Γ ` ⊥,∆ ⊥R

Σ : Γ, Bi ` ∆

Σ : Γ, B1 &B2 ` ∆
&L (i = 1, 2)

Σ : Γ ` B,∆ Σ : Γ ` C,∆
Σ : Γ ` B & C,∆

&R

Σ : Γ, B ` ∆ Σ : Γ, C ` ∆

Σ : Γ, B ⊕ C ` ∆
⊕L

Σ : Γ ` Bi,∆
Σ : Γ ` B1 ⊕B2,∆

⊕R (i = 1, 2)

Σ : Γ, B1, B2 ` ∆

Σ : Γ, B1 ⊗B2 ` ∆
⊗L

Σ : Γ1 ` B,∆1 Σ : Γ2 ` C,∆2

Σ : Γ1,Γ2 ` B ⊗ C,∆1,∆2
⊗R

Σ : Γ1, B ` ∆1 Σ : Γ2, C ` ∆2

Σ : Γ1,Γ2, B ` C ` ∆1,∆2
` L

Σ : Γ ` B,C,∆
Σ : Γ ` B ` C,∆

` R

Σ : Γ ` B,∆
Σ : Γ, B⊥ ` ∆

(·)⊥L
Σ : Γ, B ` ∆

Σ : Γ ` B⊥,∆
(·)⊥R

Figure 6.1: The introduction rules for L

Σ : B ` B init
Σ : Γ ` B,∆ Σ : Γ′, B ` ∆′

Σ : Γ,Γ′ ` ∆,∆′
cut

Figure 6.2: The two identity rules for L

Σ : Γ, B[t/x] ` ∆

Σ : Γ, ∀x.B ` ∆
∀L

y : τ,Σ : Γ ` B[y/x],∆

Σ : Γ ` ∀xτ .B,∆
∀R

y : τ,Σ : Γ, B[y/x] ` ∆

Σ : Γ,∃xτ .B ` ∆
∃L

Σ : Γ ` B[t/x],∆

Σ : Γ ` ∃x.B,∆ ∃R

Figure 6.3: The introduction rules for quantifiers in L

Σ : Γ ` ∆

Σ : Γ, !B ` ∆
!W

Σ : Γ, !B, !B ` ∆

Σ : Γ, !B ` ∆
!C

Σ : Γ, B ` ∆

Σ : Γ, !B ` ∆
!D

Σ : Γ ` ∆

Σ : Γ ` ?B,∆
?W

Σ : Γ ` ?B, ?B,∆

Σ : Γ ` ?B,∆
?C

Σ : Γ ` B,∆
Σ : Γ ` ?B,∆

?D

Σ : ! Γ, B ` ? ∆

Σ : ! Γ, ?B ` ? ∆
?L

Σ : ! Γ ` B, ? ∆

Σ : ! Γ ` !B, ? ∆
!R

Figure 6.4: The rules for the exponentials in L

6.3 Sequent calculus proof systems for linear logic 103

Here, 1 is the unit for ⊗, > is the unit for &, ⊥ is the unit for `, and 0

is the unit for ⊕. Our presentation of linear logic will also accept negation

as a first-class connective, written as (·)⊥: the inference rules for negation in

Figure 6.1 are the same as used by Gentzen (see Section 4.5). Keeping with

the conventions described in Section 2.4, all binary logical connectives of linear

logic have the type o → o → o, the units have the type o, and negation has

the type o→ o.

Exercise 6.1. Let p, q, and r be propositional constants (constants of type

o). Provide MALL proofs of the following sequents.

1. ` p ` p⊥

2. (p⊗ q)⊗ r ` (r ⊗ q)⊗ p
3. (p ` q) ` r ` (r ` q) ` p

4. p⊗ (q ` r) ` (p⊗ q) ` r

5. p⊗ (q ` r) ` (p⊗ r) ` q

6. r ` p ` (p⊥ ⊗ q) ` (q⊥ ⊗ r)
7. p⊥ ⊗ q⊥ ` (p ` q)⊥

8. (p ` q)⊥ ` p⊥ ⊗ q⊥

Exercise 6.2. (‡) In the sequent ` p ⊗ q, p⊥ ⊗ q, p ⊗ q⊥, p⊥ ⊗ q⊥ every

occurrence of the propositional constants p and q can be matched with an

occurrence of its negation. Show, however, that this sequent is not provable

in L.

Although MALL is a propositional logic, it is an expressive and interesting

logic on its own right. Deciding provability of MALL formulas is PSPACE-

complete [Lincoln et al., 1992]. However, MALL is too weak to serve as the

basis of a logic programming language since it is decidable and since it does not

involve quantification, which is central to most views on logic programming.

Adding the first-order quantifiers in Figure 6.3 to MALL does increase the

expressiveness of the logic but the decidability of the resulting logic remains

PSPACE-complete.

6.3.2 Linear logic as MALL plus exponentials

Full linear logic is the strengthening of MALL with the addition of the quanti-

fiers ∀ and ∃ (whose inference rules in Figure 6.3 are essentially the same as the

rules in classical and intuitionistic logics) and the addition of the two opera-

tors ! and ?, collectively called the exponentials. The exponentials reintroduce

weakening and contraction into linear logic but only for formulas marked with

104 Chapter 6. Linear logic

these exponentials. In particular, there are four rules for each of these expo-

nentials. Of those four, two permit weakening and contraction for the formulas

they mark. The other two rules are essentially introduction rules. The dere-

liction rules !D and ?D can be understood (reading rules from conclusion to

premise) as saying that formulas that can be weakened and contracted can

drop this privilege. The promotion rules !R and ?L can similarly be read as

saying that one way to show that a formula can gain the privilege of being

weakened and contracted is to show that that formula can be proved in a

context where every other formula has that privilege.

The proof system that arises from collecting together all the inference rules

in Figures 6.1, 6.2, 6.3, and 6.4 is called the L proof system. Formulas that

are built from the connectives explicitly mentioned in the L proof system are

called L-formulas.

We extend the notion of logical equivalence B ≡ C (see Section 4.3) to

linear logic. In particular, two formulas B and C are equivalent in linear logic

if the two sequents B ` C and C ` B are provable in L.

Exercise 6.3. Show the following equivalences between the exponential, addi-

tive, and multiplicative connectives holds in linear logic. (These equivalences

are inspired by the algebraic equation xm+n = xm × xn.)

!> ≡ 1 !(B & C) ≡ !B ⊗ !C ? 0 ≡ ⊥ ?(B ⊕ C) ≡ ?B ` ?C

Exercise 6.4. Let p be a propositional constant and let B be the formula

p⊗ !(p((p⊗ p))⊗ !(p(1). Show that the sequents B ` B ⊗B and B ` 1

are provable in L.

Exercise 6.5. (‡) An exponential prefix is a finite sequence of zero or more

occurrences of ! and ?. Let π be an exponential prefix. Prove that ππB ≡
πB for all formulas B. Use that result to show that there are only seven

exponential prefixes in linear logic up to equivalence: the empty prefix, !, ?,

! ?, ? !, ! ? !, and ? ! ?.

Exercise 6.6. Consider adding to linear logic a second tensor, say, ⊗̂, that has

the same inference rules as the original tensor. Prove that B ⊗ C is logically

equivalent to B ⊗̂ C. In this sense, the inference rules for tensor define it

uniquely. Show that this is true for all logical connectives and quantifiers of

linear logic except for the exponentials ! and ?.

6.3.3 Duality and polarity

The familiar De Morgan dualities of classical logic hold in a comprehensive

fashion in linear logic. Not only do the binary connectives, units, and quanti-

fiers have De Morgan duals, the exponentials do as well. We list here the De

6.3 Sequent calculus proof systems for linear logic 105

Morgan duals for all the logical connectives in linear logic.

connective > & 1 ⊗ ⊥ ` 0 ⊕ ! ? ∀ ∃
De Morgan dual 0 ⊕ ⊥ ` 1 ⊗ > & ? ! ∃ ∀

This table encodes several equivalences, of which we lists below a few.

(B ` C)⊥ ≡ B⊥ ⊗ C⊥ (B & C)⊥ ≡ B⊥ ⊕ C⊥ >⊥ ≡ 0

(∃x.B)⊥ ≡ ∀x.(B⊥) (?B)⊥ ≡ !(B⊥)

As a result of equivalences of this form, it is possible to rewrite every formula

in linear logic into an equivalent formula in which negation has atomic scope.

Such formulas are said to be in negation normal form. If we restrict our atten-

tion to only formulas in such normal forms, it is possible to give a one-sided

sequent calculus proof system for linear logic, such as the one in Figure 6.5. By

exploiting dualities, this proof system has about half the number of inference

as the two-sided inference system for linear logic. Note that in Figure 6.5, the

negation symbol that appears in init and cut is no longer a logical connective

(since it has no introduction rules) but should be understood as the operator

that negates its argument and then puts the result into negation normal form.

We shall, however, make only limited use of this one-sided sequent system

for linear logic. Instead, we shall continue to use two-sided sequents in what

follows.

A important and exciting aspect of linear logic is the following. It is easy

to confirm that in MALL, the right-introduction rule of a logical connective

is invertible if and only if the left-introduction rule of that connective (or

the right-introduction rule of its De Morgan dual) is not invertible. This

observation leads to attributing a polarity to connectives. In particular, we

say that a connective is negative if its right introduction rule is invertible, and

it is positive if its left-introduction rule is invertible. The negative connectives

are ⊥, >, `, &, and ∀. The positive connectives are 1, 0, ⊗, ⊕, and ∃.
Another perspective on the polarity of linear logic connectives is the fol-

lowing. If the right-introduction rule for a connective requires information

from an oracle or its context, then that rule introduces a positive connective.

For example, the ⊕R rule requires knowing which disjunct should be selected;

the ⊗R rule needs to know how to split a context, the 1R rule needs to know

if its surrounding context is empty, and the ∃R rule needs to be given a term.

Dually, the right introduction rules for negative connectives do not need any

additional information for their successful application. (Note that the eigen-

variable condition for the ∀R rule requires that the eigenvariable is not cur-

rently free in the sequent: however, it is a simple matter to organize things so

that new names are always selected independently from the context.) In this

latter sense, it is possible to then classify ! as a positive connective since its

106 Chapter 6. Linear logic

Σ : ` >,∆ >R
Σ : ` B,∆ Σ : ` C,∆

Σ : ` B & C,∆
&R

Σ : ` 1
1R

Σ : ` B,∆1 Σ : ` C,∆2

Σ : ` B ⊗ C,∆1,∆2
⊗R

Σ : ` ∆
Σ : ` ⊥,∆ ⊥R

Σ : ` B,C,∆
Σ : ` B ` C,∆

` R

Σ : ` Bi,∆
Σ : ` B1 ⊕B2,∆

⊕R (i = 1, 2)

y : τ,Σ : ` B[y/x],∆

Σ : ` ∀xτ .B,∆ ∀R
Σ : ` B[t/x],∆

Σ : ` ∃x.B,∆ ∃R

Σ : ` ∆
Σ : ` ?B,∆

?W
Σ : ` ?B, ?B,∆

Σ : ` ?B,∆
?C

Σ : ` B,∆
Σ : ` ?B,∆

?D

Σ : ` B, ? ∆

Σ : ` !B, ? ∆
!R

Σ : ` B,B⊥
init

Σ : ` B,∆ Σ : ` B⊥,∆′

Σ : ` ∆,∆′
cut

Figure 6.5: A one-sided sequent calculus proof system for linear logic

right rule (the promotion rule !R), requires the information from the context

that all formulas in the context are marked appropriately with an exponential.

As a result, we also consider ? (the De Morgan dual of !) as negative.

We say that the polarity of a non-atomic formula is negative or positive

depending only on the polarity of its top-most connective. In order to extend

the notion of polarity to all linear logic formulas, we adopt the convention that

atoms have negative polarity.

Exercise 6.7. Let B and C be two formulas for which B ≡ !B and C ≡ !C.

Show that the following equivalences hold for the positive connectives.

1 ≡ ! 1 0 ≡ ! 0 B ⊗ C ≡ !(B ⊗ C) ∃x.B ≡ ! ∃x.B B ⊕ C ≡ !(B ⊕ C)

Alternatively, let B and C be two formulas such that B ≡ ?B and C ≡ ?C.

Show that the following equivalences hold for the negative connectives.

⊥ ≡ ?⊥ > ≡ ?> B ` C ≡ ?(B ` C) B&C ≡ ?(B&C) ∀x.B ≡ ?∀x.B

Exercise 6.8. Let B be a linear logic formula. Prove that if the only occur-

rences of atomic formulas and negative connectives in B are in the scopes of

occurrences of !, then B ≡ !B. Dually, prove that if the only occurrences of

6.3 Sequent calculus proof systems for linear logic 107

atomic formulas and positive connectives are in the scope of occurrences of ?,

B ≡ ?B.

Exercise 6.9. We define a new attribute, called junctiveness, of a MALL

connectives as follows. The junctiveness of the connectives >, &, 1, or ⊗ is

conjunctive while the junctiveness of the connectives ⊥, `, 0, ⊕ is disjunctive.

Thus, each connective has four attributes, namely, arity (0 for unit or 2 for

binary connective), additive/multiplicative, polarity (positive/negative), and

junctiveness (conjunctive/disjunctive). Show that if we fix the arity, then,

given any two of the remaining three attributes, the third can be determined

uniquely. For example, there is a unique binary connective that is conjunctive

and positive (the multiplicative ⊗) and a unique unit that is disjunctive and

additive (the positive 0). Show also that the De Morgan dual of a connective

(see the beginning of Section 6.3.3) will cause the junctiveness and polarity to

flip while the other two attributes remain the same.

Exercise 6.10. Eventually, we will prove the cut-elimination theorem for the

L proof system for linear logic. A simple consequence of that cut-elimination

theorem is the proof that some introduction rules in L are invertible. For

example, assume that the linear logic sequent Σ : ∆ ` Γ, B ` C has a proof,

say Ξ. We want to prove that it has a cut-free proof in which the last inference

rule is an introduction rule for this occurrence of B ` C. This is proved by

considering the result of eliminating cut from the following:

Ξ

Σ : ∆ ` Γ, B ` C

Ξ′

Σ : B ` C ` B,C
Σ : ∆ ` Γ, B,C

cut

Σ : ∆ ` Γ, B ` C
` R.

Here, Ξ′ is the obvious proof of Σ : B ` C ` B,C. Using an argument of this

style, prove the invertibility of &R, ∀R, ⊗L, ⊕L, and ∃L.

Exercise 6.11. Prove that if Σ : > ` B is provable in L then, for every

multiset of Σ-formulas ∆, the sequent Σ : ∆ ` B in provable in L.

Exercise 6.12. The following three entailments hold in classical logic.

Mix: A ∧B ` A ∨B
Switch: (A ∨B) ∧ C ` A ∨ (B ∧ C)

Medial: (A ∧ C) ∨ (B ∧D) ` (A ∨B) ∧ (C ∨D)

(The names for these entailments are taken from [Guglielmi, 2007].) Consider

mapping the pair of classical logic connectives 〈∧,∨〉 into one of the following

four pairs of linear logic connectives

〈⊗,`〉, 〈⊗,⊕〉, 〈&,`〉, 〈&,⊕〉.

108 Chapter 6. Linear logic

For each of the above three classical logic entailments, find which of these

mappings of connectives yields an entailment provable in linear logic. For

example, applying the first of these mappings to the Mix entailment yields

A⊗B ` A ` B, which is not generally provable in linear logic.

6.3.4 Introducing implications

Since implication plays a large role in the design of the logic programming

languages we have seen in earlier chapters, we add implication as a logical

connective into linear logic. In fact, there are two implications, namely the

linear implication (and the intuitionistic implication ⇒. The linear impli-

cation B (C can be defined as B⊥ ` C and the intuitionistic implication

B ⇒ C can be defined as (!B) (C. Since both of these implications are

based on the multiplicative disjunction `, these connectives are considered

multiplicative and they have negative polarity.

The left and right introduction rules for (are the following.

Σ : Γ1 ` B,∆1 Σ : Γ2, C ` ∆2

Σ : Γ1,Γ2, B(C ` ∆1,∆2
(L

Σ : Γ, B ` C,∆
Σ : Γ ` B(C,∆

(R

Exercise 6.13. Prove the following curry/uncurry equivalences.

1(H ≡ H (B ⊗ C)(H ≡ B(C (H

0(H ≡ > (B ⊕ C)(H ≡ (B(H) & (C (H)

(∃x.B x)(H ≡ ∀x.(B x(H)

Many presentations of linear logic make little or no use of implications

since they often focus on the rich symmetries allowed by the negation of linear

logic. In particular, every logical connective of linear logic, except for the

implications(and⇒, have other logical connectives that are their De Morgan

duals. Another, more serious, problems with the intuitionistic implication is

the nature of its left and right introduction rules. For example, it is tempting

to write the following candidate introduction rules for ⇒.

∆, C ` !B,Γ ∆, C ` Γ

∆, B ⇒ C ` Γ

∆, !B ` C,Γ
∆ ` B ⇒ C,Γ

These rules, however, break the usual pattern for introduction rules in sequent

calculus: exactly one occurrence of a logical connective appears in the conclu-

sion while no new occurrences of a logical connective appears in a premise. In

both of these rules, the occurrence of ! in the premise violates this pattern.

This pattern has already been violated, in principle, by the rules for the ex-

ponentials. In particular, the contraction rule !C inserts two occurrences of !

6.4 Single conclusion sequents with two zones 109

into a premise while !R requires possibly many occurrences of ! and ? to be

present in the conclusion. We address these issues around the implications and

the exponentials by introducing a new style of sequent calculus proof system

in the next section.

6.4 Single conclusion sequents with two zones

One of our hopes with introducing linear logic is to provide a means to enrich

the logic programming languages described in Chapter 5. Thus we will analyze

goal-directed proofs, backchaining, and focused proof systems within linear

logic. This analysis will lead to showing that all of linear logic can be presented

as an abstract logic programming language. Before showing that result, we

show how to relate proofs in linear logic with I-proofs and C-proofs.

If linear logic does serve as a more refined and low-level setting for both

classical and intuitionistic logic, then we might expect that simply replacing

the logical connectives in ⇓ L0, namely {t ,∧,⊃,∀} (see Section 5.5), with

the corresponding linear logic connectives {>,&,⇒, ∀} should allow us to re-

produce intuitionistic proofs within linear logic. If that is indeed the case,

then adding (to this last set of connectives might well provide us with an

extension to fohh. We will soon show to what extent that expectation is true.

Let L1 be the set of logical connectives {>,&,(,⇒,∀}. An L1-formula

is any first-order formula all of whose logical connectives come from L1. Fig-

ure 6.6 presents an (unfocused) proof system P for the formulas taken from

L1. In order to deal with the problem of specifying an introduction rule for⇒
mentioned at the end of the previous section, the P proof system features one

new innovation: the left-hand context in sequents is divided into two zones.

In particular, this proof system uses sequents of the form Σ : ∆; Γ ` B. Here,

both ∆ and Γ are multisets of L1 formulas, and B is an L1 formula. We say

that ∆ is the unbounded context context while Γ is the bounded context of this

sequent. The informal reading of the sequent B1, . . . , Bn;C1, . . . , Cm ` E is

given by the linear logic sequent

!B1, . . . , !Bn, C1, . . . , Cm ` E.

The &R rule is additive, meaning that the bounded and unbounded con-

texts are the same in the conclusion and in the sequents in the premises.

However, the other rules with two premises treat their unbounded contexts

additively while treating their bounded contexts multiplicatively: i.e., every

formula occurrence in the bounded context of the conclusion occurs in the

bounded context of exactly one premise. This hybrid behavior for the mul-

tiplicative inference rules is possible because contraction is available for the

unbounded contexts. For example, as the following derivation illustrates, the

110 Chapter 6. Linear logic

Σ : ∆;A ` A init
Σ : ∆, B; Γ, B ` C

Σ : ∆, B; Γ ` C absorb
Σ : ∆; Γ ` > >R

Σ : ∆; Γ, Bi ` C
Σ : ∆; Γ, B1 &B2 ` C

&L
Σ : ∆; Γ ` B Σ : ∆; Γ ` C

Σ : ∆; Γ ` B & C
&R

Σ : ∆; Γ1 ` B Σ : ∆; Γ2, C ` E
Σ : ∆; Γ1,Γ2, B(C ` E (L

Σ : ∆; Γ, B ` C
Σ : ∆; Γ ` B(C

(R

Σ : ∆; · ` B Σ : ∆; Γ, C ` E
Σ : ∆; Γ, B ⇒ C ` E ⇒ L

Σ : ∆, B; Γ ` C
Σ : ∆; Γ ` B ⇒ C

⇒ R

Σ : ∆; Γ, B[t/x] ` C
Σ : ∆; Γ,∀x.B ` C ∀L

y : τ,Σ : ∆; Γ ` B[y/x]

Σ : ∆; Γ ` ∀xτ .B
∀R

Σ : ∆; Γ1 ` B Σ : ∆; Γ2, B ` C
Σ : ∆; Γ1,Γ2 ` C

cut
Σ : ∆; · ` B Σ : ∆, B; Γ ` C

Σ : ∆; Γ ` C cut !

Figure 6.6: The single-conclusion, two zone proof system P for the L1

logic.

multiplicative(L rule plus contraction (!L) can be used to justify the hybrid

rule.
∆; Γ1 ` B ∆; Γ2 ` C
∆,∆; Γ1,Γ2, B(C ` E

∆; Γ1,Γ2, B(C ` E !C

There are two inference rules in Figure 6.6, namely ⇒ L and cut!, that

require the bounded part of one of its premises to be empty. When that

context is empty, as in B1, . . . , Bn; · ` E, the corresponding linear logic sequent

is !B1, . . . , !Bn ` E. When that sequent is provable in linear logic, then

!B1, . . . , !Bn ` !E is also provable (using the !R rule in Figure 6.4). Thus,

requiring a premise to have an empty bounded context can also guarantee that

a (hidden) ! formula is proved from the unbounded context.

The following function translates formulas that may involve implications

into formulas where those implications are replaced by their definitions. Let

B� be the result of repeatedly replacing within B all occurrences of C1 ⇒ C2

with (!C1)⊥ ` C2 and all occurrences of C1 (C2 with C1
⊥ ` C2. We also

allow � to be applied to a multiset of formulas which results in the multiset of
� applied to each member.

The following proposition relates the connection between the P and L

proof systems.

6.4 Single conclusion sequents with two zones 111

Proposition 6.14. Let B be a formula, ∆ and Γ be multisets of formulas for

linear logic with possible occurrences of (and ⇒. The sequent ∆; Γ ` B has

a P-proof if and only if the sequent !(∆�),Γ� ` B� has a linear logic proof.

Proving the forward direction is a straightforward induction on the struc-

ture of proofs. Proving the converse is slightly more challenging but it can be

more easily proved using the completeness of a focused proof system for linear

logic given in Section 6.7. We shall not provide a proof of this proposition since

we will consider a more general proof system in Section 6.6 and prove various

properties of that proof system in Section 6.7. The proof of this proposition

will follow immediately from those more general results.

Exercise 6.15. Let ∆; Γ ` B be an P-sequent in which there is no occurrence

of (. Assume also that Ξ is P proof of that sequent that does not have

occurrences of the cut rule but may have occurrences of cut ! rule. Then Γ is

either empty or a singleton.

Although several properties of the P proof system could be stated and

proved, this unfocused proof system is not the best for our needs to study

generalizations of goal-directed search and backchaining. We now motivate a

new, focused version of the P proof system.

As we did in Section 5.4, we organize the left-hand rules using the back-

chaining discipline. As we have done before, we illustrate this by presenting

two different proof systems: the first using a focused formula using the ⇓
to denote the focus of the backchain rule, and a second proof system where

backchaining is described as a single inference rule BC.

Figure 6.7 contains a proof system in which the application of the left-

introduction rules is on a designated formula from the left (compare these rules

to those in Figure 5.1). The new sequent, written as Σ : P; Γ ⇓ D ` A, is used

to display that designated formula between the ⇓ and the `. That displayed

formula is the only one on which left-introduction rules may be applied. The

two decide rules are used to turn the attempt to prove an atomic formula

into an attempt to use a focused formula. The sequent Σ : P; Γ ` G or the

sequent Σ : P; ∆ ⇓ D ` A has a ⇓L1-proof if it has a proof using the rules in

Figure 6.7.

Note that the rule for (L requires splitting the bounded context Γ1,Γ2

into two parts (when reading the rule bottom up). There are, of course, 2n

such splittings if that context has n ≥ 0 distinct formulas.

The soundness and completeness of the ⇓L1 proof system for sequents

using formulas only from L1 will following from a stronger result that we shall

prove in some detail in Section 6.7.

For a second (less proof-theoretic) description of backchaining, consider

the following definition. Let the syntactic variable B range over L1-formulas.

112 Chapter 6. Linear logic

Σ : ∆; Γ ` > >R
Σ : ∆; Γ ` B Σ : ∆; Γ ` C

Σ : ∆; Γ ` B & C
&R

Σ : ∆; Γ, B ` C
Σ : ∆; Γ ` B(C

(R
Σ : ∆, B; Γ ` C

Σ : ∆; Γ ` B ⇒ C
⇒ R

y : τ,Σ : ∆; Γ ` B[y/x]

Σ : ∆; Γ ` ∀xτ .B
∀R

Σ : P, D; Γ ⇓ D ` A
Σ : P, D; Γ ` A decide !

Σ : P; Γ ⇓ D ` A
Σ : P; Γ, D ` A decide

Σ : P; · ⇓ A ` A init
Σ `̀ t : τ Σ : P; ∆ ⇓ D[t/x] ` A

Σ : P; ∆ ⇓ ∀τx.D ` A ∀L

Σ : P; ∆ ⇓ Di ` A
Σ : P; ∆ ⇓ D1 &D2 ` A

&L (i ∈ {1, 2})

Σ : P; Γ1 ` G Σ : P; Γ2 ⇓ D ` A
Σ : P; Γ1,Γ2 ⇓ G(D ` A (L

Σ : P; · ` G Σ : P; Γ ⇓ D ` A
Σ : P; Γ ⇓ G⇒ D ` A ⇒L

Figure 6.7: The focused proof system ⇓L1. In the ∀L rule, t is a Σ-term

of type τ .

Then ‖B‖Σ is the smallest set of triples of the form 〈∆,Γ, B′〉, where ∆ and

Γ are multisets of formulas, such that

1. 〈∅, ∅, B〉 ∈ ‖B‖Σ;

2. if 〈∆,Γ, B1 & B2〉 ∈ ‖B‖Σ then 〈∆,Γ, B1〉 ∈ ‖B‖Σ and 〈∆,Γ, B2〉 ∈
‖B‖Σ;

3. if 〈∆,Γ, B1 ⇒ B2〉 ∈ ‖B‖Σ then 〈∆ ∪ {B1},Γ, B2〉 ∈ ‖B‖Σ;

4. if 〈∆,Γ, B1 (B2〉 ∈ ‖B‖Σ then 〈∆,Γ] {B1}, B2〉 ∈ ‖B‖Σ; and

5. if 〈∆,Γ,∀xτ .B′〉 ∈ ‖B‖Σ and t is a Σ-term of type τ , then

〈∆,Γ, B′[t/x]〉 ∈ ‖B‖Σ.

Let ⇓L′1 be the proof system that results from replacing init and the four

left-introduction rules in Figure 6.7 with the backchaining inference rule in

Figure 6.8.

Proposition 6.16. Let B be a formula and let ∆ and Γ be multisets of formu-

las, all over the logical constants >,&,(,⇒, and ∀. The sequent Σ : ∆; Γ ` B
has a proof in ⇓L1 if and only if it has a proof in ⇓L′1.

6.5 Embedding fohh into intuitionistic linear logic 113

Σ : ∆; · ` B1 . . . Σ : ∆; · ` Bn Σ : ∆; Γ1 ` C1 . . . Σ : ∆; Γm ` Cm
Σ : ∆; Γ1, . . . ,Γm, B ` A

BC

provided n,m ≥ 0, A is atomic, and 〈{B1, . . . , Bn}, {C1, . . . , Cm}, A〉 ∈
‖B‖Σ.

Figure 6.8: Backchaining for the intuitionistic linear logic fragment L1.

This proposition follows directly from the completeness of the ⇓L1 proof

system, following the same lines used to prove the analogous results in Sec-

tion 5.7.

It is now clear from the ⇓L1-proof system that the dynamics of proof search

in this setting has improved beyond that described for fohh (Section 5.13). In

particular, every sequent in a ⇓L1 proof of the sequent Σ : P; Γ ` G is either

of the form

Σ,Σ′ : P,P ′; Γ′ ` G′ or Σ,Σ′ : P,P ′; Γ′ ⇓ D ` A.

Just as with fohh, the signature can grown by the addition of Σ′ and the

unbounded context can grown by the addition of P ′. The bounded context,

Γ′, however, can change in much more general and arbitrary ways. Formulas

in the bounded context that were present at the root of a proof may not

necessarily be present later (higher) in the proof. As we shall see later, we

can use formulas in the bounded context to represent, say, the state of a

computation or a switch that is off but later on.

Exercise 6.17. Consider the set L1 ∪ {⊥} of linear logic connectives. Show

that this set of connectives is complete in the sense that all other logical

connectives can be written in terms of these. In particular, describe how to

encode

B⊥ 0 1 !B B ⊕ C B ⊗ C ∃x.B ?B B ` C

using only the connectives in L1 ∪ {⊥}. Use the P proof system to present

the required proofs. Can you argue why it is the case that if L′ is a proper

subset of L1 then L′ ∪ {⊥} does not yield a complete set of connectives for

linear logic.

6.5 Embedding fohh into intuitionistic linear logic

The abstract logic programming language 〈L1,L1,`L〉 has been also called

Lolli (after the lollipop shape of the (). As a programming language, Lolli

114 Chapter 6. Linear logic

appears to be L0 with (added. To make this connection more precise, we

should show how L0 can be embedded into Lolli (since, technically, they use

different sets of connectives). Girard has presented a mapping of intuitionistic

logic into linear logic that preserves not only provability but also proofs [Gi-

rard, 1987]. On the fragment of intuitionistic logic containing t , ∧, ⊃, and ∀,
his translation is given by:

(A)0 = A, where A is atomic,

(t)0 = >,

(B1 ∧B2)0 = (B1)0 & (B2)0,

(B1 ⊃ B2)0 = (B1)0 ⇒ (B2)0,

(∀x.B)0 = ∀x.(B)0.

However, if we are willing to focus attention on only cut-free proofs in intu-

itionistic logic and in linear logic, it is possible to define a “tighter” translation.

Consider the following two translation functions.

(A)+ = (A)− = A, where A is atomic

(t)+ = 1 (t)− = >
(B1 ∧B2)+ = (B1)+ ⊗ (B2)+

(B1 ∧B2)− = (B1)− & (B2)−

(B1 ⊃ B2)+ = (B1)− ⇒ (B2)+

(B1 ⊃ B2)− = (B1)+ ((B2)−

(∀x.B)+ = ∀x.(B)+

(∀x.B)− = ∀x.(B)−

If we allow positive occurrences of ∨ and ∃ within cut-free proofs, as in proofs

involving the hereditary Harrop formulas, we would also need the following

two clauses.

(B1 ∨B2)+ = (B1)+ ⊕ (B2)+

(∃x.B)+ = ∃x.(B)+

Proposition 6.18. Let Σ be a signature, B be a Σ-formula and ∆ a set of

Σ-formulas, all over the logical constants t,∧,⊃, and ∀. Define ∆− to be the

multiset {C− | C ∈ ∆}. Then, the sequent Σ : ∆ ` B has an I-proof if and

only if the sequent Σ : ∆−; · ` B+ has a cut-free proof in ⇓L1.

This proposition is a consequence of the more general Proposition 6.40.

In fact, if one considers ⇓L0-proofs instead of I-proofs, then ⇓L0-proofs of

Σ : ∆ ` B are essentially ⇓L1-proofs of Σ : ∆−; · ` B+. This suggests how

to design the concrete syntax of a linear logic programming language so that

the interpretation of Prolog and λProlog programs remains unchanged when

embedded into this new setting. In particular, the Prolog syntax

A0 : − A1, . . . , An

6.5 Embedding fohh into intuitionistic linear logic 115

is traditionally intended to denote (the universal closure of) the formula

(A1 ∧ . . . ∧An) ⊃ A0.

Given the negative translation above, such a Horn clause would then be trans-

lated to the linear logic formula

(A1 ⊗ . . .⊗An)(A0.

Thus, the comma in Prolog denotes ⊗ and : − denotes the converse of (.

For another example, the natural deduction rule for the introduction of

implication, often expressed using the diagram

(A)
...

B

A ⊃ B ’

can be written as the following first-order formula for axiomatizing a provabil-

ity predicate:

∀A∀B((prov(A) ⊃ prov(B)) ⊃ prov(A imp B)),

where the domain of quantification is over propositional formulas of the object-

language and imp is the object-level implication. This formula is written in

λProlog using the syntax

prov (A imp B) :- prov A => prov B.

Given the above proposition, this formula can be translated to the formula

∀A∀B((prov A⇒ prov B)(prov (A imp B)),

which means that the λProlog symbol => should denote ⇒. Thus, in the

implication introduction rule displayed above, the meta-level implication rep-

resented as three vertical dots can be interpreted as an intuitionistic implica-

tion while the meta-level implication represented as the horizontal bar can be

interpreted as a linear implication.

In the next chapter, we will present numerous example of logic programs

using L1 formulas that illustrate features of linear logic. We give a simple

example here. Assume that we would like to move from, say, step1 to step2

in a computation (proof search) and in the process of making that change, we

wish to flip a switch. In other words, we would like to write a logic specification

that makes the following synthetic inference rules possible.

∆; Γ, on ` step2
∆; Γ, off ` step1

∆; Γ, off ` step2
∆; Γ, on ` step1

Using the Prolog-style syntax described above, the following two clauses im-

plement these synthetic rules.

116 Chapter 6. Linear logic

step1 :- off , on -o step2.

step1 :- on , off -o step2.

To illustrate this, assume that the two (equivalent) formulas

off((on(step2)(step1, on((off(step2)(step1

are members of ∆. We have the following partial derivation in ⇓L1 to justify

the second of the synthetic rules above.

∆; · ⇓ on ` on init

∆; on ` on decide

∆; Γ, off ` step2
∆; Γ ` off(step2

⊃R
∆; · ⇓ step1 ` step1 init

∆; Γ ⇓ (off(step2)(step1 ` step1 (L

∆; Γ, on ⇓ on((off(step2)(step1 ` step1 (L

∆; Γ, on ` step1 decide !

The two occurrences of (L require splitting the bounded context in their

conclusion. There can be many possible splittings of these multisets, depend-

ing on the size of Γ. However, in this particular setting, the splittings of the

bounded context is forced and unique: any other splitting would not have

allowed for completing the phase and, thus, forming the synthetic rule. If ⇒
replaced (in this example, the resulting synthetic rules would be

∆, off, on; · ` step2
∆, off; · ` step1

∆, on, off; · ` step2
∆, on; · ` step1

Clearly, this would be a poor implementation of a switch.

6.6 Multiple conclusion uniform proofs

Our treatment of linear logic proof theory via goal directed search and back-

chaining is only able to capture a part of linear logic. As we saw in Exer-

cise 6.17, if we extend the L1 collection of connectives with ⊥, we can encode

all of linear logic’s connectives. This suggests adding the 0-ary, multiplicative

disjunction might be interesting to consider, especially since it has negative

polarity, like the other connectives in L1. In fact, it would seem sensible to

add not just ⊥ but also ` and ? since they are all negative polarity connectives

and they represent the 0-ary, 2-ary, and “∞-ary” multiplicative disjunction.

To that end, we define L2 to be the set of connectives

L2 = {>,&,(,⇒,∀,⊥,`, ?}
and we say that an L2-formula is any first-order formula built using the L2

connectives. Of course, sequent calculus proofs involving these additional

connectives forces us to consider multiple conclusion sequent calculus. This

6.6 Multiple conclusion uniform proofs 117

presentation of linear logic using the logical connectives in L2 is called the

Forum presentation of linear logic.

The set of connectives L2 is redundant since we can remove ` and ? and

still have a set of connectives that is complete for linear logic, as the following

linear logic equivalences validate.

?B ≡ (B(⊥)⇒ ⊥ B ` C ≡ (B(⊥)(C

While the addition of ` and ? is not strictly necessary, their presences will

allow us to write natural specifications later one. Also, their presence does

not seem to complicate the proof theory analysis we consider in the following

section.

What should it mean to do goal-directed search when there are possibly

several formulas on the right of a sequent? The key aspect of goal-directed

search that we wish to maintain is that goal formulas (right-hand side for-

mulas) are able to be introduced without any restriction, no matter what

other formulas are on the left or right of the sequent arrow. Thus, it seems

natural to expect that we should be able to simultaneously introduce all the

logical connectives on the right of the sequent arrow. Although the sequent

calculus cannot deal directly with simultaneous rule application, reference to

permutabilities of inference rules can indirectly address simultaneity. That

is, we can require that if two or more right-introduction rules can be used

to derive a given sequent, then all possible orders of applying those right-

introduction rules can, in fact, be done and the resulting proofs are all equal

modulo permutations of introduction rules.

More precisely: A cut-free sequent proof Ξ is uniform if for every subproof

Ξ′ of Ξ and for every non-atomic formula occurrence B in the right-hand

side of the end-sequent of Ξ′, there is a proof Ξ′′ that is equal to Ξ′ up to a

permutation of inference rules and is such that the last inference rule in Ξ′′

introduces the top-level logical connective of B. Clearly this notion of uniform

proof extends the one given in Section 5.1. We similarly extend the notion of

abstract logic programming language to be a triple 〈D,G,`〉 such that for all

sequents with formulas from D on the left and formulas from G on the right,

that sequent has a proof if and only if it has a uniform proof.

The ⇓L2 proof system for the Forum presentation of linear logic, given in

Figure 6.9, contains sequents having the form

Σ : Ψ; Γ ` ∆; Υ and Σ : Ψ; Γ ⇓ B ` ∆; Υ,

where Σ is a signature, and Γ, ∆, Ψ and Υ are multiset of Σ-formulas from

L2. The intended meanings of these two sequents in linear logic are

Σ : ! Ψ,Γ ` ∆, ? Υ and Σ : ! Ψ,Γ, B ` ∆, ? Υ,

118 Chapter 6. Linear logic

respectively. The ⇓L2 proof system contains right rules only for sequents of

the form Σ : Ψ; Γ ` ∆; Υ. The syntactic variableA used in Figure 6.9 denotes a

multiset of atomic formulas. As we have seen before, left-introduction rules are

applied only to the formula that is next to the ⇓ in its conclusion. Given that

the L2 connectives have negative polarity, all occurrences of right-introduction

rules in proofs involving them are invertible. This observation makes it an easy

matter to prove that uniform proofs are complete.

The L proof system can serve as an (unfocused) proof system for L2: we

simply need to replace the implications in L2-formulas with their definitions,

using the (·)� function given with the statement of Proposition 6.14. Given the

intended interpretation of sequents in ⇓L2, the following soundness theorem

can be proved by simple induction on the structure of ⇓L2 proofs.

Theorem 6.19 (Soundness). If the sequent Σ : Ψ; Γ ` ∆; Υ has a ⇓L2 proof

then ! Ψ�,Γ� ` ∆�, ? Υ� has a linear logic proof. If the sequent Σ : Ψ; Γ ⇓ B `
A; Υ has a ⇓L2 proof then ! Ψ�,Γ�, B� ` ∆�, ? Υ�.

As a presentation of linear logic, Forum and its proof system ⇓L2 are rather

odd. First, Forum’s proof system does not contain the cut-rule whereas most

presentation of linear logic are concerned with the dynamics of cut-elimination.

Since we are interested in proof search instead of proof normalization, this

dispensing with the cut-rule is understandable. Second, negation is not a

primitive and the De Morgan dual of a logical connective in L2 is not, in

fact, present in L2. Again, most proof systems for linear logic (even the one

in Figure 6.4) are more symmetric in that if they contain a connective, they

also contain its dual. Instead, Forum gives the two implications, (and ⇒,

a central role and this contributes to the asymmetric nature of Forum. On

the other hand, the decision to use implications makes it easy for Forum

to generalize logic programming based on Horn clauses, hereditary Harrop

formulas, and Lolli. Although cut is not an inference rule and duality is not a

feature of the logical connectives used in Forum, cut-elimination and duality

will play a significant role in how one reasons about Forum specifications.

Exercise 6.20. Assume that a, b, c, d are all propositional constants (i.e., they

have type o). Prove the following formulas using the ⇓L2 proof system. Note

that proving B using ⇓L2 means to prove the sequent · : ·; · ` B; ·.

1. ((a(⊥)(⊥)(a,

2. (d((a ` b))((1((c ` d))((a ` b ` c)

3. ? b((b(⊥)⇒ ⊥ and ((b(⊥)⇒ ⊥)(? b

4. b ` c((b(⊥)(c and ((b(⊥)(c)((b ` c)

6.6 Multiple conclusion uniform proofs 119

Σ : Ψ; Γ ` >,∆; Υ
>R

Σ : Ψ; Γ ` B,∆; Υ Σ : Ψ; Γ ` C,∆; Υ

Σ : Ψ; Γ ` B & C,∆; Υ
&R

Σ : Ψ; Γ ` ∆; Υ

Σ : Ψ; Γ ` ⊥,∆; Υ
⊥R

Σ : Ψ; Γ ` B,C,∆; Υ

Σ : Ψ; Γ ` B ` C,∆; Υ
` R

Σ : Ψ;B,Γ ` C,∆; Υ

Σ : Ψ; Γ ` B(C,∆; Υ
(R

Σ : B,Ψ; Γ ` C,∆; Υ

Σ : Ψ; Γ ` B ⇒ C,∆; Υ
⇒ R

y : τ,Σ : Ψ; Γ ` B[y/x],∆; Υ

Σ : Ψ; Γ ` ∀τx.B,∆; Υ
∀R

Σ : Ψ; Γ ` ∆;B,Υ

Σ : Ψ; Γ ` ?B,∆; Υ
?R

Σ : Ψ; Γ ⇓ B ` A; Υ

Σ : Ψ;B,Γ ` A; Υ
decide

Σ : B,Ψ; Γ ⇓ B ` A; Υ

Σ : B,Ψ; Γ ` A; Υ
decide !

Σ : Ψ; Γ ` A, B;B,Υ

Σ : Ψ; Γ ` A;B,Υ
decide ?

Σ : Ψ; · ⇓ A ` A; Υ
init

Σ : Ψ; · ⇓ A ` ·;A,Υ init ?

Σ : Ψ; · ⇓ ⊥ ` ·; Υ
⊥L

Σ : Ψ;B ` ·; Υ

Σ : Ψ; · ⇓ ?B ` ·; Υ
?L

Σ : Ψ; Γ ⇓ Bi ` A; Υ

Σ : Ψ; Γ ⇓ B1 &B2 ` A; Υ
&Li

Σ : Ψ; Γ ⇓ B[t/x] ` A; Υ

Σ : Ψ; Γ ⇓ ∀τx.B ` A; Υ
∀L

Σ : Ψ; Γ1 ⇓ B ` A1; Υ Σ : Ψ; Γ2 ⇓ C ` A2; Υ

Σ : Ψ; Γ1,Γ2 ⇓ B ` C ` A1,A2; Υ
` L

Σ : Ψ; Γ1 ` A1, B; Υ Σ : Ψ; Γ2 ⇓ C ` A2; Υ

Σ : Ψ; Γ1,Γ2 ⇓ B(C ` A1,A2; Υ
(L

Σ : Ψ; · ` B; Υ Σ : Ψ; Γ ⇓ C ` A; Υ

Σ : Ψ; Γ ⇓ B ⇒ C ` A; Υ
⇒L

Figure 6.9: The ⇓L2 proof system. The rule ∀R has the proviso that y is

not in the signature Σ, and the rule ∀L has the proviso that t is a Σ-term

of type τ . In &Li, i = 1 or i = 2. Cut rules for ⇓L2 will be considered in

Figure 6.10.

120 Chapter 6. Linear logic

Exercise 6.21. The proof rule in ⇓L2 for ?L is unlike the other left rules in

that it does not maintain focus as one moves from the conclusion to a premise.

Consider the following variation to that inference rule.

Σ : Ψ; · ⇓ B ` ·; Υ

Σ : Ψ; · ⇓ ?B ` ·; Υ ?L′

Show that if we replace ?L with ?L′ then the resulting proof system is no

longer complete. In particular, the formula ?(a (b) (?(a (b) does not

have a proof.

Exercise 6.22. The L2 presentation of linear uses the 8 logical connectives

{>,&,(,⇒,∀,⊥,`, ?}. Show that all the 64 pairings of the right introduction

rules for these 8 connectives permutes over each other.

6.7 Formal properties of Forum proofs

We shall now establish the main proof theory results regarding the Forum

presentation of linear logic. This section follows roughly the outline of results

that are given in Section 5.5 for the L0 subset of intuitionistic logic. The

outline for this section is the following.

1. Define the notion of path in formulas and their associated sequent.

2. Use paths to describe the right-introduction and left-introduction phases.

3. Prove the admissibility of the non-atomic initial rule in ⇓L2.

4. Add three cut rules to ⇓L2 and then prove that they can be eliminated.

5. Prove the completeness of ⇓L2 with respect of the unfocused L.

6. Prove the cut-elimination theorem for the L proof system.

6.7.1 Paths and synthetic inference rules

We move the notion of path given in Section 5.5 from L0-formulas to L2-

formulas. In particular, we define the relationship · ↑ · on L2-formulas as

follows (here, A ranges over atomic formulas).

A ↑ A
B1 ↑ P

B1 &B2 ↑ P
B2 ↑ P

B1 &B2 ↑ P
B ↑ P

C ⇒ B ↑ C ⇒ P

B ↑ P
∀τx.B ↑ ∀τx.P

⊥ ↑ ⊥ ?B ↑ ?B

B ↑ P
C (B ↑ C (P

B1 ↑ P1 B2 ↑ P2

B1 ` B2 ↑ P1 ` P2

6.7 Formal properties of Forum proofs 121

The elimination of & from paths can be seen as justified using the following

equivalences.

B ` (C1 & C2) ≡ (B ` C1) & (B ` C2) (6.1)

B((C1 & C2) ≡ (B(C1) & (B(C2) (6.2)

Using these equivalences (and other equivalences related to ⇒ and ∀), it is

possible to pull all occurrences of & within a formula to the outside of the

formula. That is, we have B ≡
˘

B↑P P .

In general, paths have a more complex structure in this setting than we

saw in Section 5.5. Fortunately, paths have a reasonably simple normal form.

Using the equivalences

B ` (∀x.C) ≡ (∀x.B ` C) (6.3)

B((∀x.C) ≡ (∀x.B(C) (6.4)

B ⇒ (∀x.C) ≡ (∀x.B ⇒ C), (6.5)

a path can be written in the form ∀x1 . . . ∀nn.P ′ where n ≥ 0 and every

occurrence of ∀ in P ′ occurs in the scope of a ? or to the left of either (or

⇒. Similarly, using the equivalences

(B(C1) ` C2 ≡ B((C1 ` C2) (6.6)

(B ⇒ C1) ` C2 ≡ B ⇒ (C1 ` C2) (6.7)

B(C ⇒ D ≡ C ⇒ B(D (6.8)

and the unit rules ⊥ ` B ≡ B ` ⊥ ≡ B and the commutativity of `, all

paths have the following normal form.

∀x̄[C1 ⇒ . . .⇒ Cn ⇒ B1 (. . .(Bm(A1 ` . . . ` Ap ` ?E1 . . . ` ?Eq]

where n,m, p, q are non-negative integers, A1, . . . , Ap are atomic formulas,

B1, . . . , Bm, C1, . . . , Cn, E1, . . . , Eq are L2 formulas, and ∀x̄ is a list of univer-

sally quantified variables. If a path P has the normal form above, then we

say that the multiset {C1, . . . , Cn} is its intuitionistic arguments, the multiset

{B1, . . . , Bm} is its linear arguments, the multiset {A1, . . . , Ap} is its atomic

targets, and the multiset {E1, . . . , Eq} is its ?-targets. Finally, x̄ is the list of

bound variables of P (we assume that all these bound variables are distinct).

Since these various components to the normal form of a path are multisets,

this decomposition of a path is unique. We shall also display this normal form

as the sequent

Σ : C1, . . . , Cn;B1, . . . , Bm ` A1, . . . , Ap;E1, . . . , Eq.

122 Chapter 6. Linear logic

Consider what the right-introduction phase and the left-introduction phase

are when applied to the following formula

∀x̄(C ⇒ B1 (B2 (A1 ` A2 ` ?E),

which is its own path formula since it has no occurrences of &. The right

introduction phase can be written schematically as follows.

x̄ : C;B1, B2 ` A1, A2;E

· : ·; · ` ∀x̄(C ⇒ B1 (B2 (A1 ` A2 ` ?E); ·

Note that the unique premise to this phase ends with the sequent represen-

tation associate to that path. Of course, if we place any items in any of the

zones in the conclusion, they should also be placed into the same zone in the

premise. Focusing on this example formula leads to the following derivation.

Ψ; · ` Ĉ; Υ Ψ; Γ1 ` B̂1,A1; Υ Ψ; Γ2 ` B̂2,A2; Υ Ψ; Ê ` ·; Υ

Ψ; Γ1,Γ2 ⇓ ∀x̄(C ⇒ B1 (B2 (A1 ` A2 ` ?E) ` Â1, Â2,A1,A2; Υ

Here, Â1, Â2, B̂1, B̂2, Ĉ, Ê are the result of applying θ to the formulas in

A1, A2, B1, B2, C,E, and θ is the substitution for the variables x̄ that tab-

ulates the substitutions used in the ∀R rules.

To improve readability of sequents and derivations, we shall often not

display signatures (such as Σ in the previous example). Furthermore, we shall

often place a " in a particular zone of an occurrence of a sequent to means that

the contents of that zone is taken from the sequent below it in a derivation.

We generalize the following two notions introduced in Section 5.8. A border

sequent is a sequent of the form Σ : Ψ; Γ ` A; Υ: that is, they are four-

zone sequents in which the right bounded context contains only atoms. (Since

occurrences of Σ in sequent denoting binders, we shall not refer to it as a zone.)

A synthetic inference rule is then the inference rule that results from moving

from a border sequent upwards through a decide or decide ! rule, followed by

a left-introduction phase and then a right introduction phase: if the latter

has any open premises, these are necessarily border phases. Schematically, a

synthetic inference rule can be seen as composed of focused inference rules as

follows.

. . . Σ,Σ′ : Ψ,Ψ′; Γ′ ` A′; Υ,Υ′ . . .

... · · ·
...

right-intro phase

...
...

...

left-intro phase

Σ : Ψ; Γ ` A; Υ
decide or decide !

The decide ? rule can also generate synthetic inferences rule but the internal

structure of such a rule has an empty left-introduction phase.

6.7 Formal properties of Forum proofs 123

We can view the construction of the right-introduction phase as a rewriting

process. The objects that we rewrite are multisets of sequents all of the form

Σ : Ψ; Γ ` ∆; Υ. One-step rewriting is given as following. Select some member

of this multiset: i.e., write the given multiset of sequents as M∪ {S}. Next,

consider any right introduction rule that has conclusion S and the multiset

of premises M′ (this multiset will contain 0, 1, or 2 elements). The multiset

unionM∪M′ is the result of this rewrite. When this relation holds, we write

M∪ {S} →M∪M′

The following observations are easy to make about this notion of rewriting.

1. A multiset of border sequents does not rewrite. In this sense, collections

of border sequents are normal forms.

2. Define the size of sequents of the form Σ : Ψ; Γ ` ∆; Υ to be the number

of occurrences of logical connectives in ∆, and define the size of a multiset

M to be the sum of the sizes of all sequents inM. The length of a series

of rewritings starting with M is bounded by the size of M. Thus, this

rewriting system is always terminating.

What we really wish to prove is that every right introduction phase with

a fixed endsequent has the same multiset of premises. In terms of rewriting,

we want to prove that our rewriting system is confluent. As is well-known, we

only need to prove that our system is locally confluence in order to conclude

that our terminating rewrite system is confluence. In our situation, proving

local confluence means proving that if M rewrites in one step to M1 and to

M2, then there exists M0 such that both M1 and M2 rewrite to M0.

Proposition 6.23. The rewriting systems encoding the right introduction

phase is confluent.

Proof. As we commented above, we only need to show local confluence. Thus,

assume thatM rewrites in one step toM1 and toM2. We now need to prove

that there existsM0 such that bothM1 andM2 rewrite toM0. In the event

that the two rewrites M →M1 and M →M2 select two different sequents

to apply introduction rules, then M0 is just the result of rewriting those two

sequents in parallel. Otherwise, these two rewrite work on the same sequent

in M, say, Σ : Ψ; Γ ` ∆; Υ. Thus, there are two non-atomic formulas in ∆

that are introduced. For example, the multiset

M∪ {Σ : Ψ; Γ ` B ` C,D & E,∆′; Υ}

can be rewritten to both

M∪ {Σ : Ψ; Γ ` B,C,D & E,∆′; Υ}

124 Chapter 6. Linear logic

and to

M∪ {Σ : Ψ; Γ ` B ` C,D,∆′; Υ,Σ : Ψ; Γ ` B ` C,E,∆′; Υ}

Since the right introduction rules for ` and & permute over each other, the

desired common redex M0 is simply

M∪ {Σ : Ψ; Γ ` B,C,D,∆′; Υ,Σ : Ψ; Γ ` B,C,E,∆′; Υ}

Thus, local confluence is guaranteed by the permutation of inference rules. All

other cases to consider can be proved similarly since we know that all right

introduction rules for the ⇓L2 connectives permute over each other (Exer-

cise 6.22).

The following propositions follows from the rewriting argument just given:

the right-introduction phase can select one particular formula to decompose

entirely before considering other formulas in the endsequent.

Proposition 6.24. Consider the sequent Σ : Ψ; Γ ` G,∆; Υ. There is a right-

introduction phase with this endsequent such that the formula G is decomposed

first. More specially, that right-introduction phase can be written as{
Ξi

Σ,Σi : Ψ,Ψi; Γ,Γi ` Ai,∆; Υ,Υi

}
G↑Pi

Σ : Ψ; Γ ` G,∆; Υ

where we assume that the path Pi is associated with the sequent Σi : Ψi; Γi `
Ai; Υi and where Ξi is the right-introduction phase of the ith premise listed

above.

As regards left-introduction phases, we note that every premise of a left-

introduction rule with endsequent Σ : Ψ; Γ ⇓ B ` A; Υ is such that the first

two zones and the last zone are identical to the corresponding zones in the

endsequent: that is, these sequents are of the form Σ : Ψ; Γ′ ` ∆′; Υ, for some

multisets Γ′ and ∆′. Thus, it is only the zones immediately adjacent to the `
that vary during the construction of the left-introduction phase.

Proposition 6.25. Let B be an L2 formula. The sequent Σ : Ψ; Γ ⇓ B ` A; Υ

is the endsequent of a left-introduction phase with a multiset of premises P if

and only if

1. there is a path P in B for which

Σ′ : C1, . . . , Cn;B1, . . . , Bm ` A1, . . . , Ap;E1, . . . , Eq

is the associated sequent;

6.7 Formal properties of Forum proofs 125

2. there is a substitution θ that maps the variables in Σ′ to Σ-terms;

3. A is equal to the multiset union {A1θ, . . . , Apθ} ∪ A1 ∪ · · · ∪ Am;

4. Γ is the multiset union Γ1 ∪ · · · ∪ Γm; and

5. P is the multiset union of the following three multisets,

{" : " ; · ` Ciθ; " }ni=1 ∪ {" : " ; Γi ` Biθ,Ai; " }mi=1

∪ {" : " ;Eiθ ` ·; " }qi=1.

Proof. This equivalence is proved by induction on the structure of the L2

formula B in a fashion similar to that given in Proposition 5.18.

6.7.2 Admissibility of the general initial rule

We can now prove the admissibility of the general init rule for Forum formulas.

Theorem 6.26 (Initial admissibility). Let Ψ and Υ be multisets of L2 Σ-

formulas. Let B be a L2 Σ-formulas. The following general forms of the init

and init ? rules are admissible in ⇓L2.

1. The sequent Σ : Ψ;B ` B; Υ is provable.

2. If B is a member of Ψ then Σ : Ψ; · ` B; Υ is provable.

3. If B is a member of Υ then Σ : Ψ;B ` ·; Υ is provable.

Proof. We describe how to build a ⇓L2-proof of Σ : Ψ;B ` B; Υ by induction

on the structure of the formula B. We first consider the right-introduction

phase with the endsequent Σ : Ψ;B ` B; Υ. By Proposition 5.17, for every

path P in B, there is a premise sequent of that right-introduction phase of the

form Σ,Σ′ : Ψ,Ψ′;B,Γ′ ` A′; Υ,Υ′, where Σ′ : Ψ′; Γ′ ` A′; Υ′ is the sequent

associated to P . (The bound variables in Σ′ are chosen to be disjoint from Σ.)

In order to complete the proof of all of these premises, use the decide rule to

select the occurrence of B in the left-bounded context. By Proposition 6.25,

there is a left-introduction phase that corresponds to P . By setting θ to the

identity substitution on the variables in Σ′, we have A = A′θ and Ai is empty

for i = 1, . . . ,m and the sequents

{Σ,Σ′ : Ψ,Ψ′; · `Ci; Υ,Υ′}ni=1∪
{Σ,Σ′ : Ψ,Ψ′;Bi `Bi; Υ,Υ′}mi=1∪
{Σ,Σ′ : Ψ,Ψ′;Ei ` · ; Υ,Υ′}qi=1.

must all be provable. The middle group of sequents are proved by the inductive

assumption. The first group is proved by first using the decide ! rule, choosing

Ci ∈ Ψ′, and then applying the inductive assumption. Similarly, the third

126 Chapter 6. Linear logic

Σ : Ψ; · ` B; Υ Σ : Ψ, B; Γ ` ∆; Υ

Σ : Ψ; Γ ` ∆; Υ
cut !

Σ : Ψ; Γ ` ∆;B,Υ Σ : Ψ;B ` ·; Υ

Σ : Ψ; Γ ` ∆; Υ
cut ?

Σ : Ψ; Γ1 ` B,∆1; Υ Σ : Ψ; Γ2, B ` ∆2; Υ

Σ : Ψ; Γ1,Γ2 ` ∆1,∆2; Υ
cut

Figure 6.10: The two exponential cut rules and the non-exponential cut

rule. The syntactic variable ∆ denotes a multiset of formulas.

group is proved by first using the decide ? rule, choosing Ei ∈ Υ′, and then

applying the inductive assumption.

The remaining two claims of this proposition are proved exactly the same

way except that for the second claim, one uses the decide ! rule instead of the

decide rule and for the third claim, one uses the decide ? rule first to initiate

the right-introduction phase.

Exercise 6.27. Prove that the following pairs of sequents are provable in the

⇓L2 proof system for all Σ-formulas B.

1. Σ : ·; (B(⊥)(⊥ ` B; · and Σ : ·;B ` (B(⊥)(⊥; ·.
2. Σ : ·; (B ⇒ ⊥)(⊥ ` B; · and Σ : B; · ` (B ⇒ ⊥)(⊥; ·.
3. Σ : ·; ?B ` ·;B and Σ : ·;B ` ?B; ·

[Hint: Theorem 6.26 is needed to prove some of these. A couple other sequents

require a bit more work to prove.]

6.7.3 Cut rules and Cut-elimination

We next turn our attention to proving the cut-admissibility theorem for ⇓L2-

proofs. For this, we define the height of a ⇓L2-proof Ξ to be the maximum

number of inference rules on a path in Ξ: this number is greater than or equal

to 1.

Figure 6.10 introduces three cut rules for the ⇓L2 proof system. The

first two inference rules are the exponential cut rules (cut !, cut ?) and the

remaining inference rule is (the non-exponential) cut rule. The formula B is

the cut-formula in each of these rules. In all of these cut inference rules, the

bounded contexts are treated multiplicatively while the unbounded contexts

are treated additively.

We call the proof system that combines the inference rules in Figure 6.9

and Figure 6.10 the ⇓L+
2 proof system and proofs in that system will be called

6.7 Formal properties of Forum proofs 127

⇓L+
2-proofs. We extend the notion of the height of a proof to ⇓L+

2-proofs by

also counting these three cut rules as inference rules.

The following two propositions can be proved by simple inductions on the

structure of ⇓L2-proofs.

Proposition 6.28 (Weakening ⇓L+
2-proofs). If Σ : Ψ; Γ ` A; Υ has a ⇓L+

2-

proof of height h then Σ,Σ′ : Ψ,Ψ′; Γ ` A; Υ,Υ′ has a ⇓L+
2-proof of height h.

Proposition 6.29 (Substitution into ⇓L+
2-proofs). Let Σ be a signature, x be

a variable not declared in Σ, τ be a primitive type, and t be a Σ-term of type τ .

If Σ, x : τ : Ψ; Γ ` A; Υ has a ⇓L+
2-proof of height h then Σ : Ψ[t/x]; Γ[t/x] `

A[t/x]; Υ[t/x] has a ⇓L+
2-proof of height h.

Lemma 6.30 (Strengthening ⇓L+
2-proofs). Assume that we have a ⇓L+

2 proof

of height h of either

Σ : Ψ, B; Γ ` ∆; Υ or Σ : Ψ, B; Γ ⇓ D ` ∆; Υ

in which there is no occurrence of decide ! used with the formula B. Then

there is a ⇓L+
2 proof of height h of either (respectively)

Σ : Ψ; Γ ` ∆; Υ or Σ : Ψ; Γ ⇓ D ` ∆; Υ,

Similarly, assume that we have a ⇓L+
2 proof of height h of either

Σ : Ψ; Γ ` ∆;B,Υ or Σ : Ψ, B; Γ ⇓ D ` ∆;B,Υ

in which there is no occurrence of decide ? used with the formula B. Then

there is a ⇓L+
2 proof of height h of either (respectively)

Σ : Ψ; Γ ` ∆; Υ or Σ : Ψ; Γ ⇓ D ` ∆; Υ.

The following lemma allow us to replace an occurrence of cut ? on B with

possibly several occurrences of cut onB. The proof of this lemma is immediate.

Lemma 6.31 (Replacing decide ? with cut). If the sequent Σ : Ψ;B ` ·; Υ

has a ⇓L+
2-proof, say, Ξ, then every derivation of the form

Ξ′

Σ,Σ′ : Ψ,Ψ′; Γ ` A, B;B,Υ,Υ′

Σ,Σ′ : Ψ,Ψ′; Γ ` A;B,Υ,Υ′
decide ?,

where the variables bound in Σ′ are not bound in Σ and where Ψ′ and Υ′ are

multisets, can be converted to the derivation

Ξ′

Σ,Σ′ : Ψ,Ψ′; Γ ` A, B;B,Υ,Υ′
Ξ′′

Σ,Σ′ : Ψ,Ψ′;B ` ·; Υ,Υ′

Σ,Σ′ : Ψ,Ψ′; Γ ` A;B,Υ,Υ′
cut.

Here, Ξ′′ is the result of weakening Ξ using Proposition 6.28.

128 Chapter 6. Linear logic

Lemma 6.32 (Replacing cut ? with cut). Let Ξ be a ⇓L+
2-proof. This proof

can be transformed into a proof of the same sequent that does not contain any

occurrences of the cut ? rule.

Proof. We do a simple, double induction. The outer induction involves the

number of occurrences of cut ? rule in Ξ. If there is such a cut rule, take one

that is of minimal height. Now the inner induction transforms that exponential

cut into a non-exponential cut as follows. Consider the following occurrence

of the cut ? rule.

Ξ1
Σ : Ψ; Γ ` ∆;B,Υ

Ξ2
Σ : Ψ;B ` ·; Υ

Σ : Ψ; Γ ` ∆; Υ
cut ?

By repeatedly applying Lemma 6.31, all occurrences of the decide ? rule in Ξ1

can be replaced by applications of cut. This yields a proof of Σ : Ψ; Γ ` ∆;B,Υ

in which no applications of decide ? are applied to B. By Lemma 6.30, we have

a ⇓L+
2 proof of Σ : Ψ; Γ ` ∆; Υ. Thus, we have replaced the above occurrence

of cut ? on B with possibly several instances of cut on B. Note that the height

of the resulting proof is smaller than the height of the original proof.

At this point in proving the cut-elimination theorem for ⇓L2-proofs, we

introduce a second cut-like rule, called the key cut (compare this rule to the

rule by the same name in Section 5.5).

Σ : Ψ; Γ1 ` B,∆; Υ Σ : Ψ; Γ2 ⇓ B ` A; Υ

Σ : Ψ; Γ1,Γ2 ` ∆,A; Υ
cutk

When there is an occurrence of the key cut on a non-atomic formula B, we

know that the right introduction phase that has the left premise as its endse-

quent and the left introduction phase that has the right premise as its endse-

quent both decompose B. We generalize the definition of the height of a proof

to also include this inference rule. We will now show (i) how to replace occur-

rences of cut and cut ! on the cut formula B with occurrences of cutk on B,

and (ii) how to replace cutk on B with instances of cut on strict subformulas of

B. Furthermore, we say that a proof is cut-free if it has no occurrences of any

of the three cut rules in Figure 6.10 as well as cutk. Obviously, a ⇓L+
2-proof

that has no occurrences of a cut rule is a ⇓L2-proof.

Lemma 6.33 (Replace cut ! with cutk). Consider the following occurrence of

the cut ! rule

Ξl
Σ : Ψ; · ` B; Υ

Ξr
Σ : Ψ, B; Γ ` ∆; Υ

Σ : Ψ; Γ ` ∆; Υ
cut !,

where Ξl and Ξr are cut-free proofs. We can replace this occurrences of cut !

on B with possibly many occurrences of cutk on B.

6.7 Formal properties of Forum proofs 129

Proof. Consider a subderivation in Ξr of the form

Ξ0

Σ,Σ′ : Ψ,Ψ′, B; Γ ⇓ B ` A; Υ,Υ′

Σ,Σ′ : Ψ,Ψ′, B; Γ ` A; Υ,Υ′
decide !,

where the variables bound in Σ′ are not bound in Σ and where Ψ′ and Υ′ are

multisets. This inference rule can be converted to the derivation

Ξ′l
Σ′ : Ψ′; · ` B; Υ′

Ξ0

Σ′ : Ψ′, B; Γ ⇓ B ` A; Υ′

Σ′ : Ψ′, B; Γ ` A; Υ′
cutk.

Here, Ξ′l is the result of weakening Ξl using Proposition 6.28. We can thus

removed all occurrences of decide ! on B in Ξr to obtain the proof Ξ′r of

Σ : Ψ, B; Γ ` ∆; Υ. Using Proposition 6.30, we can strengthen Ξ′r to get

a proof of Σ : Ψ; Γ ` ∆; Υ in which we have replaced one occurrence of cut !

with possibly many occurrences of cutk.

Lemma 6.34 (Replace cut with cutk). Consider the following occurrence of

the cut rule

Ξl
Σ : Ψ; Γ1 ` B,∆1; Υ

Ξr
Σ : Ψ; Γ2, B ` ∆2; Υ

Σ : Ψ; Γ1,Γ2 ` ∆1,∆2; Υ
cut,

where Ξl and Ξr are cut-free proofs. We can replace this occurrence of cut on

B with possibly many occurrences of cutk on B.

Proof. We proceed by induction on the structure of Ξr. If the endsequent

of Ξr is not a border sequent, then Ξr ends with a right-introduction phase.

This instance of cut can be permuted up through that entire right-introduction

phase, leaving instances of cut with only border sequents. Since all of these

occurrences of cut have shorter proofs of their rightmost premise, the inductive

assumption can be applied.

Assume instead that the endsequent of Ξr is a border sequent: hence, the

last inference rule of Ξr is an occurrence of either decide, decide !, or decide ?.

Assume the case that the first of these three choices is made. If that decide

selects B, then Ξr has the form

Ξ′r
Σ : Ψ; Γ2 ⇓ B ` ∆2; Υ

Σ : Ψ; Γ2, B ` ∆2; Υ
decide.

In this case, the cut rule above can be changed directly to the following

Ξl
Σ : Ψ; Γ1 ` B,∆1; Υ

Ξ′r
Σ : Ψ; Γ2 ⇓ B ` ∆2; Υ

Σ : Ψ; Γ1,Γ2 ` ∆1,∆2; Υ
cutk.

130 Chapter 6. Linear logic

The other case we need to consider is when the last inference rule of Ξr is an

instance of the decide rule on a formula occurring in Γ2: that is, Ξr has the

form
Ξ′r

Σ : Ψ; Γ3, B ⇓ F ` ∆2; Υ

Σ : Ψ; Γ3, F,B ` ∆2; Υ
decide,

where Γ2 decomposes to Γ3 ∪ {F} and where ∆2 contains only atomic formu-

las. By Proposition 6.25, since the sequent Σ : Ψ; Γ3, B ⇓ F ` ∆2; Υ is the

endsequent of a left-introduction phase with a multiset of premises P there is

a path P in F for which

Σ′ : C1, . . . , Cn;B1, . . . , Bm ` A1, . . . , Ap;E1, . . . , Eq

is the associated sequent; there is a substitution θ that maps the variables in

Σ′ to Σ-terms; ∆2 is equal to the multiset union {A1θ, . . . , Apθ}∪A1∪· · ·∪Am;

Γ3 ∪ {B} is the multiset union Γ̂1 ∪ · · · ∪ Γ̂m; and P is the multiset union of

the following three multisets,

{" : " ; · ` Ciθ; " }ni=1 ∪ {" : " ; Γ̂i ` Biθ,Ai; " }mi=1

∪ {" : " ;Eiθ ` ·; " }qi=1.

The formula B occurs in at least one of the multisets Γ̂1, . . . , Γ̂m: without loss

of generality, we can assume that Γ̂1 is equal to Γ̂′1 ∪ {B}. We can now build

the same left-introduction phase from these premises except that the one that

corresponds to Σ : Ψ; Γ̂′1, B ` B1θ,A1; Υ is replaced by

Σ : Ψ; Γ1 ` B,∆1; Υ Σ : Ψ; Γ̂′1, B ` B1θ,A1; Υ

Σ : Ψ; Γ1, Γ̂
′
1 ` ∆1, B1θ,A1; Υ

cut.

When this left-introduction phase is assembled, the result is a proof of Σ :

Ψ; Γ3,Γ1 ⇓ F ` ∆1,∆2; Υ. By applying the decide rule and remembering that

Γ3 ∪ {F} is Γ2, we now have a proof of Σ : Ψ; Γ2,Γ1 ` ∆1,∆2; Υ in which the

height of the cut has been reduced.

The remaining cases to consider is then the last inference rule of Ξr is either

decide ! or decide ?. If that rule is decide ? then Ξr ends in a right-introduction

phase and, as we have argued above, the cut rule can be permuted up through

this phase. If that rule is decide ! then Ξr has the form

Ξ′r
Σ : Ψ′, C; Γ2, B ⇓ C ` ∆2; Υ

Σ : Ψ′, C; Γ2, B ` ∆2; Υ
decide ! .

where Γ2 can be written as Ψ′ ∪ {C}. It is also the case that the cut rule can

be permuted up through the resulting left-introduction phase in Ξr.

6.7 Formal properties of Forum proofs 131

Lemma 6.35. Consider an occurrence of the cutk rule of the form

Ξl
Σ : Ψ; Γ1 ` B,∆; Υ

Ξr
Σ : Ψ; Γ2 ⇓ B ` A; Υ

Σ : Ψ; Γ1,Γ2 ` ∆,A; Υ
cutk,

where Ξl and Ξr are (cut-free) ⇓L2-proofs. We can transform this proof into

a proof of the same endsequent in which there are no occurrences of cutk and

the only occurrences of the cut, cut !, and cut ? rules have cut-formulas that

are strictly smaller than B.

Proof. Consider the instance of the cutk rule given in the assumptions of this

lemma. If B is atomic, then A is the multiset containing exactly B and the

result of eliminating cutk is Ξl.

Now assume that B is not atomic. Thus, Ξl ends in a right-introduction

phase and Ξr ends in a left-introduction phase. By Proposition 6.25, there is

a path P in B that has the associated sequent representation

X : C1, . . . , Cn;B1, . . . , Bm ` A1, . . . , Ap;E1, . . . , Eq

and there is a substitution θ that maps the variables in X to Σ-terms such

that A′ is the multiset union {A1θ, . . . , Apθ}∪A1∪ · · ·∪Am, Γ is the multiset

union Γ1 ∪ · · · ∪ Γm, and this phase has n+m+ q premises

{" : " ; · ` Ciθ; " }ni=1 ∪ {" : " ; Γi ` Biθ,Ai; " }mi=1

∪ {" : " ;Eiθ ` ·; " }qi=1.

By Proposition 6.24, there is a right-introduction phase which contains within

it a right-introduction phase for the sequent

Ξ0
Σ,X : Ψ, C1, . . . , Cn; Γ, B1, . . . , Bm ` A, A1, . . . , Ap;E1, . . . , Eq,Υ

By repeated application of Proposition 6.29, we know that the sequent

Ξ′0
Σ,X : Ψ, C1θ, . . . , Cnθ; Γ, B1θ, . . . , Bmθ ` A, A1θ, . . . , Apθ;E1θ, . . . , Eqθ,Υ

has a ⇓L+
2 proof. We can take Ξ′0 and use cut, cut !, and cut ? with the

proofs of the n + m + q premises above to yield a proof with n + m + q

occurrences of these cut rules to provide a proof without occurrences of cutk
of the endsequent Σ : Ψ; Γ,Γ′ ` ∆,A; Υ. Note that the size of each of the cut

formulas C1θ, . . . , Cnθ,Γ, B1θ, . . . , Bmθ,E1θ, . . . , Eqθ are strictly smaller than

the size of the original cut formula B.

Lemma 6.36. An occurrence of either the cut or cut ! rule with premises

proved by cut-free proofs can be eliminated to yield a cut-free proof of the same

sequent.

132 Chapter 6. Linear logic

Proof. Consider an occurrence of the cut inference rule

Σ : Ψ; Γ1 ` B,∆1; Υ Σ : Ψ; Γ2, B ` ∆2; Υ

Σ : Ψ; Γ1,Γ2 ` ∆1,∆2; Υ
cut,

where the premises have cut-free ⇓L2-proofs. By applying Lemma 6.34, there

is a proof Ξ of Σ : Ψ; Γ1,Γ2 ` ∆1,∆2; Υ that contains no occurrences of cut

but it might have several instances of the cutk rule applied to the B formula.

Similarly, consider an occurrence of the cut ! inference rule

Σ : Ψ; · ` B; Υ Σ : Ψ, B; Γ ` ∆; Υ

Σ : Ψ; Γ ` ∆; Υ
cut !,

where the premises have cut-free ⇓L2-proofs. By applying Lemma 6.33, there

is a proof Ξ of Σ : Ψ; Γ1,Γ2 ` ∆1,∆2; Υ that contains no occurrences of cut !

but it might have several instances of the cutk rule applied to the B formula.

Thus, in either case, the proof Ξ contains no occurrences of cut or cut ! while

it may contain several occurrences of cutk.

We now proceed by induction on the structure of the formula B. Assume

that B is an atomic formula. The occurrences of cutk can be eliminated by

repeatedly replacing an upper occurrence of cutk with its left premise. On the

other hand, assume that B is not atomic. We can now do a second induction

on the number of occurrence of cutk in Ξ. If that number is 0 then the proof Ξ

is the desired cut-free proof. Otherwise, there exists at least one occurrence of

cutk on B. If we pick an upper-most occurrence of cutk and apply Lemma 6.35,

we can convert that occurrence of cutk to several occurrences of cut, cut !, and

cut ? on strictly smaller formulas than B. By applying Lemma 6.32, this proof

can be converted to a proof without occurrences of the cut ? rule. By applying

Lemma 6.35, there is a proof of the same endsequent where the occurrences

of cut and cut ! are on strictly smaller formulas than B. By applying the

inductive assumption, all of these occurrences of cut can be eliminated. We

have now reduced the number of cutk inference rules and, hence, we have

completed our proof by the outer induction.

We can bring these lemmas together to prove the main cut-elimination

theorem for ⇓L+
2 proofs.

Theorem 6.37 (Elimination of cuts). If a sequent has a ⇓L+
2-proof then it

has a (cut-free) ⇓L2-proof.

Proof. Take a ⇓L+
2-proof of a sequent, say, S. By applying Lemma 6.32, we

can assume that all occurrences of cut ? have been replaced. Thus, let Ξ be a

proof of S that may contain occurrences of cut and cut !.

Our proof proceeds by a simple induction on the number of occurrences

of cut and cut ! inference rules in a proof. In particular, we first take an

6.7 Formal properties of Forum proofs 133

occurrence of a cut or cut ! rule which is the endsequent of a subproof of

minimal height: by Lemma 6.36, such a subproof has cut-free proofs of its

conclusion. Thus, we have eliminated one occurrence of the cut or cut ! rules

and, hence, by the inductive argument, we can eliminate all cut rules.

At the end of Section 6.1, we described an interaction between the rules of

contraction and the cut rule in LK that would allow cut elimination to produce

completely unrelated proofs of a given endsequent. In that example, the cut

formula was weakened on both the left and right side of the premises of the

cut rule. In the focused proof system ⇓L+
2, such a situation cannot happen.

For example, consider the cut ! inference rule.

Σ : Ψ; · ` B; Υ Σ : Ψ, B; Γ ` ∆; Υ

Σ : Ψ; Γ ` ∆; Υ
cut !

The occurrence of the cut-formula B in the left premise cannot be weakened

since it will be the subject of a right-introduction rule. The occurrence of B

in the right premise can, however, be weakened (by an application of an initial

rule). A similar statement holds for the cut ? rule while for the cut rule, the

occurrences of the cut formula in the premises cannot be weakened in either

premise. As a result, the kind of problem arising from weakening and cut that

can appear in LK is avoided in ⇓L+
2.

6.7.4 Soundness and completeness of the focused proof system

We now wish to show that the ⇓L2 proof system is not just some contrived

proof system but that it can prove all the same theorems that the L proof

system can prove. We would also like to go one more step and show that some

of the proof theory of L can be inferred from the proof theory of ⇓L2. Since

these two proof systems use different sets of logical connectives, we must first

define a mapping from formulas used in the L proof system into L2-formulas.

Recall that the negatively polarized logical connectives of L are ⊥, >, `,

&, and ∀ while the positively polarized logical connectives are 1, 0, ⊗, ⊕,

and ∃. We consider a formula that is a top-level negation as being neither

positively or negatively polarized: one does not know the intended polarity of

a negated formula until one considers the formula that is negated.

We define two functions, namely, (·)O that maps L formulas into L2 for-

mulas and (·)H that maps those formulas with a positively polarized top-level

logical connective into L2 formulas. If A is an atomic formula, then AO = A.

134 Chapter 6. Linear logic

These functions are defined for other formulas as follows.

>O = > 0H = >
⊥O = ⊥ 1H = ⊥

(B ` C)O = BO ` CO (B ⊗ C)H = BO(CO(⊥
(B & C)O = BO & CO (B ⊕ C)H = (BO(⊥) & (CO(⊥)

(∀x.B)O = ∀x.(B)O (∃x.B)H = ∀x.(BO(⊥)

(?B)O = ?(BO) (!B)H = (BO)⇒ ⊥

For formulas P with a positively polarized top-level logical connective, set

(P)O = (P)H (⊥. If the top-level connective is negation, then (B⊥)O =

BO (⊥. If Γ is a multiset of L formulas then we write ΓO to denote the

multiset of L2 formulas {BO | B ∈ Γ}: assume a similar definition for ΓH

whenever all formulas in Γ have a positive polarity connective as their top-

level connective.

For convenience, we use the notation Σ : Ψ; Γ ⇓̀ ∆; Υ to denote the propo-

sition that the sequent Σ : Ψ; Γ ⇓̀ ∆; Υ has a ⇓L2-proof.

As one expects, the following soundness property for the (·)O translation

has a straightforward proof, even if there are many simple cases to consider.

Proposition 6.38 (Soundness of ⇓L2-proofs). Let Γ and ∆ be Σ-formulas

in linear logic such that Σ : ·; ΓO ` ∆O; · has a (cut-free) ⇓L2-proof. Then

Σ : Γ ` ∆ has a cut-free proof in L.

Proof. We prove the following strengthening of this proposition. Let Θ be a

multiset of Σ-formulas all of which have a top-level positive connective and let

Γ, ∆, Ψ, and Υ be multisets of Σ-formulas in linear logic.

1. If Σ : ΨO; ΓO,ΘH ` ∆O; ΥO has a ⇓L2-proof then Σ : ! Ψ,Γ ` Θ,∆, ? Υ

has a cut-free proof in L.

2. If B is an L Σ-formula and Σ : ΨO; ΓO,ΘH ⇓ BO ` ∆O; ΥO has a ⇓L2-

proof then Σ : ! Ψ,Γ, B ` Θ,∆, ? Υ has a cut-free proof in L.

3. If B is an L Σ-formula with a top-level positive connective and Σ :

ΨO; ΓO,ΘH ⇓ BH ` ∆O; ΥO has a ⇓L2-proof then Σ : ! Ψ,Γ ` B,Θ,∆, ? Υ

has a cut-free proof in L.

We shall also assume that we only consider ⇓L2-proofs that satisfy the fol-

lowing invariant: every sequent in a ⇓L2-proof that has an occurrence of ⊥ in

the right-linear context is the conclusion of the ⊥R inference rule. Given that

all right-introduction rules permute over each other, this restriction on proofs

is easily satisfied.

We proceed by mutual induction on the structure of ⇓L2-proofs of these

three kind of sequents. First, let Ξ be ⇓L2-proof of Σ : ΨO; ΓO,ΘH ` ∆O; ΥO.

6.7 Formal properties of Forum proofs 135

The last inference rule in Ξ is either a right-introduction rule or one of the

three decide rules. We consider the following cases.

1. Assume that this last inference rule introduced a negative polarity L

connective. For example, if that rule is ` R then ∆ can be written as

B ` C,∆′ and that last inference rule is of the form

Σ : ΨO; ΓO,ΘH ` BO, CO,∆O; ΥO

Σ : ΨO; ΓO,ΘH ` (B ` C)O,∆O; ΥO
` R

By the inductive hypothesis, Σ : ! Ψ,Γ ` B,C,Θ,∆, ? Υ has an L proof

and, by the ` R rule in L, we have an L proof of Σ : ! Ψ,Γ ` B `
C,Θ,∆, ? Υ. The remaining negative polarity connectives are handled

in such a simple and direct fashion.

2. Assume that the last inference rule of Ξ is (R. (Notice that ⇒ R is

not possible here.) Thus, ∆ can be written as B,∆′ where B is either

a negation or a top-level positive polarity connective. In the first case,

write B as C⊥ and the last two inference rules in Ξ are

Σ : ΨO; ΓO, CO,ΘH ` ∆O; ΥO

Σ : ΨO; ΓO, CO,ΘH ` ⊥,∆O; ΥO
⊥R

Σ : ΨO; ΓO,ΘH ` CO(⊥,∆O; ΥO
(R

By the inductive hypothesis, Σ : ! Ψ,Γ, C ` Θ,∆, ? Υ has an L proof and,

by the (·)⊥R rule in L, we have an L proof of Σ : ! Ψ,Γ ` C⊥,Θ,∆, ? Υ.

The other case to consider is when B is a top-level positive polarity

connective, in which case, the last two inference rules of Ξ are

Σ : ΨO; ΓO, BH,ΘH ` ∆O; ΥO

Σ : ΨO; ΓO, BH,ΘH ` ⊥,∆O; ΥO
⊥R

Σ : ΨO; ΓO,ΘH ` BH(⊥,∆O; ΥO
(R

By the inductive hypothesis, Σ : ! Ψ,Γ ` B,Θ,∆, ? Υ has an L proof,

which also serves as the desired proof for this case.

3. Assume that the last inference rule of Ξ is one of the decide rules. In

the case of the decide ? inference rule, that rule translates directly to the

uses of the contraction and dereliction rules (?C and ?D) for ?. In the

case of the decide rule, the desired L proof follows immediate from the

mutual inductive hypothesis. Finally, in the case of the decide ! rule, the

desired L proof follows from the mutual inductive hypothesis as well as

the contraction and dereliction rules (!C and !D) for !.

Now consider the second mutually inductive statement. Assume that Ξ is

a ⇓L2-proof of Σ : ΨO; ΓO,ΘH ⇓ BO ` ∆O; ΥO. Again, there are three cases to

consider for B. If B has a top-level negative polarity logical connective then

136 Chapter 6. Linear logic

the corresponding inference rule to use with the inductive assumption is the

L left introduction rule for that connective. If B is the negation C⊥, then the

last two inference rules of Ξ are

Σ : ΨO; ΓO,ΘH ` CO,∆O; ΥO Σ : ΨO;⇓ ⊥ `; ΥO
⊥L

Σ : ΨO; ΓO,ΘH ⇓ CO ⊃ ⊥ ` ∆O; ΥO
(L

By the inductive assumption, Σ : ! Ψ,Γ ` C,Θ,∆, ? Υ has a cut-free proof

in L. The desired final proof is built using the (·)⊥L rule. The final case to

consider for B is when it has a top-level positive logical connective. In this

case, Ξ is of the form

Ξ′

Σ : ΨO; ΓO,ΘH ` BH,∆O; ΥO Σ : ΨO;⇓ ⊥ `; ΥO
⊥L

Σ : ΨO; ΓO,ΘH ⇓ BH ⊃ ⊥ ` ∆O; ΥO
(L

It is here that the definition of (·)H matters. We illustrate this with B being

B1 ⊗B2 (the other cases are similar). In this case, Ξ′ must be of the form

Σ : ΨO; ΓO, BO1 , B
O
2 ,Θ

H ` ∆O; ΥO

Σ : ΨO; ΓO, BO1 , B
O
2 ,Θ

H ` ⊥,∆O; ΥO
⊥L

Σ : ΨO; ΓO, BO1 ,Θ
H ` BO2 (⊥,∆O; ΥO

(L

Σ : ΨO; ΓO,ΘH ` BO1 (BO2 (⊥,∆O; ΥO
(L

By the inductive hypothesis, we know that the sequent Σ : ! Ψ,Γ, B1, B2 `
Θ,∆, ? Υ has a cut-free L proof. The desired L proof for this case follows

from applying the ⊗L rule of L.

Now consider the third and final mutually inductive statement. Assume

that Ξ is a ⇓L2-proof of Σ : ΨO; ΓO,ΘH ⇓ BH ` ∆O; ΥO. Again, the definition

of (·)H matters and we illustrate it for ⊗: the other cases are done similarly.

Let B be B1 ⊗B2. Thus, Ξ be of the form

ΨO; ΓO1 ,Θ
H
1 ` BO1 ,∆O1 ; ΥO

ΨO; ΓO2 ,Θ
H
2 ` BO2 ,∆O2 ; ΥO ΨO; · ⇓ ⊥ ` ·; ΥO

ΨO; ΓO2 ,Θ
H
2 ⇓ BO2 (⊥ ` ∆O2 ; ΥO

ΨO; ΓO1 ,Γ
O
2 ,Θ

H
1 ,Θ

H
2 ⇓ BO1 (BO2 (⊥ ` ∆O1 ,∆

O
2 ; ΥO

where Γ, ∆, and Θ are split into their respective pairs of multisets (the signa-

ture binder is dropped for readability). By the inductive hypothesis, there

are cut-free L proofs for Σ : ! Ψ,Γ1 ` B1,Θ1,∆1, ? Υ and Σ : ! Ψ,Γ2 `
B2,Θ2,∆2, ? Υ. The ⊗R rule of L provides the final, desired L proof of

Σ : ! Ψ,Γ2 ` B1 ⊗B2,Θ2,∆2, ? Υ.

Recalling from Section 6.1, an inference rule is invertible if whenever its

conclusion is provable, its premises are provable. We state an inversion lemma

for ⇓L2-proofs.

6.7 Formal properties of Forum proofs 137

Lemma 6.39. All the right-introduction rules of ⇓L2 are invertible. Further-

more, the following equivalences hold.

Σ : Ψ; Γ, (B ⇒ ⊥)(⊥ ⇓̀ ∆; Υ if and only if Σ : Ψ, B; Γ ⇓̀ ∆; Υ.

Σ : Ψ; Γ ⇓̀ ?B,∆; Υ if and only if Σ : Ψ; Γ ⇓̀ ∆; Υ, B.

Proof. The proofs that the eight right rules are invertible all follow the same

pattern (see Exercise 6.10). We illustrate that pattern with two examples.

Consider the ?R rule. Assume that Σ : Ψ; Γ ⇓̀ ∆, ?B; Υ. Since the sequent

Σ : ·; ?B ` ·;B has a ⇓L2-proof, then the cut rule and cut elimination theorem

yields a ⇓L2-proof of Σ : Ψ; Γ ⇓̀ ∆;B,Υ. For a second example, consider

the &R rule. Assume that Σ : Ψ; Γ ⇓̀ ∆, B1 & B2; Υ. Since the sequents

Σ : ·;B1 & B2 ` Bi; · have ⇓L2-proofs (for i = 1 and i = 2), then the cut

rule and cut elimination theorem yields ⇓L2-proofs of Σ : Ψ; Γ ` ∆;B1,Υ and

Σ : Ψ; Γ ` ∆;B2,Υ.

Now consider the first equivalence. If we assume that Σ : Ψ; Γ, (B ⇒ ⊥)(
⊥ ⇓̀ ∆; Υ then, using the cut rule with a proof of Σ : B; · ` (B ⇒ ⊥)(⊥; ·
(see also Exercise 6.27), we have (after apply cut-elimination) a ⇓L2-proof

of Σ : Ψ, B; Γ ` ∆; Υ. Conversely, assume that Σ : Ψ, B; Γ ` ∆; Υ has a

⇓L2-proof Ξ. This proof ends with a right-introduction phase and we list the

n ≥ 0 premises of that phase as the sequents Σ,Σi : Ψ,Ψi, B; Γi ` Ai; Υ,Υi,

for 1 ≤ i ≤ n. Given all of these ⇓L2-proofs, we can build the following n

additional proofs (for 1 ≤ i ≤ n).

Σ,Σi : Ψ,Ψi, B; Γi ` Ai; Υ,Υi

Σ,Σi : Ψ,Ψi, B; Γi ` ⊥,Ai; Υ,Υi
⊥R

Σ,Σi : Ψ,Ψi; Γi ` B ⇒ ⊥,Ai; Υ,Υi
⇒ R

Σ,Σi : ·;⊥ ⇓ · ` ·; ⊥L

Σ,Σi : Ψ,Ψi; Γi ⇓ (B ⇒ ⊥)(⊥ ` Ai; Υ,Υi
(L

Σ,Σi : Ψ,Ψi; Γi, (B ⇒ ⊥)(⊥ ` Ai; Υ,Υi
decide

We can now build a proof of Σ : Ψ; Γ, (B ⇒ ⊥)(⊥ ` ∆; Υ by attaching the

right phase at the end of Ξ to these other premises.

Now consider the second equivalence. From Σ : Ψ; Γ ⇓̀ ∆; Υ, B we imme-

diate conclude Σ : Ψ; Γ ⇓̀ ∆, ?B; Υ by using the ?R rule. Conversely, assume

Σ : Ψ; Γ ⇓̀ ∆, ?B; Υ. Since all right-introduction rules permute over each

other, we can assume that the ?R has been applied first (reading the proof

bottom-up) which has the premise Σ : Ψ; Γ ` ∆; Υ, B.

Theorem 6.40 (Completeness of ⇓L2-proofs). Let ∆ and Γ be multisets of

L formulas. If Σ : Γ ` ∆ has a L proof then Σ : ·; ΓO ` ∆O; · has a ⇓L2-proof.

Proof. We prove completeness by showing that the inference rules of the L

proof system are all admissible (via the (·)O mapping) in the ⇓L2-proof system.

138 Chapter 6. Linear logic

Assume that Σ : ∆ ` Γ has a L proof Ξ. We proceed by induction on the

structure of Ξ.

In the case that Ξ is an instance of the initial rule, ∆ and Γ are equal and

contain the single element B. By Proposition 6.26, Σ : ·;BO ⇓̀ B
O; ·. In the

case that the last inference rule is an instance of the cut rule

Σ : Γ1 ` B,∆1 Σ : Γ2, B ` ∆2

Σ : Γ1,Γ2 ` ∆1,∆2
cut,

we are allowed to assume that Σ : ·; ΓO1 ⇓̀ B
O,∆O1 ; · and Σ : ·; ΓO2 , B

O
⇓̀ ∆O2 ; ·.

Using the cut rule of ⇓L+
2 and the cut elimination theorem (Theorem 6.37),

we know that Σ : ·; ΓO1 ,Γ
O
2 ⇓̀ ∆O1 ,∆

O
2 ; ·.

Since the right introduction rules for the connectives {>,&,∀,⊥,`} are

essentially the same in L and ⇓L2 proof systems, it is immediate to treat the

case where the proof Ξ is a right introduction rule for one of these connectives.

On the other hand, the left introduction rules for these connectives can be

applied even when the right is not a collection of atomic formulas. In these

cases, we proceed by using the cut elimination result for ⇓L+
2 proofs. For

example, assume that the last inference rule for Ξ is

Σ : Γ, Bi ` ∆

Σ : Γ, B1 &B2 ` ∆
&L (i = 1, 2).

By the inductive hypothesis, we know that Σ : ·; ΓO, BOi ⇓̀ ∆O; ·. By Propo-

sition 6.26 we know that Σ : ·;BO1 & BO2 ` BO1 & BO2 ; · has a ⇓L2-proof. Im-

mediate subproofs of that proof are proofs of Σ : ·;BO1 & BO2 ` BOi ; · for i = 1

and i = 2. Using the cut elimination result (Theorem 6.37), we can conclude

that Σ : ·; ΓO, BO1 & BO2 ⇓̀ ∆O; ·. The left-introduction rules for {>,∀,⊥,`}
can be done similarly, invoking an application of the cut elimination theorem.

To illustrate how to show that the introduction rules for the positive con-

nectives {0,⊕,∃,1,⊗} are treated, we illustrate the cases where the last in-

ference rule of Ξ is ⊕R and ⊕L.

Σ : Γ ` Bi,∆
Σ : Γ ` B1 ⊕B2,∆

⊕R (i = 1, 2)

By the inductive hypothesis, we can assume that Σ : ·; ΓO ⇓̀ B
O
i ,∆

O; ·. Also

note that the sequent Σ : ·;BOi , (BO1 (⊥) & (BO2 (⊥) ` ·; · has a ⇓L2-

proof (an observation that requires the use of Theorem 6.26). These ⇓L2-

proofs can be brought together to prove the (·)O translation of the sequent

Σ : Γ ` B1 ⊕B2,∆.

Σ : ·; ΓO ` BOi ,∆O; · Σ : ·;BOi , (BO1 (⊥) & (BO2 (⊥) ` ·; ·
Σ : ·; ΓO, (BO1 (⊥) & (BO2 (⊥) ` ∆O; · cut

Σ : ·; ΓO, (BO1 (⊥) & (BO2 (⊥) ` ⊥,∆O; · ⊥R

Σ : ·; ΓO ` ((BO1 (⊥) & (BO2 (⊥))(⊥,∆O; · (R

6.7 Formal properties of Forum proofs 139

Next, consider the case in which the final inference rule of Ξ is

Σ : Γ, B ` ∆ Σ : Γ, C ` ∆

Σ : Γ, B ⊕ C ` ∆
⊕L.

By the inductive assumption, we have both Σ : ·; ΓO, BO ⇓̀ ∆O; · and Σ :

·; ΓO, CO ⇓̀ ∆O; ·. Attaching the ⇓L2-proofs of these two sequents to the

following derivation finishes the proof for the ⊕L introduction rule.

Σ : ·; ΓO, BO1 ` ∆O; ·
Σ : ·; ΓO, BO1 ` ⊥,∆O; ·

Σ : ·; ΓO ` BO1 (⊥,∆O; ·

Σ : ·; ΓO, BO2 ` ∆O; ·
Σ : ·; ΓO, BO2 ` ⊥,∆O; ·

Σ : ·; ΓO ` BO2 (⊥,∆O; ·
Σ : ·; ΓO ` (BO1 (⊥) & (BO2 (⊥),∆O; ·

Since the sequent

Σ : ·; (BO1 (⊥) & (BO2 (⊥), ((BO1 (⊥) & (BO2 (⊥))(⊥ ` ·; ·

has a ⇓L2-proof, we can use the cut-elimination theorem to obtain a proof of

the (·)O translation of Σ : Γ, B1 ⊕B2 ` ∆.

The introduction rules for 0, 1, ⊗, and ∃, can be done similarly, invoking

an application of the cut elimination theorem. Thus, the remaining rules in

L that need to be considered are the exponentials. We consider the four rules

for ! in the ⇓L2 proof systems.

Assume that the last inference rule of Ξ is

Σ : Γ ` ∆

Σ : Γ, !B ` ∆
!W

By the inductive hypothesis, we know that Σ : ·; ΓO ⇓̀ ∆O; ·. By Proposi-

tion 6.28, we can weaken this sequent and conclude that Σ : BO; ΓO ⇓̀ ∆O; ·.
By applying Lemma 6.39, we have Σ : ·; ΓO, (BO ⇒ ⊥) (⊥ ⇓̀ ∆O; ·, which

completes this case.

Assume that the last inference rule of Ξ is

Σ : Γ, !B, !B ` ∆

Σ : Γ, !B ` ∆
!C

By the inductive hypothesis, we know that Σ : ·; ΓO, (!B)O, (!B)O ⇓̀ ∆O; ·.
Using cut-elimination on the following proof (where the proofs of the two left

premises is guaranteed by Exercise 6.27),

Σ : BO; · ` (!B)O; ·
Σ : BO; · ` (!B)O; · Σ : ·; ΓO, (!B)O, (!B)O ` ∆O; ·

Σ : BO; ΓO, (!B)O ` ∆O; · cut

Σ : BO; ΓO ` ∆O; · cut

140 Chapter 6. Linear logic

we have Σ : BO; ΓO ⇓̀ ∆O; ·. Using Lemma 6.39, we can conclude that Σ :

·; ΓO, (BO ⇒ ⊥)(⊥ ⇓̀ ∆O; ·.
The case when the last inference rule of Ξ is

Σ : Γ, B ` ∆

Σ : Γ, !B ` ∆
!D

follows simply from a use of the cut rule and a proof of Σ : ·; (!B)O ` B; ·
(Exercise 6.27).

Assume that the last rule of Ξ is

Σ : ! Γ ` B, ? ∆

Σ : ! Γ ` !B, ? ∆
!R

By the inductive hypothesis, we know that Σ : ·; (! Γ)O ⇓̀ B
O, (? ∆)O; ·. By re-

peatedly applying Lemma 6.39, we can conclude that Σ : ΓO; · ⇓̀ BO, (? ∆)O; ·.
Since all the right rules permute over each other, we can assume that the ?R

rule are applied below the rules related to B, leading us to Σ : ΓO; · ⇓̀ BO; ∆O.

With a proof of that sequent, we now build the following proof.

Σ : ΓO; · ` BO; ∆O Σ : ΓO; · ⇓ ⊥ ` ·; ∆O
⊥L

Σ : ΓO; · ⇓ BO ⇒ ⊥ ` ·; ∆O
⇒ L

Σ : ΓO;BO ⇒ ⊥ ` ·; ∆O
decide

Σ : ΓO;BO ⇒ ⊥ ` ⊥; ∆O
⊥R

Σ : ΓO; · ` (BO ⇒ ⊥)(⊥; ∆O
(R

By repeated application of Lemma 6.39, we can conclude

Σ : ·; (! Γ)O ⇓̀ (BO ⇒ ⊥)(⊥; ∆O

and by repeated application of the ?R rule, we have

Σ : ·; (! Γ)O ⇓̀ (BO ⇒ ⊥)(⊥, (? ∆)O; ·,

which provides a proof of our desired sequent.

The only remaining L rules to consider are the four rules for the ?-exponential.

Since ? is translated directly to ? by (·)O, the proofs involving ? are similar but

simpler than for the !-exponential. We do not include these cases here.

A simple consequence of cut-elimination for ⇓L+
2-proofs is that cut can be

eliminated from the L system.

Theorem 6.41. A sequent provable in L can be proved without the cut rule.

Proof. We first show that a sequent in L that is the conclusion of the cut rule

applied to two cut-free proofs can be proved by a cut-free proof. Once this

6.8 Bibliographic notes 141

Σ ` Γ ⇑ ∆; Υ

Σ ` ⊥,Γ ⇑ ∆; Υ
[⊥]

Σ ` F,G,Γ ⇑ ∆; Υ

Σ ` F ` G,Γ ⇑ ∆; Υ
[`]

Σ ` Γ ⇑ ∆; Υ, F

Σ ` ?F,Γ ⇑ ∆; Υ
[?]

Σ ` >,Γ ⇑ ∆; Υ
[>]

Σ ` F,Γ ⇑ ∆; Υ Σ ` G,Γ ⇑ ∆; Υ

Σ ` F &G,Γ ⇑ ∆; Υ
[&]

y : τ,Σ ` B[y/x],Γ ⇑ ∆; Υ

Σ ` ∀τx.B,Γ ⇑ ∆; Υ
[∀]

Σ ` 1 ⇓ ·; Υ
[1]

Σ ` F ⇓ ∆1; Υ Σ ` G ⇓ ∆2; Υ

Σ ` F ⊗G ⇓ ∆1,∆2; Υ
[⊗]

Σ ` F ⇑ ·; Υ

Σ ` !F ⇓ ·; Υ
[!]

Σ ` Fi ⇓ ∆; Υ

Σ ` F1 ⊕ F2 ⇓ ∆; Υ
[⊕i]

Σ `̀ t : τ Σ ` B[t/x] ⇓ ∆; Υ

Σ ` ∃τx.B ⇓ ∆; Υ
[∃]

Σ ` Γ ⇑ ∆, F ; Υ

Σ ` F,Γ ⇑ ∆; Υ
[R ⇑]

provided that F is a literal or a positive formula

Σ ` F ⇑ ∆; Υ

Σ ` F ⇓ ∆; Υ
[R ⇓]

provided that F is a negative formula

Σ ` A⊥ ⇓ A; Υ
[I1]

Σ ` A⊥ ⇓ ·; Υ, A
[I2]

Σ ` F ⇓ ∆; Υ

Σ ` · ⇑ ∆, F ; Υ
[D1]

Σ ` F ⇓ ∆; Υ, F

Σ ` · ⇑ ∆; Υ, F
[D2]

Figure 6.11: The J proof system. The rule [∀] has the usual proviso that

y is not in Σ. In [⊕i], i = 1 or i = 2.

is done, a simply induction can remove all instances of the cut rule from a

proof. Thus, assume that Σ : B,∆1 ` Γ1 and Σ : ∆2 ` Γ2, B have cut-free

L proofs. By the completeness of ⇓L2-proofs (Theorem 6.40), we know that

Σ : ·;BO,∆O1 ` ΓO1 ; · and Σ : ·; ∆O2 ` BO,ΓO2 ; · have ⇓L2-proofs. Using the cut

inference rule of ⇓L2, we know that Σ : ·; ∆O1 ,∆
O
2 ⇓̀ ΓO1 ,Γ

O
2 ; · has ⇓L+

2-proof.

By the cut-elimination theorem for ⇓L+
2-proofs (Theorem 6.37), we know that

this sequent also has a (cut-free) ⇓L2-proof. By the soundness theorem of

⇓L2-proofs (Theorem 6.38) we finally know that Σ : ∆1,∆2 ` Γ1,Γ2 has a

cut-free proof.

6.8 Bibliographic notes

More observations about interactions between the structural rules and cut-

elimination are given by Danos et al. [1997] and Lafont in [Girard et al.,

1989].

142 Chapter 6. Linear logic

The notion of the polarity of logical connectives that we have used here is

due to Andreoli [1992] and Girard [1991a]. Those two papers also introduced

the notion of multi-zone sequents for the treatment of bounded and unbounded

contexts in sequents for linear logic.

A one-sided sequent calculus proof system for linear logic is given in Fig-

ure 6.5. The focused variant of that proof system is given in Figure 6.11. This

proof system is due to Andreoli [1992]. The main difference between Andreoli’s

original system and the one given here is that the zone between ` and ⇑ is a

list in his system while it is a multiset in Figure 6.11. The D1 rule corresponds

to the decide rule while the D2 rule corresponds to the decide ! rule. Similarly,

the I1 rule corresponds to the init rule while the I2 rule corresponds to the

init ? rule. The rules [R ⇑] and [R ⇓] are not needed in ⇓L2-proofs given our

use of two-sided sequents and implications.

The first major result that one usually attempts to prove about focused

proof systems is that they are complete with respect to their unfocused version.

Andreoli proved this result using a permutation argument in which unfocused

proofs could be progressively more focused. The proof of the completeness

of ⇓L2-proofs given in [Miller, 1996] directly relied on Andreoli’s proof of

completeness.

A direct proof of cut-elimination for a focused proof system for linear logic

was given by Bruscoli and Guglielmi [2006] and Guglielmi [1996] for the subset

of Forum that does not include the (redundant) ? exponential and in which

formulas were limited to what we call paths here. Their proof described cut-

elimination at the level of synthetic inference rules.

The style of completeness proof given here first proves that the generalized

initial rule and the cut rule are admissible in the focused proof system. Given

those results, it is then a simple matter to conclude completeness of focusing.

This approach to proving properties about focused proof systems for linear

logic was given in [Chaudhuri, 2006; Chaudhuri et al., 2008b] and later gen-

eralized by Liang and Miller [2011, 2022] for intuitionistic and classical logics.

Further development of this style of proof, along with a formal verification, is

given by Simmons [2014] for propositional intuitionistic logic.

As Exercise 6.6 shows, it is possible for linear logic to have a collection

of different exponentials in linear logic. A presentation of such additional

operators, including a cut-elimination theorem, was first given in [Danos et al.,

1993]. Since these additional operators do not necessarily need to permit

weakening and contraction, these additional operators do not necessarily allow

one to prove the exponential laws (as described in Exercise 6.3). For these

reasons, such additional operators have been called subexponentials in [Nigam

and Miller, 2009]: that paper also illustrates how subexponentials can be used

to enhance the expressiveness of proof search specifications based on linear

logic (see also [Chaudhuri, 2018; Liang and Miller, 2015; Olarte et al., 2015]).

6.8 Bibliographic notes 143

When Girard [1987] introduced linear logic, he also introduced proof-nets

as a proof system specifically designed to capture the parallelism in proofs

better than sequent calculus proofs. Here we have stressed using focused

proof system as an improvement to sequent calculus. Focused proof systems

can be extended with the notion of multi-focusing in which focusing can be

made on more than one formula within the left-introduction phase [Delande

and Miller, 2008]. Such an extension provides another method for capturing

parallel actions within a proof structure [Chaudhuri et al., 2008a, 2016].

Exercise 6.7 illustrated a property of formulas B for which B ≡ !B holds. If

we restrict B to come from MALL, then very few formulas have this property.

In full linear logic, any formula of the form !C has this property since !C ≡
! !C. If one extends MALL with least fixed points and term equality (thus

moving linear logic closer to model checking and arithmetic), then there are

many other formulas that satisfy that equivalence: see [Baelde, 2012; Baelde

and Miller, 2007; Heath and Miller, 2019].

An implementation of programming language based on L1 was described in

[Hodas and Tamura, 2001]. Forum has been given a couple of implementations:

see [López and Pimentel, 1998; Urban, 1997]. An important part of these

implementation is a technique that can support a lazy splitting of multisets

during proof search. This technique was first presented in [Hodas and Miller,

1991, 1994] and was significantly extended in the papers [Cervesato et al.,

2000b, 1996; Hodas et al., 1998].

144 Chapter 6. Linear logic

Chapter7
Linear logic programming

In this chapter, we present several, small logic programs: the first examples

use only the Lolli fragment and later example use the full Forum presentation

of linear logic.

7.1 Encoding multisets as formulas

Consider the following encoding of multisets of terms as formulas in linear

logic. Let token item be a predicate of one argument: the linear logic atomic

formula item x will denote the multiset containing just the one element x

occurring once. There are two natural encoding of multisets into formulas

using this predicate. The conjunctive encoding uses 1 for the empty multiset

and ⊗ to combine two multisets. For example, the multiset {1, 2, 2} is encoded

by the linear logic formula item 1⊗ item 2⊗ item 2. Proofs search using this

style encoding places multiset on the left of the sequent arrow. This approach

is favored when an intuitionistic subset of linear logic is used, such as in the

L1 subset of linear logic (Section 6.4). The dual encoding, the disjunctive

encoding, uses ⊥ for the empty multiset and ` to combine two multisets.

Proofs search using this style encoding places multisets on the right of the

sequent arrow and multiple conclusion sequents are now required, such as in

the L2 presentation of linear logic (Section 6.6).

Exercise 7.1.(‡) Let M1 and M2 be two multisets of natural numbers and let

P1 and P2 be their conjunctive encoding, respectively. Show that ` P1 (P2

implies ` P2 (P1.

Exercise 7.2. Redo Exercise 7.1 but this time assuming that P1 and P2 are

the disjunctive encoding M1 and M2.

Let S and T be the two formulas item s1 ` · · · ` item sn and item t1 `
· · · ` item tm, respectively (n,m ≥ 0). Exercise 7.2 allows us to conclude that

146 Chapter 7. Linear logic programming

` S (T if and only if ` T (S if and only if the two multisets {s1, . . . , sn}
and {t1, . . . , tm} are equal. Consider now the following two ways for encoding

the multiset inclusion S v T .

1. S ` 0(T . This formula mixes multiplicative connectives with the ad-

ditive connective 0: the latter allows items that are not matched between

S and T to be deleted.

2. ∃q(S ` q (T). This formula mixes multiplicative connectives with a

higher-order quantifier. Intuitively, we would like to consider the instan-

tiation for q to be the multiset difference of S from T , such a restriction

on p is not part of this formula: specifically, q could be instantiate with

any linear logic formula.

As it turns out, these two approaches are equivalent in linear logic: in partic-

ular, we can prove the following linear equivalence in linear logic.

` ∀S∀T [(S ` 0(T) ≡ ∃q(S ` q(T)].

Recall from Section 6.3.2 that the equivalence B ≡ C in linear logic denotes

the formula (B(C) & (C (B).

7.2 A syntax for Lolli programs

In order to present several examples in this chapter, we extend Prolog and

λProlog syntax to accommodate Lolli logic programs. As we have already

indicated in Section 6.5, the symbols => and :- of Prolog and λProlog are

used to represent ⇒, and the converse of(, respectively. We shall also write

-o and <= to represent the(and the converse of⇒. Given these connectives

we can define (in the sense described in Section 5.9) the symbols true, ,

(comma), ; (semicolon), exists, and bang which represent the linear logic

connectives 1, ⊗, ⊕, ∃, and !, respectively. These definitions can be written

as follows.

type true o.

type , o -> o -> o.

type ; o -> o -> o.

type exists (A -> o) -> o.

type bang o -> o.

true.

(P , Q) :- P :- Q.

(P ; Q) :- P.

(P ; Q) :- Q.

exists B :- (B T).

bang G <= G.

7.3 Permuting a list 147

These clause encode only the right-introduction rules for their respective logi-

cal connective. We also allow the symbols & and erase to denote, respectively,

& and >.

7.3 Permuting a list

Since the bounded part of contexts in L-proofs are multisets, it is a simple

matter to permute a list of items by first loading the list’s members into the

bounded part of a context and then unloading them. The latter operation is

nondeterministic and can succeed once for each permutation of the loaded list.

Consider the following simple program:

kind list type -> type.

type nil list A.

type :: A -> list A -> list A.

type load , unload list A -> list A -> o.

load nil K :- unload K.

load (X::L) K :- (item X -o load L K).

unload nil.

unload (X::L) :- item X, unload L.

Here, nil denotes the empty list and :: the list constructor. The meaning

of load and unload is dependent on the contents of the bounded part of the

context, so the correctness of these clauses must be stated relative to a context.

Let Γ be a set of formulas containing the four formulas displayed above and

any other formulas that do not contain either item, load, or unload as their

head symbol. (The head symbol of a clause of the form A or G (A is the

predicate symbol that is the head of the atom A.) Let ∆ be the multiset

containing exactly the atomic formulas

item a1, . . ., item an.

We shall say that such a context encodes the multiset {a1, . . . , an}. It is now

an easy matter to prove the following two assertions about load and unload:

1. The goal (unload K) is provable from Γ; ∆ if and only if K is a list

containing the same elements with the same multiplicity as the multiset

encoded in ∆.

2. The goal (load L K) is provable from Γ; ∆ if and only if K is a list

containing the same elements with the same multiplicity as in the list L

together with the multiset encoded in the context ∆.

In order for load and unload to correctly permute the elements of a list, we

must guarantee two things about the context: first, the predicates item, load,

148 Chapter 7. Linear logic programming

and unload cannot be used as head symbols in any part of the context except

as specified above and, second, the bounded part of a context must be empty

at the start of the computation of a permutation. It is possible to handle

the first condition by making use of appropriate quantifiers over the predicate

names item, load, and unload (we discuss such “higher-order quantification”

elsewhere). The second condition — that the unbounded part of a context is

empty — can be managed by making use of the modal nature of !, which we

now discuss in more detail.

Consider proving the sequent Γ; ∆ −→ !G1 ⊗ G2, where Γ and ∆ are

program clauses and G1 and G2 are goal formulas. Given the completeness

of uniform proofs for the system L′, this is provable if and only if the two

sequents Γ; ∅ −→ G1 and Γ; ∆ −→ G2 are provable. In other words, the use

of the “of-course” operator forces G1 to be proved with an empty bounded

context. In a sense, since bounded resources can come and go within contexts

during a computation, they can be viewed as “contingent” resources, whereas

unbounded resources are “necessary”. The “of-course” operator attached to

a goal ensures that the provability of the goal depends only on the necessary

and not the contingent resources of the context.

It is now clear how to define the permutation of two lists given the example

program above: add either the formula

perm L K :- bang(load L K).

or, equivalently, the formula

perm L K <= load L K.

to those defining load and unload. Thus attempting to prove (perm L K) will

result in an attempt to prove (load L K) with an empty bounded context.

From the description of load above, L and K must be permutations of each

other.

Exercise 7.3. Let Γ0 be the collection of L1-formulas given in Section 7.2 for

defining various symbols denoting logical connectives, and let Γ be a collection

of L1-formulas that do not define those same symbols. Prove the following

about provability in ⇓L1. The sequent Γ0,Γ; ∆ ` bang G is provable if and

only if Γ0,Γ; ∆ ` one &G is provable if and only if ∆ is empty and Γ0,Γ; · ` G
is provable.

7.4 Multiset rewriting

The ideas presented in the permutation example can easily be expanded upon

to show how the bounded part of a context can be employed to do multiset

rewriting. Let H be the multiset rewriting system {〈Li, Ri〉 | i ∈ I} where

for each i ∈ I (a finite index set), Li and Ri are finite multisets. Define the

7.4 Multiset rewriting 149

relation M =⇒H N on finite multisets to hold if there is some i ∈ I and some

multiset C such that M is C]Li and N is C]Ri. Let =⇒∗H be the reflexive

and transitive closure of =⇒H .

Given a rewriting system H, we wish to specify a binary predicate rewrite

such that (rewrite L K) is provable if and only if the multisets encoded by

L and K stand in the =⇒∗H relation. Let Γ0 be the following set of formulas

(these are independent of H):

rewrite L K <= load L K.

load (X::L) K :- (item X -o load L K).

load nil K :- rew K

rew K :- unload K.

unload (X::L) :- item X, unload L.

unload nil.

Taken alone, these clauses give a slightly different version of the permute

program of the last example. The only addition is the binary predicate rew,

which will be used as a socket into which we can plug a particular rewrite

system.

In order to encode a rewrite system H, each rewrite rule in H is given by a

formula specifying an additional clause for the rew predicate as follows: If H

contains the pair 〈{a1, . . . , an}, {b1, . . . , bm}〉 then this pair is encoded as the

clause:

rew K :- item a1 , ..., item an ,

(item b1 -o ... -o item bm -o rew K).

If either n or m is zero, the appropriate portion of the formula is deleted.

Operationally, this clause reads the ai’s out of the bounded context, loads the

bi’s, and then attempts another rewrite. Let ΓH be the set resulting from

encoding each pair in H. For example, if H = {〈{a, b}, {b, c}〉, 〈{a, a}, {a}〉}
then ΓH is the set of clauses:

rew K :- item a, item b, (item b -o (item c -o rew K)).

rew K :- item a, item a, (item a -o rew K).

The following claim is easy to prove about this specification: if M and N

are multisets represented as the lists L and K, respectively, then M =⇒∗H N if

and only if the goal (rewrite L K) is provable from the context Γ0,ΓH ; ∅.
One drawback of this example is that rewrite is a predicate on lists,

though its arguments are intended to represent multi-sets. Therefore, for each

M , N pair this program generates a factor of at least n! more proofs than the

corresponding rewriting proofs, where n is the cardinality of the multiset N .

This redundancy could be addressed either by implementing a data type for

150 Chapter 7. Linear logic programming

multi-sets or, perhaps, by investigating a non-commutative variant of linear

logic.

Exercise 7.4 (maxa revisited).(‡) Consider again Exercise 5.42 in which it was

argued that computing the maximum of a multiset of natural numbers was

not possible if that multiset was encoded as atomic formulas in the left-side

of sequents in I-proofs. It is possible to write such a program when using L1

formulas: in fact, the bounded sequents of ⇓L1-proofs can be used to start

and compute with such a multiset. Write a logic program P using L1-formula

such the following holds. If N is a set of natural numbers {n1, . . . , nk} and

k ≥ 1 then the ⇓L1-sequent P; a n1, . . . , a nk ` maxa m is provable if and

only if m is the maximum of {n1, . . . , nk}.

Exercise 7.5.(‡) As in Exercise 7.4, let k ≥ 1 and let N be a set of natural

numbers {n1, . . . , nk}. Write a logic program P that computes the sum n1 +

· · ·+ nk. More precisely, the ⇓L1-sequent P; a n1, . . . , a nk ` maxa m should

be provable if and only if m = n1 + · · · + nk. Contrast this exercise with the

predicate sumup in Figure 5.4.

Exercise 7.6 (No notconnected). Represent the finite graph G = (N,E),

with nodes N and edges E ⊆ N ×N , as the set of atomic formulas

G = {node(x) | x ∈ N} ∪ {edge(x, y) | 〈x, y〉 ∈ E}.

Argue why it is impossible to write a logic program P in first-order hereditary

Harrop formulas that specifies the predicate nc(x, y) such that for all x, y ∈ N ,

x and y are not connected by a path in the graph G if and only if the sequent

G,P ` nc(x, y) is provable.

Exercise 7.7. Consider representing the finite graph G = (N,E), with nodes

N and edges E ⊆ N ×N , as the two multisets of atomic formulas

N = {node(x) | x ∈ N} E = {edge(x, y) | 〈x, y〉 ∈ E}.

Consider the logic program P that consists of the following declarations and

clauses.

kind node type.

type connected , loop o.

type node , nd node -> o.

connected :- node u, (nd u => loop).

loop.

loop :- nd u, edge u v, node v, (nd v => loop).

Show that the sequent P, E ;N ` connected is provable in ⇓L1 if and only if

the graph G is connected.

7.5 Context management in a theorem prover 151

pv (A and B) :- pv A & pv B.

pv (A imp B) :- hyp A -o pv B.

pv (A or B) :- pv A.

pv (A or B) :- pv B.

pv G :- hyp (A and B), (hyp A -o hyp B -o pv G).

pv G :- hyp (A or B),

((hyp A -o pv G) & (hyp B -o pv G)).

pv G :- hyp (C imp B),

((hyp (C imp B) -o pv C) & (hyp B -o pv G)).

pv G :- hyp false , erase.

pv G :- hyp G, erase.

Figure 7.1: A specification of an intuitionistic propositional object-logic

7.5 Context management in a theorem prover

Intuitionistic logic is a useful meta-logic for the specification of provability

in various object-logics. For example, consider axiomatizing provability in

propositional, intuitionistic logic over the logical symbols imp, and, or, and

false (denoting object-level implication, conjunction, disjunction, and absur-

dity). A reasonable specification of the natural deduction inference rule for

implication introduction is:

pv (A imp B) :- hyp A => pv B.

where pv and hyp are meta-level predicates denoting provability and hypoth-

esis. Operationally, this formula states that one way to prove A imp B is to

add the object-level hypothesis A to the context and attempt a proof of B. In

the same setting, conjunction elimination can be expressed by the formula

pv G :- hyp (A and B), (hyp A => hyp B => pv G).

This formula states that in order to prove some object-level formula G, first

check to see if there is a conjunctive hypothesis, say (A and B), in the context

and, if so, attempt a proof of G from the context extended with the two

hypotheses A and B. Other introduction and elimination rules can be specified

similarly. Finally, the formula

pv G :- hyp G.

is needed to actually complete a proof. With the complete specification, it is

easy to prove that there is a proof of (pv G) from the assumptions (hyp H1),

. . ., (hyp Hi) in the meta-logic if and only if there is a proof of G from the

assumptions H1, . . ., Hi in the object-logic.

152 Chapter 7. Linear logic programming

Γ, A,B ` G
Γ, A,A ⊃ B ` G

⊃L1, A atomic
Γ, C ⊃ D ⊃ B ` G
Γ, (C ∧D) ⊃ B ` G

⊃L2

Γ, C ⊃ B,D ⊃ B ` G
Γ, (C ∨D) ⊃ B ` G

⊃L3
Γ ` G

Γ,⊥ ⊃ B ` G
⊃L5

Γ, D ⊃ B ` C ⊃ D Γ, B ` G
Γ, (C ⊃ D) ⊃ B ` G

⊃L4

Figure 7.2: Replacements for the ⊃L Rule

Unfortunately, an intuitionistic meta-logic does not permit the natural

specification of provability in logics that have restricted contraction rules —

such as linear logic itself — because hypotheses are maintained in intuitionistic

logic contexts and hence can be used zero or more times. Even in describing

provability for propositional intuitionistic logic there are some drawbacks. For

instance, it is not possible to logically express the fact that a conjunctive

or disjunctive formula in the proof context needs to be eliminated at most

once. So, for example, in the specification of conjunction elimination, once

the context is augmented with the two conjuncts, the conjunction itself is no

longer needed in the context.

If, however, we replace the intuitionistic meta-logic with our refinement

based on linear logic, these observations about use and re-use in intuitionistic

logic can be specified elegantly, as is done in Figure 7.1. In that specification,

a hypothesis is both “read from” and “written into” a context during the

elimination of implications. All other elimination rules simply “read from”

the context; they do not “write back.” The formulas represented by the last

two clauses in Figure 7.1 use a ⊗ with >: this allows for all unused hypotheses

to be erased, since the object logic has no restrictions on weakening.

It should be noted that this specification cannot be used effectively with a

depth-first interpreter because when the implication left rule can be used once,

it can be used any number of times: this can cause such an interpreter to loop.

Fortunately, an alternative presentation of the implication left-introduction

rule can solve this particular problem. For example, the proof system given

by Dyckhoff [1992] and Hudelmaier [1992] can be expressed directly in this set-

ting. In their papers, the left-introduction rule for implication can be replaced

by the five rules in Figure 7.2. Thus, consider modifying the specification

in Figure 7.1 by replacing its one formula specifying implication elimination

with the five clauses for implication elimination in Figure 7.3 (derived from

Figure 7.2), along with the (partial) axiomatization of object-level atomic for-

mulas. Executing this linear logic program in a depth-first interpreter can

7.6 Multiset rewriting in Forum 153

pv G :- hyp ((C imp D) imp B),

((hyp (D imp B) -o pv (C imp D)) &

(hyp B -o pv G)).

pv G :- hyp ((C and D) imp B),

(hyp (C imp (D imp B)) -o pv G).

pv G :- hyp ((C or D) imp B),

(hyp (C imp B) -o hyp (D imp B) -o pv G).

pv G :- hyp (false imp B), pv G.

pv G :- hyp (A imp B), isatom A, hyp A,

(hyp B -o hyp A -o pv G).

isatom p.

isatom q.

isatom r.

Figure 7.3: A contraction-free formulation of ⊃L.

yield a decision procedure for propositional intuitionistic logic.

7.6 Multiset rewriting in Forum

Since Forum contains Lolli, the techniques for rewriting multisets by using

the bounded left-side zone can be used in Forum as well. However, it is also

possible to use the bounded right-side zone as well. To illustrate that approach,

consider the clause

a ` b› c ` d ` e.

When presenting examples of Forum specification we continue the habit of

using › and⇐ as the converses of(and⇒ since they provide a more natural

operational reading of clauses (similar to the use of :- in Prolog). Here, `
binds tighter than › and ⇐. Consider the ⇓L2 sequent Σ : Ψ; ∆ ` a, b,Γ; Υ

where the above clause is a member of Ψ. A proof for this sequent can proceed

as follows.

Σ : Ψ; ∆ ` c, d, e,Γ; Υ

Σ : Ψ; ∆ ` c, d ` e,Γ; Υ

Σ : Ψ; ∆ ` c ` d ` e,Γ; Υ

Σ : Ψ; · ⇓ a ` a; Υ Σ : Ψ; · ⇓ b ` b; Υ

Σ : Ψ; · ⇓ a ` b ` a, b; Υ

Σ : Ψ; ∆ ⇓ c ` d ` e(a ` b ` a, b,Γ; Υ

Σ : Ψ; ∆ ` a, b,Γ; Υ

We can interpret this fragment of a proof as a reduction of the multiset a, b,Γ

to the multiset c, d, e,Γ by backchaining on the clause displayed above.

154 Chapter 7. Linear logic programming

Of course, a clause may have multiple, top-level implications. In this case,

the surrounding context must be manipulated properly to prove the sub-goals

that arise in backchaining. Consider using the decide rule on the formula

A1 ` A2 ⇐ G4 › G3 ⇐ G2 › G1

to prove the sequent Σ : Ψ; ∆ ` A1, A2,A; Υ. An attempt to prove this sequent

would then lead to the attempt to prove the four sequents

Σ : Ψ; ∆1 ` G1,A1; Υ Σ : Ψ; · ` G2; Υ

Σ : Ψ; ∆2 ` G3,A2; Υ Σ : Ψ; · ` G4; Υ

where ∆ is the multiset union of ∆1 and ∆2, and A is the multiset union of

A1 and A2. In other words, those subgoals immediately to the right of an ⇐
are attempted with empty bounded contexts: the bounded contexts, here ∆

and A, are divided up and used in attempts to prove those goals immediately

to the right of ›.

For an example of computing using multisets on the right of ⇓L2 sequents,

consider again computing the sum of a multiset of natural numbers. Assume

that we take the encoding of natural numbers and addition (sum) given in Fig-

ure 5.3, and make them available as L2 formulas. Now add to these formulas

the following two formulas.

∀M [(acc M (acc z)(sumall M]

∀N∀M∀S[sum N M S (acc S (acc N ` a M]

Exercise 7.8. Show that the formula

a n1 ` a n2 ` · · · ` a ni ` sumall m

is provable for the above specification of sumall and acc if and only if m is the

sum of n1, . . . , ni.

Many more examples of specifications written using the Forum presenta-

tion of linear logic appear in Chapters 9, 10, and 11.

7.7 Specification of sequent calculus proof systems

Given the proof-theoretic motivations of Forum and its inclusion of quantifi-

cation at higher-order types, it is not surprising that it can be used to specify

proof systems for various object-level logics. Below we illustrate how sequent

calculus proof systems can be specified using the multiple conclusion aspect of

Forum and show how properties of linear logic can be used to infer properties

of the object-level proof systems. We shall use the terms object-level logic and

7.7 Specification of sequent calculus proof systems 155

meta-level logic to distinguish between the logic whose proof system is being

specified and the logic of Forum.

Consider the well known, two-sided sequent proof systems for classical,

intuitionistic, and linear logic. As we have described in Section 4.1, the dis-

tinction between sequents in these logics can be described by where the struc-

tural rules of thinning and contraction can be applied. In classical logic, these

structural rules are allowed on both sides of the sequent arrow; in intuition-

istic logic, no structural rules are allowed on the right of the sequent arrow;

and in linear logic, they are not allowed on either side of the arrow. This

suggests the following representation of sequents in these three systems. Let

bool be the type of object-level propositional formulas and let b·c and d·e be

two meta-level predicates of type bool → o. Sequents in these four logics can

be specified as follows: object-logic sequents will be two-sided and the left and

right will be paired using −→ (following Gentzen’s original notation [1935]).

Linear: The sequent B1, . . . , Bn −→ C1, . . . , Cm (n,m ≥ 0) can be repre-

sented by the meta-level formula

bB1c ` · · · ` bBnc ` dC1e ` · · · ` dCme.

Intuitionistic: The sequent B1, . . . , Bn −→ C (n ≥ 0) can be represented by

the meta-level formula

?bB1c ` · · · ` ?bBnc ` dCe.

Classical: The sequent B1, . . . , Bn −→ C1, . . . , Cm (n,m ≥ 0) can be repre-

sented by the meta-level formula

?bB1c ` · · · ` ?bBnc ` ?dC1e ` · · · ` ?dCme.

The b·c and d·e predicates are used to identify which object-level formulas

appear on which side of the sequent arrow, and the ? exponential is used to

mark the formulas to which weakening and contraction can be applied.

We shall limit our attention to dealing only with a propositional, intu-

itionistic object-level logic and proof system. To denote first-order object-

level formulas, we will reuse the binary, infix symbols ∧, ∨, and ⊃ at type

bool → bool → bool (although these were used in, for example, Chapter 4 at

a different type, there will be no confusion in this section since we use linear

logic connectives for the meta-logic).

Figure 7.4 is a specification of intuitionistic logic provability using the

above style of sequent encoding for just the connectives ∧ and ⊃. Expressions

displayed as they are in Figure 7.4 are abbreviations for closed formulas: the

intended formulas are those that result by applying ! to their universal closure.

156 Chapter 7. Linear logic programming

(⊃ R) dA ⊃ Be › ?bAc ` dBe.
(⊃ L) bA ⊃ Bc ⇐ dAe› ?bBc.
(∧R) dA ∧Be› dAe› dBe.
(∧L1) bA ∧Bc› ?bAc.
(∧L2) bA ∧Bc› ?bBc.

(Initial) dBe ` bBc.
(Cut) ⊥› ?bBc ⇐ dBe.

Figure 7.4: The LJ specification of a sequent calculus for intuitionistic

logic.

Γ, A ⊃ B −→ B Γ, A ⊃ B,B −→ E

Γ, A ⊃ B −→ E
⊃ L

A,Γ −→ B

Γ −→ A ⊃ B ⊃ R

Γ, A −→ E

Γ, A ∧B −→ E
∧L

Γ, B −→ E

Γ, A ∧B −→ E
∧L Γ −→ A Γ −→ B

Γ −→ A ∧B ∧R

Γ, B −→ B
Initial

Γ −→ C C,Γ −→ B

Γ −→ B
Cut

Figure 7.5: The inference rules encoded using LJ

Let LJ be the set of clauses displayed in Figure 7.4 and let Σ1 be the set of

constants containing object-logical connectives ⊃ and ∧ along with the two

predicates b·c and d·e.
We now examine the synthetic inference rules that result from using the

decide ! rule with a formula in LJ. Let Γ be a multiset of object-level formulas

(terms of type bool) and let bΓc be the multiset {bBc | B ∈ Γ}. The synthetic

inference rule resulting from using decide ! with the (⊃ R) clause in LJ is

Σ1 : LJ; · ` dBe; bAc, bΓc
Σ1 : LJ; · ` dA ⊃ Be; bΓc

.

Thus, this synthetic inference rule captures exactly the object-level inference:

that is, proving the object-level sequent Γ −→ A ⊃ B has been successfully

reduced to proving the sequent A,Γ −→ B (see the ⊃ R rule in Figure 7.5).

It is simple matter to compute the synthetic inference rule that arises from

using decide ! on the (cut) clause, namely,

Σ1 : LJ; · ` dCe;L Σ1 : LJ; · ` dBe; bCc,L
Σ1 : LJ; · ` dBe;L

.

7.8 Bibliographic notes 157

This meta-level synthetic rule captures the object-level inference rule called

cut in Figure 7.5. Note that the occurrence of ⇐ in the specification of (cut)

is important here: consider the following modification of the specification of

the object-level cut inference rule.

(Cut′) ⊥› ?bBc› dBe.

There are two synthetic inference rules that result in using decide ! on this

formula, namely, the one display above as well as the following.

Σ1 : LJ; · ` dBe, dCe;L Σ1 : LJ; · ` ·; bCc,L
Σ1 : LJ; · ` dBe;L

This additional synthetic rule correspond to the following object-level inference

rule.
Γ −→ B,C C,Γ −→ ·

Γ −→ B

In other words, the specification of (Cut′) is not able to specify that the

occurrence of B on the right in the conclusion should be moved only to the

right side of the right premise of the cut rule. It is possible to prove that if

B moves to the right-side of the left premise, then that left premise will not

ultimately be provable. None-the-less, we wish to have exactly one synthetic

inference rule arising from our meta-level specification of the cut rule. Hence,

the (Cut) rule and the (⊃ L) rules both have occurrences of⇐. Recall that the

first of the reflections in Section 6.1 points out that both (Cut) and (⊃ L) are

different from other sequent calculus rules: in LJ, that difference is captured

in by the use of ⇐ instead of › in the specification of these two rules (see

also Proposition 4.2).

7.8 Bibliographic notes

The example of Lolli logic programs in Sections 7.3, 7.4, and 7.5 are taken

from [Hodas and Miller, 1994]. The examples of Forum logic programs in

Sections 7.6 and 7.7 are taken from [Miller, 1996]. The analysis of object-

level sequent systems using linear logic as a meta-theory can be significantly

extended beyond what is in Section 7.7: see, for example, [Miller and Pimentel,

2004, 2013; Nigam et al., 2014].

It is not surprising that a programming language directly exploiting proof

theory ideas and techniques can be used to implement a sequent calculus (as

in Section 7.7) and a theorem prover (as in Section 7.5). We shall see in

subsequent chapters (starting with Chapter 9) several other application of

linear logic programming in domains that are not overtly connected with logic

and proof theory.

158 Chapter 7. Linear logic programming

Linear logic programming has found useful applications in the parsing of

natural language sentences. In particular, both Pareschi and Miller [1990] and

Hodas [1994, 1999] have shown how phenomena such as gap threading can be

captured, at least in part, by linear logic specifications such as those provided

by Lolli.

Many more examples of linear logic programs will be given in Chapters 9,

10, and 11.

Chapter9
Encoding security protocols

By extending the encoding of multiset rewriting in linear logic that was pre-

sented in Section 7.6, we find a natural setting to encode some features of

communicating processes that are communicating securely over a public com-

munication structure.

9.1 Communicating processes

The left side of Figure 9.1 represents a common view of a data structure

based on pointers. If I have access to the pointer on the top left then I have

access to the resource A and to the resource B (memory is a good example of a

resource). It is, of course, tempting to apply linear logic’s negation to diagram

and to the conjunction. To this end, consider the right side of this figure. Here,

arrows have been inverted and the static resource (something that is accessed)

is dualized into a process (the thing that does the accessing). The operational

interpretation of this right-hand diagram is that the two processes P and Q

meet (synchronize) around the ` and afterwards, they are replaced by a new

process. Such an interpretation is exactly the intended meaning of a clause of

the form

P ` Q› R,

where R is the result of P and Q meeting. Thus, the ` connective provides a

location, a forum, for processes to meet: it is this aspect of ` that gave the

Forum language in Chapter 6 its name.

To illustrate this approach to encoding processes using linear logic as a logic

programming language, we consider here briefly the π-calculus. The principle

computation mechanism of the π-calculus is the synchronization of two agents

during which there is a transfer of a name from one agent to another. The

expression x̄z.P describes an agent that is willing to transmit the name z on

178 Chapter 9. Encoding security protocols

⊗

A B

`

P Q

Figure 9.1: Illustrating how to interpret the operational reading of the

dual connectives ⊗ and `.

the wire with name x. The expression x(y).Q denotes an agent that is willing

to receive a name on wire x and formally bind that value to y. The bound

variable y in this expression is scoped over Q. The central computational step

of the π-calculus is the reduction of the parallel composition x̄z.P | x(y).Q to

the expression P |Q[z/y]. The agents P and Q[z/y] are now able to continue

their interactions with their environment independently.

Another important aspect of the π-calculus is the notion of scope restric-

tion: in the agent expression (x)P , x is bound and invisible to the outside. The

scoped value x, however, can be communicated outside its scope, providing a

phenomenon known as “scope extrusion.” For example, (z)(x̄z.P |Q) | x(y).R

is structurally equivalent to (z)(x̄z.P |Q | x(y).R), provided that z is not free

in x(y).R. This scope restriction is always easy to accommodate since we shall

assume that α-conversion is available for changing the name of bound vari-

ables. This expression can be reduced to (z)(P |Q |R[z/y]), where the scope of

the restriction (z) is larger since it contains the agent R[z/y] in which z may

be free. This mechanism of generating new names (using α-conversion) and

sending them outside their scope is an important part of the computational

power of the π-calculus.

For an example, consider the following process expression where a, b, x are

free constants of type name.

(x(y).ȳa.ȳb.nil) | (z)(x̄z.z(u).z(v).ūv.nil)

Given the informal description of how a π-calculus expression evolves, the

scope of the (z) restriction enlarges to yield the expression

(z)
(

(x(y).ȳa.ȳb.nil) | (x̄z.z(u).z(v).ūv.nil)
)

9.1 Communicating processes 179

Next, a communication can take place within the scope of the restriction,

yielding the expression

(z)
(

(z̄a.z̄b.nil) | (z(u).z(v).ūv.nil)
)

Two more internal communication steps yields that expression

(z)
(
nil | (āb.nil)

)
Since z is not free in the scope of the restriction (z) and since nil is the

unit of parallel composition, this last expression is essentially the same as the

expression (āb.nil).

We encode some of the behavior of the π-calculus as proof search within

Forum using the following primitive type and four non-logical symbols.

kind name type.

type or o -> o -> o.

type send name -> name -> o -> o.

type get name -> (name -> o) -> o.

type match name -> name -> o -> o.

As is clear from these types, we make use of higher-order types and λ-abstractions

to smooth the treatment of bound variables and variable scoping. The follow-

ing mapping translates some π-calculus expressions into linear logic.

〈〈P |Q〉〉 = 〈〈P 〉〉 ` 〈〈Q〉〉 〈〈(x)P 〉〉 = ∀x〈〈P 〉〉 〈〈nil〉〉 = ⊥

〈〈x̄y.P 〉〉 = send x y 〈〈P 〉〉 〈〈x(y).P 〉〉 = get x λy〈〈P 〉〉

〈〈P +Q〉〉 = or 〈〈P 〉〉 〈〈Q〉〉 〈〈[x = y]P 〉〉 = match x y 〈〈P 〉〉

To describe the meaning of the five non-logical constants, we have the following

Forum specification.

get X R || send X Y Q :- R Y || Q.

match X X P :- P.

or P Q :- P.

or P Q :- Q.

Note that these axioms are higher-order in the sense that they allow quantifi-

cation over predicate symbols (such as P and Q) as well as variables of type

name→ o (such as R).

Exercise 9.1. Show that the informal reduction of π-calculus expressions

given above can be reproduced in the Forum proof of the sequent Σ : Ψ;P0 `
P1; · where Σ collects the constants declared above along with the declarations

that a and b are names, Ψ is the multiset of the six formulas listed above, P1

is the expression

180 Chapter 9. Encoding security protocols

get x (y\ send y a (send y b bot)) ||

pi z\ (send x z (get z u\ (get z v\ send u v bot)))

and P0 is the expression (send a b bot).

Exercise 9.2. Let Q be the expression

get x y (or (match y a (send x a bot))

(match y b (send x b bot)))

Also let Pa, Pb, and Pc be the processes (send x a bot), (send x b bot),

and (send x c bot), respectively. Show that the two Forum sequents Σ :

Ψ;Pa ` Pa|Q; · and Σ : Ψ;Pb ` Pb|Q; · are provable but that Σ : Ψ;Pc ` Pc|Q; ·
is not provable.

Clearly, a goal of this kind of encoding of process calculus into linear logic

would be to identify the notion of “process P reduces to Q” with the provabil-

ity of the Forum sequent Σ : Ψ; 〈〈Q〉〉 ` 〈〈P 〉〉; ·. While this encoding into linear

logic captures some of the nature of computation and communication in the

π-calculus, there is also a serious flaws in this encoding. The first suggestion

of such a flaw concerns that fact that only some combinators of the π-calculus

are translated into linear logic connectives while others are encoded using non-

logical constants. Why not encode, for example, the π-calculus + using the

linear logic ⊕? While the right-introduction rules for ⊕ in linear logic do en-

code the non-deterministic choice that is intended for the π-calculus reduction,

the left-introduction rule for ⊕ would force us to accept the following reduc-

tion strategy: if P reduces to Q1 and to Q2, then P reduces to Q1 +Q2, which

is a principle that is not generally seen as a proper reduction in the π-calculus

literature. It is for this reason that the encoding of + is made with a non-

logical symbol since backchaining on its axiomatization mimics the right-hand

introduction rule for ⊕ but the left-hand introduction is not available using

that axiomatization.

Just as the left-rule for ⊕ rules out using that connective to encode the

π-calculus +, the left-rule for ∀ is also problematic. Note that ∀x∀y.Pxy `
∀x.Pxx is provable in every quantificational logic we have considered in this

monograph. In the setting of the π-calculus, this would mean that we would

need to accept the reduction of (x)x̄a.x̄b.nil to the process (x)(y)x̄a.ȳb.nil,

which is again not an accepted reduction in the π-calculus.

We will provide a different encoding of the π-calculus in Chapter 10 in

which process expressions are not encoded as formulas but as terms. A much

greater precision with the π-calculus can be achieve with that encoding.

In the rest of this chapter, we shall consider a calculus for communication

that is, in some senses, weaker than that of the π-calculus. In this weaker

setting, provability in linear logic is much more accurate and flexible.

9.2 A conventional presentation of protocols 181

Message 1 A −→ S : A,B, nA
Message 2 S −→ A : {nA, B, kAB, {kAB, A}kBS

}kAS

Message 3 A −→ B : {kAB, A}kBS

Message 4 B −→ A : {nB}kAB

Message 5 A −→ B : {nB,Secret}kAB

Figure 9.2: The conventional presentation of the Needham-Schroeder

Shared Key Protocol.

9.2 A conventional presentation of protocols

Let us assume that Alice and Bob want to make use of a trusted server to help

them establish their own private channel for communications. Both Alice and

Bob have private encryption keys that allow them to communicate securely

with a server. At the end of this protocol’s execution, Alice and Bob should

be sharing an encryption key that allows them to securely exchange messages

between themselves, without any additional need of the trusted server.

Figure 9.2 is a presentation of the Needham-Schroeder Shared Key Protocol

(abbreviated NS) using a standard kind of description. Here, A, B, and S

denote the agents Alice, Bob, and server, respectively. In addition, encryption

keys and nonces are denoted by the schematic variables k and n, respectively.

One of our goals is to replace this specific syntax with one that is based on

a direct use of logic. We do this now by identifying a sequence of aspects of

the conventional presentation that we might see as possible features of Forum.

Emphasize using a public network The notation A −→ B : M is a bit

misleading since it seems to indicate a “three-way synchronization” between

Alice, Bob, and a message M . However, it is important to see that commu-

nication is, in fact, asynchronous, in the sense that Alice is meant to put the

message M into a public network (say, the internet) and that at some time

later, Bob is meant to retrieve that message from that network. It should be

possible to these two actions to be interleaved with some intruder who might

read, delete, and/or modify the message M . Thus, a better syntax is inspired

by multiset rewriting (we use N · to denote network messages).

A −→ A′ | NM
B | NM −→ B′

...

E | NM −→ E′ | NM

182 Chapter 9. Encoding security protocols

Here, an eavesdropper E might read and rewrite the message while storing

part of it in it internal memory. More generally, we can image that the action

of an agent could be described more generally as

(A Memory) | NM1 | · · · | NMp −→ (A′ Memory′) | NP1 | · · · | NPq

where p, q ≥ 0. The agent can be missing from the left (agent creation) or

can be missing from the right (agent deletion). If agent is missing from both

sides, messages might simply mutate into other messages. Multiset rewriting

and, hence, linear logic can easily capture such dynamics.

Static distribution of keys Consider a protocol containing the following

steps.
...

Message i A −→ S: {M}k
Message j S −→ A: {P}k

...
In the general setting, we need to declare exactly which agents have access to

which keys: in the steps above, we know two places where the k is used but

we must separately declare, for example, that the key is not known to any

other agents. This declaration is critical for modularity and for establishing

correctness later: it can also be made statically by using a local declaration,

such as the following.

local k.


...

A −→ A′ | N {M}k
S | N {P}k −→ S′

...


This declarations appears to be similar to a quantifier. The intention is that

we can statically examine all occurrences of the bound variable k in the scope

of this quantifier and thereby know which agents do and do not contain oc-

currences of this key.

Dynamic creation of new symbols During the execution of a protocol,

new symbols, representing nonces (used to help guarantee “freshness”) and

keys for encryption and session management, are needed in protocols. Using

the syntax in Figure 9.2, one needs to explicitly point out that, for example,

nA, nb, and kAB need to be generated a fresh, new symbols during the execu-

tion of this protocol. We introduce a more explicit syntax for this purpose.

a1 S −→ new k. (a2 k S) | N {M}k

9.3 A linear logic formulation 183

This new operator resembles, of course, a quantifier: it should support α-

conversion and seems to be a bit like reasoning generically. The scope of new

is over the body of this rule. This quantifier will also be used when we need

to generate a nonce.

Mapping the conventional notation into linear logic There are two

approaches to view the new notation we have introduced as logical connectives.

| unit −→ new local

disjunctive ` ⊥ › ∀ ∃
conjunctive ⊗ 1 (∃ ∀

The disjunctive approach allows protocols to be seen as Forum specifications::

that is, it fits into the “logic programming as goal-directed search” paradigm.

The conjunctive approach is also popular and has been used in, say, the MSR

system [Cervesato et al., 1999]. From the linear logic perspective, these two

approaches yield essentially the same dynamics when doing proof search: the

only difference is that what happens in the right-hand side of sequents using

the disjunctive approach happens essentially unchanged on the left-hand side

using the conjunctive approach.

Encrypted data as an abstract data type A final step of encoding of

the conventional syntax into Forum requires dealing with encryption keys and

encrypted data. We shall assume that an encryption key is a symbolic function,

say, k of type d → d and that the encrypted message {M}k is encode as the

simple application (k M). If an agent has access to the data constructor

that is an encryption key, then via a simple matching operation within logic,

decryption can take place. If, however, the encryption key is not available to

the agent, then decryption is impossible. Thus, we are representing encrypted

data as an abstract data type.

In order for encryption keys to be inserted into data object, we introduce

the postfix coercion constructor (·)◦ of type (d→ d)→ d. The use of higher-

order types means that we will also use the equations of αβη-conversion when

processing encrypted data. Thus, we can write linear logic expressions of the

following form.

∃ k.
[

a1 S › ∀n. a2 〈k◦, S〉 ` N k n

a2 〈k◦, S〉 ` N k M › . . .

]

9.3 A linear logic formulation

For the rest of this chapter, we assume that the primitive types are S = {o, d}.
We use the type d to encode messages. For convenience, we shall assume that

184 Chapter 9. Encoding security protocols

all strings are included in this type. The tupling operator 〈·, ·〉, for pairing

data together, has type d → d → d. Expressions such as 〈·, ·, . . . , ·〉 denote

pairing associated to the right. As mentioned in the previous section, we also

need the constructor (·)◦ of type (d→ d)→ d in order to allow an encryption

key to be considered a data item.

We encode a public communication medium as a multiset of network mes-

sages that are encoded as an atomic formulas of the form N t, where N · is a

predicate of type d→ o and t (of type d) is the actual encoding of a message.

For example, the following are examples of network messages.

N 〈"alice", "account34"〉 N 〈"bob", "45euros"〉

Such network messages could be used to facilitate a financial transaction. Since

we will model the public network as an evolving multiset of atomic formulas

with the N predicate, many actors (encoded as processes) other than Alice

and Bob can access and read these messages: it is likely that we do not intend

these financial transactions to be viewable and mutable by just anyone with

access to the network.

In order to encode actors, such as Alice and Bob, participating in a com-

munication protocol, we make the following few definitions. A role identifier

is a symbol, say, ρ. 1 For some number n ≥ 1 and for i = 1, . . . , n, the pair ρi
of a role identifier and an index is a role state predicate of type d→ · · · d→ o

of some (possibly zero) arity. These state predicates are used to encode inter-

nal states of a role as a protocol progresses. A role state atom is an atomic

formula of the form (ρi t1 · · · tm) where t1, . . . , tm are terms of type d and ρi
is a role state predicate. A role clause is a linear logic formula of the form

∀x1 . . . ∀xi[a1 ` · · · ` am › ∀y1 . . . ∀yj [b1 ` · · · ` bn]]

where m ≥ 1 and i, j, n ≥ 0. Here, the head of such a clause is the formula

a1 ` · · · ` am and the body is ∀y1 . . . ∀yj [b1 ` · · · ` bn]. Role clauses also

have the following restrictions: all the atoms a1, . . . , am, b1, . . . , bn are either

network messages or role state atoms such that the following hold.

1. There must be exactly one role state atom in the head and at most one

in the body.

2. If the role state atom in the head is (ρi t̄) and if there is any role state

atom in the body, say, (ρ′j s̄), then ρ and ρ′ must be the same role

identifier and i < j.

Thus, a role clause involves at most a single role (and possibly network mes-

sages): this implies that roles cannot synchronize with other roles directly and

1Should I use the term “agent” instead of “role”?

9.4 Encryption as an abstract data type 185

that one role cannot evolve into another role. It is allowed for a role to be

deleted since no role state atom must appear in the body. It is also the case

that all roles have finite runs.

A role theory is a linear logic formula of the form

∃x1 . . . ∃xr [C1 ⊗ · · · ⊗ Cs],

where r, s ≥ 0, C1, . . . , Cs are role clauses, where x1, . . . , xr are variables of

type d or d→ d, and whenever Ci and Cj have the same role state predicate in

their head then i = j. This latter condition will imply that agents in protocols

are deterministic. This is a condition that can easily be relaxed within linear

logic if nondeterministic agents are of interest.

Many other restrictions or generalization could be considered here for the

definition of roles theory and role clauses, but for our simple considerations

here, this definition is sufficient. Ultimately, we will introduce a different

syntax for roles that will not need to use these rather awkward role state

predicates. Existential quantification like that surrounding role theories are

used in logic programming (see Section 8.6) to provide for abstract data-types

and here they will serve as local constants shared by certain role clauses.

In particular, shared keys between, say Alice and a trusted server, will be

existentially quantified in this way with a variable of type d→ d. The use of

existential quantifier at type d→ d is explained next.

9.4 Encryption as an abstract data type

As we have mentioned, encryption keys are encoded using symbols of type

d→ d. These keys can be given static scope in a role theory using existential

quantification around role clauses in such a theory. They can also be generated

as new using a universal quantifier in the body of a role clause.

Consider the following specification that contains three occurrences of en-

cryption keys.

∃kas∃kbs[a1 〈M,S〉 › a2 S ` N (kas M).

b1 T ` N (kbs M) › b2 M T.

s1 ` N (kas P) › N (kbs P).]

(Here as elsewhere, quantification of capital letter variables is universal with

scope limited to the clause in which the variable appears.) In this example,

Alice (a1, a2) communicates with Bob (b1, b2) via a server (s1). To make the

communications secure, Alice uses the key kas while Bob uses the key kbs.

The server is deleted immediately after it translates one message encrypted

for Alice to a message encrypted for Bob. The use of the existential quantifiers

helps establish that the occurrences of keys, say, between Alice and the server

186 Chapter 9. Encoding security protocols

∃kas∃kbs{

a1 S › ∀na. a2 na S ` N 〈alice, bob, na〉.
a2 N S ` N (kas〈N, bob,K,En〉) › a3 N K S ` NEn.

a3 Na Key
◦ S ` N (Key Nb) › a4 ` N (Key〈Nb, S〉).

b1 ` N (kbs〈Key◦, alice〉) › ∀nb. b2 nb Key◦ ` N (Key nb).

b2 Nb Key
◦ ` N (Key〈Nb, S〉) › b3 S.

s1 ` N 〈alice, bob,N〉› ∀k.N (kas〈N, bob, k◦, (kbs〈k◦, alice〉)〉).
}

Figure 9.3: Encoding the NS protocol.

and Bob and the server, are the only occurrences of that key. Even if more

principals are added to this system, these occurrences are still the only ones

for these keys. Thus, the existential quantifier helps in determining the static

or lexical scope of key distribution. Of course, as protocols are evaluated (that

is, a proof is searched for), keys may extrude their scope and move freely onto

the network. This dynamic notion of scope extrusion is similar to that found in

the π-calculus [Milner et al., 1992a] and is modeled here similar to an encoding

of the π-calculus into linear logic found in [Miller, 1993].

Example 9.3. Figure 9.3 contains a linear logic implementation of the NS

protocol contained in Figure 9.2. Let C1, . . . , C6 be the six role clauses in

Figure 9.3 (remembering that there are implicit universal quantifiers around

role clauses). It is a simple matter to show that this protocol implements the

specification

∀x[a1 x ` b1 ` s1 › a4 ` b3 x]

in the sense that there is a simple proof of the Forum sequent

Σ, kas, kbs : C1, . . . , C6; · ` ∀x[a4 ` b3 x(a1 x ` b1 ` s1]; ·

That is, this protocol is able to transform the initial states of Alice (with some

secret), Bob, and the server to the final states of Alice and Bob (now with the

secret).

Example 9.4. Consider the following two clauses for Alice.

a K◦ ` N (K M) › a′ M. (3.1)

a ` N (K M) › a′ M. (3.2)

In the first case, Alice possesses an encryption key and uses it to decrypt

a network message. In the second case, it appears that she is decrypting a

9.5 Abstracting internal states 187

message without knowing the key, an inappropriate behavior, of course. Note

that (3.2) is logically equivalent (and, hence, operationally indistinguishable

using proof search) to both of the formulas

∀M∀X[a ` NX › a′ M] and ∀X[a ` NX › ∃M.a′ M].

This last clause clearly illustrates that Alice is not actually decoding an ex-

isting message but is simply guessing (using ∃) at some data value M , and

continues with that guess as a′M . If one thinks operationally instead of declar-

atively about proof search involving clause (3.2), we would consider possible

unifiers for matching the pattern (K M) with a network message, say, (k s),

for two constants k and s. Unification on simply typed λ-terms yields exactly

the following three distinct unifiers:

[M 7→ (k s),K 7→ λw.w] [M 7→ s,K 7→ k] [M 7→M,K 7→ λw.(k s)]

Thus, M can be bound to either (k s) or s or any term: in other words, M

can be bound to any expression of type d.

Exercise 9.5. The logical entailment can help in reasoning about role clauses

and theories: such entailments are strengthened by the presence of quantifi-

cation at type d→ d. Consider the two clauses

a1 › ∀k.N (k m) and a1 › ∀k.N (k m′).

Both of these clauses specify that Alice can take a step that generates a new

encryption key and then outputs a message (either m or m′) using that en-

cryption key. Since Alice has no continuation, no one, not even Alice will be

able to decode this message. It should be the case that these two clauses are

“operationally” similar since they both generate a “junk message.” Show that

these formulas are, in fact, logically equivalent.

What is missing here is a kind of converse to the claim in Exercise 9.3.

9.5 Abstracting internal states

The following example illustrates that using existential quantification over

predicates (in particular, role state predicates) allows interesting rewriting of

the structure of role theories.

Example 9.6 (Reducing n-way to 2-way synchronization). General n-way

synchronization (n ≥ 3) can be rewritten using 2-way synchronization by the

188 Chapter 9. Encoding security protocols

introduction of new, intermediate, and hidden predicates. For example, the

following two formulas are logically equivalent.

∃l1∃l2.


a ` b› l1
l1 ` c› l2 ` e

l2 › d ` f

 a` a ` b ` c› d ` e ` f

The clause on the right specifies a 3-way synchronization and the spawning of

3 new atoms whereas the formula on the left is limited to rewriting at most

two atoms into at most 2 atoms. The proof of the forward entailment in linear

logic is straightforward while the proof of the reverse entailment involves the

two higher-order substitutions of a ` b for ∃l1 and d ` f for ∃l2. As long

as we are using logical entailment, these two formulas are indistinguishable

and can be used interchangeably in all contexts. If instead we could observe

possible failures in the search for proofs, then it is possible to distinguish these

formulas: consider the search for a proof of a sequent containing a and b but

not c. The proof theory of linear logic we have presented here does not observe

such failures since that proof theory is generally involved with reasoning about

complete proofs.

Existential quantification over program clauses can also be used to hide

predicates encoding roles. In fact, one might argue that the various restrictions

on sets of process clauses (no synchronization directly with atoms encoding

roles and no role changing into another role) might all be considered a way

to enforce locality (i.e., hiding) of predicates. Existential quantification can,

however, achieve this same notion of locality but much more directly.

Example 9.7 (Hiding role state predicates). The following two formulas are

logically equivalent:

∃ a2, a3.


a1 ` Nm0 › a2 ` Nm1

a2 ` Nm2 › a3 ` Nm3

a3 ` Nm4 › a4 ` Nm5

 a`

a1 ` Nm0 › (Nm1 › (Nm2 › (Nm3 › (Nm4 › (Nm5 ` a4)))))

The changing of polarity that occurs when moving to the body of a › flips

expressions from output (e.g., Nm1) to input (e.g., Nm2), etc.

We develop the observation made in this example to a larger extent in the

next section.

9.6 Roles as nested implications 189

9.6 Roles as nested implications

The observation that abstracting over internal states results in an equivalent

syntax with nested › suggests an alternative syntax for roles. Consider the

following two syntactic categories of linear logic formulas:

H ::= A | ⊥ | H ` H K ::= H | H › K | ∀x.K

Here, A denotes the class of atomic formulas encoding network messages (in

particular, formulas of the form N ·). Formulas belonging to the class H denote

bundles of messages that are used as either input or output to the network.

Formulas belonging to the class K can have deep nesting of implications. As

we shall see, the nesting of › causes an alternation between a process that is

willing to output a message to one that is willing to input a message.

To see this mechanism in the proof search setting, consider a sequent ∆ −→
Γ, where ∆ is a multiset of K formulas and Γ are multisets of K formulas

(here, we elide the signature associated to a sequent). The right-hand side of

sequents involve asynchronous behavior (output) and left-hand side of sequents

involve synchronous behavior (input). The two rules involving proof search

with implications can be written as follows:

∆,K −→ Γ, H,A
∆ −→ H › K,Γ,A

H −→ A1 ∆ −→ K,A2

∆, H › K −→ A1,A2

Here, A denotes a multiset of atoms (i.e., network messages). Note that we can

assume that the left-introduction rule for › is only done when the right-hand

side of the concluding sequent contains at most atomic formulas.

Figure 9.4 contains three formulas are displayed: the first represents the

role of Alice, the second Bob, and the final one the server. (All agents in this

figure are written at the same polarity, in this case, in output mode: since

Bob and the server essentially start with inputs, these two agents are negated,

meaning they first output nothing and then move to input mode.) These

formulas are a second way to encode the NS protocol within linear logic. If

the three formulas in Figure 9.4 are placed on the right-hand side of a sequent

arrow (with no formulas on the left) then the role formula for Alice will output

a message and move to the left-side of the sequent arrow (reading inference

rules bottom up). Bob and the server output nothing and move to the left-

hand side as well. At that point, the server will need to be chosen for a (L

inference rule, which will cause it to input the message that Alice sent and then

move its continuation to the right-hand side. It will then immediately output

another message, and so on. If a role for the server should be permanent, then

the first line of Figure 9.4 for the server could be simply changed by replacing

› with ⇐.

190 Chapter 9. Encoding security protocols

(Out) ∀na. N 〈alice, bob, na〉›
(In) (∀K∀En. N (kas〈na, bob, K◦, En〉) ›
(Out) (NEn›
(In) (∀N. N (KN) ›
(Out) (N (Kab〈N, secret〉) ›
(Cont) a4))).

The role for Alice

(Out) ⊥›
(In) (∀Key. N kbs(Key◦, alice) ›
(Out) (∀nb. N (Key nb) ›
(In) (N (Key〈nb, secret〉) ›
(Cont) b3 secret))).

The role for Bob

(Out) ⊥›
(In) (∀N. N 〈alice, bob, N〉›
(Out) (∀k. N kas〈N, bob, k◦, kbs(k◦, alice)〉)).

The role for the server

Figure 9.4: The roles of Alice, Bob, and a server

Various equivalences familiar from the study of asynchronous communi-

cation are found in linear logic. For example, if one skips a phase, the two

phases can be contracted as follows:

p› (⊥› (q › k)) ≡ p ` q › k

p› (⊥› ∀x(q x› k x)) ≡ ∀x(p ` q x› k x)).

While the nested presentation of roles is in some sense, more complicated

syntax than the form using role clauses, this presentation certainly has its

advantages. For example, there is only one predicate, namely N ·, involved in

writing out security protocols: role identifiers and role state predicates have

disappeared. A role can now be seen as simply a formula and a role theory as

simply an existentially quantified tensor of roles.

9.6 Roles as nested implications 191

Do the following proposition and proof more carefully.

Proposition 9.8. For every role theory in which only the predicate N · is free,

there is a collection of role formulas to which it is provably equivalent.

Proof. This proposition is proved by showing how to remove the existentially

quantified role state predicate with maximal index by generating the appro-

priate higher-order substitution (similar to those produced in Example 9.6).

When no more quantified role state predicates remain, the resulting theory is

the desired collection of role formulas.

The style of specification given in Figure 9.4 is similar to that of process

calculus: in particular, the implication › is syntactically similar to the dot

prefix in, say, CCS. Universal quantification can appear in two modes: in

output mode it is used to generate new eigenvariables (similar to the π-calculus

restriction operator) and in input mode it is used for variable binding (similar

to value-passing CCS). The formula a › (b › (c › (d › k))) can denote

processes described as

ā || (b. (c̄ || (d. . . .))) or a. (b̄ || (c. (d̄ || . . .)))

depending on which polarity it is being used. This formula and it’s negation

can also be written without linear implications as follows:

a ` (b⊥ ⊗ (c ` (d⊥ ⊗ . . .))) resp, a⊥ ⊗ (b ` (c⊥ ⊗ (d ` . . .))).

Once a process with a continuation (that is, one that has an implication)

has done an output (input), its continuation is an input (output) process.

The following two examples illustrate a difference between the abstractions

available in logic with those available in the π-calculus and the spi-calculus.

Example 9.9 (Comparison with the π-calculus). The π-calculus expression

(x)(x̄m | x(y).Py)

is (weakly) bisimilar to the expression (Pm). This example is used to show

that communication over a hidden channel provides no possible means for the

environment to interact. A similar expression can be written as the following

expression in linear logic:

∀K[Km ` (∀x(Px(Kx)(⊥)].

Here, we have abstracted the predicate K: in a sense, we have abstracted the

communication medium itself, and as such, the medium is available only for

192 Chapter 9. Encoding security protocols

the particular purpose of communicating the message m from one process to

another that is willing to do an input. This expression is logically equivalent

to (Pm): the proof that (Pm) implies the displayed formula involves a use of

equality (easy to add to the underlying logic in several ways) and the higher-

order substitution λw.(w = m)(⊥ for K.

Example 9.10 (Comparison with the spi-calculus). In the spi-calculus [Abadi

and Gordon, 1999], a “public” channel can be used for communicating. To

ensure that messages are only “understood” by the appropriate parties, mes-

sages are encrypted with keys that are given specific scopes. For example, the

expression

(k)(q̄({m}k) | q(y).let {x}k = y in Px)

describes a process that is willing to output an encrypted message {m}k on a

public channel q and to also input such a message and decode it. The key k

is given a scope similar to that given in the π-calculus expression. The linear

logic expression, call it B,

∀k[N (k m) ` (∀x(Px(N (k x)))(⊥]

is most similar to this spi-calculus expression: here, the network N · corre-

sponds to the public channel q. It is not the case, however, that B is logically

equivalent to Pm since linear logic can observe that B can output something

on the public channel, that is, ∀y(>(N y) ` B whereas it is not necessarily

true that ∀y(>(N y) ` Pm is provable.

9.7 Bibliographic notes

Many of the examples from this chapter were taken from [Miller, 2003] and

some of those have been inspired by material on encoding security protocols

in MSR (multiset rewriting) found in [Cervesato et al., 1999, 2000a; Cervesato

and Stehr, 2007].

While high-level specifications of secure channels in systems like the π-

calculus or proof theory are elegant to use, it is possible to provide lower level

implementations using encryption of such high-level constructs [Abadi et al.,

2002].

Andreoli used a compilation method [Andreoli, 1992] collection of bipolar

formulas. Applying his compiling technique to the formula in Figure 9.4 yields

the formulas in Figure 9.3: the new constants introduced by compilation are

the names used to denote role continuation.

248 Chapter 9. Encoding security protocols

Chapter13
Solutions to selected exercises

Solution to Exercise 2.3 (page 13). E2 normalizes to the Church encoding

of 16. In general, En has the λ-normal form that encodes the number

222
··
·2
}
n+1

There are n+ 1 occurrences of 2 in this expression.

Solution to Exercise 2.4 (page 13). The abstraction (λx.w) is vacuous,

i.e., x is not free in its scope (which is just the variable w). Since substitution

is capture-avoiding, every instance of that term remains a vacuous abstraction.

Since the term λy.y is not a vacuous abstraction, no such expression for N is

possible.

Solution to Exercise 2.5 (page 15). The proof of uniqueness is a simple

induction on the structure of typing judgment proofs. For the second part

of this question, let Σ be the empty signature, let t be the λ-term λx.x, and

assume that S contains two different primitive sorts a and b. Then we have

both Σ `̀ t : a→ a and Σ `̀ t : b→ b.

Solution to Exercise 3.2 (page 28). The multiplicative version of the ∧R

rule is
Σ : Γ ` ∆, B Σ : Γ′ ` ∆′, C

Σ : Γ,Γ′ ` ∆,∆′, B ∧ C ∧Rm.

As the following derivation shows, the weakening rules and the additive ∧R

rule can be used to derive the multiplicative ∧Rm rule.

Σ : Γ ` ∆, B

Σ : Γ,Γ′ ` ∆,∆′, B
wR,wL

Σ : Γ ` ∆, C

Σ : Γ,Γ′ ` ∆,∆′, c
wR,wL

Σ : Γ,Γ′ ` ∆,∆′, B ∧ C ∧R

250 Chapter 13. Solutions to selected exercises

As the following derivation shows, the contraction rules and the multiplicative

∧Rm rule can be used to derive the additive ∧R rule.

Σ : Γ ` ∆, B Σ : Γ ` ∆, C

Σ : Γ,Γ ` ∆,∆, B ∧ C ∧Rm

Σ : Γ ` ∆, B ∧ C
cR, cL

Solution to Exercise 4.1 (page 36). Since
√

2
√

2
is either rational or

irrational we have two cases to consider. In the case that
√

2
√

2
is rational,

then set a = b =
√

2. In the case that
√

2
√

2
is irrational, then set a =

√
2
√

2

and b =
√

2. A more satisfying and constructive proof of this fact results

from assigning a =
√

2 and b = log2 9. R. Kuzmin [1930] proved that
√

2
√

2
is

transcendental.

Solution to Exercise 4.3 (page 39). Of these examples, (3), (4), (5), (6),

and (7) all have C-proofs but no I-proofs. A C-proof of (5) is

p ` p init

p ` q, p wR

` p ⊃ q, p ⊃R
p ` p init

(p ⊃ q) ⊃ p ` p, p ⊃L

(p ⊃ q) ⊃ p ` p cR

· ` ((p ⊃ q) ⊃ p) ⊃ p ⊃R

Solution to Exercise 4.5 (page 40). The list of pairs for which entailment

is provable in classical logic is

{〈A,¬¬A〉, 〈¬¬A,A〉, 〈¬A,¬¬¬A〉, 〈¬¬¬A,¬A〉, }

The list of pairs for which entailment is provable in intuitionistic logic is the

same list except that the pair 〈¬¬A,A〉 is removed.

Solution to Exercise 4.7 (page 40). Assume that S contains the primitive

types i and j. The following is an I-proof.

f : i→ j, y : i `̀ (f y) : j f : i→ j, y : i : · ` t
tR

f : i→ j, y : i : · ` ∃jx t
∃R

f : i→ j, y : i : · ` ∀iy∃jx t
∀R

f : i→ j : · ` (∃jx t) ∨ (∀iy∃jx t)
∨R

The following is an C-proof.

f : i→ j : · ` (∃jx t) ∨ (∀ix f)

251

f : i→ j, x : i `̀ (f x) : j f : i→ j, x : i : · ` t , f
tR

f : i→ j, x : i : · ` ∃jx t , f
∃R

f : i→ j : · ` ∃jx t , ∀ix f
∀R

f : i→ j : · ` (∃jx t) ∨ (∀ix f), (∃jx t) ∨ (∀ix f)
∨R× 2

f : i→ j : · ` (∃jx t) ∨ (∀ix f)
cR

There is no I-proof of this sequent since the contraction of the right is necessary

to complete a proof. In both this example and in Exercise 4.3(4), completing a

proof requires two subformulas separated by a disjunction to “communicate”

in the sense that one disjunction puts into the sequent context some item (here,

an eigenvariable and in Exercise 4.3(4) an assumption) that the other disjunct

needs. This communication can happen in the proof if that disjunction is

contracted on the right.

Solution to Exercise 4.9 (page 41). We provide a high-level outline of the

proof: various details need to be filled in.

For one direction, we shall show how to transform a C-proof with a gener-

alized restart rule to a C-proof without restart. Since I-proofs are C-proofs,

this establishes the forward implication. Restarts can be removed one-by-one

via the following transformation.

Ξ
Σ : Γ ` B,∆
Σ : Γ ` C,∆ Restart

...
Σ′ : Γ′ ` B,∆′

=⇒

Ξ
Σ : Γ ` B,∆

Σ : Γ ` C,B,∆ wR

...
Σ′ : Γ′ ` B,B,∆′ cR

Σ′ : Γ′ ` B,∆′

That is, the restart rule can be implemented using a contraction and a weak-

ening on the right. It is easy to confirm that the formula B can be added to

all possible inference rules below this occurrence of the restart rule.

For a sketch of the converse direction, consider a C-proof. Mark a formula

on the right-hand side of every sequent as follows. The single formula on

the right of the endsequent is marked (assuming that we start proof search

with a single formula to prove). If the last inference rule of the proof is

a left-introduction rule, then the marked occurrence of the formula in the

conclusion is also marked in all the premises. If the last inference rule is a

right-introduction rule, then we have two cases: If the introduced formula is

already marked, then mark its subformulas that appear in the right-hand side

of any premise (for example, if the marked formula is A ⇒ B then mark B

in the premise; if the marked formula is A ∧ B then mark A in one premise

and B in the other; etc). Otherwise, the right-hand formula introduced is not

marked, in which case, we have a marking break, and we mark in the premises

252 Chapter 13. Solutions to selected exercises

of the inference rules the subformulas of the right-hand formula introduced

and continue. The only other rules that might be applied are: cL, in which

case the marked formula on the right persists from conclusion to premise; cL,

in which case, if the marked formula is the one contracted then select one of

its copies to mark in the premise, otherwise, the marked formula persists in

the premise; and init, in which case, if the marked formula on the right is not

the same as the formula on the left, then this occurrence of the init rule is also

a marking break.

To illustrate this notion of marking formulas, consider the following anno-

tated C-proof.

p ` p, q∗, p ⊃ q, p ∨ (p ⊃ q) init∗

` p, (p ⊃ q)∗, p ⊃ q, p ∨ (p ⊃ q) ⊃R

` p, (p ⊃ q)∗, p ∨ (p ⊃ q) cR

` p∗, p ∨ (p ⊃ q), p ∨ (p ⊃ q) ∨R∗

` p∗, p ∨ (p ⊃ q) cR

` p ∨ (p ⊃ q)∗, p ∨ (p ⊃ q) ∨R

` p ∨ (p ⊃ q)∗ cR

Here, an asterisk is used to indicate marked formulas and to indicate which

inference rules correspond to marking gaps.

Now the I-proof with Restart is built as follows. For sequents that are the

conclusion of a rule that is not a marking break, delete all non-marked formula

on the right. For sequents that are the conclusion of a rule that is a marking

break, then this one inference rule become two: an instance of the Restart

rule must be inserted and then the version of the inference rule corresponding

to the marking break is put into the proof with the non-marked right-hand

formulas deleted.

For example, performing this transformation on the C-proof yields the

following structure.

p ` p init

p ` q Restart

` p ⊃ q ⊃R

` p ⊃ q cR

` p ∨ (p ⊃ q) ∨R

` p Restart

` p cR

` p ∨ (p ⊃ q) ∨R

` p ∨ (p ⊃ q) cR

This sequence of rules is not yet an I-proof: there are three occurrences of cR

that are not allowed in I-proofs: these can either be deleted or reclassified as

Restart rules.

253

Solution to Exercise 4.15 (page 45). Let Π1 and Π2 be the following

proofs of p ` f and ` p, respectively.

p ` p init
f ` f

init

p, p ⊃ f ` f
⊃L

p, p ` f
defL

p ` f
cL

Π1

p ` f

` p ⊃ f
⊃R

` p defR

Clearly, by defining p to be ¬p (hence, the equivalence p ≡ ¬p is provable),

one is asking for trouble. It turns out that if the ambient logic does not

have the contraction rules (such as in linear logic), it is not possible for such

a problematic definition to yield an inconsistency [Girard, 1992; Schroeder-

Heister, 1993].

Solution to Exercise 4.17 (page 46). Let Dk be the formula ∀x(p x ⊃
p (f2kx) sequent (k > 1). Prove that Dk+1 can be proved from Dk. Show how

these lemmas can be organized into a complete proof of, for example, p(f256a).

Solution to Exercise 4.20 (page 50). The following inference rules can

used to prove the invertibility of ∨L and ∀R. The remaining two cases can be

proved in a similar fashion.

B ` B init

B ` B ∨ C ∨R Ξ
Γ, B ∨ C ` ∆

Γ, B ` ∆
cut

C ` C init

C ` B ∨ C ∨R Ξ
Γ, B ∨ C ` ∆

Γ, C ` ∆
cut

Γ, B ∨ C ` ∆
∨L

Ξ
Σ′ : Γ ` ∀τx.B,∆

Σ′ : B[c/x] ` B[c/x]
init

Σ′ : ∀τx.B ` B[c/x]
∀L

Σ′ : Γ ` B[c/x],∆
cut

Σ : Γ ` ∀τx.B,∆
∀R.

Here, Σ′ is the signature Σ, c : τ and c is not declared in Σ. Note that if we

start with a proof Ξ of the sequent Σ : Γ ` ∀τx.B,∆ then it is a simple matter

to view Ξ as a proof of Σ′ : Γ ` ∀τx.B,∆.

Solution to Exercise 5.7 (page 60). Let the Σ-formulas D0, . . . , Dn (n ≥ 0)

be Horn clauses using description (5.3). Thus, D0 is of the form

∀x̄1.(A1 ⊃ · · · ⊃ (∀x̄m.Am ⊃ ∀x̄0.A0))

where m ≥ 0 and x̄0, . . . x̄m are lists of variables, all of which are distinct. It is

an easy matter to show that ⊃R and ∀R are invertible rules within C-proofs.

In particular, the sequent Σ : D1, . . . , Dn ` D0 has a C-proof if and only if

Σ, x̄0, x̄1, . . . x̄m : D1, . . . , Dn, A1, . . . , Am ` A0

254 Chapter 13. Solutions to selected exercises

has a C-proof. Since all the formulas on the left-hand side of this sequent are

Horn clauses, the result follows directly from Proposition 5.6. We can also

allow Horn clauses using description (5.2): we would simply need to prove

the invertibility of additional introduction rules. The result that the classical

entailment among Horn clauses implies their intuitionistic entailment can be

generalized to geometric formulas, in which case that result is often referred

to as the Barr Theorem [Negri, 2016].

Solution to Exercise 5.8 (page 60). Exercise 4.3(5) provides a C-proof of

((p ⊃ q) ⊃ p) ⊃ p. It is easy to see that there is no I-proof (and, hence, no

uniform proof) of this formula. Now assume that there is another formula, say,

A which only contains implications and is strictly smaller while also having a

C-proof but no I-proof. Thus B contains 2 or fewer occurrences of implica-

tions. Thus, B is of clausal order 2 or less and is of the form (A1 ⊃ (A2 ⊃ A3))

or ((A1 ⊃ A2) ⊃ A3) where A1, A2, A3 are atomic formulas. Thus attempt-

ing a cut-free proof of B leads to attempting proofs of either A1, A2 ` A3

or A1 ⊃ A2 ` A3. In either case, we have a sequent involving only Horn

clauses and, as a result of Proposition 5.6, if it is classically provable it is also

intuitionistically provable. This is a contradiction.

Solution to Exercise 5.28 (page 76). Let Γ1,Γ2 be multisets of ⇓ L0

formulas and let B and C be ⇓L0 formulas. Assume that Σ : Γ1 ` B and

Σ : B,Γ2 ` C have cut-free I-proofs. By completeness of ⇓L0-proofs, these

sequents also have ⇓L0-proofs. By the admissibility of weakening (Proposi-

tion 5.21), we have Σ : B,Γ1,Γ2 ` C and Σ : Γ1,Γ2 ` B have ⇓L0-proofs.

By the admissibility of cut (Theorem 5.26), the sequent Σ : Γ1,Γ2 ` C has an

⇓L0-proof. Finally, by the soundness of ⇓L0-proofs (Theorem 5.15), we have

Σ : Γ1,Γ2 ` C has a cut-free I-proof.

Solution to Exercise 5.42 (page 91). Assume that there is an fohh program

Γ that satisfies the following specification: for every set k ≥ 1 and {n1, . . . , nk},
we have A,Γ Ì maxa n if and only if n is the maximum of the set {n1, . . . , nk}
and A is the set of atomic formulas {a n1, . . . , a nk}. Let A be the set of atoms

{a z, a (s z)} and let A′ be the set of atoms {a z, a (s z), a (s (s z))}. Thus, it

must be the case that A,Γ Ì maxa (s z). But by the monotonicity property

of intuitionistic provability, A′,Γ Ì maxa (s z) but this is a contradiction to

the choice of Γ, since (s z) is not the maximum of the set of numbers encoded

in A′.

Solution to Exercise 5.43 (page 91). Assume that the logic program Γ

defines the notconnected predicate. Using the graph described in Figure 5.5,

it must be the case that notconnected a e is provable. But if we add adj a e

to the logic program, the monotonicity property must force notconnected a e

to be provable in that extended program. But this contradicts the assumption

255

about notconnected.

Solution to Exercise 5.45 (page 93). Assume that there is a fohh-logic

specifications P over the signature ΣP . Also assume that this signature con-

tains the constants a : i and f : i → i → i. Also, assume that the constants

d : i and e : i are not declared in ΣP . By the specification of subAll, it is the

case that

d : i, e : i,ΣS Ì subAll d a (f d e) (f a e).

By Proposition 5.44 and using the substitution of e for d, we know that

e : i,ΣS Ì subAll e a (f e e) (f a e).

But this contradicts the specification for subAll.

Solution to Exercise 6.2 (page 103). Assume that there is a cut-free proof

of

` p⊗ q, p⊥ ⊗ q, p⊗ q⊥, p⊥ ⊗ q⊥

Because of the symmetry of replacing p with p⊥ and q with q⊥, we can as-

sume without loss of generality that this sequent is proved by the following

occurrence of the ⊗R rule.

` p,∆ ` q,∆′

` p⊗ q, p⊥ ⊗ q, p⊗ q⊥, p⊥ ⊗ q⊥
⊗R

Here, ∆ and ∆′ are multisets whose union is the three element multiset p⊥ ⊗
q, p⊗ q⊥, p⊥⊗ q⊥. Note first that neither ∆ nor ∆′ can be empty. Note also

that neither ∆ nor ∆′ can be a singleton: a simple case analysis show that

if one of these multisets is a singleton then the corresponding premise is not

provable. We have reached a contradiction when we note that every possible

partition of 3 elements must contain either an empty or singleton partition.

Solution to Exercise 6.5 (page 104). It is an easy matter to show that

for every prefix π ranging from the empty prefix, to !, ?, ! ?, ? !, ! ? !, and ? ! ?

satisfies the equivalence ππB ≡ πB for all formulas B. For example, the case

for π = ? ! leads to proving the following two entailments.

? !B ` ? !B
init

! ? !B ` ? !B
!D

? ! ? !B ` ? !B
?L

!B ` !B
init

!B ` ? !B
?D

!B ` ! ? !B
!R

!B ` ? ! ? !B
?D

? !B ` ? ! ? !B
?L

For the case that π = ! ? ! can be done in a similar fashion or via a chain of

equivalences (given that the cut-elimination result allows for rewriting subfor-

mulas by equivalent subformulas) such as the following.

! ? ! ! ? !B ≡ ! ? ! ? !B ≡ ! ? !B.

256 Chapter 13. Solutions to selected exercises

Here, we assume that the equivalences associated with ! and with ? ! have

already been proved. We can now prove that any prefix that has length 4 or

more must be equivalence to one of shorter length. Let π be a prefix of length

4 or more, thus we can write it as b1b2b3b4π
′ where the bi’s are either ! or ?.

These first four position must alternate between these two flavors exponentials

since otherwise they must contain either ! ! or ? ? (which can be shortened).

Thus, π must be either ! ? ! ?π′ or ? ! ? !π′. In the first case, we repeat ! ? and

in the second case we repeat ? !. In either case, these repeated patterns can

be shortened.

Solution to Exercise 6.17 (page 113). We use the six linear logic connec-

tives {>,&,⊥,(,⇒, ∀} to define the remaining connectives.

B⊥ ≡ B(⊥ 0 ≡ >(⊥ 1 ≡ ⊥(⊥ !B ≡ (B ⇒ ⊥)(⊥

B ⊕ C ≡ ((B(⊥) & (C (⊥))(⊥ B ⊗ C ≡ (B(C (⊥)(⊥

∃x.B ≡ (∀x(B(⊥))(⊥

?B ≡ (B(⊥)⇒ ⊥ B ` C ≡ (B(⊥)(C

Solution to Exercise 7.1 (page 145). Prove by induction on n that if Γ is a

multiset of atoms and P is a tensor of atoms A1⊗· · ·⊗An (n ≥ 0) then Γ ` P
is provable if and only if Γ is equal to the multiset {A1, . . . , An}. If n = 0

then this case is immediate since P is 1 and Γ is empty. Now, assume that

n > 0 and that P is (A1 ⊗ · · · ⊗Ai)⊗ (Ai+1 ⊗ · · · ⊗An). If Γ ` P is provable

then there is a multiset partition of Γ into Γ1 and Γ2 such that both sequents

Γ1 ` A1⊗· · ·⊗Ai and Γ2 ` Ai+1⊗· · ·⊗An are provable. By induction, we have

that Γ1 is {A1, . . . , Ai} and Γ2 is {Ai+1, . . . , An} and, hence, Γ is {A1, . . . , An}.
For the converse, assume that Γ1 and Γ2 are the multiset of atomic formula

occurrences in P1 and P2, respectively. By induction, the sequents Γ1 ` P1

and Γ2 ` P2 are provable and, hence, so is Γ ` P .

Solution to Exercise 7.4 (page 150). Let the program P be the result of

adding the declarations and clauses for leq from Figure 5.3 to the following

declarations and clauses.

type maxa nat -> o.

maxa M :- a M.

maxa M :- a N, a P, leq N P, (a P -o maxa M).

Solution to Exercise 7.5 (page 150). Let the program P be the result of

adding the declarations and clauses for sum from Figure 5.3 to the following

declarations and clauses.

257

type sumall nat -> o.

sumall M :- a M.

sumall M :- a N, a P, sum N P S, (a S -o sumall M).

258 Chapter 13. Solutions to selected exercises

Bibliography

Mart́ın Abadi and Andrew D. Gordon. A calculus for cryptographic protocols:

The spi calculus. Information and Computation, 148(1):1–70, 1999. (Cited

on page 192.)

Mart́ın Abadi, Cédric Fournet, and Georges Gonthier. Secure implementation

of channel abstractions. Information and Computation, 174(1):37–83, 2002.

(Cited on page 192.)

Samson Abramsky. Computational interpretations of linear logic. Theoretical

Computer Science, 111:3–57, 1993. (Cited on page 5.)

Alexander Aiken. Set constraints: results, applications, and future directions.

In PPCP94: Principles and Practice of Constraint Programming, number

874 in LNCS, pages 171–179, 1994. (Cited on page 226.)

Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic.

J. of Logic and Computation, 2(3):297–347, 1992. doi: 10.1093/logcom/2.3.

297. (Cited on pages 94, 142, 192, 226, 227, 228, and 237.)

Peter B. Andrews. Provability in elementary type theory. Zeitschrift fur

Mathematische Logic und Grundlagen der Mathematik, 20:411–418, 1974.

(Cited on page 11.)

Andrew W. Appel and Amy P. Felty. Polymorphic lemmas and definitions

in λProlog and Twelf. Theory and Practice of Logic Programming, 4(1-2):

1–39, 2004. doi: 10.1017/S1471068403001698. (Cited on page 20.)

K. R. Apt and M. H. van Emden. Contributions to the theory of logic pro-

gramming. J. of the ACM, 29(3):841–862, 1982. (Cited on pages 8 and 93.)

Ali Assaf. A framework for defining computational higher-order logics. PhD

thesis, École Polytechnique, September 2015. (Cited on page 235.)

260 Bibliography

David Baelde. Least and greatest fixed points in linear logic. ACM Trans.

on Computational Logic, 13(1):2:1–2:44, April 2012. doi: 10.1145/2071368.

2071370. (Cited on page 143.)

David Baelde and Dale Miller. Least and greatest fixed points in linear logic.

In N. Dershowitz and A. Voronkov, editors, International Conference on

Logic for Programming and Automated Reasoning (LPAR), volume 4790 of

LNCS, pages 92–106, 2007. doi: 10.1007/978-3-540-75560-9\ 9. (Cited on

page 143.)

David Baelde, Kaustuv Chaudhuri, Andrew Gacek, Dale Miller, Gopalan Na-

dathur, Alwen Tiu, and Yuting Wang. Abella: A system for reasoning about

relational specifications. Journal of Formalized Reasoning, 7(2):1–89, 2014.

doi: 10.6092/issn.1972-5787/4650. (Cited on page 11.)

Jean-Pierre Banâtre and Daniel Le Métayer. Programming by Multiset Trans-

formation. Communications of the ACM, 36(1):98–111, January 1993.

(Cited on page 194.)

Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume

103 of Studies in Logic and the Foundations of Mathematics. Elsevier, New

York, revised edition, 1984. (Cited on page 19.)

Henk Barendregt, Wil Dekkers, and Richard Statman. Lambda Calculus with

Types. Perspectives in Logic. Cambridge University Press, 2013. (Cited on

page 19.)

C. Benzmüller, C. E. Brown, and M. Kohlhase. Cut-simulation and im-

predicativity. Logical Methods in Computer Science, 5(1):1–21, 2009. doi:

10.2168/LMCS-5(1:6)2009. (Cited on page 176.)

Christoph Benzmüller and Peter Andrews. Church’s Type Theory. In Ed-

ward N. Zalta, editor, The Stanford Encyclopedia of Philosophy. Meta-

physics Research Lab, Stanford University, summer 2019 edition, 2019.

(Cited on page 8.)

G. Berry and G. Boudol. The chemical abstract machine. Theoretical Com-

puter Science, 96:217–248, 1992. (Cited on page 194.)

Katalin Bimbó. Proof Theory: Sequent Calculi and Related Formalisms. CRC

Press, 2015. (Cited on pages 34 and 54.)

Stefano Bistarelli, Iliano Cervesato, Gabriele Lenzini, and Fabio Martinelli.

Relating multiset rewriting and process algebras for security protocol anal-

ysis. Journal of Computer Security, 13(1):3–47, 2005. (Cited on page 194.)

Bibliography 261

Roberto Blanco and Dale Miller. Proof outlines as proof certificates: a sys-

tem description. In Iliano Cervesato and Carsten Schürmann, editors, Pro-

ceedings First International Workshop on Focusing, volume 197 of Elec-

tronic Proceedings in Theoretical Computer Science, pages 7–14. Open Pub-

lishing Association, November 2015. doi: 10.4204/EPTCS.197.2. URL

http://www.eprover.org/EVENTS/IWIL-2015.html. (Cited on page 237.)

Robert S. Boyer and J. Strother Moore. A Computational Logic. Academic

Press, 1979. (Cited on page 235.)

Pascal Brisset and Olivier Ridoux. Näıve reverse can be linear. In Koichi Fu-

rukawa, editor, Eighth International Logic Programming Conference, Paris,

France, June 1991. MIT Press. (Cited on page 230.)

Paola Bruscoli and Alessio Guglielmi. On structuring proof search for first

order linear logic. Theoretical Computer Science, 360(1-3):42–76, 2006. doi:

10.1016/j.tcs.2005.11.047. (Cited on page 142.)

M. Bugliesi, E. Lamma, and P. Mello. Modularity in logic program-

ming. Journal of Logic Programming, 19/20:443–502, 1994. doi: 10.1016/

0743-1066(94)90032-9. (Cited on page 94.)

Iliano Cervesato and Mark-Oliver Stehr. Representing the MSR cryptopro-

tocol specification language in an extension of rewriting logic with de-

pendent types. Higher-Order Symbolic Computation, 20:3–35, 2007. doi:

10.1007/s10990-007-9003-3. (Cited on page 192.)

Iliano Cervesato, Joshua Hodas, and Frank Pfenning. Efficient resource man-

agement for linear logic proof search. In Roy Dyckhoff, Heinrich Herre, and

Peter Schroeder-Heister, editors, 7th Workshop on Extensions to Logic Pro-

gramming, LNAI, pages 28–30, Leipzig, Germany, March 1996. Springer.

(Cited on page 143.)

Iliano Cervesato, Nancy A. Durgin, Patrick D. Lincoln, John C. Mitchell, and

Andre Scedrov. A meta-notation for protocol analysis. In R. Gorrieri, editor,

Proceedings of the 12th IEEE Computer Security Foundations Workshop —

CSFW’99, pages 55–69, Mordano, Italy, 28–30 June 1999. IEEE Computer

Society Press. (Cited on pages 183, 192, and 194.)

Iliano Cervesato, Nancy A. Durgin, Patrick D. Lincoln, John C. Mitchell,

and Andre Scedrov. Relating strands and multiset rewriting for security

protocol analysis. In P. Syverson, editor, 13th IEEE Computer Security

Foundations Workshop — CSFW’00, pages 35–51, Cambridge, UK, 3–5

July 2000a. IEEE Computer Society Press. (Cited on page 192.)

http://www.eprover.org/EVENTS/IWIL-2015.html

262 Bibliography

Iliano Cervesato, Joshua S. Hodas, and Frank Pfenning. Efficient resource

management for linear logic proof search. Theoretical Computer Science,

232(1-2):133–163, 2000b. (Cited on page 143.)

Kaustuv Chaudhuri. The Focused Inverse Method for Linear Logic. PhD

thesis, Carnegie Mellon University, December 2006. Technical report CMU-

CS-06-162. (Cited on page 142.)

Kaustuv Chaudhuri. Encoding additives using multiplicatives and subex-

ponentials. Math. Structures in Computer Science, 28(5):651–666, 2018.

doi: 10.1017/S0960129516000293. URL http://chaudhuri.info/papers/

draft15mallmsel.pdf. (Cited on page 142.)

Kaustuv Chaudhuri, Dale Miller, and Alexis Saurin. Canonical sequent proofs

via multi-focusing. In G. Ausiello, J. Karhumäki, G. Mauri, and L. Ong,

editors, Fifth International Conference on Theoretical Computer Science,

volume 273 of IFIP, pages 383–396. Springer, September 2008a. doi: 10.

1007/978-0-387-09680-3\ 26. (Cited on page 143.)

Kaustuv Chaudhuri, Frank Pfenning, and Greg Price. A logical charac-

terization of forward and backward chaining in the inverse method. J.

of Automated Reasoning, 40(2-3):133–177, March 2008b. doi: 10.1007/

s10817-007-9091-0. (Cited on pages 142 and 237.)

Kaustuv Chaudhuri, Stefan Hetzl, and Dale Miller. A multi-focused proof

system isomorphic to expansion proofs. J. of Logic and Computation, 26

(2):577–603, 2016. doi: 10.1093/logcom/exu030. (Cited on page 143.)

Zakaria Chihani and Dale Miller. Proof certificates for equality reasoning. In

Mario Benevides and René Thiemann, editors, Post-proceedings of LSFA

2015: 10th Workshop on Logical and Semantic Frameworks, with Applica-

tions. Natal, Brazil., number 323 in ENTCS, pages 93–108. Elsevier, 2016.

doi: 10.1016/j.entcs.2016.06.007. (Cited on page 244.)

Zakaria Chihani, Dale Miller, and Fabien Renaud. Foundational proof cer-

tificates in first-order logic. In Maria Paola Bonacina, editor, CADE 24:

Conference on Automated Deduction 2013, number 7898 in LNAI, pages

162–177, 2013. doi: 10.1007/978-3-642-38574-2\ 11. (Cited on pages 244

and 245.)

Zakaria Chihani, Tomer Libal, and Giselle Reis. The proof certifier Checkers.

In Hans De Nivelle, editor, Proceedings of the 24th Automated Reasoning

with Analytic Tableaux and Related Methods (TABLEAUX), number 9323 in

LNCS, pages 201–210. Springer, 2015. doi: 10.1007/978-3-319-24312-2\ 14.

(Cited on page 244.)

http://chaudhuri.info/papers/draft15mallmsel.pdf
http://chaudhuri.info/papers/draft15mallmsel.pdf

Bibliography 263

Zakaria Chihani, Dale Miller, and Fabien Renaud. A semantic framework

for proof evidence. J. of Automated Reasoning, 59(3):287–330, 2017. doi:

10.1007/s10817-016-9380-6. (Cited on pages 233, 237, 244, and 245.)

Jawahar Chirimar. Proof Theoretic Approach to Specification Languages.

PhD thesis, University of Pennsylvania, February 1995. URL http://www.

lix.polytechnique.fr/Labo/Dale.Miller/chirimar/phd.ps. (Cited on

pages 207 and 209.)

Alonzo Church. A formulation of the Simple Theory of Types. J. of Symbolic

Logic, 5:56–68, 1940. doi: 10.2307/2266170. (Cited on pages 3, 4, 11, 15,

176, 195, 216, and 243.)

Roberto Di Cosmo and Dale Miller. Linear logic. In Edward N. Zalta, edi-

tor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab,

Stanford University, summer 2019 edition, 2019. (Cited on page 8.)

Denis Cousineau and Gilles Dowek. Embedding pure type systems in the

lambda-Pi-calculus modulo. In Simona Ronchi Della Rocca, editor, Typed

Lambda Calculi and Applications, 8th International Conference, TLCA

2007, Paris, France, June 26-28, 2007, Proceedings, volume 4583 of LNCS,

pages 102–117. Springer, 2007. (Cited on page 234.)

Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice

model for static analysis of programs by construction or approximation of

fixpoints. In POPL, pages 238–252. ACM, 1977. (Cited on page 232.)

P.-L. Curien. The λρ-calculus: An abstract framework for environment ma-

chines. Technical report, LIENS–CNRS, 1990. (Cited on page 203.)

V. Danos, J.-B. Joinet, and H. Schellinx. LKT and LKQ: sequent calculi

for second order logic based upon dual linear decompositions of classical

implication. In J.-Y. Girard, Y. Lafont, and L. Regnier, editors, Advances

in Linear Logic, number 222 in London Mathematical Society Lecture Note

Series, pages 211–224. Cambridge University Press, 1995. (Cited on page

237.)

Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. The structure

of exponentials: Uncovering the dynamics of linear logic proofs. In Georg

Gottlob, Alexander Leitsch, and Daniele Mundici, editors, Kurt Gödel Col-

loquium, volume 713 of LNCS, pages 159–171. Springer, 1993. (Cited on

page 142.)

Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. A new deconstruc-

tive logic: Linear logic. Journal of Symbolic Logic, 62(3):755–807, 1997. doi:

10.2307/2275572. (Cited on page 141.)

http://www.lix.polytechnique.fr/Labo/Dale.Miller/chirimar/phd.ps
http://www.lix.polytechnique.fr/Labo/Dale.Miller/chirimar/phd.ps

264 Bibliography

Dedukti. The Dedukti system. https://deducteam.github.io/, 2013.

(Cited on page 234.)

Olivier Delande and Dale Miller. A neutral approach to proof and refutation

in MALL. In F. Pfenning, editor, 23th Symp. on Logic in Computer Sci-

ence, pages 498–508. IEEE Computer Society Press, 2008. doi: 10.1016/j.

apal.2009.07.017. URL http://www.lix.polytechnique.fr/Labo/Dale.

Miller/papers/lics08b.pdf. (Cited on page 143.)

Giorgio Delzanno. An overview of MSR(C): A CLP-based framework for the

symbolic verification of parameterized concurrent systems. Electron. Notes

Theor. Comput. Sci, 76:65–82, 2002. doi: 10.1016/S1571-0661(04)80786-2.

(Cited on page 194.)

Joëlle Despeyroux. Proof of translation in natural semantics. In 1st Symp. on

Logic in Computer Science, pages 193–205, Cambridge, Mass, June 1986.

IEEE. (Cited on page 210.)

Nancy A. Durgin, Patrick Lincoln, and John C. Mitchell. Multiset rewriting

and the complexity of bounded security protocols. J. Comput. Secur, 12(2):

247–311, 2004. doi: 10.3233/JCS-2004-12203. (Cited on page 194.)

Roy Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. J.

of Symbolic Logic, 57(3):795–807, September 1992. doi: 10.2307/2275431.

(Cited on page 152.)

Roy Dyckhoff and Stephane Lengrand. Call-by-value λ-calculus and LJQ. J.

of Logic and Computation, 17(6):1109–1134, 2007. doi: 10.1093/logcom/

exm037. (Cited on page 237.)

Maarten H. van Emden and Robert A. Kowalski. The semantics of predicate

logic as a programming language. J. of the ACM, 23(4):733–742, 1976.

(Cited on pages 8 and 93.)

Javier Esparza and Mogens Nielsen. Decidability issues for petri nets - a

survey. Bulletin of the EATCS, 52:244–262, 1994. (Cited on page 228.)

Melvin C. Fitting. Intuitionistic Logic Model Theory and Forcing. North-

Holland, 1969. (Cited on page 40.)

Dov M. Gabbay. N-Prolog: An extension of Prolog with hypothetical im-

plication II—logical foundations, and negation as failure. Journal of Logic

Programming, 2(4):251–283, December 1985. (Cited on page 41.)

Dov M. Gabbay and Nicola Olivetti. Goal-Directed Proof Theory, volume 21

of Applied Logic Series. Kluwer Academic Publishers, August 2000. (Cited

on page 94.)

https://deducteam.github.io/
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/lics08b.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/lics08b.pdf

Bibliography 265

Jean H. Gallier. Logic for Computer Science: Foundations of Automatic The-

orem Proving. Harper & Row, 1986. (Cited on pages 9, 34, 54, and 93.)

Vijay Gehlot and Carl Gunter. Normal process representatives. In 5th Symp.

on Logic in Computer Science, pages 200–207, Philadelphia, Pennsylvania,

June 1990. IEEE Computer Society Press. doi: 10.1109/LICS.1990.113746.

(Cited on page 194.)

Gerhard Gentzen. Investigations into logical deduction. In M. E. Szabo, editor,

The Collected Papers of Gerhard Gentzen, pages 68–131. North-Holland,

Amsterdam, 1935. doi: 10.1007/BF01201353. Translation of articles that

appeared in 1934-35. Collected papers appeared in 1969. (Cited on pages 4,

18, 34, 36, 40, 53, 54, 94, 98, 155, 236, and 241.)

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–102,

1987. doi: 10.1016/0304-3975(87)90045-4. (Cited on pages 4, 114, 143, 216,

and 237.)

Jean-Yves Girard. On the unity of logic. Technical Report 26, Université Paris

VII, June 1991a. (Cited on page 142.)

Jean-Yves Girard. A new constructive logic: classical logic. Math. Structures

in Comp. Science, 1:255–296, 1991b. doi: 10.1017/S0960129500001328.

(Cited on page 237.)

Jean-Yves Girard. A fixpoint theorem in linear logic. An email posting

archived at https://www.seas.upenn.edu/~sweirich/types/archive/

1992/msg00030.html to the linear@cs.stanford.edu mailing list, February

1992. (Cited on pages 94 and 253.)

Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and Types. Cambridge

University Press, 1989. (Cited on pages 34, 54, and 141.)

Georges Gonthier. The four colour theorem: Engineering of a formal proof.

In Deepak Kapur, editor, 8th Asian Symposium on Computer Mathematics,

volume 5081 of LNCS, page 333. Springer, 2007. (Cited on page 233.)

Michael J. Gordon, Arthur J. Milner, and Christopher P. Wadsworth. Ed-

inburgh LCF: A Mechanised Logic of Computation, volume 78 of LNCS.

Springer, 1979. doi: 10.1007/3-540-09724-4. (Cited on page 235.)

Mike Gordon. From LCF to HOL: a short history. In Gordon D. Plotkin,

Colin Stirling, and Mads Tofte, editors, Proof, Language, and Interaction:

Essays in Honour of Robin Milner, pages 169–186. MIT Press, 2000. (Cited

on page 11.)

https://www.seas.upenn.edu/~sweirich/types/archive/1992/msg00030.html
https://www.seas.upenn.edu/~sweirich/types/archive/1992/msg00030.html

266 Bibliography

Alessio Guglielmi. Abstract Logic Programming in Linear Logic—Independence

and Causality in a First Order Calculus. PhD thesis, Università di Pisa,

1996. (Cited on page 142.)

Alessio Guglielmi. A system of interaction and structure. ACM Trans.

on Computational Logic, 8(1):1–64, January 2007. doi: 10.1145/1182613.

1182614. (Cited on pages 54 and 107.)

Thomas C. Hales. A proof of the Kepler conjecture. Annals of Mathematics,

162(3):1065–1185, 2005. (Cited on page 233.)

Lars Hallnäs and Peter Schroeder-Heister. A proof-theoretic approach to logic

programming. II. Programs as definitions. J. of Logic and Computation, 1

(5):635–660, October 1991. doi: 10.1093/logcom/1.5.635. (Cited on page

54.)

John Hannan. Extended natural semantics. J. of Functional Programming, 3

(2):123–152, April 1993. doi: 10.1017/S0956796800000666. (Cited on page

210.)

John Hannan and Dale Miller. From operational semantics to abstract ma-

chines. Mathematical Structures in Computer Science, 2(4):415–459, 1992.

doi: 10.1017/S0960129500001559. (Cited on pages 202, 204, and 210.)

John Hannan and Frank Pfenning. Compiler verification in LF. In 7th Symp.

on Logic in Computer Science, Santa Cruz, California, June 1992. IEEE

Computer Society Press. (Cited on page 210.)

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining

logics. Journal of the ACM, 40(1):143–184, 1993. (Cited on page 234.)

Quentin Heath and Dale Miller. A proof theory for model checking. J. of Au-

tomated Reasoning, 63(4):857–885, 2019. doi: 10.1007/s10817-018-9475-3.

(Cited on pages 95 and 143.)

Hugo Herbelin. Séquents qu’on calcule: de l’interprétation du calcul des

séquents comme calcul de lambda-termes et comme calcul de stratégies

gagnantes. PhD thesis, Université Paris 7, 1995. URL https://tel.

archives-ouvertes.fr/tel-00382528. (Cited on page 237.)

Manuel V. Hermenegildo, Germán Puebla, Francisco Bueno, and Pedro López-

Garćıa. Integrated program debugging, verification, and optimization using

abstract interpretation (and the ciao system preprocessor). Sci. Comput.

Program., 58(1-2):115–140, 2005. (Cited on page 232.)

https://tel.archives-ouvertes.fr/tel-00382528
https://tel.archives-ouvertes.fr/tel-00382528

Bibliography 267

Joshua Hodas and Dale Miller. Logic programming in a fragment of intuition-

istic linear logic: Extended abstract. In G. Kahn, editor, 6th Symp. on Logic

in Computer Science, pages 32–42, Amsterdam, July 1991. IEEE. (Cited

on page 143.)

Joshua Hodas and Dale Miller. Logic programming in a fragment of intuition-

istic linear logic. Information and Computation, 110(2):327–365, 1994. doi:

10.1006/inco.1994.1036. (Cited on pages 143, 157, 205, 206, and 216.)

Joshua Hodas, Kevin Watkins, Naoyuki Tamura, and Kyoung-Sun Kang. Ef-

ficient implementation of a linear logic programming language. In Joxan

Jaffar, editor, Proceedings of the 1998 Joint International Conference and

Symposium on Logic Programming, pages 145–159, 1998. (Cited on page

143.)

Joshua S. Hodas. Logic Programming in Intuitionistic Linear Logic: Theory,

Design, and Implementation. PhD thesis, University of Pennsylvania, De-

partment of Computer and Information Science, May 1994. (Cited on page

158.)

Joshua S. Hodas. A linear logic treatment of phrase structure grammars for

unbounded dependencies. In Alain Lecomte, Françoise Lamarche, and Guy

Perrier, editors, Proceedings of the 2nd International Conference on Logical

Aspects of Computational Linguistics (LACL-97), volume 1582 of LNAI,

pages 160–179, Berlin, September 1999. Springer. (Cited on page 158.)

Joshua S. Hodas and Naoyuki Tamura. lolliCop — A linear logic implemen-

tation of a lean connection-method theorem prover for first-order classical

logic. In R. Goré, A. Leitsch, and T. Nipkow, editors, Proceedings of IJCAR:

International Joint Conference on Automated Reasoning, number 2083 in

LNCS, pages 670–684. Springer, 2001. (Cited on page 143.)

Jacob M. Howe. Proof Search Issues in Some Non-Classical Logics. PhD

thesis, University of St Andrews, December 1998. Available as University

of St Andrews Research Report CS/99/1. (Cited on page 237.)

Jörg Hudelmaier. Bounds on cut-elimination in intuitionistic propositional

logic. Archive for Mathematical Logic, 31:331–353, 1992. (Cited on page

152.)

Gérard P. Huet. A unification algorithm for typed λ-calculus. Theoreti-

cal Computer Science, 1:27–57, 1975. doi: 10.1016/0304-3975(75)90011-0.

(Cited on page 6.)

Gilles Kahn. Natural semantics. In Franz-Josef Brandenburg, Guy Vidal-

Naquet, and Martin Wirsing, editors, Proceedings of the Symposium on

268 Bibliography

Theoretical Aspects of Computer Science, volume 247 of LNCS, pages 22–

39. Springer, March 1987. doi: 10.1007/BFb0039592. (Cited on pages 194

and 210.)

Max I. Kanovich. Petri nets, Horn programs, Linear Logic and vector games.

Annals of Pure and Applied Logic, 75(1–2):107–135, 1995. doi: 10.1017/

S0960129500001328. (Cited on page 194.)

Stephen Cole Kleene. Permutability of inferences in Gentzen’s calculi LK and

LJ. Memoirs of the American Mathematical Society, 10:1–26, 1952. (Cited

on page 34.)

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David

Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolan-

ski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood.

seL4: Formal verification of an OS kernel. In Proceedings of the 22nd Sympo-

sium on Operating Systems Principles (22nd SOSP’09), Operating Systems

Review (OSR), pages 207–220, Big Sky, MT, October 2009. ACM SIGOPS.

(Cited on page 233.)

Naoki Kobayashi and Akinori Yonezawa. Asynchronous communication model

based on linear logic. Formal Aspects of Computing, 7(2):113–149, 1995. doi:

10.1007/BF01211602. (Cited on page 232.)

R. A. Kowalski. Algorithm = Logic + Control. Communications of the Asso-

ciation for Computing Machinery, 22:424–436, 1979. (Cited on page 7.)

S. Kripke. A completeness theorem in modal logic’. J. of Symbolic Logic, 24

(1):1–14, 1959. (Cited on page 94.)

S. A. Kripke. Semantical analysis of intuitionistic logic I. In J. N. Crossley

and M. Dummett, editors, Formal Systems and Recursive Functions, pages

92–130. (Proc. 8th Logic Colloq. Oxford 1963) North-Holland, Amsterdam,

1965. (Cited on pages 35 and 94.)

Jean-Louis Krivine. Lambda-Calcul : Types et Modèles. Etudes et Recherches

en Informatique. Masson, 1990. (Cited on page 19.)

R. Kuzmin. Sur une nouvelle classe de nombres transcendants. Bulletin de

l’Académie des Sciences de l’URSS, pages 585–597, 1930. (Cited on page

250.)

Keehang Kwon, Gopalan Nadathur, and Debra Sue Wilson. Implementing a

notion of modules in the logic programming language λProlog. In Evelina

Lamma and Paola Mello, editors, 4th Workshop on Extensions to Logic

Programming, volume 660 of LNAI, pages 359–393. Springer, 1993. (Cited

on page 94.)

Bibliography 269

P. J. Landin. The mechanical evaluation of expressions. Computer Journal, 6

(5):308–320, 1964. (Cited on pages 194 and 203.)

Olivier Laurent. Etude de la polarisation en logique. PhD thesis, Université

Aix-Marseille II, March 2002. (Cited on page 237.)

Xavier Leroy. Formal verification of a realistic compiler. Commun. ACM, 52

(7):107–115, 2009. doi: 10.1145/1538788.1538814. (Cited on page 233.)

Chuck Liang and Dale Miller. Focusing and polarization in linear, intuitionis-

tic, and classical logics. Theoretical Computer Science, 410(46):4747–4768,

2009. doi: 10.1016/j.tcs.2009.07.041. Abstract Interpretation and Logic

Programming: In honor of professor Giorgio Levi. (Cited on pages 237

and 241.)

Chuck Liang and Dale Miller. A focused approach to combining logics. Annals

of Pure and Applied Logic, 162(9):679–697, 2011. doi: 10.1016/j.apal.2011.

01.012. (Cited on page 142.)

Chuck Liang and Dale Miller. On subexponentials, synthetic con-

nectives, and multi-level delimited control. In Martin Davis, Ans-

gar Fehnker, Annabelle McIver, and Andrei Voronkov, editors, Logic

for Programming, Artificial Intelligence, and Reasoning (LPAR), num-

ber 9450 in LNCS, November 2015. doi: 10.1007/978-3-662-48899-7\
21. URL http://www.lix.polytechnique.fr/Labo/Dale.Miller/

papers/subdelimlncs.pdf. (Cited on page 142.)

Chuck Liang and Dale Miller. Focusing Gentzen’s LK proof system. In

Thomas Piecha and Kai Wehmeier, editors, Peter Schroeder-Heister on

Proof-Theoretic Semantics, Outstanding Contributions to Logic. Springer,

2022. URL https://hal.archives-ouvertes.fr/hal-03457379. To ap-

pear. (Cited on page 142.)

P. Lincoln, J. Mitchell, A. Scedrov, and N. Shankar. Decision problems for

propositional linear logic. Annals of Pure and Applied Logic, 56:239–311,

1992. (Cited on page 103.)

John W. Lloyd. Foundations of Logic Programming, 2nd Edition. Springer,

1987. ISBN 3-540-18199-7. (Cited on pages 9 and 93.)

Pablo López and Ernesto Pimentel. The UMA Forum linear logic programming

language. implementation, January 1998. (Cited on page 143.)

Sonia Marin, Dale Miller, and Marco Volpe. A focused framework for emulat-

ing modal proof systems. In Lev Beklemishev, Stéphane Demri, and András

Máté, editors, 11th Conference on Advances in Modal Logic, number 11

http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/subdelimlncs.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/subdelimlncs.pdf
https://hal.archives-ouvertes.fr/hal-03457379

270 Bibliography

in Advances in Modal Logic, pages 469–488, Budapest, Hungary, August

2016. College Publications. URL https://hal.archives-ouvertes.fr/

hal-01379624. (Cited on page 245.)

Sonia Marin, Dale Miller, Elaine Pimentel, and Marco Volpe. From axioms

to synthetic inference rules via focusing. Annals of Pure and Applied Logic,

173(5):1–32, 2022. doi: 10.1016/j.apal.2022.103091. (Cited on page 94.)

Per Martin-Löf. Constructive mathematics and computer programming. In

Sixth International Congress for Logic, Methodology, and Philosophy of Sci-

ence, pages 153–175, Amsterdam, 1982. North-Holland. (Cited on page 5.)

John McCarthy. Artificial intelligence, logic and formalizing common sense. In

Richmond Thomason, editor, Philosophical Logic and Artificial Intelligence.

Kluwer Academic, 1989. URL http://www-formal.stanford.edu/jmc/

ailogic.dvi. (Cited on page 88.)

Raymond McDowell and Dale Miller. Reasoning with higher-order abstract

syntax in a logical framework. ACM Trans. on Computational Logic, 3(1):

80–136, 2002. doi: 10.1145/504077.504080. (Cited on pages 54 and 210.)

Raymond McDowell, Dale Miller, and Catuscia Palamidessi. Encoding tran-

sition systems in sequent calculus. Theoretical Computer Science, 294(3):

411–437, 2003. doi: 10.1016/S0304-3975(01)00168-2. (Cited on page 94.)

Jia Meng. The integration of higher order interactive proof with first order

automatic theorem proving. PhD thesis, University of Cambridge, Com-

puter Laboratory, 2015. URL http://www.cl.cam.ac.uk/techreports/

UCAM-CL-TR-872.pdf. (Cited on page 235.)

Dale Miller. A theory of modules for logic programming. In Robert M. Keller,

editor, Third Annual IEEE Symposium on Logic Programming, pages 106–

114, Salt Lake City, Utah, September 1986. (Cited on page 94.)

Dale Miller. Lexical scoping as universal quantification. In G. Levi

and M. Martelli, editors, Sixth International Logic Programming

Conference, pages 268–283, Lisbon, Portugal, June 1989a. MIT

Press. URL http://www.lix.polytechnique.fr/Labo/Dale.Miller/

papers/iclp89.pdf. (Cited on pages 159 and 206.)

Dale Miller. A logical analysis of modules in logic programming. Jour-

nal of Logic Programming, 6(1-2):79–108, January 1989b. doi: 10.1016/

0743-1066(89)90031-9. (Cited on page 94.)

Dale Miller. Abstractions in logic programming. In Piergiorgio Odifreddi,

editor, Logic and Computer Science, pages 329–359. Academic Press,

https://hal.archives-ouvertes.fr/hal-01379624
https://hal.archives-ouvertes.fr/hal-01379624
http://www-formal.stanford.edu/jmc/ailogic.dvi
http://www-formal.stanford.edu/jmc/ailogic.dvi
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-872.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-872.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/iclp89.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/iclp89.pdf

Bibliography 271

1990. URL http://www.lix.polytechnique.fr/Labo/Dale.Miller/

papers/AbsInLP.pdf.pdf. (Cited on page 237.)

Dale Miller. Unification of simply typed lambda-terms as logic programming.

In Koichi Furukawa, editor, Eighth International Logic Programming Con-

ference, pages 255–269, Paris, France, June 1991. MIT Press. (Cited on

page 95.)

Dale Miller. Abstract syntax and logic programming. In Logic Programming:

Proceedings of the First Russian Conference on Logic Programming, 14-18

September 1990, number 592 in LNAI, pages 322–337. Springer, 1992. (Cited

on page 94.)

Dale Miller. The π-calculus as a theory in linear logic: Preliminary results.

In E. Lamma and P. Mello, editors, 3rd Workshop on Extensions to Logic

Programming, number 660 in LNCS, pages 242–265, Bologna, Italy, 1993.

Springer. URL http://www.lix.polytechnique.fr/Labo/Dale.Miller/

papers/pic.pdf. (Cited on pages 186, 209, and 228.)

Dale Miller. A proposal for modules in λProlog. In R. Dyckhoff, editor, 4th

Workshop on Extensions to Logic Programming, number 798 in LNCS, pages

206–221. Springer, 1994. (Cited on page 94.)

Dale Miller. Forum: A multiple-conclusion specification logic. Theoreti-

cal Computer Science, 165(1):201–232, September 1996. doi: 10.1016/

0304-3975(96)00045-X. (Cited on pages 142, 157, 205, and 207.)

Dale Miller. Abstract syntax for variable binders: An overview. In John Lloyd

and et al., editors, CL 2000: Computational Logic, number 1861 in LNAI,

pages 239–253. Springer, 2000. URL http://www.lix.polytechnique.fr/

Labo/Dale.Miller/papers/cl2000.pdf. (Cited on page 210.)

Dale Miller. Higher-order quantification and proof search. In Hélène Kirchner

and Christophe Ringeissen, editors, Proceedings of AMAST 2002, number

2422 in LNCS, pages 60–74, 2002. (Cited on page 218.)

Dale Miller. Encryption as an abstract data-type: An extended abstract. In

Iliano Cervesato, editor, Proceedings of FCS’03: Foundations of Computer

Security, volume 84 of ENTCS, pages 18–29. Elsevier, 2003. doi: 10.1016/

S1571-0661(04)80841-7. URL http://www.lix.polytechnique.fr/Labo/

Dale.Miller/papers/fcs03.pdf. (Cited on pages 192 and 232.)

Dale Miller. Collection analysis for Horn clause programs. In Proceedings of

PPDP 2006: 8th International ACM SIGPLAN Conference on Principles

and Practice of Declarative Programming, pages 179–188, July 2006. doi: 10.

http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/AbsInLP.pdf.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/AbsInLP.pdf.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/pic.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/pic.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/cl2000.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/cl2000.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/fcs03.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/fcs03.pdf

272 Bibliography

1145/1140335.1140357. URL http://www.lix.polytechnique.fr/Labo/

Dale.Miller/papers/ppdp06.pdf. (Cited on page 232.)

Dale Miller. Formalizing operational semantic specifications in logic. Concur-

rency Column of the Bulletin of the EATCS, October 2008. (Cited on page

210.)

Dale Miller. A proposal for broad spectrum proof certificates. In J.-P. Jouan-

naud and Z. Shao, editors, CPP: First International Conference on Certi-

fied Programs and Proofs, volume 7086 of LNCS, pages 54–69, 2011. doi:

10.1007/978-3-642-25379-9\ 6. URL http://www.lix.polytechnique.

fr/Labo/Dale.Miller/papers/cpp11.pdf. (Cited on page 244.)

Dale Miller. Communicating and trusting proofs: The case for broad spectrum

proof certificates. In P. Schroeder-Heister, W. Hodges, G. Heinzmann, and

P. E. Bour, editors, Logic, Methodology, and Philosophy of Science. Pro-

ceedings of the Fourteenth International Congress, pages 323–342. College

Publications, 2014. (Cited on page 234.)

Dale Miller. Proof checking and logic programming. Formal Aspects of

Computing, 29(3):383–399, 2017. doi: 10.1007/s00165-016-0393-z. URL

http://dx.doi.org/10.1007/s00165-016-0393-z. (Cited on page 233.)

Dale Miller. Reciprocal influences between logic programming and proof the-

ory. Philosophy & Technology, 34(1):75–104, March 2021a. doi: 10.1007/

s13347-019-00370-x. (Cited on page 9.)

Dale Miller. A survey of the proof-theoretic foundations of logic programming.

Theory and Practice of Logic Programming, pages 1–46, November 2021b.

doi: 10.1017/S1471068421000533. (Cited on page 9.)

Dale Miller and Gopalan Nadathur. Higher-order logic programming. In

Ehud Shapiro, editor, Proceedings of the Third International Logic Pro-

gramming Conference, volume 225 of LNCS, pages 448–462, London, June

1986. Springer. doi: 10.1007/3-540-16492-8\ 94. (Cited on page 94.)

Dale Miller and Gopalan Nadathur. Programming with Higher-Order Logic.

Cambridge University Press, June 2012. doi: 10.1017/CBO9781139021326.

(Cited on pages 2, 11, 20, 94, 95, and 243.)

Dale Miller and Elaine Pimentel. Linear logic as a framework for specifying

sequent calculus. In Jan van Eijck, Vincent van Oostrom, and Albert Visser,

editors, Logic Colloquium ’99: Proceedings of the Annual European Summer

Meeting of the Association for Symbolic Logic, Lecture Notes in Logic, pages

111–135. A K Peters Ltd, 2004. URL http://www.lix.polytechnique.fr/

Labo/Dale.Miller/papers/lc99.pdf. (Cited on page 157.)

http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/ppdp06.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/ppdp06.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/cpp11.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/cpp11.pdf
http://dx.doi.org/10.1007/s00165-016-0393-z
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/lc99.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/lc99.pdf

Bibliography 273

Dale Miller and Elaine Pimentel. A formal framework for specifying se-

quent calculus proof systems. Theoretical Computer Science, 474:98–

116, 2013. doi: 10.1016/j.tcs.2012.12.008. URL http://hal.inria.fr/

hal-00787586. (Cited on pages 34 and 157.)

Dale Miller and Alwen Tiu. A proof theory for generic judgments. ACM

Trans. on Computational Logic, 6(4):749–783, October 2005. doi: 10.1145/

1094622.1094628. (Cited on page 210.)

Dale Miller and Marco Volpe. Focused labeled proof systems for modal

logic. In Martin Davis, Ansgar Fehnker, Annabelle McIver, and Andrei

Voronkov, editors, Logic for Programming, Artificial Intelligence, and Rea-

soning (LPAR), number 9450 in LNCS, pages 266–280, November 2015. doi:

10.1007/978-3-662-48899-7\ 19. (Cited on page 245.)

Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform

proofs as a foundation for logic programming. Annals of Pure and Applied

Logic, 51(1–2):125–157, 1991. doi: 10.1016/0168-0072(91)90068-W. (Cited

on pages 162 and 237.)

Robin Milner. A Calculus of Communicating Systems, volume 92 of LNCS.

Springer, New York, NY, 1980. (Cited on page 194.)

Robin Milner. Communication and Concurrency. Prentice-Hall International,

1989. ISBN 978-0-13-115007-2. (Cited on page 208.)

Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard

ML. MIT Press, 1990. (Cited on page 209.)

Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile

processes, Part I. Information and Computation, 100(1):1–40, September

1992a. doi: 10.1016/0890-5401(92)90008-4. (Cited on page 186.)

Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile pro-

cesses, Part II. Information and Computation, 100(1):41–77, 1992b. doi:

10.1016/0890-5401(92)90009-5. (Cited on page 198.)

John C. Mitchell and Eugenio Moggi. Kripke-style models for typed lambda

calculus. Annals of Pure and Applied Logic, 51(1-2):99–124, 1991. (Cited

on page 94.)

Joan Moschovakis. Intuitionistic Logic. In Edward N. Zalta, editor, The

Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford

University, Fall 2021 edition, 2021. (Cited on page 8.)

Gopalan Nadathur. A Higher-Order Logic as the Basis for Logic Programming.

PhD thesis, University of Pennsylvania, May 1987. (Cited on page 164.)

http://hal.inria.fr/hal-00787586
http://hal.inria.fr/hal-00787586

274 Bibliography

Gopalan Nadathur and Dale Miller. An Overview of λProlog. In Ken-

neth A. Bowen and Robert A. Kowalski, editors, Fifth International

Logic Programming Conference, pages 810–827, Seattle, August 1988. MIT

Press. URL http://www.lix.polytechnique.fr/Labo/Dale.Miller/

papers/iclp88.pdf. (Cited on page 232.)

Gopalan Nadathur and Dale Miller. Higher-order Horn clauses. Journal of

the ACM, 37(4):777–814, October 1990. doi: 10.1145/96559.96570. (Cited

on page 164.)

Gopalan Nadathur and Frank Pfenning. The type system of a higher-order

logic programming language. In Frank Pfenning, editor, Types in Logic

Programming, pages 245–283. MIT Press, 1992. (Cited on pages 20 and 232.)

George C. Necula and Shree Prakash Rahul. Oracle-based checking of un-

trusted software. In Chris Hankin and Dave Schmidt, editors, 28th ACM

Symp. on Principles of Programming Languages, pages 142–154. ACM,

2001. (Cited on page 244.)

Sara Negri. Proof analysis beyond geometric theories: from rule systems to

systems of rules. Journal of Logic and Computation, 26(2):513–537, 2016.

doi: 10.1093/LOGCOM/EXU037. (Cited on page 254.)

Sara Negri and Jan von Plato. Structural Proof Theory. Cambridge University

Press, 2001. (Cited on pages 34, 54, and 94.)

Vivek Nigam and Dale Miller. Algorithmic specifications in linear logic

with subexponentials. In António Porto and Francisco Javier López-

Fraguas, editors, ACM SIGPLAN Conference on Principles and Practice

of Declarative Programming (PPDP), pages 129–140. ACM, 2009. doi:

10.1145/1599410.1599427. (Cited on page 142.)

Vivek Nigam, Elaine Pimentel, and Giselle Reis. An extended framework for

specifying and reasoning about proof systems. J. of Logic and Computation,

2014. doi: 10.1093/logcom/exu029. (Cited on page 157.)

Carlos Olarte, Vivek Nigam, and Elaine Pimentel. Subexponential concur-

rent constraint programming. Theoretical Computer Science, 606:98–120,

November 2015. doi: 10.1016/j.tcs.2015.06.031. (Cited on page 142.)

Leszek Pacholski and Andreas Podelski. Set constraints: A pearl in research on

constraints. In Principles and Practice of Constraint Programming - CP97,

number 1330 in LNCS, pages 549–562. Springer, 1997. (Cited on page 226.)

Remo Pareschi and Dale Miller. Extending definite clause grammars with

scoping constructs. In David H. D. Warren and Peter Szeredi, editors, 1990

http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/iclp88.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/iclp88.pdf

Bibliography 275

International Conference in Logic Programming, pages 373–389. MIT Press,

June 1990. (Cited on page 158.)

Lawrence C. Paulson. Isabelle: A Generic Theorem Prover. Number 828 in

Science & Business Media. Springer, 1994. (Cited on page 11.)

Frank Pfenning. Elf: A language for logic definition and verified metapro-

gramming. In 4th Symp. on Logic in Computer Science, pages 313–321,

Monterey, CA, June 1989. IEEE. (Cited on page 20.)

Frank Pfenning. Structural cut elimination I. intuitionistic and classical logic.

Information and Computation, 157(1/2):84–141, March 2000. (Cited on

page 34.)

Frank Pfenning. Church and Curry: Combining intrinsic and extrinsic typing.

In Christoph Benzmüller, Chad E. Brown, Jörg Siekmann, and Richard

Statman, editors, Reasoning in Simple Type Theory: Festschrift in Honor

of Peter B. Andrews on His 70th Birthday, number 17 in Studies in Logic,

pages 303–338. College Publications, 2008. (Cited on page 19.)

Frank Pfenning and Carsten Schürmann. System description: Twelf — A

meta-logical framework for deductive systems. In H. Ganzinger, editor,

16th Conf. on Automated Deduction (CADE), number 1632 in LNAI, pages

202–206, Trento, 1999. Springer. doi: 10.1007/3-540-48660-7\ 14. (Cited

on pages 20 and 210.)

Jan von Plato. Gentzen’s proof of normalization for natural deduction. Bul-

letin of Symbolic Logic, 14(2):240–257, June 2008. (Cited on page 53.)

Jan von Plato. The development of proof theory. In Edward N. Zalta, edi-

tor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab,

Stanford University, winter 2018 edition, 2018. (Cited on page 8.)

Gordon D. Plotkin. A structural approach to operational semantics. DAIMI

FN-19, Aarhus University, Aarhus, Denmark, September 1981. (Cited on

page 194.)

Gordon D. Plotkin. The origins of structural operational semantics. J. of

Logic and Algebraic Programming, 60:3–15, 2004a. (Cited on page 210.)

Gordon D. Plotkin. A structural approach to operational semantics. J. of

Logic and Algebraic Programming, 60-61:17–139, 2004b. (Cited on page

194.)

Dag Prawitz. Natural Deduction. Almqvist & Wiksell, Uppsala, 1965. (Cited

on page 40.)

276 Bibliography

A. N. Prior. The runabout inference-ticket. Analysis, 21(2):38–39, December

1960. (Cited on page 45.)

Michael Rathjen and Wilfried Sieg. Proof theory. In Edward N. Zalta, edi-

tor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab,

Stanford University, fall 2020 edition, 2020. (Cited on page 8.)

John H. Reppy. CML: A higher-order concurrent language. In ACM SIGPLAN

Conference on Programming Language Design and Implementation, pages

293–305, June 1991. (Cited on page 207.)

J. A. Robinson. A machine-oriented logic based on the resolution principle.

JACM, 12:23–41, January 1965. (Cited on page 6.)

Peter Schroeder-Heister. Rules of definitional reflection. In M. Vardi, editor,

8th Symp. on Logic in Computer Science, pages 222–232. IEEE Computer

Society Press, IEEE, June 1993. doi: 10.1109/LICS.1993.287585. (Cited on

pages 94 and 253.)

Robert J. Simmons. Structural focalization. ACM Trans. on Computational

Logic, 15(3):21, 2014. doi: 10.1145/2629678. (Cited on page 142.)

Morten Heine Sørensen and Pawel Urzyczyn. Lectures on the Curry-Howard

Isomorphism, volume 149 of Studies in Logic. Elsevier, 2006. (Cited on page

19.)

Richard Statman. Bounds for proof-search and speed-up in the predicate

calculus. Annals of Mathematical Logic, 15:225–287, 1978. (Cited on page

34.)

Paul Tarau. Program transformations and WAM-support for the compilation

of definite metaprograms. In Proceedings of the First and Second Russian

Conference on Logic Programming, number 592 in LNAI, pages 462–473.

Springer, 1992. (Cited on page 201.)

Alwen Tiu. A Logical Framework for Reasoning about Logical Specifications.

PhD thesis, Pennsylvania State University, May 2004. URL http://etda.

libraries.psu.edu/theses/approved/WorldWideIndex/ETD-479/.

(Cited on page 201.)

Alwen Tiu and Dale Miller. A proof search specification of the π-calculus.

In 3rd Workshop on the Foundations of Global Ubiquitous Computing,

volume 138 of ENTCS, pages 79–101, 2005. doi: 10.1016/j.entcs.2005.

05.006. URL http://www.lix.polytechnique.fr/Labo/Dale.Miller/

papers/fguc04workshop.pdf. (Cited on page 54.)

http://etda.libraries.psu.edu/theses/approved/WorldWideIndex/ETD-479/
http://etda.libraries.psu.edu/theses/approved/WorldWideIndex/ETD-479/
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/fguc04workshop.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/fguc04workshop.pdf

Bibliography 277

Anne Sjerp Troelstra, editor. Metamathematical Investigation of Intuitionis-

tic Arithmetic and Analysis, volume 344 of Lecture Notes in Mathematics.

Springer, 1973. (Cited on page 40.)

Anne Sjerp Troelstra and Dirk van Dalen. Constructivism in Mathematics,

volume 1. North-Holland, 1988. (Cited on page 35.)

Christian Urban. Forum and its implementations. Master’s thesis, University

of St. Andrews, December 1997. (Cited on page 143.)

Nathan Wetzler, Marijn J. H. Heule, and Jr. Warren A. Hunt. DRAT-trim:

Efficient checking and trimming using expressive clausal proofs. In Carsten

Sinz and Uwe Egly, editors, Theory and Applications of Satisfiability Testing

- SAT 2014, volume 8561 of LNCS, pages 422–429. Springer, 2014. doi:

10.1007/978-3-319-09284-3\ 31. (Cited on page 236.)

Index

(‡), 2

abstract data type, 183

abstract logic programming language,

56, 117

additive connective, 98

additive inference rule, 27

α-conversion, 12

Andreoli, Jean-Marc, 142, 192

argument types, 14

atomic formula, 17

atomic initial rule, 42

atomically closed proof, 42, 56

axiom, 25

backchaining, 1, 31

Barr Theorem, 254

βη-long normal form, 15

β-normal, 12

β-reduction, 12

bipole, 82

border sequent, 122

for ⇓L2 proofs, 122

for L0 proofs, 82

bounded context, 109

C-proof, 36

call-by-name, 5

call-by-value, 5

Church numerals, 12

Church, Alonzo, 4, 11

classical provability, Σ; ∆ C̀ B, 38

classical logic, 4

clausal order, order(·), 17

clause, 61

computation-as-deduction, 5

computation-as-model, 5

conjunctive normal form, 6

consistency, 32

contraction, structural rule, 24

Curry-Howard correspondence, 19, 28

curry/uncurry equivalences, 58, 108

cut rule, 25

exponential cut !, 126

exponential cut ?, 126

for ⇓L+
0, 72

main cut, 126

cut-elimination theorem

cut-elimination theorem for ⇓L+
2,

132

cut-elimination theorem for ⇓L+
0,

75

discussion, 32

cut-free proof, 32

D1, 58

D2, 61

decidability of {>,&,⊃}, 80, 94

dependent pair, 77

dereliction rules, 104

derivation, as partial proof, 29

diamond translation

(·)�, removing implications, 110

disjunction property, 57

don’t-care nondeterminism, 53

Index 279

don’t-know nondeterminism, 53

dynamics of proof search

⇓L1, 113

fohc, 86

fohh, 90

eigenvariables, 18, 26

embedding fohh into intuitionistic lin-

ear logic, 114

endsequent, 29

equivalence ≡, 47, 104, 146

η-reduction, 12

ETT, Elementary Theory of Types, 11

ex falso quodlibet, 50, 52

exchange, structural rule, 24

excluded middle, 35, 39

existence property, 57

exponential cut rules, 126

exponential prefixes, 104, 256

exponentials !, ?, 38, 104

first-order hereditary Harrop formu-

las, 60, 61

first-order Horn clauses, 1, 58

first-order logic, 4, 16

focused proofs, 1, 31, 111

fohc, first-order Horn clauses, 58

fohh

three presentations, 60

fohh, first-order hereditary Harrop for-

mulas, 61

Forum, 1

Forum presentation of linear logic, 117

⇓L+
2-proof system, 127

forwardchaining, 66

Frege proofs, 21, 25

function symbol of arity n, 16

G1, 58

G2, 61

G-proof, 51

Gentzen, Gerhard, 1, 4, 18, 34

Girard, Jean-Yves, 4, 54, 114, 143

goal-directed proof search, 1, 56, 94

goal-reduction, 1, 31

Harrop formulas, 63

height of a ⇓L2-proof, 126

height of an ⇓L+
0-proof, |Ξ|, 72

hereditary Harrop formulas, 60

higher-order hereditary Harrop formu-

las, 1

higher-order Horn clauses, 83

higher-order logic, 16

Horn clauses, 57

hyperexponential function, 34

I-proof, 36

identity rules, 24

implication

classical and intuitionistic ⊃, 17

intuitionistic in linear logic⇒, 108

linear (, 108

inference rule permutabilities, 117

inference rules

identity, 24

introduction, 24

structural, 24

initial rule, 25

instan inference rule, 77

interpretation, 77

introduction rules, 24

intuitionistic implication ⇒, 108

intuitionistic logic, 4

intuitionistic provability, Σ; ∆ Ì B,

38

invertible inference rule, 31, 48, 53, 98

junctiveness, 107

key cut rule

for ⇓L+
0, 72

Kowalski, Robert, 7

Kripke models, 35, 77

L0 = {>,&,⊃, ∀}, 67

⇓L0-proof system, 61, 67

280 Index

L0-formula, 67

⇓L′0 system, 80

L1 = {>,&,(,⇒,∀}, 109

⇓L1-proof system, 111

L1-formula, 109

L2 = {>,&,(,⇒,∀,⊥,`, ?}, 116

⇓L2-proof system, 117

⇓L2-proof system, 119

L2-formula, 116

λProlog, 1, 2, 84

λ-term, 11

left-introduction phase, 66

linear implication (, 101, 108

linear logic, 4, 38

literals, 57

L-formulas, 104

logic variables, 53

logical constants, 16

Lolli, 1, 113

M-proof, 50, 59

MALL, multiplicative additive linear

logic, 101, 143

minimal logic provability, 50

mobility of binders, 26

monotoncity property, 91

most general unifiers, 6

multi-focusing proof system, 143

multiple-conclusion proof system, 36

multiplicative connective, 98

multiplicative inference rule, 27

n-way synchronization, 187

Needham-Schroeder Shared Key Pro-

tocol, 181

negation, 39

negation normal form, 105

negative subformula occurrence, 17

nondeterminism, don’t know vs don’t

care, 53

o, the Greek letter omicron, 4, 15

the type of formulas, 15

ord(τ), order of type τ , 14

order(B), clausal order of formula B,

17

P-proof system, 109, 110

paths in a formula, B ↑ P , 68, 120

polarity, 105, 142

positive subformula occurrence, 17

possible world semantics, 35

predicate symbol of arity n, 16

primitive types, 13

Prior, A. N., 45

Prolog, 1

promotion rules, 104

proof normalization, 5

proof search, 1, 5, 19

proof system, 29

proof systems, focused

⇓L0, 61

⇓L+
0, 72

⇓L′0, 80

⇓L1, 111

⇓L2, 117

⇓L+
2, 127

proof systems, unfocused

C (classical), 36

I (intuitionistic), 36

L (linear), 104

M (minimal), 59

P (for L1), 109, 110

proof-nets, 143

propositional constants, 16

propositional logic, 4, 16

pumping lemmas, 91

quantificational logic, 4

resolution refutations, 6, 9, 57, 93

restart rule, 41

reverse a list

in fohc and fohh, 88

right-introduction phase, 65

role identifier, 184

Index 281

role state atom, 184

role state predicate, 184

S, the set of sorts, 13

scope extrusion, 90

search semantics, 55

sequent calculus, 4

sequent calculus proofs, 28

sequents, 1, 18

antecedent, 18

left-hand side, 18

one-sided, ` ∆, 18

right-hand side, 18

succedent, 18

two-sided, Γ ` ∆, 18

Σ : Γ X̀ ∆, 29

Σ inhabits primitive type, 40

Σ0, signature of non-logical constants,

16

Σ−1, signature of logical connectives,

16

Σ-formula, 16

Σ-term of type τ , 15

signature over S, 14

Simple Theory of Types, 4, 11

simple types, 14

simultaneous rule application, 117

single-conclusion proof system, 36

size of a formula, |B|, 72

Skolem functions, 6

Skolem normal form, 6

SLD-resolution, 6, 9, 93

sorts, a.k.a. primitive types, 13

structural rules, 24

subexponentials, 142

subformula property, 33

subst, substitution rule, 42

substitution M [x/N], 12

syntactic categories, 14

syntactic types, 14

synthetic inference rules, 82, 122

target type, 14

tonk, 45

unbounded context, 109

unification, 53

uniform proof, 31, 56

multi-conclusion version, 117

single-conclusion version, 56

weakening, structural rule, 24

	Preface
	Introduction
	A spectrum of logics
	Logic and the specification of computations
	Proof search and logic programming
	Designing logic programming languages
	Why use logic to write programs?
	Bibliographic notes

	Terms, formulas, and sequents
	Untyped -terms
	Types
	Signatures and typed terms
	Formulas
	Sequents
	Bibliographic notes

	Sequents calculus proofs rules
	Sequent calculus and proof search
	Inference rules
	Structural rules
	Identity rules
	Introduction rules

	Additive and multiplication inference rules
	Sequent calculus proofs
	Permutations of inference rules
	Cut-elimination and its consequences
	Bibliographic notes

	Classical and intuitionistic logics
	Classical and intuitionistic inference rules
	The identity rules and their elimination
	Logical equivalence
	Invertible introduction rules
	Negation, false, and minimal logic
	Choices to consider during the search for proofs
	Bibliographic notes

	Two abstract logic programming languages
	Goal-directed search
	Horn clauses
	Hereditary Harrop formulas
	Backchaining as focused rule application
	Formal properties of focused proofs
	Kripke model semantics
	Backchaining as a single left rule
	Synthetic inference rules
	Disjunctive and existential goals
	Examples of fohc logic programs
	Dynamics of proof search for fohc
	Examples of fohh logic programs
	Dynamics of proof search for fohh
	Limitations to fohc and fohh logic programs
	Bibliographic notes

	Linear logic
	Reflections on the structural inference rules
	LK vs LJ: An origin story for linear logic
	Sequent calculus proof systems for linear logic
	Multiplicative additive linear logic
	Linear logic as MALL plus exponentials
	Duality and polarity
	Introducing implications

	Single conclusion sequents with two zones
	Embedding fohh into intuitionistic linear logic
	Multiple conclusion uniform proofs
	Formal properties of Forum proofs
	Paths and synthetic inference rules
	Admissibility of the general initial rule
	Cut rules and Cut-elimination
	Soundness and completeness of the focused proof system

	Bibliographic notes

	Linear logic programming
	Encoding multisets as formulas
	A syntax for Lolli programs
	Permuting a list
	Multiset rewriting
	Context management in a theorem prover
	Multiset rewriting in Forum
	Specification of sequent calculus proof systems
	Bibliographic notes

	Encoding security protocols
	Communicating processes
	A conventional presentation of protocols
	A linear logic formulation
	Encryption as an abstract data type
	Abstracting internal states
	Roles as nested implications
	Bibliographic notes

	Solutions to selected exercises
	Bibliography
	Index

