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Abstract

Reasoning in a Logic with Definitions and Induction

Raymond Charles McDowell

Supervisor: Dale Miller

We present a logic for the specification and analysis of deductive systems. This logic is an

extension of a simple intuitionistic logic that admits higher-order quantification over simply

typed λ-terms. These are key ingredients for higher-order abstract syntax, an elegant and

declarative treatment of object-level abstraction and substitution. The logic also supports

induction and a notion of definition. The latter concept of definition is a proof-theoretic

device that allows certain theories to be treated as “closed” or as defining fixed points. We

prove that cut-elimination and consistency results hold for this logic, extending a technique

due to Tait and Martin-Löf. We also demonstrate the effectiveness of the logic for encoding

meta-level predicates such as bisimulation and for reasoning about judgements encoded

using higher-order abstract syntax. The sense of closure in definitions allows us to cleanly

express the notions of simulation and bisimulation, and we derive in our logic some high-

level properties about these notions in the context of abstract transition systems. Formal

meta-theoretic analysis of higher-order abstract syntax encodings has been inadequately

addressed in previous research. We explore the difficulties of this task by considering

encodings of intuitionistic and linear logics, and formally derive the admissibility of cut

for important subsets of these logics. We then propose an approach to avoid the apparent

tradeoff between the benefits of higher-order abstract syntax and the ability to analyze the

resulting encodings. We illustrate this approach through examples involving the simple

functional and imperative programming languages PCF and PCF:=. We formally derive

such properties as unicity of typing, subject reduction, determinacy of evaluation, and the

equivalence of transition semantics and natural semantics presentations of evaluation.
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Chapter 1

Introduction

A logical framework is a formal meta-language for specifying deductive systems such as

logics, operational semantics, and type systems. Typically the deduction rules for the

object system are specified as an axiom system, or theory, of the specification logic. To

give a very simple example, membership in the natural numbers might be encoded by the

two formulas

nat z ∀x(nat x ⊃ nat (s x)) .

We can then use this theory to derive formulas in the specification logic that indicate that

various expressions denote natural numbers. Analogously, we can construct theories to

specify operational semantics and type systems so that formulas denoting judgements such

as “the term M denotes a program”, “the program M evaluates to the value V ”, and “the

program M has type T” can be derived.

One of the advantages of such formal specifications is that they allow logical and math-

ematical analyses to be used to prove properties about the specified systems. Given the

specification of evaluation for a functional programming language, for example, we may

wish to prove that the language is deterministic or that evaluation preserves types. As

larger and more complex languages and systems are considered, it becomes desirable to

provide automated support for proving these properties. To do this we must make these

proofs formal as well, and it thus becomes natural to consider proving such properties

within the logical framework.
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In this dissertation we introduce a new logic FOλ∆IN (pronounced “fold-n”) and inves-

tigate its use for this purpose. One of the distinctive features of this logic is its notion of

definition. Like a theory, a FOλ∆IN definition provides a collection of formulas that are

available for constructing derivations in the logic. In addition, a definition carries with

it a sense of closure or completeness: if a defined proposition holds, it necessarily holds

by one of the clauses of the definition. Viewing the sample theory given above as a def-

inition, for example, adds the idea that these two formulas are the only way to establish

that the predicate nat holds. The logic then provides a means to perform case analyses on

defined concepts; thus given nat y as a hypothesis, we can consider the two cases y = z

and y = (s y′) for some y′ such that nat y′. This notion of definition has been investigated

in various proof systems in recent years [17, 19, 20, 50]. Since it provides the basis for case

analysis of defined concepts, the idea has obvious benefit for a logic used to encode object

systems and reason about them.

There is also a more subtle benefit for logical frameworks provided by definitions. To

establish a proposition by definition, we need only show that one clause of the definition

applies. To show that nat y holds, for example, it is sufficient to show either that y = z or

that y = (s y′) for some y′ such that nat y′. This is similar to the idea of may behavior of a

concurrent system: “there exists a definitional clause such that . . . ” can be used to encode

“there exists a computation such that . . . ”. On the other hand, to show something from

the hypothesis nat y by case analysis, we need to prove that it holds both for y = z and

for y = (s y′), given that nat y′. Thus the sense of closure that definitions provide allows

certain forms of must behavior (“all computations...”) to be captured.

Several existing logical frameworks are equipped with a similar notion of definition, but

are not suitable for our purposes. The Calculus of Inductive Constructions (implemented

in Coq) [43] and FS0 [30], for example, contain inductive definition facilities. However,

the function type of both of these systems is too strong to naturally support the key

representation technique of higher-order abstract syntax. Higher-order abstract syntax is an

elegant and declarative encoding of abstraction and substitution. With most approaches to

syntactic representation, the details of variable binding and substitution must be carefully

addressed throughout a specification, and theorems about substitution and bound variables
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can dominate the system analyses. With higher-order abstract syntax, on the other hand,

these features are specified concisely and their basic properties follow immediately from the

specification logic.

In contrast to Coq and FS0, the finitary calculus of partial inductive definitions [11] does

support the use of higher-order abstract syntax. However, the cut rule is not admissible

for this calculus; the class of supported definitions is rich enough to allow inconsistency in

the presence of cut. To see how this is possible, consider the formula (a ⊃ ⊥) ⊃ a as a

definition for the propositional constant a. It is not hard to derive the sequent a −→ ⊥

with this definition: by the hypothesis a holds, and a case analysis on the definition shows

that if it holds, it must be because a ⊃ ⊥ holds; the consequent ⊥ then easily follows from

the two hypotheses a and a ⊃ ⊥. But from this derivation of a −→ ⊥, we can derive

−→ a ⊃ ⊥, and thus by definition, −→ a. We have shown that there are derivations of

a −→ ⊥ and −→ a, so the cut rule would give us a derivation of −→ ⊥. The admissibility

of cut is important beyond the (fundamental) question of the consistency of the calculus;

otherwise we could just use the calculus without a cut rule. Our intent is to reason within

the calculus about encoded systems. Using the natural number example again, we would

like the derivation of a sequent nat x −→ P x, where x is a variable, to represent the idea

that the property encoded by P holds for all natural numbers. However, without the cut

rule, we do not have any guarantee that for all i such that −→ nat i is provable, −→ P i is

also provable. Thus we need the admissibility of the cut rule.

The logic FOλ∆IN can be viewed as a variation of the finitary calculus of partial in-

ductive definitions in which the cut rule is admissible: the class of definitions is restricted

and the form of the induction rule is modified. We include only natural number induction

in FOλ∆IN. This keeps the meta-theory of the logic from becoming overly complex, but is

still powerful enough to allow us to derive the other induction principles we need. Because

of FOλ∆IN’s close relationship with the finitary calculus of partial inductive definitions,

we are able to use Eriksson’s derivation editor Pi [13] to construct FOλ∆IN derivations.

All FOλ∆IN derivations mentioned in this dissertation have been created using Pi, which

provides us with a much greater degree of confidence in their correctness than would be

the case if they were constructed by hand.
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1.1 Outline of the Dissertation

The dissertation is organized in the following manner. The remainder of this chapter gives

an overview of higher-order abstract syntax. As has been mentioned, support for this

representation technique was an important criterion in the design of FOλ∆IN, and its use

will pervade this dissertation.

Chapter 2 presents the logic FOλ∆IN; as suggested by the title of this dissertation, its

two key features are the notion of definition sketched above, and induction over natural

numbers. To illustrate the use of FOλ∆IN, we derive several theorems expressing proper-

ties of natural numbers and lists. In Chapter 3 we prove cut-elimination and consistency

theorems for the logic. The cut-elimination proof extends a technique due to Tait and

Martin-Löf to a sequent calculus setting, and uses the technical notions of normalizability

and reducibility.

We proceed in the remaining chapters to explore the use of FOλ∆IN for reasoning

about various deductive systems. In Chapter 4 we use the correlation between the different

quantificational aspects of definitions and the computational notions of may and must

behavior to express the rich notions of simulation and bisimulation for abstract transition

systems. We capture the largest bisimulation relation — bisimulation equivalence — and

explore its meta-theory, proving, for example, that the relation is indeed an equivalence.

The next two chapters develop an approach for formal reasoning about higher-order

abstract syntax encodings. In Chapter 5 we consider encodings of intuitionistic and linear

logics in FOλ∆IN to illustrate some difficulties with reasoning in the specification logic

about higher-order abstract syntax and to also demonstrate some strategies to deal with

these difficulties. Unfortunately these strategies involve sacrificing some benefits of higher-

order abstract syntax in order to gain the ability to perform some meta-theoretic analyses.

We avoid this tradeoff in Chapter 6 by taking a different approach to formal reasoning.

The key to this approach is to encode the object system in a specification logic that is

separate from the logic FOλ∆IN in which we perform the reasoning; this specification logic

is itself specified in FOλ∆IN. This separation of the specification logic and the meta-

logic allows us to reason formally about specification logic sequents and their derivability,

and also reflects the structure of informal reasoning about higher-order abstract syntax
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encodings. We illustrate this approach by considering the static and dynamic semantics of

small functional and imperative programming languages; we are able to derive in FOλ∆IN

such properties as the unicity of typing, determinacy of semantics, and type preservation

(subject reduction).

We conclude in Chapter 7 with a brief discussion of our accomplishments and possible

extensions of this work.

1.2 Higher-Order Abstract Syntax

To set the stage for our work, we provide a brief introduction to higher-order abstract

syntax; we refer the reader to [23, 46] for a more comprehensive discussion.

The key idea of higher-order abstract syntax is that variable binding in the object

language is represented by λ-abstraction of the meta-language. For example, consider the

simple functional language whose terms are described by the following grammar:

M ::= x | λx.M | M M | letx = M inM | µx.M .

To encode these terms, we introduce a type tm and the constants

abs : (tm → tm) → tm let : tm → (tm → tm) → tm

app : tm → tm → tm rec : (tm → tm) → tm .

The following function ([ ]) maps an object language term to its representation:

([x]) = x∗ : tm for x a variable

([λx.M ]) = (abs λx∗ :tm.([M ]))

([M N ]) = (app ([M ]) ([N ]))

([letx = M inN ]) = (let ([M ]) λx∗ :tm.([N ]))

([µx.M ]) = (rec λx∗ :tm.([M ]) ) ,

where x 7→ x∗ defines a bijective mapping of object language variables to meta-language

variables of type tm. Variables in the object language are encoded by meta-language

variables, and the scope of the object language variable binding is encoded by the scope of

the meta-level λ-binding. This representation takes advantage of meta-level α-equivalence

to provide α-equivalence for object language terms, i.e. ([M ]) =α ([N ]) if and only if M
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and N are α-equivalent. Another benefit is that meta-level β-reduction provides capture-

avoiding substitution, i.e. (λx∗.([M ]))([N ]) =β ([M ])[([N ])/x∗] = ([M [N/x]]).

The type inference rules for our object language will include

x : T,Γ > x : T

y : T,Γ >M [y/x] : U

Γ > λx.M : T → U ,

where in the second rule y is a variable that does not occur in Γ or M . If we let ty be a new

type used to represent object language types, arr : ty → ty → ty a constant representing

object language function types, and typeof : tm → ty → o a predicate representing object

language typing judgements, then these two rules are encoded by the following formula B:

∀n(typeof n T ⊃ typeof (Rn) U) ⊃ typeof (abs R) (arr T U) .

To understand this encoding, let us first examine the structure of typing derivations for

abstractions. The premise of the typing rule for abstraction renames the variable bound by

the abstraction to avoid name conflict. The body of the abstraction is then typed in the

typing environment Γ extended with the type assignment y : T . In the typing derivation

for the body, the typing rule for variables will be used to infer the type T for y. This can

be represented schematically as

y : T,Γ′ > y : T....
y : T,Γ >M [y/x] : U

Γ > λx.M : T → U .

In our encoding, we use assumptions in place of a typing environment. The variable bound

by the abstraction is replaced by a new eigenvariable, and the result is typed under the

assumption that the eigenvariable has type T . Thus the typing rule for variables is replaced

by uses of typing assumptions:

B, typeof n T,Γ′ −→ typeof n T....
B, typeof n T,Γ −→ typeof (Rn) U

B,Γ −→ typeof (abs R) (arr T U) .

(To simplify the presentation, we will sometimes combine the application of several rules

and display it as the use of a single derived rule. We indicate this by a double line between
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the premises and conclusion of the derived rule, as illustrated above.) This reading of

the encoding highlights the similarities between typing derivations constructed from the

inference rules and derivations of typing judgements from the formula B. However, there

are also significant differences. In the derivations constructed from the encodings, the

name of the variable bound by the abstraction does not appear, and in fact is irrelevant:

the encoding respects the α-equivalence of terms. Also, any derivation of the sequent

−→ typeof (abs R) (arr T U) must have a subderivation of typeof n T −→ typeof (Rn) U .

Thus the cut rule allows us to conclude that for any N such that typeof N T is derivable,

typeof (RN) U is derivable. This is a non-trivial property of the type inference system for

the object language. This pattern of reasoning using the cut rule will prove useful as we

proceed to formally derive meta-theoretic properties of inference systems.

In this brief introduction we have seen three benefits to higher-order abstract syn-

tax: α-equivalence of object language terms is achieved cleanly via meta-language α-

equivalence; capture-avoiding substitution for the object language is automatically provided

by β-reduction in the meta-language; and the meta-language cut rule becomes a significant

tool for meta-theoretic reasoning.
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Chapter 2

The Logic FOλ∆IN

In this chapter we introduce the logic which we call FOλ∆IN, an acronym for “first-order

logic for λ with definitions and natural numbers.” We present the logic in the first section,

and then proceed in the next with some sample definitions and propositions. The chapter

concludes with a discussion of related work on logics with definitions.

2.1 A Description of the Logic

The basic logic is an intuitionistic version of a subset of Church’s Simple Theory of Types

[7] in which meta-level formulas will be given the type o. The logical connectives are ⊥,

⊤, ∧, ∨, ⊃, ∀τ , and ∃τ . The quantification types τ (and thus the types of variables) are

restricted to not contain o. Thus FOλ∆IN supports quantification over higher-order (non-

predicate) types, a crucial feature for higher-order abstract syntax, but has a first-order

proof theory, since there is no quantification over predicate types. We will use sequents of

the form Γ −→ B, where Γ is a finite multiset of formulas and B is a single formula. The

basic inference rules for the logic are shown in Table 2.1. In the ∀R and ∃L rules, y is an

eigenvariable that is not free in the lower sequent of the rule. The multicut (mc) rule is

a generalization of cut due to Slaney [53], and is used to simplify the presentation of the

cut-elimination proof of Chapter 3.

We introduce the natural numbers via the constants z : nt for zero and s : nt → nt for

successor and the predicate nat : nt → o. The right and left rules for this new predicate
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Table 2.1: Inference rules for the core of FOλ∆IN

⊥,Γ −→ B ⊥L
Γ −→ ⊤ ⊤R

B,Γ −→ D

B ∧ C,Γ −→ D ∧L
C,Γ −→ D

B ∧ C,Γ −→ D ∧L
B[t/x],Γ −→ C

∀x.B,Γ −→ C ∀L

Γ −→ B Γ −→ C
Γ −→ B ∧ C

∧R
Γ −→ B[y/x]

Γ −→ ∀x.B ∀R

B,Γ −→ D C,Γ −→ D

B ∨ C,Γ −→ D ∨L
B[y/x],Γ −→ C

∃x.B,Γ −→ C ∃L

Γ −→ B
Γ −→ B ∨ C

∨R Γ −→ C
Γ −→ B ∨ C

∨R
Γ −→ B[t/x]

Γ −→ ∃x.B ∃R

Γ −→ B C,Γ −→ D

B ⊃ C,Γ −→ D ⊃ L
B,Γ −→ C

Γ −→ B ⊃ C
⊃ R

A,Γ −→ A init, where A is atomic
B,B,Γ −→ C

B,Γ −→ C cL

∆1 −→ B1 · · · ∆n −→ Bn B1, . . . , Bn,Γ −→ C

∆1, . . . ,∆n,Γ −→ C mc, where n ≥ 0
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are

Γ −→ nat z
natR Γ −→ nat I

Γ −→ nat (s I)
natR

−→ B z B j −→ B (s j) B I,Γ −→ C

nat I,Γ −→ C
natL

.

In the left rule, the predicate B : nt → o represents the property that is proved by induction,

and j is an eigenvariable that is not free in B. The third premise of that inference rule

witnesses the fact that, in general, B will express a property stronger than (
∧
Γ) ⊃ C.

A definitional clause is written ∀x̄[p t̄ △
= B], where p is a predicate constant, every free

variable of the formula B is also free in at least one term in the list t̄ of terms, and all

variables free in t̄ are contained in the list x̄ of variables. Since all free variables in p t̄

and B are universally quantified, we often leave these quantifiers implicit when displaying

definitional clauses. The atomic formula p t̄ is called the head of the clause, and the formula

B is called the body. The symbol
△
= is used simply to indicate a definitional clause: it is not

a logical connective. A definition is a (perhaps infinite) set of definitional clauses. The same

predicate may occur in the head of multiple clauses of a definition: it is best to think of a

definition as a mutually recursive definition of the predicates in the heads of the clauses.

We must also restrict the use of implication in the bodies of definitional clauses; oth-

erwise cut-elimination does not hold [49]. Toward that end we assume that each predicate

symbol p in the language has associated with it a natural number lvl(p), the level of the

predicate. The following definition extends the notion of level to formulas and derivations.

Definition 2.1 Given a formula B, its level lvl(B) is defined as follows:

1. lvl(p t̄) = lvl(p)

2. lvl(⊥) = lvl(⊤) = 0

3. lvl(B ∧ C) = lvl(B ∨ C) = max(lvl(B), lvl(C))

4. lvl(B ⊃ C) = max(lvl(B) + 1, lvl(C))

5. lvl(∀x.B) = lvl(∃x.B) = lvl(B).

Given a derivation Π of Γ −→ B, lvl(Π) = lvl(B).
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We now require that for every definitional clause ∀x̄[p t̄ △
= B], lvl(B) ≤ lvl(p t̄).

The logic has inference rules for defined atoms; the following relation will be useful for

describing these rules.

Definition 2.2 Let the four-place relation dfn(ρ,A, σ,B) be defined to hold for the for-

mulas A and B and the substitutions ρ and σ if there is a clause ∀x̄[A′ △
= B] in the given

definition such that Aρ = A′σ.

The right and left rules for defined atoms are

Γ −→ Bθ
Γ −→ A

defR, where dfn(ϵ, A, θ,B)

{Bσ,Γρ −→ Cρ | dfn(ρ,A, σ,B)}
A,Γ −→ C

defL
,

where ϵ is the empty substitution and the bound variables x̄ in the definitional clauses are

chosen to be distinct from the variables free in the lower sequent of the rule. Specifying

a set of sequents as the premise should be understood to mean that each sequent in the

set is a premise of the rule. The right rule corresponds to the logic programming notion of

backchaining if we think of
△
= in definitional clauses as reverse implication. The left rule is

similar to definitional reflection [50] (not to be confused with another notion of reflection

often considered between a meta-logic and object-logic) and to an inference rule used by

Girard in his note on fixed points [17]. Notice that in the defL rule, the free variables of

the conclusion can be instantiated in the premises.

The number of premises of the defL rule may be zero or infinite. If the formula A does

not unify with the head of any definitional clause, then the number of premises will be zero.

In this case, A is an unprovable formula logically equivalent to ⊥, and defL corresponds to

the ⊥L rule. If the formula A does unify with the head of a definitional clause, the number

of premises will be infinite, since the domains of the substitutions ρ and σ may include

variables that are not free in A and B. Any implementation of the logic will necessarily

be finitary. In practice we construct only definitions with a finite number of clauses and

restrict our uses of the defL rule to those formulas A such that for every definitional clause

there is a finite, complete set of unifiers (CSU) [27] of A and the head of the clause. In this
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case we can implement Eriksson’s rule [11]

{Bθ,Γθ −→ Cθ | θ ∈ CSU(A,A′) for some clause ∀x̄[A′ △
= B]}

A,Γ −→ C
defLCSU ,

where the variables x̄ are chosen to be distinct from the variables free in the lower sequent

of the rule. When the CSUs and definition are finite, this rule will have a finite number of

premises.

Proposition 2.3 The rules defL and defLCSU are interadmissible, i.e. if either defL or

defLCSU is admissible in a logic, then the other is as well.

Proof Given the set of derivations{
Πθ,B

Bθ,Γθ −→ Cθ

}
θ∈CSU(A,A′) for some clause ∀x̄[A′△=B]

,

we can construct a derivation of A,Γ −→ C using defL as follows. For any definitional

clause ∀x̄[A′ △
= B] and substitutions ρ and σ such that Aρ = A′σ, the substitution

ρσ(y) =

σ(y) if y ∈ FV (A′)

ρ(y) otherwise

will be a unifier of A and A′. Thus for some θ ∈ CSU(A,A′) there is a substitution θ′ such

that ρσ is θ ◦ θ′. We can thus use Πθ,Bθ′ as the premise derivation of Bσ,Γρ −→ Cρ for

defL. (We will formally define what it means to apply a substitution to a derivation in

Definition 2.5. For now it is enough to know that it yields a derivation whose endsequent

is obtained by applying the substitution to the endsequent of the original derivation.)

Given the set of derivations{
Πρ,σ,B

Bσ,Γρ −→ Cρ

}
dfn(ρ,A,σ,B)

,

we can construct a derivation of A,Γ −→ C using defLCSU as follows. For any definitional

clause ∀x̄[A′ △
= B] and substitution θ ∈ CSU(A,A′), dfn(θ,A, θ,B) holds. We can thus use

Πθ,θ,B as the premise derivation of Bθ,Γθ −→ Cθ for defL.

Observe that several of the rules of FOλ∆IN may have variables that are free in the

premise but not in the conclusion: this results from the eigenvariable y of ∀R and ∃L,
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the term t of ∀L and ∃R, the cut formulas B1, . . . , Bn of mc, the induction predicate B

of natL, and the substitutions ρ and σ of defL. We view the choice of such variables as

arbitrary and identify all derivations that differ only in the choice of variables that are not

free in end-sequent.

Although we will show in Chapter 3 that cut-elimination holds for this logic, we do

not have the subformula property since the induction predicate B used in the natL rule is

not necessarily a subformula of the conclusion of that inference rule. In fact, the following

inference rule is derivable from the induction rule:

−→ B B,Γ −→ C

nat I,Γ −→ C .

This inference rule resembles the cut rule except that it requires a nat assumption. Although

we fail to have the subformula property, the cut-elimination theorem still provides a strong

basis for reasoning about proofs in FOλ∆IN. Also this formulation of the induction principle

is natural and close to the one used in actual mathematical practice: that is, invariants

must be, at times, clever inventions that are not simply rearrangements of subformulas. Any

automation of FOλ∆IN will almost certainly need to be interactive, at least for retrieving

instantiations for the invariant B.

We define an ordinal measure which corresponds to the height of a derivation:

Definition 2.4 Given a derivation Π with premise derivations {Πi}, the measure ht(Π) is

the least upper bound of {ht(Πi) + 1}.

Substitutions are finite maps from variables to terms. It is common to view substitutions

as maps from terms to terms by applying the substitution to all free variables of a term. We

can then extend the mapping in turn to formulas and multisets by applying it to every term

in a formula and every formula in a multiset. The following definition extends substitutions

yet again to apply to derivations. Since we identify derivations that differ only in the choice

of variables that are not free in the end-sequent, we will assume that such variables are

chosen to be distinct from the variables in the domain of the substitution and from the free

variables of the range of the substitution. Thus applying a substitution to a derivation will

only affect the variables free in the end-sequent.
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Definition 2.5 If Π is a derivation of Γ −→ C and θ is a substitution, then we define the

derivation Πθ of Γθ −→ Cθ as follows:

1. Suppose Π ends with the defL rule{
Πρ,σ,B

Bσ,Γ′ρ −→ Cρ

}
dfn(ρ,A,σ,B)

A,Γ′ −→ C
defL

.

Observe that if dfn(ρ′, Aθ, σ′, B) then dfn(θ ◦ ρ′, A, σ′, B). Thus Πθ is{
Πθ◦ρ′,σ′,B

Bσ′,Γ′θρ′ −→ Cθρ′

}
dfn(ρ′,Aθ,σ′,B)

Aθ,Γ′θ −→ Cθ
defL

.

2. If Π ends with any other rule and has premise derivations Π1, . . . ,Πn, then Πθ also

ends with the same rule and has premise derivations Π1θ, . . . ,Πnθ.

Lemma 2.6 For any substitution θ and derivation Π of Γ −→ C, Πθ is a derivation of

Γθ −→ Cθ.

Proof This lemma states that Definition 2.5 is well-constructed, and follows by induction

on µ(Π). Observe that if Π ends with the defR rule

Π′
Γ −→ Bσ
Γ −→ A

defR
,

then dfn(ϵ, A, σ,B), and so it is also true that dfn(ϵ, Aθ, σ ◦ θ,B). Therefore

Π′θ
Γθ −→ Bσθ
Γθ −→ Aθ

defR

is a valid derivation.

Lemma 2.7 For any derivation Π and substitution θ, ht(Π) ≥ ht(Πθ).

Proof The proof of this lemma is a simple induction on ht(Π). The measures may not be

equal because when the derivations end with the defL rule, some of the premise derivations

of Π may not be needed to construct the premise derivations of Πθ.
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Our logic does not contain a weakening rule; instead we allow extra assumptions in

the axioms. The following definition provides meta-level weakening on derivations. Since

we identify derivations that differ only in the choice of variables that are not free in the

end-sequent, we will assume that such variables are chosen to be distinct from the free

variables of the weakening formulas.

Definition 2.8 If Π is a derivation of Γ −→ C and ∆ is a multiset of formulas, then we

define the derivation w(∆,Π) of Γ,∆ −→ C as follows:

1. If Π ends with the defL rule{
Πρ,σ,B

Bσ,Γ′ρ −→ Cρ

}
A,Γ′ −→ C

defL
,

then w(∆,Π) is {
w(∆ρ,Πρ,σ,B)

Bσ,Γ′ρ,∆ρ −→ Cρ

}
A,Γ′,∆ −→ C

defL
.

2. If Π ends with the natL rule

Π1
−→ B z

Π2

B j −→ B (s j)
Π3

B I,Γ −→ C

nat I,Γ −→ C
natL

,

then w(∆,Π) is

Π1
−→ B z

Π2

B j −→ B (s j)
w(∆,Π3)

B I,Γ,∆ −→ C

nat I,Γ,∆ −→ C
natL

.

3. If Π ends with the mc rule

Π1
∆1 −→ B1 · · ·

Πn
∆n −→ Bn

Π′
B1, . . . , Bn,Γ −→ C

∆1, . . . ,∆n,Γ −→ C
mc

,

then w(∆,Π) is

Π1
∆1 −→ B1 · · ·

Πn
∆n −→ Bn

w(∆,Π′)
B1, . . . , Bn,Γ,∆ −→ C

∆1, . . . ,∆n,Γ,∆ −→ C
mc

.
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4. If Π ends with any other rule and has premise derivations Π1, . . . ,Πn, then w(∆,Π)

also ends with the same rule and has premise derivations w(∆,Π1), . . . , w(∆,Πn).

Lemma 2.9 For any multiset ∆ of formulas and derivation Π of Γ −→ C, w(∆,Π) is a

derivation of Γ,∆ −→ C.

Proof This lemma states that Definition 2.8 is well-constructed, and follows by a simple

induction on µ(Π).

Lemma 2.10 For any derivation Π and multiset ∆ of formulas,

ht(Π) = ht(w(∆,Π)) .

Proof The proof of this lemma goes by induction on µ(Π). All cases follow immediately

from the induction hypothesis.

Lemma 2.11 For any derivation Π, multiset ∆ of formulas, and substitution θ, w(∆,Π)θ

and w(∆θ,Πθ) are the same derivation.

Proof We prove this lemma by induction on ht(Π). The only case that is not straight-

forward is the one in which Π ends with defL:

If Π is {
Πρ,σ,B

Bσ,Γρ −→ Cρ

}
A,Γ −→ C

defL
,

then w(∆,Π) is {
w(∆ρ,Πρ,σ,B)

Bσ,Γρ,∆ρ −→ Cρ

}
dfn(ρ,A,σ,B)

A,Γ,∆ −→ C
defL

and w(∆,Π)θ is {
w(∆θρ′,Πθ◦ρ′,σ′,B)

Bσ′,Γθρ′,∆θρ′ −→ Cθρ′

}
dfn(ρ′,Aθ,σ′,B)

Aθ,Γθ,∆θ −→ Cθ
defL

.

On the other hand, Πθ is{
Πθ◦ρ′′,σ′′,B

Bσ′′,Γθρ′′ −→ Cθρ′′

}
dfn(ρ′′,Aθ,σ′′,B)

Aθ,Γθ −→ Cθ
defL
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and w(∆θ,Πθ) is {
w(∆θρ′′,Πθ◦ρ′′,σ′′,B)

Bσ′′,Γθρ′′,∆θρ′′ −→ Cθρ′′

}
dfn(ρ′′,Aθ,σ′′,B)

Aθ,Γθ,∆θ −→ Cθ
defL

.

Both w(∆,Π)θ and w(∆θ,Πθ) have a premise derivation for each combination of formula

B and substitutions ρ and σ such that dfn(ρ,Aθ, σ,B), and in both cases that premise will

be w(∆θρ,Πθ◦ρ,σ,B). Thus these two derivations are the same.

Lemma 2.12 For any derivation Π and multisets ∆ and ∆′ of formulas,

w(∆, w(∆′,Π)) and w(∆ ∪∆′,Π)

are the same derivation.

Proof The proof of this lemma goes by induction on µ(Π). All cases follow immediately

from the induction hypothesis.

2.2 Some Simple Definitions and Propositions

In this section we illustrate the use of the logic FOλ∆IN with some examples. We first define

some predicates over the natural numbers and reason about them. Then we introduce a list

type and consider predicates for it. As we prove properties about these types and predicates,

we will interleave informal descriptions of the proofs with their realization as derivations

in FOλ∆IN. The formal derivations are by nature detailed and low-level, breaking down

proof principles into small pieces. As a result, what can seem obvious or be described

informally in a small number of words may take a number of steps to accomplish in the

formal derivation. But it is exactly this nature that makes formal derivations amenable to

automation; tools such as proof editors and theorem provers can make the construction of

formal derivations more natural as well as more robust.

We will describe derivations in a “bottom-up” manner – that is, we will start with the

sequent we wish to derive, apply a rule with that sequent as the conclusion, and continue

in this manner with the rule premises. Thus unproved premises represent statements of
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Table 2.2: Definitional clauses for predicates over natural numbers

I = I
△
= ⊤ sum z J J

△
= nat J

sum (s I) J (s K)
△
= sum I J K

z < (s J)
△
= nat J I ≤ I

△
= ⊤

(s I) < (s J)
△
= I < J I ≤ J

△
= I < J

what remains to be proved to establish the original sequent. Since the formal (FOλ∆IN)

derivation is presented in pieces, intermixed with descriptive text, pieces that occur later

in the text will generally be (partial) derivations of unproved premises from earlier pieces.

2.2.1 Natural Numbers

As described in Section 2.1, FOλ∆IN includes a type nt encoding natural numbers and a

membership predicate nat. We now introduce predicates representing equality, the less-

than relation, the less-than-or-equal-to relation, and the addition function. The types for

these predicates are as follows:

= : nt → nt → o sum : nt → nt → nt → o

< : nt → nt → o ≤ : nt → nt → o .

The definitional clauses for these predicates are shown in Table 2.2; we shall refer to this

set of clauses as D(nat). We define two numbers to be equal if they are unifiable. The

clauses for sum indicate that the sum of zero and any other number J is J , and the sum

of (s I) and J is the successor of the sum of I and J . Zero is less than the successor of any

number, and (s I) is less than (s J) whenever I is less than J . Finally, I ≤ J if I is equal

to J or if I is less than J .

We now proceed to reason in the logic FOλ∆IN about natural numbers and these pred-

icates over them. As our first example, we derive a case analysis rule for natural numbers.

In general the defL rule is used to formalize case analysis, but the predicate nat is not

a defined predicate, and so the defL rule does not apply in the case of natural numbers.
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However, a case analysis may be viewed as an induction in which we do not use the induc-

tion hypothesis in the induction step. Thus we can derive a case analysis rule for natural

numbers from the induction (natL) rule.

Proposition 2.13 For any formula C : o, predicate B : nt → o, term I : nt, multiset Γ of

formulas, and eigenvariable i : nt such that i is not free in B, the following rule is derivable

in FOλ∆IN:
−→ B z nat i −→ B (s i) B I,Γ −→ C

nat I,Γ −→ C .

Proof This rule expresses the following idea: we want to show that C follows from Γ

and the fact that I is a natural number. Since I is a natural number, it must be either

zero or the successor of another natural number. Thus if we can show that B holds for zero

and for the successor of any natural number (the first two premises), then we know that B

holds for I. It then remains to show that C follows from B I and Γ (the third premise).

To derive this rule, we assume that we have derivations of the premises and proceed to

prove the conclusion. That is, we construct in FOλ∆IN a partial derivation of the sequent

nat I,Γ −→ C, leaving unproved premises of the form −→ B z, nat i −→ B (s i), and

B I,Γ −→ C. This corresponds to working under the assumption that B holds both for

zero and for the successor of any number and that B I and Γ imply C. We proceed by

induction on I, using (λi.nat i ∧ B i) as our induction predicate. As a result, we must

establish three things:

1. the base case: zero is a natural number and B holds for it;

2. the induction step: if i is a natural number and B holds for it, then the same is true

for (s i);

3. the relevance of the induction predicate: if I is a natural number and B holds for it,

then Γ implies C.

This staging of the problem is representing in FOλ∆IN by applying the natL rule:

−→ nat z ∧B z nat i ∧B i −→ nat (s i) ∧B (s i) nat I ∧B I,Γ −→ C

nat I,Γ −→ C
natL

.
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The three premises to the natL rule correspond to the three proof obligations enumerated

above.

Let us first consider the relevance of the induction predicate. This is clear, since we are

working under the assumption that C follows from B I and Γ. This is formally represented

by the partial derivation
B I,Γ −→ C

nat I ∧B I,Γ −→ C
∧L

.

The base case is also simple: zero is obviously a natural number, and we are working

under the assumption that B holds for zero. This is expressed in FOλ∆IN by the partial

derivation
−→ nat z natR −→ B z

−→ nat z ∧B z
∧R

.

It remains to prove the induction step. Since i is a natural number, (s i) is as well. In

addition, B holds for (s i) by our working assumption. The formal representation of this

reasoning is

nat i −→ nat i
init

nat i −→ nat (s i)
natR

nat i −→ B (s i)

nat i −→ nat (s i) ∧B (s i)
∧R

nat i ∧B i −→ nat (s i) ∧B (s i)
∧L

.

We now use this derived case analysis rule to prove that zero is the smallest natural

number.

Proposition 2.14 The formula ∀i(nat i ⊃ z ≤ i) is derivable in FOλ∆IN using the defi-

nition D(nat).

Proof The proof is a simple case analysis on i. To represent this in FOλ∆IN, we apply

the ∀R and ⊃ R rules to get

nat i −→ z ≤ i ,

and then use the derived rule of Proposition 2.13, which yields the three sequents

−→ z ≤ z nat i′ −→ z ≤ (s i′) z ≤ i −→ z ≤ i .

In this case, the third premise is immediate:

z ≤ i −→ z ≤ i
init

.
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If i is zero, then it is immediate that zero is equal to itself and thus less than or equal

to itself:

−→ ⊤ ⊤R
−→ z ≤ z defR .

If i is the successor of some number i′, then z < (s i′) by definition, and so z ≤ (s i′)

also by definition. This is represented formally by the derivation

nat i′ −→ nat i′
init

nat i′ −→ z < (s i′)
defR

nat i′ −→ z ≤ (s i′)
defR

.

We will now prove a more complicated property, namely that if I is less than (s J),

then I ≤ J .

Proposition 2.15 The formula

∀i(nat i ⊃ ∀j(i < (s j) ⊃ i ≤ j))

is derivable in FOλ∆IN using the definition D(nat).

Proof To prove this we prove the stronger assertion that for any k greater than i, k is

the successor of a number greater than or equal to i, i.e.

∀k(i < k ⊃ ∃k′(k = (s k′) ∧ i ≤ k′)) .

We will prove this by induction on i, so we must prove

1. the base case: the induction predicate holds for zero;

2. the induction step: if the induction predicate is true of i′, then it is true of (s i′);

3. the relevance of the induction predicate: the induction predicate applied to i implies

the original proposition.

This staging of the problem is represented in FOλ∆IN by applying the ∀R and ⊃ R rules

to obtain the sequent

nat i −→ ∀j(i < (s j) ⊃ i ≤ j)

and then the natL rule to get the three sequents

−→ ∀k(z < k ⊃ ∃k′(k = (s k′) ∧ z ≤ k′))
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∀k(i′ < k ⊃ ∃k′(k = (s k′) ∧ i′ ≤ k′)) −→ ∀k((s i′) < k ⊃ ∃k′(k = (s k′) ∧ (s i′) ≤ k′))

∀k(i < k ⊃ ∃k′(k = (s k′) ∧ i ≤ k′)) −→ ∀j(i < (s j) ⊃ i ≤ j) .

First consider the relevance of the induction predicate. By assumption (s j) is greater

than i, so our induction predicate implies that (s j) is the successor of a number greater

than or equal to i. This is represented in FOλ∆IN by the partial derivation

i < (s j) −→ i < (s j)
init ∃k′((s j) = (s k′) ∧ i ≤ k′), i < (s j) −→ i ≤ j

i < (s j) ⊃ ∃k′((s j) = (s k′) ∧ i ≤ k′), i < (s j) −→ i ≤ j
⊃ L

∀k(i < k ⊃ ∃k′(k = (s k′) ∧ i ≤ k′)), i < (s j) −→ i ≤ j
∀L

∀k(i < k ⊃ ∃k′(k = (s k′) ∧ i ≤ k′)) −→ i < (s j) ⊃ i ≤ j
⊃ R

∀k(i < k ⊃ ∃k′(k = (s k′) ∧ i ≤ k′)) −→ ∀j(i < (s j) ⊃ i ≤ j)
∀R

.

Of course, (s j) is only the successor of j, so j must be greater than or equal to i:

⊤, i ≤ j, i < (s j) −→ i ≤ j
init

(s j) = (s k′), i ≤ k′, i < (s j) −→ i ≤ j
defL

(s j) = (s k′), (s j) = (s k′) ∧ i ≤ k′, i < (s j) −→ i ≤ j
∧L

(s j) = (s k′) ∧ i ≤ k′, (s j) = (s k′) ∧ i ≤ k′, i < (s j) −→ i ≤ j
∧L

(s j) = (s k′) ∧ i ≤ k′, i < (s j) −→ i ≤ j
cL

∃k′((s j) = (s k′) ∧ i ≤ k′), i < (s j) −→ i ≤ j
∃L

.

To prove the base case of the induction, we must realize that if k is greater than zero, it

must be of the form (s k0) for some number k0. This realization is accomplished formally

as follows:
nat k0 −→ ∃k′((s k0) = (s k′) ∧ z ≤ k′)

z < k −→ ∃k′(k = (s k′) ∧ z ≤ k′)
defL

−→ z < k ⊃ ∃k′(k = (s k′) ∧ z ≤ k′)
⊃ R

−→ ∀k(z < k ⊃ ∃k′(k = (s k′) ∧ z ≤ k′))
∀R

.

It is now clear that k′ should be k0 and it only remains to prove that k0 is greater than or

equal to zero:

nat k0 −→ ⊤ ⊤R

nat k0 −→ (s k0) = (s k0)
defR

nat k0 −→ z ≤ k0

nat k0 −→ (s k0) = (s k0) ∧ z ≤ k0
∧R

nat k0 −→ ∃k′((s k0) = (s k′) ∧ z ≤ k′)
∃R

.

But any natural number is greater than or equal to zero, as was shown formally above in

Proposition 2.14.
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It now remains to prove the induction step, represented in FOλ∆IN by the second

premise of the defL rule:

∀k(i < k ⊃ ∃k′(k = (s k′) ∧ i ≤ k′)) −→ ∀k((s i) < k ⊃ ∃k′(k = (s k′) ∧ (s i) ≤ k′)) .

Since (s i) < k, by definition k must be of the form (s k0) for some k0 such that i < k0:

∀k(i < k ⊃ ∃k′(k = (s k′) ∧ i ≤ k′)), i < k0 −→ ∃k′((s k0) = (s k′) ∧ (s i) ≤ k′)

∀k(i < k ⊃ ∃k′(k = (s k′) ∧ i ≤ k′)), (s i) < k −→ ∃k′(k = (s k′) ∧ (s i) ≤ k′)
defL

∀k(i < k ⊃ ∃k′(k = (s k′) ∧ i ≤ k′)) −→ (s i) < k ⊃ ∃k′(k = (s k′) ∧ (s i) ≤ k′)
⊃ R

∀k(i < k ⊃ ∃k′(k = (s k′) ∧ i ≤ k′)) −→ ∀k((s i) < k ⊃ ∃k′(k = (s k′) ∧ (s i) ≤ k′))
∀R

.

It is now clear that k′ should be k0, so we proceed as in the base case:

∀k . . . , i < k0 −→ ⊤ ⊤R

∀k . . . , i < k0 −→ (s k0) = (s k0)
defR ∀k . . . , i < k0 −→ (s i) ≤ k0

∀k(i < k ⊃ ∃k′(k = (s k′) ∧ i ≤ k′)), i < k0 −→ (s k0) = (s k0) ∧ (s i) ≤ k0
∧R

∀k(i < k ⊃ ∃k′(k = (s k′) ∧ i ≤ k′)), i < k0 −→ ∃k′((s k0) = (s k′) ∧ (s i) ≤ k′)
∃R

.

Since i < k0, by the induction hypothesis k0 is the successor of a number k′0 that is greater

than or equal to i:

i < k0 −→ i < k0
init

⊤, i ≤ k′0, i < (s k′0) −→ (s i) ≤ (s k′0)

k0 = (s k′0), i ≤ k′0, i < k0 −→ (s i) ≤ k0
defL
∧L

. . . ∧ . . . , . . . ∧ . . . , i < k0 −→ (s i) ≤ k0

k0 = (s k′0) ∧ i ≤ k′0, i < k0 −→ (s i) ≤ k0
cL

∃k′(k0 = (s k′) ∧ i ≤ k′), i < k0 −→ (s i) ≤ k0
∃L

i < k0 ⊃ ∃k′(k0 = (s k′) ∧ i ≤ k′), i < k0 −→ (s i) ≤ k0
⊃ L

∀k(i < k ⊃ ∃k′(k = (s k′) ∧ i ≤ k′)), i < k0 −→ (s i) ≤ k0
∀L

.

Since i ≤ k′0, either i = k′0 or i < k′0. If i = k′0, then (s i) = (s k′0). If i < k′0, then

(s i) < (s k′0). In either case, (s i) ≤ (s k′0) by definition. This reasoning is represented

formally by the derivation

⊤,⊤, i < (s i) −→ ⊤ ⊤R

⊤,⊤, i < (s i) −→ (s i) ≤ (s i)
defR

⊤, i < k′0, i < (s k′0) −→ i < k′0
init

⊤, i < k′0, i < (s k′0) −→ (s i) < (s k′0)
defR

⊤, i < k′0, i < (s k′0) −→ (s i) ≤ (s k′0)
defR

⊤, i ≤ k′0, i < (s k′0) −→ (s i) ≤ (s k′0)
defL

.

As a final example for the predicates over natural numbers, we will derive a rule for

complete induction.
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Proposition 2.16 For any formula C : o, predicate B : nt → o, term I : nt, and multiset

Γ of formulas, the following rule is derivable in FOλ∆IN using the definition D(nat):

nat j, ∀k(nat k ⊃ k < j ⊃ B k) −→ B j B I,Γ −→ C

nat I,Γ −→ C .

Proof To derive this rule, we construct a partial derivation of the sequent nat I,Γ −→ C,

leaving unproved premises of the form nat j, ∀k(nat k ⊃ k < j ⊃ B k) −→ B j and

B I,Γ −→ C. This corresponds to proving that C follows from Γ and the fact that I is a

natural number under the assumptions

• for any natural number j, if B holds for all numbers less than k, then B holds for j;

and

• B I and Γ imply C.

The idea behind the proof is as follows. We want to show that the first working as-

sumption is sufficient to imply that B I holds, and thus (by the second working assumption)

that C holds. We do this by induction on I, of course, but instead of using B itself for

the induction predicate, we use (λi.nat i ∧ ∀k(nat k ⊃ k < i ⊃ B k)). If this is true of

I, then we can combine it with the first working assumption to infer that B I holds. This

is all represented formally as follows. We proceed to derive the sequent nat I,Γ −→ C

by induction on I (via the natL rule), using (λi.nat i ∧ ∀k(nat k ⊃ k < i ⊃ B k)) as the

induction predicate. This yields the three sequents

−→ nat z ∧ ∀k(nat k ⊃ k < z ⊃ B k)

nat j ∧ ∀k(nat k ⊃ k < j ⊃ B k) −→ nat (s j) ∧ ∀k(nat k ⊃ k < (s j) ⊃ B k)

nat I ∧ ∀k(nat k ⊃ k < I ⊃ B k),Γ −→ C .

The third premise of the natL rule indicates that the induction predicate applied to I

implies the conclusion. As described above, this follows from the two premises of the

complete induction rule we are deriving. The formalization of this is a cut between the

partial derivation

nat I, ∀k(nat k ⊃ k < I ⊃ B k) −→ B I

nat I, nat I ∧ ∀k(nat k ⊃ k < I ⊃ B k) −→ B I
∧L

nat I ∧ ∀k(nat k ⊃ k < I ⊃ B k), nat I ∧ ∀k(nat k ⊃ k < I ⊃ B k) −→ B I
∧L

nat I ∧ ∀k(nat k ⊃ k < I ⊃ B k) −→ B I
cL
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and the second premise of the rule we are deriving.

The base case of the induction is represented by the first premise of the natL rule

−→ nat z ∧ ∀k(nat k ⊃ k < z ⊃ B k) .

The first part, that zero is a natural number, is obvious, and the second part holds vacu-

ously, since there are no natural numbers less than zero. The formal representation of this

case is the derivation

−→ nat z natR

nat k, k < z −→ B k
defL

nat k −→ k < z ⊃ B k
⊃ R

−→ nat k ⊃ k < z ⊃ B k
⊃ R

−→ ∀k(nat k ⊃ k < z ⊃ B k)
∀R

−→ nat z ∧ ∀k(nat k ⊃ k < z ⊃ B k)
∧R

.

It remains to derive the second premise to the natL rule,

nat j ∧ ∀k(nat k ⊃ k < j ⊃ B k) −→ nat (s j) ∧ ∀k(nat k ⊃ k < (s j) ⊃ B k) ,

which corresponds to the induction step. Thus given that j is a natural number and that B

holds for all numbers less than j, we must show that the same are true for (s j). Formally,

we apply the ∧R rule to obtain the two sequents

nat j ∧ ∀k(nat k ⊃ k < j ⊃ B k) −→ nat (s j)

nat j ∧ ∀k(nat k ⊃ k < j ⊃ B k) −→ ∀k(nat k ⊃ k < (s j) ⊃ B k) .

The first of these, that (s j) is a natural number, follows immediately from the assumption

that j is a natural number:

nat j −→ nat j
init

nat j −→ nat (s j)
defR

nat j ∧ ∀k(nat k ⊃ k < j ⊃ B k) −→ nat (s j)
∧L

.

To derive the second sequent, we must show that B k holds for all numbers k < (s j). To
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do this, we first deduce k ≤ j from k < (s j):

nat k, k < (s j) −→ k ≤ j ∀k(nat k ⊃ k < j ⊃ B k), nat k, k ≤ j −→ B k

∀k(nat k ⊃ k < j ⊃ B k), nat k, nat k, k < (s j) −→ B k
mc

∀k(nat k ⊃ k < j ⊃ B k), nat k, k < (s j) −→ B k
cL

∀k(nat k ⊃ k < j ⊃ B k), nat k −→ k < (s j) ⊃ B k
⊃ R

∀k(nat k ⊃ k < j ⊃ B k) −→ nat k ⊃ k < (s j) ⊃ B k
⊃ R

∀k(nat k ⊃ k < j ⊃ B k) −→ ∀k(nat k ⊃ k < (s j) ⊃ B k)
∀R

nat j ∧ ∀k(nat k ⊃ k < j ⊃ B k) −→ ∀k(nat k ⊃ k < (s j) ⊃ B k)
∧L

.

The first premise to the multicut rule is derivable according to Proposition 2.15, so we

proceed with the second. Since k ≤ j, either k = j or k < j, and we consider these cases

separately. We accomplish this formally by applying the defL rule to k ≤ j, yielding the

two sequents

∀k(nat k ⊃ k < j ⊃ B k), nat j,⊤ −→ B j

∀k(nat k ⊃ k < j ⊃ B k),nat k, k < j −→ B k .

The first sequent above, corresponding to the case when k = j, is a weakening of the first

premise of the induction rule we are deriving. We do not have an explicit weakening rule

in FOλ∆IN, but it suffices here to use the cut rule:

nat j,⊤ −→ nat j
init ∀k(nat k ⊃ k < j ⊃ B k),nat j −→ B j

∀k(nat k ⊃ k < j ⊃ B k), nat j,⊤ −→ B j
mc

.

When k < j, B k follows from the induction hypothesis. This is formalized as

nat k, k < j −→ nat k
init

nat k, k < j −→ k < j
init

B k, nat k, k < j −→ B k

k < j ⊃ B k, nat k, k < j −→ B k
⊃ L

nat k ⊃ k < j ⊃ B k, nat k, k < j −→ B k
⊃ L

∀k(nat k ⊃ k < j ⊃ B k), nat k, k < j −→ B k
∀L

.

The premise B k, . . . −→ B k is derivable for any predicate B, since the consequent B k

follows from the antecedent B k.

The following proposition presents additional properties of natural numbers that we

have derived in FOλ∆IN, although we do not show the derivations here.

Proposition 2.17 The following formulas are derivable in FOλ∆IN using the definition

D(nat):

∀i(nat (s i) ⊃ nat i)
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∀i(nat i ⊃ ∀j(i < j ⊃ nat j))

∀i(nat i ⊃ i < (s i))

∀i(nat i ⊃ ∀j∀k(i < j ⊃ j < k ⊃ i < k))

∀i(nat i ⊃ ∀j(nat j ⊃ ∃k(nat k ∧ i < k ∧ j < k)))

∀i(nat i ⊃ ∀j∀k(sum i (s j) k ⊃ sum (s i) j k))

∀i(nat i ⊃ ∀j(nat j ⊃ ∃k(nat k ∧ sum i j k)))

∀i(nat i ⊃ ∀j∀k(nat j ⊃ sum i j k ⊃ i ≤ k))

∀i(nat i ⊃ ∀j∀k(nat j ⊃ sum (s i) j k ⊃ j < k)) .

2.2.2 Lists

In this section we introduce a type lst for lists over an arbitrary but fixed type τ . The type

has two constructors, nil : lst representing the empty list and the infix operator :: of type

τ → lst → lst that adds an element to the front of a list. Consider the list predicates

length : lst → nt → o split : lst → lst → lst → o

list : lst → o permute : lst → lst → o

element : τ → lst → o ,

whose definitional clauses are shown in Table 2.3; we shall refer to this set of clauses as

D(list(τ)). The predicate length represents the function that returns the length of its list

argument. The length of the empty list is zero, and the length of (X :: L) is one more

than the length of L. The predicate list indicates that its argument has a finite (natural

number) length. We shall find this predicate useful for constructing induction principles

over lists. The predicate element indicates that its first argument is a member of its second

argument. X is an element of (Y ::L) if X and Y are the same or if X is an element of

L. The predicate split holds if its first argument represents a merging of the second and

third in which the order of elements in second and third lists is preserved in the first. The

empty list can only be split into two empty lists. To split (X ::L), we split L and add X to

the front of either of the resulting lists. The predicate permute holds if its two arguments
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Table 2.3: Definitional clauses for predicates over lists

length nil z
△
= ⊤

length (X ::L) (s I)
△
= length L I

list L
△
= ∃i(nat i ∧ length L i)

element X (X ::L)
△
= ⊤

element X (Y ::L)
△
= element X L

split nil nil nil
△
= ⊤

split (X ::L1) (X ::L2) L3
△
= split L1 L2 L3

split (X ::L1) L2 (X ::L3)
△
= split L1 L2 L3

permute nil nil
△
= ⊤

permute (X ::L1) L2
△
= ∃l22(split L2 (X ::nil) l22 ∧ permute L1 l22 )

contain the same elements (including repetitions), though not necessarily in the same order.

The empty list only permutes to itself. A list (X ::L1) permutes to L2 if removing X from

L2 yields a permutation of L1.

We now derive an induction rule for lists from the induction rule for natural numbers

(natL) using the length of a list as our measure.

Proposition 2.18 For any formula C : o, predicate B : lst → o, term L : lst, multiset

Γ of formulas, and eigenvariable l : lst such that l is not free in B, the following rule is

derivable in FOλ∆IN using the definition D(list(τ)):

−→ B nil B l −→ B (x :: l) B L,Γ −→ C

list L,Γ −→ C .

Proof To derive this rule, we construct a partial derivation of the sequent list L,Γ −→ C,

leaving unproved premises of the form −→ B nil, B l −→ B (x :: l), and B L,Γ −→ C. This

corresponds to proving that C follows from Γ and the fact that L is a list under the

assumptions

• B holds for nil;
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• for any x′ and l′, if B holds for l′, then it also holds for (x′ :: l′);

• B L and Γ imply C.

The proof is by induction on the length of the list L. Since list L holds, by definition L

has a length which is a natural number:

nat i, length L i,Γ −→ C

nat i, nat i ∧ length L i,Γ −→ C
∧L

nat i ∧ length L i, nat i ∧ length L i,Γ −→ C
∧L

nat i ∧ length L i,Γ −→ C
cL

∃i(nat i ∧ length L i),Γ −→ C
∃L

list L,Γ −→ C
defL

.

We now claim that B holds for lists of any length, and wish to prove this claim by

induction on the length of the list. Thus we must prove

1. the base case: B holds for lists of length zero;

2. the induction step: if B holds for lists of length i′, it holds for lists of length (s i′);

3. the relevance of the claim: C follows from Γ, the fact that L has length i, and the

fact that B holds for lists of length i.

This is represented in FOλ∆IN by applying the natL rule with the induction predicate

λi.∀l(length l i ⊃ B l), which yields the three sequents

−→ ∀l(length l z ⊃ B l)

∀l(length l i′ ⊃ B l) −→ ∀l(length l (s i′) ⊃ B l)

∀l(length l i ⊃ B l), length L i,Γ −→ C .

Once we have proved that B holds for lists of length i, then we know it holds for L.

Thus we know that C follows from Γ, since our third working assumption says that C

follows from B L and Γ. This is represented formally by the partial derivation of the third

premise of the natL rule:

length L i,Γ −→ length L i
init

B L, length L i,Γ −→ C

length L i ⊃ B L, length L i,Γ −→ C
⊃ L

∀l(length l i ⊃ B l), length L i,Γ −→ C
∀L

.
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The unproved premise of this partial derivation is actually a weakening of the third premise

of the induction rule we are deriving. We do not have an explicit weakening rule in FOλ∆IN,

but it suffices here to use the cut rule:

B L, length L i −→ B L B L,Γ −→ C

B L, length L i,Γ −→ C
mc

.

The first premise of the cut rule is derivable for any B and L, since the consequent B L

also occurs as an antecedent. The second premise is the desired premise of the rule we are

deriving.

In the base case of the induction, we must show that B holds for lists of length zero.

Since the only list of length zero is nil, this follows from the first working assumption, which

says that B nil holds. This case is formalized in the following partial derivation of the first

premise of the natL rule:
⊤ −→ B nil

length l z −→ B l
defL

−→ length l z ⊃ B l
⊃ R

−→ ∀l(length l z ⊃ B l)
∀R

.

The induction step requires us to prove that B holds for all lists of length (s i′), given

that it holds for all lists of length i′. Since a list of length (s i′) is constructed by adding

an element to the front of a list of length i′, this step follows from the second working

assumption, which says that if B holds for a list l, then for any x : τ , B holds for x :: l.

This reasoning represented in the partial derivation of the second premise of the natL rule:

length l′ i′ −→ length l′ i′
init

B l′, length l′ i′ −→ B (x′ :: l′)

length l′ i′ ⊃ B l′, length l′ i′ −→ B (x′ :: l′)
⊃ L

∀l(length l i′ ⊃ B l), length l′ i′ −→ B (x′ :: l′)
∀L

∀l(length l i′ ⊃ B l), length l (s i′) −→ B l
defL

∀l(length l i′ ⊃ B l) −→ length l (s i′) ⊃ B l
⊃ R

∀l(length l i′ ⊃ B l) −→ ∀l(length l (s i′) ⊃ B l)
∀R

.

The unproved premise of this partial derivation is a weakening of the second premise of the

induction rule we are deriving. We can achieve this weakening using the cut rule in the

same manner as we did for the third premise:

B l′, length l′ i′ −→ B l′ B l′ −→ B (x′ :: l′)

B l′, length l′ i′ −→ B (x′ :: l′)
mc

.
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We will now use this derived induction rule for lists to prove a very simple property,

namely that we can split any list L into nil and L.

Proposition 2.19 The formula ∀l(list l ⊃ split l nil l) is derivable in FOλ∆IN using the

definition D(list(τ)).

Proof We prove this by induction on l; using the right rules for ∀ and ⊃ and the derived

rule of Proposition 2.18 with the induction predicate (λl.split l nil l), we get the three

sequents

−→ split nil nil nil

split l′ nil l′ −→ split (x′ :: l′) nil (x′ :: l′)

split l nil l −→ split l nil l .

Since the induction predicate applied to l is the same as the consequent, the relevance of

the induction predicate is immediate. Thus the third sequent follows from the init rule.

The base case follows immediately from the definition of split, and so the first sequent

is derivable using the defR and ⊤R rules.

The induction step also follows easily from the definition of split:

split l′ nil l′ −→ split l′ nil l′
init

split l′ nil l′ −→ split (x′ :: l′) nil (x′ :: l′)
defR

.

Next we prove that any list is a permutation of itself.

Proposition 2.20 The formula ∀l(list l ⊃ permute l l ) is derivable in FOλ∆IN using the

definition D(list(τ)).

Proof We prove this by induction on l; applying the ∀R and ⊃ R rules and the derived

rule of Proposition 2.18 with the induction predicate (λl.list l ∧ permute l l ) yields the

three sequents

−→ list nil ∧ permute nil nil

list l′ ∧ permute l′ l′ −→ list (x′ :: l′) ∧ permute (x′ :: l′) (x′ :: l′)

list l ∧ permute l l −→ permute l l .
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The third premise, representing the relevance of the induction predicate, is easily de-

rived:

permute l l −→ permute l l
init

list l ∧ permute l l −→ permute l l
∧L

.

The base case, that the empty list is a list and permutes to itself, follows simply from

the definitions:

−→ nat z natR −→ ⊤ ⊤R
−→ length nil z

defR

−→ nat z ∧ length nil z
∧R

−→ ∃i(nat i ∧ length nil i)
∃R

−→ list nil
defR −→ ⊤ ⊤R

−→ permute nil nil
defR

−→ list nil ∧ permute nil nil
∧R

.

For the induction step, we must prove that (x′ :: l′) is a list and permutes to itself, given

that these are true of l′:

list l′, . . . −→ list (x′ :: l′) list l′, permute l′ l′ −→ permute (x′ :: l′) (x′ :: l′)

list l′, permute l′ l′ −→ list (x′ :: l′) ∧ permute (x′ :: l′) (x′ :: l′)
∧R

list l′, list l′ ∧ permute l′ l′ −→ list (x′ :: l′) ∧ permute (x′ :: l′) (x′ :: l′)
∧L

list l′ ∧ permute l′ l′ , list l′ ∧ permute l′ l′ −→ . . .
∧L

list l′ ∧ permute l′ l′ −→ list (x′ :: l′) ∧ permute (x′ :: l′) (x′ :: l′)
cL

.

To show that (x′ :: l′) is a list, we must provide its length. This is just one more than the

length of l′:

nat i ∧ length l′ i, permute l′ l′ −→ nat (s i) ∧ length (x′ :: l′) (s i)

nat i ∧ length l′ i, permute l′ l′ −→ ∃i(nat i ∧ length (x′ :: l′) i)
∃R

nat i ∧ length l′ i,permute l′ l′ −→ list (x′ :: l′)
defR

∃i(nat i ∧ length l′ i),permute l′ l′ −→ list (x′ :: l′)
∃L

list l′, permute l′ l′ −→ list (x′ :: l′)
defL

.

Applying the ∧R rule to the unproved sequent of this partial derivation yields the two

sequents:

nat i ∧ length l′ i, permute l′ l′ −→ nat (s i)

nat i ∧ length l′ i, permute l′ l′ −→ length (x′ :: l′) (s i) .
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That (s i) is a natural number follows from the fact that the length i of l′ is a natural

number:

nat i, permute l′ l′ −→ nat i
init

nat i ∧ length l′ i, permute l′ l′ −→ nat i
∧L

nat i ∧ length l′ i, permute l′ l′ −→ nat (s i)
natR

.

That (s i) is the length of (x′ :: l′) follows by definition from the fact that i is the length of

l′:

length l′ i, permute l′ l′ −→ length l′ i
init

nat i ∧ length l′ i,permute l′ l′ −→ length l′ i
∧L

nat i ∧ length l′ i, permute l′ l′ −→ length (x′ :: l′) (s i)
defR

.

It still remains to prove that (x′ :: l′) permutes to itself. By the definition of permute, this

is true if (x′ :: l′) splits into (x′ ::nil) and l′:

list l′, . . . −→ split (x′ :: l′) (x′ ::nil) l′ . . . , permute l′ l′ −→ permute l′ l′
init

list l′, permute l′ l′ −→ split (x′ :: l′) (x′ ::nil) l′ ∧ permute l′ l′
∧R

list l′, permute l′ l′ −→ ∃l22(split (x′ :: l′) (x′ ::nil) l22 ∧ permute l′ l22 )
∃R

list l′, permute l′ l′ −→ permute (x′ :: l′) (x′ :: l′)
defR

.

By the definition of split, (x′ :: l′) splits into (x′ ::nil) and l′ if l′ splits into nil and itself:

list l′, permute l′ l′ −→ split l′ nil l′

list l′, permute l′ l′ −→ split (x′ :: l′) (x′ ::nil) l′
defR

.

We proved that any list splits into nil and itself in Proposition 2.19, so we are done.

We conclude this section with a proposition that presents additional properties of lists

that we have derived in FOλ∆IN, though we omit the derivations here.

Proposition 2.21 The following formulas are derivable in FOλ∆IN using the definition

D(list(τ)):

∀l(list l ⊃ ∀l1∀l2(split l l1 l2 ⊃ (list l1 ∧ list l2)))

∀l1(list l1 ⊃ ∀l2(list l2 ⊃ ∀l(split l l1 l2 ⊃ list l)))

∀l(list l ⊃ ∀l1∀l2(split l l1 l2 ⊃ (∀x(element x l1 ⊃ element x l)∧

∀x(element x l2 ⊃ element x l))))

∀l(list l ⊃ ∀l1∀l2(split l l1 l2 ⊃ split l l2 l1))

∀l(list l ⊃ ∀l23∀l1∀l2∀l3(split l l1 l23 ⊃ split l23 l2 l3 ⊃ ∃l12(split l l12 l3 ∧ split l12 l1 l2)))
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∀l(list l ⊃ ∀l12∀l1∀l2∀l3(split l l12 l3 ⊃ split l12 l1 l2 ⊃ ∃l23(split l l1 l23 ∧ split l23 l2 l3)))

∀l(list l ⊃ ∀l′(permute l l′ ⊃ list l′))

∀l(list l ⊃ ∀l′∀l1∀l2(list l′ ⊃ permute l l′ ⊃ split l l1 l2 ⊃

∃l′1∃l′2(permute l1 l
′
1 ∧ permute l2 l

′
2 ∧ split l′ l′1 l

′
2)))

∀l(list l ⊃ ∀l′∀l1∀l′1∀l2∀l′2(list l′ ⊃ split l l1 l2 ⊃ split l′ l′1 l
′
2 ⊃

permute l1 l
′
1 ⊃ permute l2 l

′
2 ⊃ permute l l′ )) .

2.3 Related Work

The logic FOλ∆IN is related to the various logics with “definitional reflection” [50]. The

key idea behind these logics is that they allow a larger class of definitions than the class

of monotone inductive definitions. In particular, implications are allowed to occur in the

bodies of definitional clauses. As we have seen in Section 2.2, a rule of definitional reflection

such as the defL rule of FOλ∆IN allows one to reason about all ways in which a defined atom

might hold. Hallnäs introduced these ideas in his calculus of partial inductive definitions

[19], a propositional calculus that is infinitary in that it allows conjunctions over infinite

sets and definitions with an infinite number of clauses. Hallnäs also worked with Schroeder-

Heister to generalize the system to a predicate calculus setting [20]. Eriksson formulated

a finitary version of the calculus, enriched the definitional reflection rule, and added an

induction principle valid for defined concepts whose definitions fall within the class of

monotone inductive definitions [11]. Girard independently constructed a rule similar to

Eriksson’s in a linear logic setting [17].

In all of these systems except Girard’s, the cut rule is not admissible and definitions

may introduce inconsistencies. Hallnäs and Schroeder-Heister were not concerned with the

inadmissibility of the cut rule, since they were using the systems to specify computations

in a logic programming sense. Our intent, however, is to use the logic for reasoning about

systems. As a result, it is important to us that the cut rule be admissible, and consistency

is essential for our purposes. To achieve these we limit the use of implication in definitions

by means of the level restriction discussed in Section 2.1. Note that this is a restriction

and not a prohibition of the use implication in definitions, and so our class of definitions is
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still richer than monotone inductive definitions. This is important for our use of FOλ∆IN

in Chapter 4. We also formulate our induction rule differently than Eriksson (and we also

limit it to natural numbers for simplicity). As a result of the restriction on definitions and

the formulation of the natL rule, cut-elimination and consistency hold for FOλ∆IN, as we

prove in Chapter 3.
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Chapter 3

Cut-Elimination for FOλ∆IN

The purpose of this chapter is to present a proof of cut-elimination for FOλ∆IN; the consis-

tency of the logic will be a simple corollary of this. Gentzen’s classic proof of cut-elimination

for first-order logic [15] uses an induction on the number of logical connectives in the cut

formula. A cut on a compound formula is replaced by cuts on its subformulas, which

necessarily contain a lower number of connectives. For example, the derivation

Π1
∆ −→ B1

Π2
∆ −→ B2

∆ −→ B1 ∧B2
∧R

Π3
B1,Γ −→ C

B1 ∧B2,Γ −→ C
∧L

∆,Γ −→ C
mc

is reduced to
Π1

∆ −→ B1

Π3
B1,Γ −→ C

∆,Γ −→ C
mc

.

By the induction hypothesis, this cut on B1 is eliminable, hence the original cut on B1∧B2

is also eliminable. In first-order logic, when the cut formula is atomic, the cut can easily

be removed by permuting the cut up toward the leaves of the proof; eventually an initial

rule is reached, at which point the removal of the cut is trivial.

In FOλ∆IN, however, the rules for natural numbers and defined concepts act on atoms,

so the atomic case is not simple. Consider, for example, the derivation

Π1
∆ −→ Bθ
∆ −→ A

defR

{
Πρ,σ,D

Dσ,Γρ −→ Cρ

}
A,Γ −→ C

defL

∆,Γ −→ C
mc

.
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The obvious reduction for this is a cut between Π1 and the appropriate premise of the

defL rule; however, Bθ is a formula of arbitrary complexity, and so will in general have a

greater number of connectives than the atom A, which has zero. Thus a different induction

measure is needed.

Schroeder-Heister proves cut-elimination for several logics with definitions [49, 50] by

including the number of uses of the defL rule in the derivation as part of the induction

measure. However, the logics he considers do not contain induction, which complicates

things further. The derivation

Π1
∆ −→ nat I

∆ −→ nat (s I)
natR

Π2
−→ B z

Π3

B j −→ B (s j)
Π4

B (s I),Γ −→ C

nat (s I),Γ −→ C
natL

∆,Γ −→ C
mc

can be reduced in a number of ways, but the reductions are all variations of the derivation

Π1
∆ −→ nat I

Π2
−→ B z

Π3

B j −→ B (s j)
Π3[I/j]

B I −→ B (s I)

nat I −→ B (s I)
natL

∆ −→ B (s I)
mc Π4

B (s I),Γ −→ C

∆,Γ −→ C
mc

.

Here, the cut on the atomic formula nat (s I) is replaced by two cuts, one on the atom

nat I and the other on the formula B (s I). It is not clear what induction measure can

be used here. For the first cut, the atom nat I contains no logical connectives, but this is

true of the original cut formula nat (s I) as well. The number of natR rules in the right

subderivation of the cut has gone down by one, but the duplication of Π3 might offset this.

For the second cut, the cut formula B (s I) is not related at all to the original cut formula;

it certainly can have no fewer connectives than the atom nat (s I). And though its left

premise is shorter than the left premise of the original cut, it is unclear how the heights of

the right premises compare.

Our proof uses a technique introduced by Tait [54] to prove normal form theorems.

Martin-Löf extended the method to apply beyond terms to natural deduction proofs [28],

and we use it here in a sequent calculus setting. Rather than associate an induction measure

with derivations, we use the derivations themselves as a measure by defining well-founded

orderings on derivations, and performing the induction relative to those orderings. The
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basis for the orderings is a set of reduction rules, such as those suggested above, that will be

used to eliminate applications of the cut rule. We give these reduction rules in Section 3.1.

This is followed by a section which discusses two orderings on derivations, a normalizability

ordering and a reducibility ordering. The well-foundedness of the normalizability ordering

for a derivation implies that the reduction rules can be used to reduce the derivation to

a cut-free derivation of the same end-sequent. The reducibility ordering is a superset

of the normalizability ordering; thus its well-foundedness implies the well-foundedness of

the normalizability ordering. (This notion of reducibility was called convertibility by Tait

and computability by Martin-Löf. We prefer to avoid these terms, since they carry other

meanings in theoretical computer science, and instead use reducibility after Girard [16].)

In Section 3.3 we prove the key lemma: for every derivation, the tree of its successive

predecessors in the reducibility relation is well-founded. From this we conclude that the

corresponding tree in the normalizability relation is also well-founded, and hence the cut

rule can be eliminated from that derivation. Since this holds for every derivation, the

consistency of FOλ∆IN follows. We conclude with a brief comparison of our work with the

work of Martin-Löf and Schroeder-Heister mentioned above.

3.1 Reduction Rules for Derivations

Here we define a reduction relation between derivations, which is an adaptation of the

reduction rules used in Gentzen’s original Hauptsatz [15].

Definition 3.1 We define a reduction relation between derivations. The redex is always a

derivation Ξ ending with the multicut rule

Π1
∆1 −→ B1 · · ·

Πn
∆n −→ Bn

Π
B1, . . . , Bn,Γ −→ C

∆1, . . . ,∆n,Γ −→ C
mc

.

If n = 0, Ξ reduces to the premise derivation Π.

For n > 0 we specify the reduction relation based on the last rule of the premise

derivations. If the rightmost premise derivation Π ends with a left rule acting on a cut

formula Bi, then the last rule of Πi and the last rule of Π together determine the reduction

rules that apply. We classify these rules according to the following criteria: we call the rule
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an essential case when Πi ends with a right rule; if it ends with a left rule, it is a right-

commutative case; if Πi ends with the init rule, then we have an axiom case; a multicut

case arises when it ends with the mc rule. When Π does not end with a left rule acting

on a cut formula, then its last rule is alone sufficient to determine the reduction rules that

apply. If Π ends in a rule acting on a formula other than a cut formula, then we call this

a left-commutative case. A structural case results when Π ends with a contraction on a cut

formula. If Π ends with the init rule, this is also an axiom case; similarly a multicut case

arises if Π ends in the mc rule. For simplicity of presentation, we always show i = 1.

Essential cases:

∧R/ ∧ L: If Π1 and Π are

Π′
1

∆1 −→ B′
1

Π′′
1

∆1 −→ B′′
1

∆1 −→ B′
1 ∧B′′

1
∧R

Π′

B′
1, B2, . . . , Bn,Γ −→ C

B′
1 ∧B′′

1 , B2, . . . , Bn,Γ −→ C
∧L

,

then Ξ reduces to

Π′
1

∆1 −→ B′
1

Π2
∆2 −→ B2 · · ·

Πn
∆n −→ Bn

Π′

B′
1, B2, . . . , Bn,Γ −→ C

∆1, . . . ,∆n,Γ −→ C
mc

.

The case for the other ∧L rule is symmetric.

∨R/ ∨ L: If Π1 and Π are

Π′
1

∆1 −→ B′
1

∆1 −→ B′
1 ∨B′′

1
∨R

Π′

B′
1, B2, . . . , Bn,Γ −→ C

Π′′

B′′
1 , B2, . . . , Bn,Γ −→ C

B′
1 ∨B′′

1 , B2, . . . , Bn,Γ −→ C
∨L

,

then Ξ reduces to

Π′
1

∆1 −→ B′
1

Π2
∆2 −→ B2 · · ·

Πn
∆n −→ Bn

Π′

B′
1, B2, . . . , Bn,Γ −→ C

∆1, . . . ,∆n,Γ −→ C
mc

.

The case for the other ∨R rule is symmetric.

⊃ R/ ⊃ L: Suppose Π1 and Π are

Π′
1

B′
1,∆1 −→ B′′

1

∆1 −→ B′
1 ⊃ B′′

1
⊃ R

Π′

B2, . . . , Bn,Γ −→ B′
1

Π′′

B′′
1 , B2, . . . , Bn,Γ −→ C

B′
1 ⊃ B′′

1 , B2, . . . , Bn,Γ −→ C
⊃ L

.
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Let Ξ1 be{
Πi

∆i −→ Bi

}
i∈{2..n}

Π′

B2, . . . , Bn,Γ −→ B′
1

∆2, . . . ,∆n,Γ −→ B′
1

mc Π′
1

B′
1,∆1 −→ B′′

1

∆1, . . . ,∆n,Γ −→ B′′
1

mc
.

Then Ξ reduces to

Ξ1

. . . −→ B′′
1

{
Πi

∆i −→ Bi

}
i∈{2..n}

Π′′

B′′
1 , {Bi}i∈{2..n},Γ −→ C

∆1, . . . ,∆n,Γ,∆2, . . . ,∆n,Γ −→ C
mc

cL
∆1, . . . ,∆n,Γ −→ C .

We use the double horizontal lines to indicate that the relevant inference rule (in this

case, cL) may need to be applied zero or more times.

∀R/∀L: If Π1 and Π are

Π′
1

∆1 −→ B′
1[y/x]

∆1 −→ ∀x.B′
1

∀R

Π′

B′
1[t/x], B2, . . . , Bn,Γ −→ C

∀x.B′
1, B2, . . . , Bn,Γ −→ C

∀L
,

then Ξ reduces to

Π′
1[t/y]

∆1 −→ B′
1[t/x]

{
Πi

∆i −→ Bi

}
i∈{2..n}

Π′
. . . −→ C

∆1, . . . ,∆n,Γ −→ C
mc

.

∃R/∃L: If Π1 and Π are

Π′
1

∆1 −→ B′
1[t/x]

∆1 −→ ∃x.B′
1

∃R

Π′

B′
1[y/x], B2, . . . , Bn,Γ −→ C

∃x.B′
1, B2, . . . , Bn,Γ −→ C

∃L
,

then Ξ reduces to

Π′
1

∆1 −→ B′
1[t/x]

{
Πi

∆i −→ Bi

}
i∈{2..n}

Π′[t/y]
. . . −→ C

∆1, . . . ,∆n,Γ −→ C
mc

.
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natR/natL: Suppose Π1 is ∆1 −→ nat z
natR

and Π is

Π′
−→ D z

Π′′

D j −→ D (s j)
Π′′′

D z, B2, . . . , Bn,Γ −→ C

nat z, B2, . . . , Bn,Γ −→ C
natL

.

Then Ξ reduces to

w(∆1,Π
′)

∆1 −→ D z

{
Πi

∆i −→ Bi

}
i∈{2..n}

Π′′′
D z, B2, . . . , Bn,Γ −→ C

∆1, . . . ,∆n,Γ −→ C
mc

.

natR/natL: Suppose Π1 is
Π′

1
∆1 −→ nat I

∆1 −→ nat (s I)
natR

and Π is

Π′
−→ D z

Π′′

D j −→ D (s j)
Π′′′

D (s I), B2, . . . , Bn,Γ −→ C

nat (s I), B2, . . . , Bn,Γ −→ C
natL

.

Let Ξ1 be

Π′
1

∆1 −→ nat I

Π′
−→ D z

Π′′

D j −→ D (s j) D I −→ D I
init

nat I −→ D I
natL

∆1 −→ D I
mc

,

and Ξ2 be
Ξ1

∆1 −→ D I
Π′′[I/j]

D I −→ D (s I)

∆1 −→ D (s I)
mc

.

Then Ξ reduces to

Ξ2

∆1 −→ D (s I)

{
Πi

∆i −→ Bi

}
i∈{2..n}

Π′′′

D (s I), B2, . . . , Bn,Γ −→ C

∆1, . . . ,∆n,Γ −→ C
mc

.

defR/defL: Suppose Π1 and Π are

Π′
1

∆1 −→ B′
1θ

∆1 −→ B1
defR

{
Πρ,σ,D

Dσ,B2ρ, . . . , Bnρ,Γρ −→ Cρ

}
B1, B2, . . . , Bn,Γ −→ C

defL
.
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Then by the defR rule in Π1 dfn(ϵ, B1, θ, B
′
1) holds. Let θ

′ be the restriction of θ to

the variables x̄ of the relevant definitional clause. Since B′
1 is the body of this clause,

its free variables are included in x̄, and so B′
1θ

′ = B′
1θ. Then Ξ reduces to

Π′
1

∆1 −→ B′
1θ

{
Πi

∆i −→ Bi

}
i∈{2..n}

Πϵ,θ′,B′
1

B′
1θ,B2, . . . , Bn,Γ −→ C

∆1, . . . ,∆n,Γ −→ C
mc

.

Left-commutative cases:

•L/ ◦ L: Suppose Π ends with a left rule other than cL acting on B1, and Π1 is{
Πi

1

∆i
1 −→ B1

}
∆1 −→ B1

•L
,

where •L is any left rule except ⊃ L, defL, or natL (but including cL). Then Ξ

reduces to
Πi

1

∆i
1 −→ B1

{
Πj

∆j −→ Bj

}
j∈{2..n}

Π
B1, . . . , Bn,Γ −→ C

∆i
1,∆2, . . . ,∆n,Γ −→ C

mc


∆1,∆2, . . . ,∆n,Γ −→ C

•L
.

⊃ L/ ◦ L: Suppose Π ends with a left rule other than cL acting on B1 and Π1 is

Π′
1

∆′
1 −→ D′

1

Π′′
1

D′′
1 ,∆

′
1 −→ B1

D′
1 ⊃ D′′

1 ,∆
′
1 −→ B1

⊃ L
.

Let Ξ1 be

Π′′
1

D′′
1 ,∆

′
1 −→ B1

Π2
∆2 −→ B2 · · ·

Πn
∆n −→ Bn

Π
B1, . . . , Bn,Γ −→ C

D′′
1 ,∆

′
1,∆2, . . . ,∆n,Γ −→ C

mc
.

Then Ξ reduces to

w(∆2 ∪ . . . ∪∆n ∪ Γ,Π′
1)

∆′
1,∆2, . . . ,∆n,Γ −→ D′

1

Ξ1

D′′
1 ,∆

′
1,∆2, . . . ,∆n,Γ −→ C

D′
1 ⊃ D′′

1 ,∆
′
1,∆2, . . . ,∆n,Γ −→ C

⊃ L
.
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natL/ ◦ L: Suppose Π ends with a left rule other than cL acting on B1, and Π1 is

Π1
1

−→ D1 z
Π2

1

D1 j −→ D1 (s j)
Π3

1

D1 I,∆
′
1 −→ B1

nat I,∆′
1 −→ B1

natL
.

Let Ξ1 be

Π3
1

D1 I,∆
′
1 −→ B1

{
Πi

∆i −→ Bi

}
i∈{2..n}

Π
B1, . . . , Bn,Γ −→ C

D1 I,∆
′
1,∆2, . . . ,∆n,Γ −→ C

mc
.

Then Ξ reduces to

Π1
1

−→ D1 z
Π2

1

D1 j −→ D1 (s j)
Ξ1

D1 I,∆
′
1,∆2, . . . ,∆n,Γ −→ C

nat I,∆′
1,∆2, . . . ,∆n,Γ −→ C

natL
.

defL/ ◦ L: If Π ends with a left rule other than cL acting on B1 and Π1 is{
Πρ,σ,D

1

Dσ,∆′
1ρ −→ B1ρ

}
A,∆′

1 −→ B1
defL

,

then Ξ reduces to
Πρ,σ,D

1

Dσ,∆′
1ρ −→ B1ρ

{
Πiρ

∆iρ −→ Biρ

}
i∈{2..n}

Πρ
. . . −→ Cρ

Dσ,∆′
1ρ,∆2ρ, . . . ,∆nρ,Γρ −→ Cρ

mc


A,∆′

1,∆2, . . . ,∆n,Γ −→ C
defL

.

Right-commutative cases:

−/ ◦ L: Suppose Π is {
Πi

B1, . . . , Bn,Γ
i −→ C

}
B1, . . . , Bn,Γ −→ C

◦L
,

where ◦L is any left rule other than ⊃ L, defL, or natL (but including cL) acting on

a formula other than B1, . . . , Bn. Then Ξ reduces to
Π1

∆1 −→ B1 · · ·
Πn

∆n −→ Bn

Πi

B1, . . . , Bn,Γ
i −→ C

∆1, . . . ,∆n,Γ
i −→ C

mc


∆1, . . . ,∆n,Γ −→ C

◦L
.
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−/ ⊃ L: Suppose Π is

Π′

B1, . . . , Bn,Γ
′ −→ D′

Π′′

B1, . . . , Bn, D
′′,Γ′ −→ C

B1, . . . , Bn, D
′ ⊃ D′′,Γ′ −→ C

⊃ L
.

Let Ξ1 be

Π1
∆1 −→ B1 · · ·

Πn
∆n −→ Bn

Π′

B1, . . . , Bn,Γ
′ −→ D′

∆1, . . . ,∆n,Γ
′ −→ D′ mc

and Ξ2 be

Π1
∆1 −→ B1 · · ·

Πn
∆n −→ Bn

Π′′

B1, . . . , Bn, D
′′,Γ′ −→ C

∆1, . . . ,∆n, D
′′,Γ′ −→ C

mc
.

Then Ξ reduces to

Ξ1

∆1, . . . ,∆n,Γ
′ −→ D′

Ξ2

∆1, . . . ,∆n, D
′′,Γ′ −→ C

∆1, . . . ,∆n, D
′ ⊃ D′′,Γ′ −→ C

⊃ L
.

−/natL: Suppose Π is

Π′
−→ D z

Π′′

D j −→ D (s j)
Π′′′

B1, . . . , Bn, D I,Γ′ −→ C

B1, . . . , Bn, nat I,Γ
′ −→ C

natL
.

Let Ξ1 be

Π1
∆1 −→ B1 · · ·

Πn
∆n −→ Bn

Π′′′

B1, . . . , Bn, D I,Γ′ −→ C

∆1, . . . ,∆n, D I,Γ′ −→ C
mc

.

then Ξ reduces to

Π′
−→ D z

Π′′

D j −→ D (s j)
Ξ1

∆1, . . . ,∆n, D I,Γ′ −→ C

∆1, . . . ,∆n, nat I,Γ
′ −→ C

natL
.

−/defL: If Π is {
Πρ,σ,D

B1ρ, . . . , Bnρ,Dσ,Γ′ρ −→ Cρ

}
B1, . . . , Bn, A,Γ

′ −→ C
defL

,
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then Ξ reduces to
{

Πiρ
∆iρ −→ Biρ

}
i∈{1..n}

Πρ,σ,D

{Biρ}i∈{1..n}, Dσ,Γ′ρ −→ Cρ

∆1ρ, . . . ,∆nρ,Dσ,Γ′ρ −→ Cρ
mc


∆1, . . . ,∆n, A,Γ

′ −→ C
defL

.

−/ ◦ R: If Π is {
Πi

B1, . . . , Bn,Γ
i −→ Ci

}
B1, . . . , Bn,Γ −→ C

◦R
,

where ◦R is any right rule, then Ξ reduces to
Π1

∆1 −→ B1 · · ·
Πn

∆n −→ Bn

Πi

B1, . . . , Bn,Γ
i −→ Ci

∆1, . . . ,∆n,Γ
i −→ Ci

mc


∆1, . . . ,∆n,Γ −→ C

◦R
.

Multicut cases:

mc/ ◦ L: If Π ends with a left rule other than cL acting on B1 and Π1 ends with a multicut

and reduces to Π′
1, then Ξ reduces to

Π′
1

∆1 −→ B1

Π2
∆2 −→ B2 · · ·

Πn
∆n −→ Bn

Π
B1, . . . , Bn,Γ −→ C

∆1, . . . ,∆n,Γ −→ C
mc

.

−/mc: Suppose Π is{
Πj

{Bi}i∈Ij ,Γj −→ Dj

}
j∈{1..m}

Π′

{Dj}j∈{1..m}, {Bi}i∈I′ ,Γ′ −→ C

B1, . . . , Bn,Γ
1, . . . ,Γm,Γ′ −→ C

mc
,

where I1, . . . , Im, I ′ partition the formulas {Bi}i∈{1..n} among the premise derivations

Π1, . . . ,Πm,Π′. For 1 ≤ j ≤ m let Ξj be{
Πi

∆i −→ Bi

}
i∈Ij

Πj

{Bi}i∈Ij ,Γj −→ Dj

{∆i}i∈Ij ,Γj −→ Dj
mc

.

Then Ξ reduces to{
Ξj

. . . −→ Dj

}
j∈{1..m}

{
Πi

∆i −→ Bi

}
i∈I′

Π′
. . . −→ C

∆1, . . . ,∆n,Γ
1, . . .Γm,Γ′ −→ C

mc
.
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Structural case:

−/cL: If Π is
Π′

B1, B1, B2, . . . , Bn,Γ −→ C

B1, . . . , Bn,Γ −→ C
cL

,

then Ξ reduces to

Π1
∆1 −→ B1

{
Πi

∆i −→ Bi

}
i∈{1..n}

Π′
B1, B1, B2, . . . , Bn,Γ −→ C

∆1,∆1,∆2, . . . ,∆n,Γ −→ C
mc

cL
∆1, . . . ,∆n,Γ −→ C .

Axiom cases:

init/ ◦ L: If Π ends with either natL or defL acting on B1 and Π1 ends with the init rule,

then Ξ reduces to

Π2
∆2 −→ B2 · · ·

Πn
∆n −→ Bn

w(∆1 \B1,Π)
∆1, B2, . . . , Bn,Γ −→ C

∆1, . . . ,∆n,Γ −→ C
mc

.

−/init: If Π ends with the init rule and C is a formula in Γ, then Ξ reduces to

∆1, . . . ,∆n,Γ −→ C
init

.

If Π ends with the init rule, but C is not a formula in Γ, then C must be one of the

cut formulas, say B1. In this case Ξ reduces to w(∆2 ∪ . . . ∪∆n ∪ Γ,Π1).

An inspection of the rules of the logic and this definition will reveal that every derivation

ending with a multicut has a reduct. Because we use a multiset as the left side of the

sequent, there may be ambiguity as to whether a formula occurring on the left side of the

rightmost premise to a multicut rule is in fact a cut formula, and if so, which of the left

premises corresponds to it. As a result, several of the reduction rules may apply, and so a

derivation may have multiple reducts.

We now prove that the reduction relation is preserved by weakening.

Lemma 3.2 If Ξ reduces to Ξ′, then, for any multiset ∆ of formulas, w(∆,Ξ) reduces to

w(∆,Ξ′).
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Proof We prove this lemma by a simple case analysis on the reduction rule used to

reduce Ξ to Ξ′. Since Ξ is a redex, it is of the form

Π1
∆1 −→ B1 · · ·

Πn
∆n −→ Bn

Π
B1, . . . , Bn,Γ −→ C

∆1, . . . ,∆n,Γ −→ C
mc

,

and w(∆,Ξ) is of the form

Π1
∆1 −→ B1 · · ·

Πn
∆n −→ Bn

w(∆,Π)
B1, . . . , Bn,Γ,∆ −→ C

∆1, . . . ,∆n,Γ,∆ −→ C
mc

.

As in the definition of the reduction relation, we shall arbitrarily distinguish Π1 without

loss of generality.

The only interesting case is that of ∃R/∃L shown below; the remaining cases follow

easily from Definition 2.8 and Lemma 2.12.

Suppose Π1 and Π are

Π′
1

∆1 −→ B′
1[t/x]

∆1 −→ ∃x.B′
1

∃R

Π′

B′
1[y/x], B2, . . . , Bn,Γ −→ C

∃x.B′
1, B2, . . . , Bn,Γ −→ C

∃L
.

Then w(∆,Π) is
w(∆,Π′)

B′
1[y/x], B2, . . . , Bn,Γ,∆ −→ C

∃x.B′
1, B2, . . . , Bn,Γ,∆ −→ C

∃L
,

and w(∆,Ξ) reduces to

Π′
1

∆1 −→ B′
1[t/x]

{
Πi

∆i −→ Bi

}
i∈{2..n}

w(∆,Π′)[t/y]
B′

1[t/x], B2, . . . , Bn,Γ,∆ −→ C

∆1, . . . ,∆n,Γ,∆ −→ C
mc

,

where we choose y so that it is not free in ∆. On the other hand, Ξ reduces to Ξ′

Π′
1

∆1 −→ B′
1[t/x]

{
Πi

∆i −→ Bi

}
i∈{2..n}

Π′[t/y]
B′

1[t/x], B2, . . . , Bn,Γ −→ C

∆1, . . . ,∆n,Γ −→ C
mc

,

and w(∆,Ξ′) is

Π′
1

∆1 −→ B′
1[t/x]

{
Πi

∆i −→ Bi

}
i∈{2..n}

w(∆,Π′[t/y])
B′

1[t/x], B2, . . . , Bn,Γ,∆ −→ C

∆1, . . . ,∆n,Γ,∆ −→ C
mc

.
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By Lemma 2.11, w(∆,Π′)[t/y] is the same derivation as w(∆[t/y],Π′[t/y]). Since y is not

free in ∆, ∆[t/y] = ∆, so the reduct of w(∆,Ξ) is w(∆,Ξ′).

3.2 Normalizability and Reducibility

We now define two properties of derivations: normalizability and reducibility. Each of these

properties implies that the derivation can be reduced to a cut-free derivation of the same

end-sequent.

Definition 3.3 We define the set of normalizable derivations to be the smallest set that

satisfies the following conditions:

1. If a derivation Π ends with a multicut, then it is normalizable if for every substitution

θ there is a normalizable reduct of Πθ.

2. If a derivation ends with any rule other than a multicut, then it is normalizable if the

premise derivations are normalizable.

These clauses assert that a given derivation is normalizable provided certain (perhaps

infinitely many) other derivations are normalizable. If we call these other derivations the

predecessors of the given derivation, then a derivation is normalizable if and only if the

tree of the derivation and its successive predecessors is well-founded. In this case, the

well-founded tree is call the normalization of the derivation.

Since a normalization is well-founded, it has an associated induction principle: for any

property P of derivations, if for every derivation Π in the normalization, P holds for every

predecessor of Π implies that P holds for Π, then P holds for every derivation in the

normalization.

Lemma 3.4 If there is a normalizable derivation of a sequent, then there is a cut-free

derivation of the sequent.

Proof Let Π be a normalizable derivation of the sequent Γ −→ B. We show by induction

on the normalization of Π that there is a cut-free derivation of Γ −→ B.
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1. If Π ends with a multicut, then one of its reducts is one of its predecessors (by way

of the empty substitution) and so is normalizable. But the reduct is also a derivation

of Γ −→ B, so by the induction hypothesis this sequent has a cut-free derivation.

2. Suppose Π ends with a rule other than multicut. Since we are given that Π is

normalizable, by definition the premise derivations are normalizable. These premise

derivations are the predecessors of Π, so by the induction hypothesis there are cut-free

derivations of the premises. Thus there is a cut-free derivation of Γ −→ B.

Lemma 3.5 If Π is a normalizable derivation, then for any substitution θ, Πθ is normal-

izable.

Proof We prove this lemma by induction on the normalization of Π.

1. If Π ends with a multicut, then Πθ also ends with a multicut. For any substitution

θ′, some reduct of Πθθ′ is a predecessor of Π and is thus normalizable. Therefore Πθ

is normalizable.

2. Suppose Π ends with a rule other than multicut and has premise derivations {Πi}.

By Definition 2.5 each premise derivation in Πθ is either Πi or Πiθ. Since Π is

normalizable, Πi is normalizable, and so by the induction hypothesis Πiθ is also

normalizable. Thus Πθ is normalizable.

Lemma 3.6 If Π is a normalizable derivation, then for any multiset ∆ of formulas,

w(∆,Π) is normalizable.

Proof We prove this lemma by induction on the normalization of Π.

1. Suppose Π ends with a multicut. To show that w(∆,Π) is normalizable, we must

show that for any substitution θ some reduct of w(∆,Π)θ is normalizable. Since Π

is normalizable, it has as one of its predecessors a reduct Π′ of Πθ. By Lemmas 2.11

and 3.2, w(∆,Π)θ reduces to w(∆θ,Π′). Π′ is normalizable since it is a predecessor

of Π, so by the induction hypothesis w(∆θ,Π′) is normalizable.
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2. Suppose Π ends with a rule other than multicut and has premise derivations {Πi}. By

Definition 2.8 each premise derivation of w(∆,Π) is either Πi or w(∆′,Πi) for some

multiset ∆′ of formulas. Since Π is normalizable, Πi is normalizable, and so by the

induction hypothesis w(∆′,Πi) is also normalizable. Thus all the premise derivations

of w(∆,Π) are normalizable, and so w(∆,Π) is normalizable.

We now define the property of reducibility for derivations. We do this by induction

on the level of the derivation: in the definition of reducibility for derivations of level i we

assume that reducibility is already defined for all levels j < i. (Recall from Definition 2.1

that the level of a derivation is defined to be the level of the consequent of its end-sequent.)

Definition 3.7 For any i, we define the set of reducible i-level derivations to be the smallest

set of i-level derivations that satisfies the following conditions:

1. If a derivation Π ends with a multicut, then it is reducible if for every substitution θ

there is a reducible reduct of Πθ.

2. Suppose the derivation ends with the implication right rule

Π
B,Γ −→ C

Γ −→ B ⊃ C
⊃ R

.

Then the derivation is reducible if the premise derivation Π is reducible and, for every

substitution θ, multiset ∆ of formulas, and reducible derivation Π′ of ∆ −→ Bθ, the

derivation
Π′

∆ −→ Bθ
Πθ

Bθ,Γθ −→ Cθ

∆,Γθ −→ Cθ
mc

is reducible.

3. If the derivation ends with the implication left rule or the nat left rule, then it is

reducible if the right premise derivation is reducible and the other premise derivations

are normalizable.

4. If the derivation ends with any other rule, then it is reducible if the premise derivations

are reducible.
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These clauses assert that a given derivation is reducible provided certain (perhaps infinitely

many) other derivations are reducible. If we call these other derivations the predecessors

of the given derivation, then a derivation is reducible only if the tree of the derivation and

its successive predecessors is well-founded. In this case, the well-founded tree is call the

reduction of the derivation.

In defining reducibility for a derivation of Γ −→ B ⊃ C ending with ⊃ R we quantify

over reducible derivations of ∆ −→ Bθ. This is legitimate since we are defining reducibility

for a derivation having level max(lvl(B) + 1, lvl(C)), so the set of reducible derivations

having level lvl(Bθ) = lvl(B) is already defined. For a derivation ending with ⊃ L or

natL, some premise derivations may have consequents with a higher level than that of the

consequent of the conclusion. As a result, we cannot use the reducibility of those premise

derivations to define the reducibility of the derivation as a whole, since the reducibility

of the premise derivations may not yet be defined. Thus we use the weaker notion of

normalizability for those premise derivations. Also observe that the consequent of the

premise to the rule defR cannot have a higher level than the consequent of the conclusion

because of the level restriction on definitional clauses. Finally, as with normalizations,

reductions have associated induction principles.

Lemma 3.8 If a derivation is reducible, then it is normalizable.

Proof The proof of this lemma is a straightforward induction on the reduction of the

given derivation.

Lemma 3.9 If Π is a reducible derivation, then for any substitution θ, Πθ is reducible.

Proof We prove this lemma by induction on the reduction of Π.

1. If Π ends with a multicut, then Πθ also ends with a multicut. For any substitution

θ′, some reduct of Πθθ′ is a predecessor of Π and is thus reducible. Therefore Πθ is

reducible.

2. If Π ends with the implication right rule then Π and Πθ are

Π′
B,Γ −→ C

Γ −→ B ⊃ C
⊃ R

Π′θ
Bθ,Γθ −→ Cθ

Γθ −→ Bθ ⊃ Cθ
⊃ R

.
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Πθ is reducible if Π′θ is reducible and, for every substitution θ′, multiset ∆, and

reducible derivation Π′′, the derivation Ξ

Π′′

∆ −→ Bθθ′
Π′θθ′

Bθθ′,Γθθ′ −→ Cθθ′

∆,Γθθ′ −→ Cθθ′
mc

is also reducible. Π′θ is reducible by the induction hypothesis, and Ξ is reducible

since it is a predecessor of Π. Therefore Πθ is reducible.

3. If Π ends with ⊃ L or natL, then the right premise derivation is reducible and the

other premise derivations are normalizable. By Definition 2.5 each premise derivation

in Πθ is obtained by applying θ to a premise derivation in Π. By the induction

hypothesis the right premise derivation of Πθ is reducible, and by Lemma 3.5 the

other premise derivations are normalizable. Thus Πθ is reducible.

4. Suppose Π ends with any other rule and has premise derivations {Πi}. By Defini-

tion 2.5 each premise derivation in Πθ is either Πi or Πiθ. Since Π is reducible, Πi

is reducible, and so by the induction hypothesis Πiθ is also reducible. Thus Πθ is

reducible.

Lemma 3.10 If Π is a reducible derivation, then for any multiset ∆ of formulas, w(∆,Π)

is reducible.

Proof We prove this lemma by induction on the reduction of Π.

1. Suppose Π ends with a multicut. To show that w(∆,Π) is reducible, we must show

that for any substitution θ some reduct of w(∆,Π)θ is reducible. Since Π is reducible,

it has as one of its predecessors a reduct Π′ of Πθ. By Lemmas 2.11 and 3.2, w(∆,Π)θ

reduces to w(∆θ,Π′). Π′ is reducible since it is a predecessor of Π, so by the induction

hypothesis w(∆θ,Π′) is reducible.

2. If Π ends with the implication right rule then Π and w(∆,Π) are

Π′
B,Γ −→ C

Γ −→ B ⊃ C
⊃ R

w(∆,Π′)
B,Γ,∆ −→ C

Γ,∆ −→ B ⊃ C
⊃ R

.
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w(∆,Π) is reducible if w(∆,Π′) is reducible and, for every substitution θ, multiset

∆′, and reducible derivation Π′′, the derivation Ξ

Π′′

∆′ −→ Bθ
w(∆,Π′)θ

Bθ,Γθ,∆θ −→ Cθ

∆′,Γθ,∆θ −→ Cθ
mc

is reducible. By Lemma 2.11 w(∆,Π′)θ is the same derivation as w(∆θ,Π′θ). Thus

Ξ is the same as w(∆θ,Ξ′), where Ξ′ is

Π′′

∆′ −→ Bθ
Π′θ

Bθ,Γθ −→ Cθ

∆′,Γθ −→ Cθ
mc

.

Π′ and Ξ′ are predecessors of Π, so they are reducible. Thus by the induction hy-

pothesis w(∆,Π′) and w(∆θ,Ξ′) are reducible, so w(∆,Π) is reducible.

3. (a) If Π ends with the implication left rule

Π1
Γ −→ B

Π2
C,Γ −→ D

B ⊃ C,Γ −→ D
⊃ L

,

then the derivation Π1 is normalizable and the derivation Π2 is reducible. By

Lemma 3.6 w(∆,Π1) is normalizable, and by the induction hypothesis w(∆,Π2)

is reducible. Thus w(∆,Π) is reducible.

(b) If Π ends with the natL rule

Π1
−→ C z

Π2

C j −→ C (s j)
Π3

C I,Γ −→ B

nat I,Γ −→ B
natL

,

then the derivations Π1 and Π2 are normalizable and the derivation Π3 is re-

ducible. w(∆,Π) is

Π1
−→ C z

Π2

C j −→ C (s j)
w(∆,Π3)

C I,Γ,∆ −→ B

nat I,Γ,∆ −→ B
natL

.

By the induction hypothesis w(∆,Π3) is reducible, so w(∆,Π) is reducible.
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4. If Π ends with any other rule, then the premise derivations are reducible. By Defini-

tion 2.8 each premise derivation of w(∆,Π) is w(∆′,Πi) for some premise derivation

Πi in Π and multiset ∆′ of formulas. w(∆′,Πi) is reducible by the induction hypoth-

esis, so w(∆,Π) is reducible.

3.3 Cut-Elimination

In the previous section we proved that every reducible derivation is normalizable and that

every normalizable derivation can be reduced to a cut-free derivation of the same end-

sequent. In this section we show that every FOλ∆IN derivation is reducible, and thus every

derivable sequent can be derived without the cut rule. The consistency of FOλ∆IN is then

a simple corollary of the cut-elimination theorem.

Lemma 3.11 For any derivation Π of B1, . . . , Bn,Γ −→ C and reducible derivations

Π1, . . . ,Πn of ∆1 −→ B1, . . . ,∆n −→ Bn (n ≥ 0), the derivation Ξ

Π1
∆1 −→ B1 · · ·

Πn
∆n −→ Bn

Π
B1, . . . , Bn,Γ −→ C

∆1, . . . ,∆n,Γ −→ C
mc

is reducible.

Proof The proof is by induction on ht(Π), with subordinate inductions on n and on

the reductions of Π1, . . . ,Πn. The proof does not rely on the order of the inductions on

reductions. Thus when we need to distinguish one of the Πi, we shall refer to it as Π1

without loss of generality.

The derivation Ξ is reducible if for every substitution θ some reduct of Ξθ is reducible.

If n = 0, then Ξθ reduces to Πθ. By Lemma 3.9 it suffices to show that Π is reducible.

This is proved by a case analysis of the last rule in Π. For each case, the result follows

easily from the outer induction hypothesis and Definition 3.7. The ⊃ R case requires that

substitution for variables doesn’t increase the measure of a derivation (Lemma 2.7). In

the cases for ⊃ L and natL we need the additional information that reducibility implies

normalizability (Lemma 3.8).
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For n > 0 we proceed with a case analysis of the reduction rules that apply to Ξ (and

thus to Ξθ) to show that in fact every reduct of Ξθ is reducible. Most cases follow easily

from the induction hypothesis, Definition 3.7, and Lemmas 2.7, 2.10, 3.5, 3.6, 3.8, 3.9, and

3.10. We show the interesting cases below.

⊃ R/ ⊃ L: Π1 and Π are

Π′
1

B′
1,∆1 −→ B′′

1

∆1 −→ B′
1 ⊃ B′′

1
⊃ R

Π′

B2, . . . , Bn,Γ −→ B′
1

Π′′

B′′
1 , B2, . . . , Bn,Γ −→ C

B′
1 ⊃ B′′

1 , B2, . . . , Bn,Γ −→ C
⊃ L

.

Recall that substitution for variables preserves reducibility (Lemma 3.9) and does not

increase the measure of a derivation (Lemma 2.7). Thus the derivation Ξ1

Π2θ
∆2θ −→ B2θ · · ·

Πnθ
∆nθ −→ Bnθ

Π′θ
B2θ, . . . , Bnθ,Γθ −→ B′

1θ

∆2θ, . . . ,∆nθ,Γθ −→ B′
1θ

mc

is reducible by the outer induction hypothesis. Since we are given that Π1 is reducible,

by Definition 3.7 the derivation Ξ2

Ξ1

∆2θ, . . . ,∆nθ,Γθ −→ B′
1θ

Π′
1θ

B′
1θ,∆1θ −→ B′′

1θ

∆1θ, . . . ,∆nθ,Γθ −→ B′′
1θ

mc

is reducible. Therefore the derivation

Ξ2

. . . −→ B′′
1θ

{
Πiθ

∆iθ −→ Biθ

}
i∈{2..n}

Π′′θ
B′′

1θ, {Biθ}i∈{2..n},Γθ −→ Cθ

∆1θ, . . . ,∆nθ,Γθ,∆2θ, . . . ,∆nθ,Γθ −→ Cθ
mc

cL
∆1θ, . . . ,∆nθ,Γθ −→ Cθ ,

which is the reduct of Ξθ, is reducible by the outer induction hypothesis and Defini-

tion 3.7.

natR/natL: Π1 is
Π′

1
∆1 −→ nat I

∆1 −→ nat (s I)
natR

and Π is

Π′
−→ D z

Π′′

D j −→ D (s j)
Π′′′

D (s I), B2, . . . , Bn,Γ −→ C

nat (s I), B2, . . . , Bn,Γ −→ C
natL

.
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Consider the derivation Ξ1

Π′
1

∆1 −→ nat I

Π′
−→ D z

Π′′

D j −→ D (s j) D I −→ D I
init

nat I −→ D I
natL

∆1 −→ D I
mc

.

Since the measure of the right premise derivation is no larger than ht(Π), Ξ1 is

reducible by induction on the reduction of Π1 (Π′
1 is a predecessor of Π1). Again

recall that substitution for variables preserves reducibility (Lemma 3.9) and does not

increase the measure of a derivation (Lemma 2.7). The derivation Ξ2

Ξ1θ
∆1θ −→ Dθ Iθ

Π′′θ[Iθ/j]
Dθ Iθ −→ Dθ (s Iθ)

∆1θ −→ Dθ (s Iθ)
mc

is then reducible by the outer induction hypothesis. Therefore the derivation

Ξ2

∆1θ −→ Dθ (s Iθ)

{
Πiθ

∆iθ −→ Biθ

}
i∈{2..n}

Π′′′θ
. . . −→ Cθ

∆1θ, . . . ,∆nθ,Γθ −→ Cθ
mc

,

which is the reduct of Ξθ, is reducible by the outer induction hypothesis.

defL/ ◦ L: Π1 and Π1θ are{
Πρ,σ,D

1

Dσ,∆′
1ρ −→ B1ρ

}
A,∆′

1 −→ B1
defL

{
Πθ◦ρ′,σ′,D

1

Dσ′,∆′
1θρ

′ −→ B1θρ
′

}
Aθ,∆′

1θ −→ B1θ
defL

.

The derivation Ξρ′,σ′,D

Πθ◦ρ′,σ′,D
1

Dσ′,∆′
1θρ

′ −→ B1θρ
′

{
Πiθρ

′

∆iθρ
′ −→ Biθρ

′

}
i∈{2..n}

Πθρ′

. . . −→ Cθρ′

Dσ′,∆′
1θρ

′,∆2θρ
′, . . . ,∆nθρ

′,Γθρ′ −→ Cθρ′
mc

.

is reducible by Lemmas 2.7 and 3.9 and induction on the reduction of Π1 (Πθ◦ρ′,σ′,D
1

is a predecessor of Π1). Therefore the derivation{
Ξρ′,σ′,D

Dσ′,∆′
1θρ

′,∆2θρ
′, . . . ,∆nθρ

′,Γθρ′ −→ Cθρ′

}
Aθ,∆′

1θ,∆2θ, . . . ,∆nθ,Γθ −→ Cθ
defL

,

which is the reduct of Ξθ, is reducible by Definition 3.7.
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−/ ⊃ R: Ξ has the form

Π1
∆1 −→ B1 · · ·

Πn
∆n −→ Bn

Π′

C ′, B1, . . . , Bn,Γ −→ C ′′

B1, . . . , Bn,Γ −→ C ′ ⊃ C ′′ ⊃ R

∆1, . . . ,∆n,Γ −→ C ′ ⊃ C ′′ mc
.

Once again recall that substitution for variables preserves reducibility (Lemma 3.9)

and does not increase the measure of a derivation (Lemma 2.7). The derivation Ξ1

Π1θ
∆1θ −→ B1θ · · ·

Πnθ
∆nθ −→ Bnθ

Π′θ
C ′θ,B1θ, . . . , Bnθ,Γθ −→ C ′′θ

C ′θ,∆1θ, . . . ,∆nθ,Γθ −→ C ′′θ
mc

is reducible by the outer induction hypothesis. For any substitutions θ′ and θ′′ and

reducible derivation Ξ′, the derivation

Ξ′θ′′

(∆′ −→ C ′θθ′)θ′′

{
Πiθθ

′θ′′

(∆i −→ Bi)θθ
′θ′′

}
i∈{1..n}

Π′θθ′θ′′

(. . . −→ C ′′)θθ′θ′′

∆′θ′′,∆1θθ
′θ′′, . . . ,∆nθθ

′θ′′,Γθθ′θ′′ −→ C ′′θθ′θ′′
mc

is reducible by the outer induction hypothesis. This is a reduct of Ξ2θ
′′, where Ξ2 is

Ξ′

∆′ −→ C ′θθ′
Ξ1θ

′

C ′θθ′,∆1θθ
′, . . . ,∆nθθ

′,Γθθ′ −→ C ′′θθ′

∆′,∆1θθ
′, . . . ,∆nθθ

′,Γθθ′ −→ C ′′θθ′
mc

.

Since a reduct of Ξ2θ
′′ is reducible for every θ′′, by Definition 3.7 Ξ2 is reducible. Since

Ξ1 is reducible and Ξ2 is reducible for every substitution θ′ and reducible derivation

Ξ′, by Definition 3.7

Ξ1

C ′θ,∆1θ, . . . ,∆nθ,Γθ −→ C ′′θ

∆1θ, . . . ,∆nθ,Γθ −→ C ′θ ⊃ C ′′θ
⊃ R

is reducible. This last derivation is the reduct of Ξθ by the current reduction rule.

Corollary 3.12 Every derivation is reducible.

Proof This result follows immediately from Lemma 3.11 with n = 0.

Theorem 3.13 If a sequent is derivable, then there is a cut-free derivation of the sequent.
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Proof This result follows immediately from Corollary 3.12, Lemma 3.8, and Lemma 3.4.

Since there is no right rule for ⊥, there is no cut-free derivation of −→ ⊥. Thus

consistency is a simple corollary of cut-elimination.

Corollary 3.14 There is no FOλ∆IN derivation of the sequent −→ ⊥.

3.4 Related Work

The logic FOλ∆IN is related to Schroeder-Heister’s “logics with definitional reflection”

[49]. He proved cut-elimination for two logics: the first without contraction but allowing

arbitrary implications in definitions, the second with contraction but only implication-

free definitions. He also showed a counter-example to cut-elimination for the logic with

both contraction and definitions with arbitrary implications, but conjectured that cut-

elimination should hold if the definitions were stratified (as we accomplish in FOλ∆IN

through the level restriction). The proof presented in this chapter clearly establishes that

Schroeder-Heister’s conjecture is true.

However, there are significant differences between Schroeder-Heister’s logics and ours.

The first is that FOλ∆IN uses a stronger version of the left rule for definitions; Schroeder-

Heister has extended his cut-elimination results to logics with this stronger rule [50]. More

significantly, Schroeder-Heister has no induction rules in his logics. Because of the presence

of the natL rule in FOλ∆IN, Schroeder-Heister’s cut-elimination proofs do not extend to

our setting.

The proof of cut-elimination presented in this chapter is patterned after Martin-Löf’s

normalization proof for a natural deduction system with iterated inductive definitions [28].

Our work can be viewed as an extension of his to the sequent calculus setting: our rules

for definitions and natural numbers roughly correspond to his introduction and elimination

rules for inductively defined predicates.
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Chapter 4

Reasoning about Transition

Systems in FOλ∆IN

Cut-free sequent calculus proofs have been successfully used to encode the operational se-

mantics of a wide range of computational systems. For example, the evaluation of functional

programming languages and of their abstract machines have been specified in intuitionistic

logic [4, 21, 22]; imperative and concurrency features have been modeled using linear logic

programming languages [5, 6, 14, 36, 37]; and the sequential and concurrent (pipe-line)

semantics of a RISC processor have also been specified in linear logic [6]. But we would like

to extend our use of logic beyond specifying computation to reasoning about it. One of the

interesting and important properties of a computational system is the set of equivalences

among terms that the system suggests. Bisimulation [42] is a natural and widely-used

equivalence relation that has grown out of the study of concurrency. Informally, two terms

are bisimilar if every computational step that applies to either of the terms also applies

to the other, and applying the step to both terms will result in two new terms that are

also bisimilar. This requirement that every possible step in the computation of a term be

matched in the computation of another term cannot be expressed with the natural repre-

sentation of the computation system as a logical theory. When the system is encoded as a

definition, however, such a requirement is easily captured. In this chapter, we show that

in this way the definition facility of FOλ∆IN makes it possible to go beyond operational
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semantics and both encode and reason about concepts such as simulation and bisimula-

tion. This chapter presents work previously reported in [32], coauthored with Miller and

Palamidessi.

4.1 Background

The triple T = (Λ, S, δ) is an abstract transition system (ats) if Λ is a non-empty set of

actions, S is a non-empty set of states, and δ ⊆ S × Λ × S (Λ and S are assumed to be

disjoint). We write p
a−→ q if (p, a, q) ∈ δ. For w ∈ Λ∗ we write p

w
=⇒ q to mean that p

makes a transition to q along a path of actions given by w. More formally, this relation is

defined by induction on the length of w: thus p
ϵ

=⇒ p (where ϵ is the empty string) and if

p
a−→ r and r

w
=⇒ q then p

aw
=⇒ q. For a state p, define ⟨⟨p⟩⟩ = {(a, q) | (p, a, q) ∈ δ}. The

ats T is finitely branching if, for each p, the set ⟨⟨p⟩⟩ is finite. T is noetherian if it contains

no infinite paths. In a noetherian ats we can define the measure of a state p, denoted by

meas(p), as the ordinal number given by

meas(p) = lub({meas(q) + 1 | p a−→ q for some a}) ,

where we assume lub(∅) = 0. If the ats is finitely branching then all its states have finite

measure.

The notions of simulation and bisimulation provide important judgments on pairs of

states in an abstract transition system. A relation R is a simulation between p and q if

and only if for every transition p
a−→ p′, there exists a transition q

a−→ q′, such that p′Rq′.

The largest such relation is written ⊑; that is, p ⊑ q (read “q simulates p”) if and only if

there exists a simulation R such that pRq. If p ⊑ q and q ⊑ p both hold, then p and q are

similar.

A relation R is a bisimulation between p and q if and only if for every transition

p
a−→ p′, there exists a transition q

a−→ q′ such that p′Rq′, and for every transition q
a−→ q′,

there exists a transition p
a−→ p′ such that q′Rp′. The largest such relation is called the

bisimulation equivalence and is denoted by ≡; that is, p ≡ q (read “p is bisimilar to q”) if

and only if there exists a bisimulation R such that pRq. It is well-known that bisimilarity

implies similarity but not vice-versa.
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Table 4.1: CCS transition rules

a.p
a−→ p

p
a−→ q

p | r a−→ q | r
p

a−→ q

r | p a−→ r | q
p

a−→ r q
ā−→ s

p | q τ−→ r | s

p
a−→ q

p+ r
a−→ q

r
a−→ q

p+ r
a−→ q

p[µxp/x]
a−→ q

µxp
a−→ q

To illustrate our results, we will consider throughout the chapter a more concrete exam-

ple of an abstract transition system: the concurrent language CCS [40]. For convenience, we

ignore the renaming and hiding combinators, and concentrate on the sublanguage described

by the grammar

p ::= 0 | a.p | p+ p | p | p | µxp ,

where a ranges over an arbitrary set of actions A, the set of the complementary actions Ā,

and {τ}. The intended meaning of these symbols is as follows: 0 represents the inactive

process, a.p represents a process prefixed by the action a, + and | are choice and parallel

composition, respectively, and µx is the least fixed point operator, providing recursion. The

operational semantics of CCS is specified by the transition rules in Table 4.1.

CCS can be seen as an abstract transition system where Λ = A∪Ā∪{τ}, S is the set of

all expressions denoting CCS expressions, and δ is the set of transitions which are derivable

by the rules above. A finite CCS process is a CCS process that does not contain µ. If S is

restricted to the set of all finite CCS processes, then the resulting ats is noetherian.

4.2 Encoding Abstract Transition Systems

In this section we give an encoding of abstract transition systems in the logic FOλ∆IN.

Let (Λ, S, δ) be an ats, and let the primitive types σ and α denote elements of S and Λ,

respectively. Let one : σ → α → σ → o be a predicate of three arguments denoting the one

step transition relation and let the definition D(ats(δ)) contain the clause one p a q
△
= ⊤

for every (p, a, q) ∈ δ. This definition is essentially a table. We also need the following
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definition D(path):

multi P nil P
△
= ⊤

multi P (A :: W ) Q
△
= ∃r(one P A r ∧multi r W Q) .

The predicates one and multi are assumed to have level 0. Here, members of Λ∗ are

represented as terms of type lst(α) using nil : lst(α) for the empty list and :: of type

α → lst(α) → lst(α) for the list constructor. We now prove the adequacy of this encoding.

Proposition 4.1 Let (Λ, S, δ) be an ats. Then p
w

=⇒ q if and only if (multi p w q) is

derivable in FOλ∆IN using definition D(ats(δ)) ∪ D(path).

Proof We prove this proposition by induction with respect to the length l of the path

w. The key idea is to show that the transition along the path matches faithfully a certain

sequence of inference rules in the derivation.

If l = 0, then p
ϵ

=⇒ p holds by definition, and the proposition multi p nil p is derivable:

−→ ⊤ ⊤R
−→ multi p nil p

defR
.

If l > 0, consider the path p
a−→ r

w′
=⇒ q. Observe that a derivation of the sequent

−→ multi p (a :: w′) q must end in the following way, since at each point no other rule

applies:

−→ ⊤ ⊤R
−→ one p a r defR −→ multi r w′ q

−→ one p a r ∧multi r w′ q
∧R

−→ ∃r′(one p a r′ ∧multi r w′ q)
∃R

−→ multi p (a :: w′) q
defR

.

By the construction of D(ats(δ)), the sequent −→ one p a r is derivable if and only if

p
a

=⇒ r, and by the inductive hypothesis, −→ multi r w′ q is derivable if and only if

r
w′
=⇒ q.

The encoding D(ats(δ)) is based on an extensional description of δ, hence the definition

will be infinite if δ is infinite. In specific transition systems the transition relation might

be described intentionally. This is the case for CCS, whose transitions can be encoded as
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the following definition D(ccs(A)) for any non-empty set A of actions:

one A.P A P
△
= ⊤

one (P |R) A (Q |R)
△
= one P A Q

one (R | P ) A (R |Q)
△
= one P A Q

one (P +R) A Q
△
= one P A Q

one (P +R) A Q
△
= one R A Q

one µM A Q
△
= one (M µM) A Q

one (P |Q) τ (R | S) △
= ∃a∃b(comp a b ∧ one P a R ∧ one Q b S)] ,

plus the clauses comp a ā
△
= ⊤ and comp ā a

△
= ⊤ for every a ∈ A. We assume τ : α ̸∈ A.

Observe that we are using meta-level λ-abstraction to encode µxP : such a term is

represented as µM , where M is meant to be the abstraction λx.P . Thus the term P [µxP/x]

can be represented simply byM(µM) without introducing an explicit notion of substitution

(β-conversion in the meta-logic can perform substitution for us).

The following result shows that CCS transitions are completely described by logical

derivability in D(ccs(A)).

Proposition 4.2 The CCS transition p
a−→ q holds if and only if the formula (one p a q)

is derivable in FOλ∆IN using definition D(ccs(A)). The transition p
w

=⇒ q holds if and

only if (multi p w q) is derivable using definition D(ccs(A)) ∪ D(path).

This theorem can be proved by simple structural induction by showing that derivations

using the inference rules in Table 4.1 for CCS are essentially identical to FOλ∆IN derivations

over the corresponding clauses in the definition ccs(A). As in the proof of Proposition 4.1,

the FOλ∆IN derivations involve only right introduction rules.

4.3 Encoding Simulation and Bisimulation

4.3.1 Finite Behavior

We now consider encodings of simulation and bisimulation relations between states in a

transition system. If we represent the transition step by the predicate one (as in the
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definitions D(ats(δ)) and D(ccs(A))), then it is possible to characterize simulation and

bisimulation as predicates sim and bisim given by the following definition D(sims):

sim P Q
△
= ∀a∀p′(one P a p′ ⊃

∃q′(one Q a q′ ∧ sim p′ q′))

bisim P Q
△
= ∀a∀p′(one P a p′ ⊃

∃q′(one Q a q′ ∧ bisim p′ q′)) ∧

∀a∀q′(one Q a q′ ⊃

∃p′(one P a p′ ∧ bisim q′ p′)) .

Since the level of one is 0, we need to assign to both sim and bisim the level 1 (or higher).

We proceed now to prove the correctness of these encodings. To do so, we introduce

two new items. First, given a fixed ats (Λ, S, δ) and a pair (p, q) ∈ S ×S, a premise set for

(p, q) is a set P ⊆ S × S such that for every a ∈ Λ and p′ ∈ S such that (a, p′) ∈ ⟨⟨p⟩⟩ there

exists a q′ ∈ S such that (a, q′) ∈ ⟨⟨q⟩⟩ and (p′, q′) ∈ P. Premise sets need not exist, but

if there is a simulation R that contains (p, q) then there is a premise set P for that pair

such that P ⊂ R. We can restrict premise sets to be minimal, although this is not strictly

necessary. Second, we introduce the following inference rules:

{−→ sim p′ q′ | (p′, q′) ∈ P}
−→ sim p q

SIM

{−→ bisim p′ q′ | (p′, q′) ∈ P} ∪ {−→ bisim q′ p′ | (q′, p′) ∈ Q}
−→ bisim p q

BISIM
,

where P is a premise set for (p, q) and Q is a premise set for (q, p). Notice that this rule is

finitary if the ats is finitely branching. In the case of CCS, one condition which guarantees

this property is that recursion variables in bodies of µ-terms only occur prefixed.

Let ⊢SIM ∆ −→ C (respectively, ⊢BISIM ∆ −→ C) denote the proposition that the

sequent ∆ −→ C can be derived using only the SIM (respectively, BISIM) inference

rule. The following lemma shows that these proof systems are a correct and complete

representation of our encodings.

Lemma 4.3 Let (Λ, S, δ) be an ats, let p and q be members of S, and let ⊢ denote deriv-

ability in FOλ∆IN using definition D(ats(δ)) ∪ D(sims). Then
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• ⊢ sim p q if and only if ⊢SIM sim p q, and

• ⊢ bisim p q if and only if ⊢BISIM bisim p q.

The same holds if we replace D(ats(δ)) by D(ccs(A)).

Proof We outline the proof of the first case; the second can be done similarly. Consider a

derivation of the sequent −→ sim p q. This is derivable only by a defR rule using D(sims),

and thus the sequents

−→ ∀a∀p′(one p a p′ ⊃ ∃q′(one q a q′ ∧ sim p′ q′))

and

one p a p′ −→ ∃q′(one q a q′ ∧ sim p′ q′)

must be derivable. If this latter sequent is derivable, there is a derivation of it ending with

defL, and thus the sequent

−→ ∃q′(one q a0 q
′ ∧ sim p′0 q

′)

must be derivable, where the pair (a0, p
′
0) ranges over ⟨⟨p⟩⟩. This sequent is derivable only

if the quantifier ∃q′ is instantiated with q′0 where (a0, q
′
0) ∈ ⟨⟨q⟩⟩. Let P be the premise

set arising from collecting together all pairs (p′0, q
′
0) for such values p′0 and q′0. Thus, our

original sequent is derivable if and only if for every (p′0, q
′
0) ∈ P the sequent −→ sim p′0 q′0

is derivable. The other direction follows by reversing these reasoning steps.

We can now use this lemma to prove the correctness of our encodings of simulation and

bisimulation.

Theorem 4.4 Let (Λ, S, δ) be a noetherian ats, let p and q be members of S, and let ⊢

denote derivability in FOλ∆IN using definition D(ats(δ)) ∪ D(sims). Then

• ⊢ sim p q if and only if p ⊑ q, and

• ⊢ bisim p q if and only if p ≡ q.

Proof Again we only show the proof for simulation; the proof for bisimulation is similar.
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Given Lemma 4.3, we need only show that ⊢SIM p −→ q if and only if q simulates

p. First, assume that the sequent p −→ q has a derivation that contains only the SIM

inference rule. Let R be the set of all pairs (r, s) such that the sequent r −→ s has an

occurrence in that derivation. It is an easy matter to verify that R is a simulation.

Conversely, assume that q simulates p. Thus there is a simulation R such that pRq.

The proof is by induction on the measure of p, meas(p). Since pRq, there is a premise set

P ⊆ R for (p, q). If (p′, q′) ∈ P, then p′Rq′ and meas(p′) < meas(p), so we have by the

induction hypothesis ⊢SIM p′ −→ q′. Thus, we have derived ⊢SIM p −→ q.

Concerning CCS, the full language is not noetherian because of the presence of the

recursion operator. If we consider only terms without µ, i.e. finite processes, then the same

property holds, as is witnessed by the following theorem. We omit the proof of this theorem

since it is essentially like the preceding proof: the main difference is that the definition of

one-step transitions in CCS is given by recursion.

Theorem 4.5 Let p and q be finite CCS processes, and let ⊢ denote derivability in FOλ∆IN

using definition D(ccs(A)) ∪ D(sims). Then

• ⊢ sim p q if and only if p ⊑ q, and

• ⊢ bisim p q if and only if p ≡ q.

4.3.2 Definitions and Fixed Points

As we mentioned in Section 2.1, a definition can be seen as a mutually recursive definition

for the predicates that are present in the heads of clauses. To make the notion of recursive

definition more explicit, we consider in more detail the definitions used in the previous

section. For a general discussion of using stratified specifications to provide for mutually

recursive predicate definitions, see, for example, [2].

The clauses for defining the level 0 predicate one (both for abstract transition systems

and for CCS) can be seen as simple Horn clauses (when
△
= is read as a reverse implication).

The usual means for providing meaning to Horn clauses by seeing them as a monotone

mapping on the Herbrand universe [1] can be exploited here as well. In particular, we can

observe that if we remove the one clause of the CCS definition pertaining to µ (that is,
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if we do not allow processes to contain occurrences of the fixed point operator) then the

resulting definition for one would yield an operator on the Herbrand universe with exactly

one fixed point. We shall take this fixed point as the meaning of the definition for one.

Simulation and bisimulation are predicates of level 1 using recursive definitional clauses

of the form ∀P∀Q[r(P,Q)
△
= Φ], where the formula Φ contains free occurrences of the

variables P,Q, strictly positive occurrences of the predicate r, and both positive and neg-

ative occurrences of the predicate one. With such a clause we associate a function ϕ from

binary relations to binary relations. Given the structure of Φ it is easy to see that ϕ will

be monotone and thus have fixed points: in general, however, there will be more than one

such fixed point.

Notice that both defL and defR are sound for all the relations which are fixed points of

ϕ. To see this, assume that for any relation r there is only one such definitional clause (in

case there are more, we group them in one clause which has as body the disjunction of the

bodies). Then observe that the use of defL corresponds to replacing
△
= by ⊃ in the clause,

that is, to assuming the formula ∀P∀Q[r(P,Q) ⊃ Φ]. The case for defR corresponds to

the converse: that is, of replacing
△
= with ⊂.

Let Φs and Φb be the bodies of the clauses given in D(sims) for sim and bisim, respec-

tively, and consider the corresponding functions ϕs and ϕb on binary relations associated

with these formulas. More explicitly, we may define these two functions on binary relations

as follows:

ϕs(R) := {(p, q) | for all a ∈ Λ and p′ ∈ S, if p
a−→ p′

then there is a q′ such that q
a−→ q′ and (p′, q′) ∈ R}

ϕb(R) := {(p, q) | for all a ∈ Λ and p′ ∈ S, if p
a−→ p′

then there is a q′ such that q
a−→ q′ and (p′, q′) ∈ R, and

for all a ∈ Λ and q′ ∈ S, if q
a−→ q′

then there is a p′ such that p
a−→ p′ and (q′, p′) ∈ R} .

We can see from their definitions that ⊑ and ≡ are the greatest fixed points of ϕs and

ϕb, respectively. Notice that in derivations of −→ sim p q and −→ bisim p q using the

definition D(ats(δ)) ∪D(sims), defL is used on clauses in D(ats(δ)) but not with those in

D(sims).
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As the following example shows, when the transition system is not noetherian, the “if”

parts of Theorem 4.4 may not hold.

Example 4.6 Consider a transition system with two states only, p and q, and two transi-

tions p
a−→ p and q

a−→ q. Then p ⊑ q holds, but sim p q cannot be derived. Notice that

an attempt to derive it would end up in a circularity.

Since defL and defR are sound in all fixed points, if sim p q is derivable in FOλ∆IN

using D(ats(δ)) ∪ D(sims), then (p, q) must be contained in every fixed point of ϕs. In a

noetherian abstract transition system, ϕs and ϕb have unique fixed points, and it is for this

reason that ⊑ and ≡ can be completely characterized in a noetherian ats by derivability

(Theorem 4.4).

Before proceeding to consider an encoding that captures the greatest fixed point of ϕs

and ϕb, we briefly explore the kinds of properties about simulation and bisimulation that

we can derive in FOλ∆IN with D(sims).

In any transition system, bisimulation is symmetric; the encoding of this property is

derivable in FOλ∆IN:

Proposition 4.7 The formula ∀p∀q(bisim p q ⊃ bisim q p) is derivable in FOλ∆IN using

the definition D(ats(δ)) ∪ D(sims).

In CCS, bisimulation is preserved by the prefix operator; the encoding of this property

is also derivable in FOλ∆IN:

Proposition 4.8 The formula ∀a∀p∀q(bisim p q ⊃ bisim a.p a.q) is derivable in FOλ∆IN

using the definition D(ccs(A)) ∪ D(sims).

However, as the following examples illustrate, there are plenty of true properties of ≡

and ⊑ that cannot be derived within the logic. One reason for this lack is, intuitively, we

can prove properties of sim and bisim from D(sims) only if they are true for every fixed

point of ϕs and ϕb, but in the non-noetherian case, there is in general more than one fixed

point.

Example 4.9 Bisimulation equivalence implies the largest simulation (or more formally:

≡ is a subset of ⊑) in any transition system. This property can be expressed by the formula
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∀p∀q(bisim p q ⊃ sim p q) but, in general, if δ is a non-noetherian transition relation, this

formula cannot be derived using the definitions D(ats(δ)) and D(sims). For example, if

we take the transition system ({a}, {p}, {(p, a, p)}) it is immediate to see that {(p, p)} is

a bisimulation (the greatest fixed point of ϕb, namely bisimulation equivalence) and ∅ is

a simulation (the least fixed point of ϕs). Hence, this formula cannot be derived for this

transition system.

Example 4.10 The bisimulation equivalence relation is reflexive in any transition sys-

tem, but the formula ∀p(bisim p p) cannot be derived using the definitions D(ats(δ)) and

D(sims). Consider, for instance, the same transition system as in Example 4.9: the empty

set ∅ is a bisimulation (the least fixed point of ϕb), and it is, of course, not reflexive.

Example 4.11 In CCS, bisimulation equivalence is preserved by the + operator. This

property can be expressed as the formula ∀p∀q∀r(bisim p q ⊃ bisim (p+ r) (q + r)). This

sequent, however, cannot be derived using D(ccs(A)) and D(sims). If we let p = a.0,

q = a.0 + a.0 and r = µxa.x, the least fixed point of ϕb contains the pair (a.0, a.0 + a.0)

but not the pair (a.0 + µxa.x, a.0 + a.0 + µxa.x).

4.3.3 Non-Finite Behavior

We now provide an encoding of simulation and bisimulation that uses induction to capture

the greatest fixed point. In particular, define the binary relations ⊑i and ≡i for each natural

number i as follows. Both ⊑0 and ≡0 are defined to be S × S, and ⊑i+1:= ϕs(⊑i) and

≡i+1:= ϕb(≡i). Now set ⊑ω:=
∩

i ⊑i and ≡ω:=
∩

i ≡i. It is well known that, for finitely

branching transition systems, ϕs and ϕb are downward-continuous and, hence, ⊑ equals ⊑ω

and ≡ equals ≡ω. In CCS, for instance, finite branching is guaranteed whenever all the

recursion variables in µ-expressions are prefixed.

Thus one approach to showing that two states are bisimilar is to show that for all

natural numbers i, those two states are related by ≡i. Such statements can often be proved

by induction on natural numbers. If n is a natural number, then we write n̄ to denote the

corresponding “numeral” for n, that is, n̄ is the term containing n occurrences of s and one

occurrence of z.
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Table 4.2: Indexed definition for simulation and bisimulation

sim P Q
△
= ∀k(nat k ⊃ isim k P Q)

isim z P Q
△
= ⊤

isim (s K) P Q
△
= ∀a∀p′(one P a p′ ⊃

∃q′(one Q a q′ ∧ isim K p′ q′))

bisim P Q
△
= ∀k(nat k ⊃ ibisim k P Q)

ibisim z P Q
△
= ⊤

ibisim (s K) P Q
△
= ∀a∀p′(one P a p′ ⊃

∃q′(one Q a q′ ∧ ibisim K p′ q′))∧
∀a∀q′(one Q a q′ ⊃

∃p′(one P a p′ ∧ ibisim K q′ p′))

We can now encode ⊑i and ≡i by using the indexed versions of sim and bisim found in

the definition D(isims) shown in Table 4.2.

Lemma 4.12 Let (Λ, S, δ) be an ats, let p and q be members of S, and let ⊢ denote deriv-

ability in FOλ∆IN using definition D(ats(δ)) ∪ D(isims).

• If ⊢ sim p q then for every natural number n, ⊢ isim n̄ p q.

• If ⊢ bisim p q then for every natural number n, ⊢ ibisim n̄ p q.

Proof We prove the first result about simulation: the result about bisimulation is similar.

A cut-free derivation of the sequent −→ sim p q must end in a defR rule, which (using

∀R and ⊃ R also) means that the sequent nat k −→ isim k p q is derivable, where k is a

variable. Call this derivation Ξ. Now let n be a natural number. It is possible to substitute

n̄ for the variable k into the derivation Ξ to obtain the derivation Ξ[n̄/k] of the sequent

nat n̄ −→ isim n̄ p q. Given that n is a natural number, it is easy to construct a cut-free

derivation of −→ nat n̄, one using only the right rules for nat. Now placing these two

derivations together with a cut rule yields

−→ nat n̄ nat n̄ −→ isim n̄ p q

−→ isim n̄ p q
cut

.

Given the cut-elimination result for FOλ∆IN (Theorem 3.13), we can conclude that −→
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isim n̄ p q has a cut-free derivation (a conclusion that is needed in the proof of Proposi-

tion 4.13 below).

Proposition 4.13 Let (Λ, S, δ) be an ats, let p and q be members of S, let n be a natural

number, and let ⊢ denote derivability in FOλ∆IN using definition D(ats(δ)) ∪ D(isims).

• If ⊢ isim n̄ p q then p ⊑n q.

• If ⊢ ibisim n̄ p q then p ≡n q.

Proof We prove the first result about simulation: the result about bisimulation is similar.

Assume that n is 0. Then p ⊑0 q holds immediately. Otherwise, let n be m + 1. Assume

that isim s m̄ p q has a cut-free derivation. An analysis of the inference rules used to derive

this sequent (as we argued similarly in Section 4.3.1) shows that that for some premise set

P, there is a subderivation of the sequent −→ isim m̄ p′ q′ for every (p′, q′) ∈ P. Using the

inductive assumption, p′ ⊑m q′ for all (p′, q′) ∈ P. Hence, by the definition of ϕs, we have

p ⊑m+1 q.

Putting these results together with the one mentioned earlier regarding when ϕs and

ϕb are downward continuous, we can prove the following.

Theorem 4.14 Let (Λ, S, δ) be an ats, and let p and q be members of S.

• If (sim p q) is derivable in FOλ∆IN using definition D(ats(δ))∪D(isims), then p ⊑ω q.

• If (bisim p q) is derivable in FOλ∆IN using definition D(ats(δ)) ∪ D(isims), then

p ≡ω q.

If the abstract transition system is finitely branching, then we can conclude the stronger

fact that p ⊑ q or p ≡ q.

With this indexed definition it is now possible to derive many properties of simulation

and bisimulation.

Theorem 4.15 The following formulas can be derived in FOλ∆IN using the definition

D(ccs(A)) ∪ D(isims):

∀p∀q(bisim p q ⊃ sim p q) ∀p∀q∀r(bisim p q ⊃ bisim (p+ r) (q + r))
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∀p∀q(bisim p q ⊃ bisim q p) ∀a∀p∀q(bisim p q ⊃ bisim a.p a.q)

∀p∀q∀r(bisim p q ⊃ bisim q r ⊃ bisim p r) ∀a bisim µxa.x µx(a.x+ a.x)

∀p bisim p p ∀p bisim (p+ 0) p ∀p bisim (p+ p) p .

4.4 Conclusion

We have shown that the definitional facilities of FOλ∆IN allow us to naturally capture cer-

tain properties about elements of transition systems, namely simulation and bisimulation.

Furthermore, with induction over natural numbers we can establish more high-level facts

about these properties, such as the fact that bisimulation is an equivalence.

From a high-level point-of-view, we can characterize the experiments we have reported

here in two ways. From a (traditional) logic programming point of view, a definition D is

generally either a set of (positive) Horn clauses or an extension of them that allows negated

atoms in the body of clauses. In that case, sequents in a derivation of an atomic formula

are either of the form −→ B or B −→. In the first case, defR is used to establish B and,

in the second case, defL is used to build a finite refutation of B. Here we consider richer

definitions so that the search for deriations must consider sequents of the form B −→ C;

with such sequents, both left and right introduction of definitions are used together. From

a computational or concurrency point-of-view, derivations using just defR only capture the

may behavior of a system: “there exists a computation such that . . .” is easily translated

to “there exists a derivation of . . .”. The addition of the defL inference rule allows certain

forms of must behavior to be captured.
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Chapter 5

Reasoning about Logics in FOλ∆IN

In Chapter 4 we showed how the logic FOλ∆IN can be used to reason about transition sys-

tems. The only variable-binding constructor that we considered was the CCS µ constructor

allowing the recursive description of processes; in that setting, higher-order abstract syntax

played only a minor role. We now turn our attention to object systems where bound vari-

ables and substitution are more prominent and thus higher-order abstract syntax becomes

more important. In this chapter we consider intuitionistic and linear logics; we proceed to

reason about programming languages in Chapter 6.

Since FOλ∆IN contains quantification at higher-order types and term structures involv-

ing λ-terms, it easily supports higher-order abstract syntax. Eriksson [12] demonstrated

the use of his finitary calculus of partial inductive definitions (which is similar to FOλ∆IN)

for the specification of various logics and type systems using higher-order abstract syn-

tax. Our goal is to go a step beyond that and also reason within FOλ∆IN about the object

systems. As we set about to do so, we encounter some difficulties in reasoning about higher-

order abstract syntax specifications within the specification logic and develop strategies for

surmounting those difficulties.

We begin the first section of this chapter by presenting the usual higher-order abstract

syntax representation of intuitionistic logic and illustrating the problems alluded to above.

We then proceed through several modifications of this encoding which improve our ability

to perform meta-theoretic analyses, although at some loss of the benefits of higher-order

abstract syntax. In Section 5.2 we further illustrate these encoding techniques through two
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examples involving fragments of intuitionistic and linear logic. The specifications of these

two logics will also be used in Chapter 6 as part of an alternative strategy for formal rea-

soning with higher-order abstract syntax that retains the full benefits of this representation

style. We conclude this chapter with a section discussing related work.

5.1 Logic Representations for Meta-Theoretic Analysis

5.1.1 Natural Deduction-Style Encoding

In order to examine our ability to reason about higher-order abstract syntax encodings in

FOλ∆IN, we present a definition of first-order intuitionistic logic. We use the type i for

terms of the object logic, the type atm for atoms (atomic propositions) and the type prp

for general propositions; we also introduce the following constants:

⟨ ⟩ : atm → prp & : prp → prp → prp
∧
i : (i → prp) → prp

tt : prp ⊕ : prp → prp → prp
∨
i : (i → prp) → prp

ff : prp ⇒ : prp → prp → prp .

The constant ⟨ ⟩ coerces atoms into propositions: object-level predicates will be constants

that build meta-level terms of type atm. The constants tt and ff are the representations

of true and false, the constants &, ⊕, and ⇒ represent the conjunction, disjunction, and

implication connectives, and
∧
i and

∨
i encode universal and existential quantification at

type i. Notice that we are using the λ-abstraction of FOλ∆IN’s term language to represent

the variable binding of the two object logic quantifiers. As a result, α-equivalence of

quantified object logic formulas follows from the α-equivalence of λ-bound terms in FOλ∆IN,

and substitution for object logic variables can be accomplished by β-reduction at the level

of FOλ∆IN terms.

Derivability in the object logic is encoded via the predicate prove of type prp → o;

the usual higher-order abstract syntax encoding of this predicate is the theory shown in

Table 5.1. The first seven clauses correspond to the introduction rules for natural deduction;

the remaining seven correspond to the elimination rules.

Although this encoding mirrors the rules for natural deduction, it may be viewed as

an encoding of the sequent calculus, with the derivability of the sequent B1, . . . , Bn −→ C
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Table 5.1: Natural deduction encoding of intuitionistic logic

prove tt ⊂ ⊤
prove (B & C) ⊂ prove B ∧ prove C
prove (B ⊕ C) ⊂ prove B
prove (B ⊕ C) ⊂ prove C
prove (B ⇒ C) ⊂ prove B ⊃ prove C

prove
∧
i B ⊂ ∀ix prove (B x)

prove
∨
i B ⊂ ∃ix prove (B x)

prove B ⊂ prove ff
prove B ⊂ ∃c prove (B & c)
prove C ⊂ ∃b prove (b& C)
prove D ⊂ ∃b∃c(prove (b⊕ c) ∧ (prove b ⊃ prove D) ∧ (prove c ⊃ prove D))
prove C ⊂ ∃b(prove (b ⇒ C) ∧ prove b)

prove (BX) ⊂ prove
∧
i B

prove C ⊂ ∃b(prove
∨
i b ∧ (∃ix prove (b x) ⊃ prove C))

represented by the FOλ∆IN formula

prove B1 ⊃ · · · ⊃ prove Bn ⊃ prove C .

This is in keeping with the higher-order abstract syntax principle of using specification logic

hypotheses to represent contexts (in this case, the left side of the sequent). The structural

rules (exchange, weakening, and contraction) follow immediately from this representation;

for example, the derivation for weakening is

prove c,prove b −→ prove c
init

⊃ R
−→ prove c ⊃ (prove b ⊃ prove c)

∀R
−→ ∀b∀c(prove c ⊃ (prove b ⊃ prove c)) .

The admissibility of the cut rule, encoded by the formula

∀b∀c((prove b ⊃ prove c) ⊃ prove b ⊃ prove c) ,

also follows easily from the ⊃ L rule. The right rules are the same as the corresponding

introduction rules, and the left rules are easily derived from the clauses for the corresponding

elimination rules. The left rule for
∧
i , for instance, is encoded by the FOλ∆IN formula

∀b∀c(∃x(prove (b x) ⊃ prove c) ⊃ (prove
∧
i b ⊃ prove c)) ,
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whose derivation is evident from the clause for the elimination rule for
∧
i .

However, this encoding is not appropriate for meta-theoretic analysis of object logic

derivations. To do such analysis in FOλ∆IN, we need to be able to perform induction over

the derivations. Recall that in Section 2.2.2 we used the natural number measure in the

length predicate to derive an induction principle for lists. But there is no apparent way to

add a natural number induction measure to the prove predicate because of the clause for

the ⇒ introduction rule. This reflects the fact that this clause gives rise to a non-monotone

operator (cf. Section 4.3.2); this is generally true of the types and theories in higher-order

abstract syntax encodings, and makes inductive principles difficult to find. We would also

like to change the specification into a definition so that we can use the defL rule for the

analysis of derivations. Simply replacing the ⊂ in each clause by
△
= is problematic for two

reasons. First, the clause resulting from the introduction rule for ⇒ would not satisfy the

level restriction for any level we might assign to prove. Second, the clause resulting from

the elimination rule for
∧
i would have a problematic head. There are too many ways that

(BX) can match and unify with other terms; this makes the practical application of the

defR and defL rules difficult, and would result in many cases that are not productive.

5.1.2 Sequent-Style Encoding

We can solve the problems with the encoding of the introduction rule for ⇒ by introducing

separate predicates

hyp : prp → o conc : nt → prp → o

for the left and right sides of the sequent, respectively. The predicate hyp will not be a

defined predicate, and so can have level zero. The negative occurrence of prove in the

introduction clause for ⇒ becomes an occurence of hyp, so the predicate conc can then

have level one. This also makes possible the assignment of a measure to conc, as suggested

by its type. To emphasize that the first argument to conc is a measure, we will write

it as a subscript. The problem introduced by the elimination clause for
∧
i is avoided

by patterning the encoding after the sequent calculus rules rather than natural deduction

rules. The resulting definition is shown in Table 5.2. The first clause encodes the initial
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Table 5.2: Sequent calculus encoding of intuitionistic logic

concI ⟨A⟩ △
= hyp ⟨A⟩

concI tt
△
= ⊤

conc(s I) (B & C)
△
= concI B ∧ concI C

conc(s I) (B ⊕ C)
△
= concI B

conc(s I) (B ⊕ C)
△
= concI C

conc(s I) (B ⇒ C)
△
= hyp B ⊃ concI C

conc(s I)
∧
i B

△
= ∀ix concI (B x)

conc(s I)
∨
i B

△
= ∃ix concI (B x)

concI B
△
= hyp ff

conc(s I) D
△
= ∃b∃c(hyp (b& c) ∧ (hyp b ⊃ concI D))

conc(s I) D
△
= ∃b∃c(hyp (b& c) ∧ (hyp c ⊃ concI D))

conc(s I) D
△
= ∃b∃c(hyp (b⊕ c) ∧ (hyp b ⊃ concI D) ∧ (hyp c ⊃ concI D))

conc(s I) D
△
= ∃b∃c(hyp (b ⇒ c) ∧ (hyp c ⊃ concI D) ∧ concI b)

conc(s I) C
△
= ∃b(hyp

∧
i b ∧ (∀ix hyp (b x) ⊃ concI C))

conc(s I) C
△
= ∃b(hyp

∨
i b ∧ (∃ix hyp (b x) ⊃ concI C))

axiom, the next seven correspond to the right introduction rules, and the remaining seven

correspond to the left introduction rules.

Since we have not changed the representation of quantification, we get α-equivalence of

quantified object logic formulas and substitution for object logic variables from the relevant

features of FOλ∆IN as before. We are still using FOλ∆IN hypotheses to represent contexts,

so the structural rules also follow as before. However, the admissibility of the cut rule, now

encoded as

∀b∀c(∃i(hyp b ⊃ conci c) ⊃ ∃i conci b ⊃ ∃i conci c) ,

is no longer immediate: there is no simple proof of ∃i conci b −→ hyp b. We expect,

though, that the admissibility of cut is still derivable in FOλ∆IN following the method of

[45].

This encoding has another limitation; to see it, consider the following example. Suppose

we know that the sequent b ⇒ a −→ a is derivable in intuitionistic logic for some atom a

and proposition b. Since a is atomic, the derivation must end with a left rule, and since
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the only formula on the left is b ⇒ a, it must be the left implication rule. Thus there are

derivations of b ⇒ a −→ b and a, b ⇒ a −→ a. This second sequent is not so interesting,

since it is an initial sequent. So we have shown that if b ⇒ a −→ a is derivable then

b ⇒ a −→ b is as well.

Now let us try to capture this reasoning in FOλ∆IN using our current encoding of

intuitionistic logic. We want to derive the sequent

−→ ∀a∀b(∃i(hyp (b ⇒ ⟨a⟩) ⊃ conci ⟨a⟩) ⊃ ∃j(hyp (b ⇒ ⟨a⟩) ⊃ concj b)) .

After the obvious uses of ∀R and ⊃ R, we get

∃i(hyp (b ⇒ ⟨a⟩) ⊃ conci ⟨a⟩) −→ ∃j(hyp (b ⇒ ⟨a⟩) ⊃ concj b) .

From our informal reasoning, we know that the derivation of b will have a smaller measure

than the derivation of a; thus in applying the ∃L and ∃R rules it is conservative to substitute

i for j:

hyp (b ⇒ ⟨a⟩) ⊃ conci ⟨a⟩ −→ hyp (b ⇒ ⟨a⟩) ⊃ conci b .

To follow the informal proof, we now want to indicate that hyp (b ⇒ ⟨a⟩) ⊃ conci ⟨a⟩ must

be true by the definitional clause encoding the left ⇒ rule. However, we cannot apply the

defL rule to this formula, since it is not an atom. The closest thing to this that we can do

is to eliminate the ⊃ and then apply defL to conci ⟨a⟩. We can eliminate the ⊃ by using

⊃ R and then ⊃ L, yielding the two sequents

hyp (b ⇒ ⟨a⟩) −→ hyp (b ⇒ ⟨a⟩)

conci ⟨a⟩, hyp (b ⇒ ⟨a⟩) −→ conci b .

The first is immediate by the init rule. Applying the defL rule to conci ⟨a⟩ in the second

sequent yields eight sequents corresponding to the cases where the derivation of a ends with

the initial rule or any of the seven left rules:

hyp ⟨a⟩, hyp (b ⇒ ⟨a⟩) −→ conci b

hyp ff , hyp (b ⇒ ⟨a⟩) −→ conci b

∃b′∃c′(hyp (b′ & c′) ∧ (hyp b′ ⊃ conci′ ⟨a⟩)), hyp (b ⇒ ⟨a⟩) −→ conc(s i′) b
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∃b′∃c′(hyp (b′ & c′) ∧ (hyp c′ ⊃ conci′ ⟨a⟩)), hyp (b ⇒ ⟨a⟩) −→ conc(s i′) b

∃b′∃c′(hyp (b′ ⊕ c′) ∧ (hyp b′ ⊃ conci′ ⟨a⟩) ∧ (hyp c′ ⊃ conci′ ⟨a⟩)),

hyp (b ⇒ ⟨a⟩) −→ conc(s i′) b

∃b′∃c′(hyp (b′ ⇒ c′) ∧ (hyp c′ ⊃ conci′ ⟨a⟩) ∧ conci′ b
′), hyp (b ⇒ ⟨a⟩) −→ conc(s i′) b

∃b′(hyp
∧
i b

′ ∧ (∀ix hyp (b′ x) ⊃ conci′ ⟨a⟩)), hyp (b ⇒ ⟨a⟩) −→ conc(s i′) b

∃b′(hyp
∨
i b

′ ∧ (∃ix hyp (b′ x) ⊃ conci′ ⟨a⟩)), hyp (b ⇒ ⟨a⟩) −→ conc(s i′) b .

This is clearly not what we want. Even in the case corresponding to the left ⇒ rule

we do not know that the rule was applied to the implication b ⇒ ⟨a⟩. There are really

two problems here. The first is that hyp (b ⇒ ⟨a⟩) ⊃ conci ⟨a⟩ expresses the idea that

b ⇒ ⟨a⟩ is a hypothesis available in the derivation of conci ⟨a⟩, but it does not capture

the idea that it is the only hypothesis available. Thus the defL rule forces us to consider

derivations ending with the initial rule or any of the left rules, since the appropriate formula

may be available as a hypothesis. The second problem is that we do not have any way

to examine the different ways of deriving something from a specific set of hypotheses.

Although the formula hyp (b ⇒ ⟨a⟩) ⊃ conci ⟨a⟩ indicates that the atom a is derivable

from the hypothesis b ⇒ ⟨a⟩, we cannot examine how that derivation might take place. All

we can do is use the defL rule, which says that we know that the hypothesis b ⇒ ⟨a⟩ is

available and so can conclude that a holds.

5.1.3 Explicit Sequent Encoding

To remedy this situation, we explicitly represent the entire sequent in a single atomic

judgement. As a result, the relevant object logic hypotheses are known to be exactly those

listed in the judgement, and the defL rule can be applied to the judgement to examine how

the corresponding sequent might be derived. Thus derivability is encoded via the predicate

seq : nt → prplst → prp → o .

The first argument is an induction measure and will be displayed as a subscript. The second

argument is a list of terms of type prp and represents the left side of the sequent. We will

assume that prplst is the same as the type lst introduced in Section 2.2.2, using prp for the
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Table 5.3: Explicit sequent encoding of intuitionistic logic

seqI L ⟨A⟩ △
= element ⟨A⟩ L

seqI L tt
△
= ⊤

seq(s I) L (B & C)
△
= seqI L B ∧ seqI L C

seq(s I) L (B ⊕ C)
△
= seqI L B

seq(s I) L (B ⊕ C)
△
= seqI L C

seq(s I) L (B ⇒ C)
△
= seqI (B ::L) C

seq(s I) L (
∧
i B)

△
= ∀ix seqI L (B x)

seq(s I) L (
∨
i B)

△
= ∃ix seqI L (B x)

seqI L B
△
= element ff L

seq(s I) L D
△
= ∃b∃c(element (b& c) L ∧ seqI (b ::L) D)

seq(s I) L D
△
= ∃b∃c(element (b& c) L ∧ seqI (c ::L) D)

seq(s I) L D
△
= ∃b∃c(element (b⊕ c) L ∧ seqI (b ::L) D ∧ seqI (c ::L) D)

seq(s I) L D
△
= ∃b∃c(element (b ⇒ c) L ∧ seqI (c ::L) D ∧ seqI L b)

seq(s I) L C
△
= ∃b(element

∧
i b L ∧ ∃ix seqI ((b x) ::L) C)

seq(s I) L C
△
= ∃b(element

∨
i b L ∧ ∀ix seqI ((b x) ::L) C)

type of elements. In particular we will assume that we have constructors nil and ::, and

a predicate element as defined in D(list(prp)). The third argument to seq corresponds to

the right side of the sequent. The definition for this predicate is shown in Table 5.3.

Since we have not changed the representation of quantification, we get α-equivalence

of quantified object logic formulas and substitution for object logic variables from the

relevant features of FOλ∆IN as before. We are no longer using FOλ∆IN hypotheses to

represent contexts, however, so the structural rules must now be derived by induction. The

admissibility of the cut rule must also be derived by induction, as was the case with the

previous encoding. With the atomic encoding of sequents, we now can analyze derivations

of propositions from hypotheses. To see this, we revisit the example from above. To

formalize this with the encoding of Table 5.3, we derive the sequent

−→ ∀a∀b(∃i seqi ((b ⇒ ⟨a⟩) ::nil) ⟨a⟩ ⊃ ∃j seqj ((b ⇒ ⟨a⟩) ::nil) b) .
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Applying the ∀R, ⊃ R, and ∃L rules yields the sequent

seqi ((b ⇒ ⟨a⟩) ::nil) ⟨a⟩ −→ ∃j seqj ((b ⇒ ⟨a⟩) ::nil) b .

Now we apply the defL rule to the judgement on the left, which yields eight sequents,

again corresponding to the cases where the derivation of a ends with the initial rule or any

of the seven left rules:

element ⟨a⟩ ((b ⇒ ⟨a⟩) ::nil) −→ ∃j seqj ((b ⇒ ⟨a⟩) ::nil) b

element ff ((b ⇒ ⟨a⟩) ::nil) −→ ∃j seqj ((b ⇒ ⟨a⟩) ::nil) b

∃b′∃c′(element (b′ & c′) ((b ⇒ ⟨a⟩) ::nil) ∧

seqi′ (b
′ :: (b ⇒ ⟨a⟩) ::nil) ⟨a⟩) −→ ∃j seqj ((b ⇒ ⟨a⟩) ::nil) b

∃b′∃c′(element (b′ & c′) ((b ⇒ ⟨a⟩) ::nil) ∧

seqi′ (c
′ :: (b ⇒ ⟨a⟩) ::nil) ⟨a⟩) −→ ∃j seqj ((b ⇒ ⟨a⟩) ::nil) b

∃b′∃c′(element (b′ ⊕ c′) ((b ⇒ ⟨a⟩) ::nil) ∧

seqi′ (b
′ :: (b ⇒ ⟨a⟩) ::nil) ⟨a⟩ ∧

seqi′ (c
′ :: (b ⇒ ⟨a⟩) ::nil) ⟨a⟩) −→ ∃j seqj ((b ⇒ ⟨a⟩) ::nil) b

∃b′∃c′(element (b′ ⇒ c′) ((b ⇒ ⟨a⟩) ::nil) ∧

seqi′ (c
′ :: (b ⇒ ⟨a⟩) ::nil) ⟨a⟩ ∧

seqi′ ((b ⇒ ⟨a⟩) ::nil) b′) −→ ∃j seqj ((b ⇒ ⟨a⟩) ::nil) b

∃b′(element
∧
i b

′ ((b ⇒ ⟨a⟩) ::nil) ∧

∃ix seqi′ ((b
′ x) :: (b ⇒ ⟨a⟩) ::nil) ⟨a⟩) −→ ∃j seqj ((b ⇒ ⟨a⟩) ::nil) b

∃b′(element
∨
i b

′ ((b ⇒ ⟨a⟩) ::nil) ∧

∀ix seqi′ ((b
′ x) :: (b ⇒ ⟨a⟩) ::nil) ⟨a⟩) −→ ∃j seqj ((b ⇒ ⟨a⟩) ::nil) b

.

But this time we can easily eliminate seven of the eight possibilities, since the element

assumption is obviously false. In the first sequent, for example, we have the assumption

element ⟨a⟩ ((b ⇒ ⟨a⟩) ::nil). Since ⟨a⟩ cannot unify with (b ⇒ ⟨a⟩), ⟨a⟩ cannot be the first

element of the list; therefore it must be an element of the remainder. But the remainder is
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the empty list, so ⟨a⟩ cannot be an element of it either. This is accomplished formally by

applying the defL rule twice:

element ⟨a⟩ nil −→ ∃j seqj ((b ⇒ ⟨a⟩) ::nil) b defL

element ⟨a⟩ ((b ⇒ ⟨a⟩) ::nil) −→ ∃j seqj ((b ⇒ ⟨a⟩) ::nil) b defL
.

The remaining cases are done similarly, except for the one valid case, which corresponds to

a use of the left ⇒ rule:

∃b′∃c′(element (b′ ⇒ c′) ((b ⇒ ⟨a⟩) ::nil) ∧

seqi′ (c
′ :: (b ⇒ ⟨a⟩) ::nil) ⟨a⟩ ∧

seqi′ ((b ⇒ ⟨a⟩) ::nil) b′) −→ ∃j seqj ((b ⇒ ⟨a⟩) ::nil) b .

In this case, b′ ⇒ c′ does match the first element of the list, so we must consider the case

where the left ⇒ rule was applied to (b ⇒ ⟨a⟩):

⊤, seqi′ ((b ⇒ ⟨a⟩) ::nil) b −→ ∃j . . . element (b′ ⇒ c′) nil, . . . −→ ∃j . . . defL

element (b′ ⇒ c′) ((b ⇒ ⟨a⟩) ::nil), seqi′ ((b ⇒ ⟨a⟩) ::nil) b′ −→ ∃j . . . defL
∧L

element (b′ ⇒ c′) . . . ∧ . . . , element (b′ ⇒ c′) . . . ∧ . . . −→ ∃j . . .
element (b′ ⇒ c′) ((b ⇒ ⟨a⟩) ::nil) ∧ . . . −→ ∃j seqj ((b ⇒ ⟨a⟩) ::nil) b cL

∃L
. . . −→ ∃j seqj ((b ⇒ ⟨a⟩) ::nil) b .

But the unproved sequent is easily derived by choosing j to be i′:

⊤, seqi′ ((b ⇒ ⟨a⟩) ::nil) b −→ seqi′ ((b ⇒ ⟨a⟩) ::nil) b init

⊤, seqi′ ((b ⇒ ⟨a⟩) ::nil) b −→ ∃j seqj ((b ⇒ ⟨a⟩) ::nil) b ∃R
.

Now let us consider another example. Suppose we know that the sequent

−→
∧

y1
∧

y2(p y1 t1 ⇒ p y2 t2 ⇒ p y2 t3)

is derivable in intuitionistic logic for some predicate constant p and some terms t1, t2, and

t3. The derivation must end with applications of the right rules for
∧

and ⇒, since these

are the only rules that apply. Thus we know that the sequent p y1 t1, p y2 t2 −→ p y2 t3 is

derivable. Since p is a predicate constant, these formulas are all atomic, so the only rule

that applies is the initial rule. The eigenvariable condition for the application of the right
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rule for
∧

guarantees that y1 and y2 are distinct, so the initial rule must apply to the second

hypothesis. Therefore, it must be the case that t2 and t3 are the same term.

Now let us try to capture this reasoning in FOλ∆IN using our current encoding of

intuitionistic logic. To do this, we will need some way to indicate term identity, and so we

introduce the predicate ≡ of type i → i → o defined by the clause X ≡ X
△
= ⊤. We then

want to derive the sequent

−→ ∀p∀t1∀t2∀t3(∃i seqi nil
∧
i y1

∧
i y2(p y1 t1 ⇒ p y2 t2 ⇒ ⟨p y2 t3⟩) ⊃ t2 ≡ t3) .

The only way to proceed is by applying ∀R and ⊃ R, yielding

∃i seqi nil
∧
i y1

∧
i y2(p y1 t1 ⇒ p y2 t2 ⇒ ⟨p y2 t3⟩) −→ t2 ≡ t3 .

There is nothing more that we can do on the right, since the definitional clause for ≡ does

not apply. Applying ∃L gives us the sequent

seqi nil
∧
i y1

∧
i y2(p y1 t1 ⇒ p y2 t2 ⇒ ⟨p y2 t3⟩) −→ t2 ≡ t3 .

Now we want to reason about the derivation of
∧
y1

∧
y2 . . . to conclude that t2 ≡ t3. In

the informal proof, we reasoned that this derivation must end with the right rule for
∧
; we

do the same thing here using defL, which yields the sequent

∀y1 seqi1 nil
∧
i y2v(p y1 t1 ⇒ p y2 t2 ⇒ ⟨p y2 t3⟩) −→ t2 ≡ t3 ,

as well as seven other sequents corresponding to the cases where the object logic derivation

ends with the application of one of the left rules. Since these latter seven sequents represent

cases that are not applicable, they are easily derivable as shown in the previous example;

we thus focus on the sequent shown above. Before we can proceed to apply defL again for

the second use of the right rule for
∧
, we must first apply ∀L, which requires supplying a

substitution term for y1. For this proof, it doesn’t matter what term we use for y1, as long

as it is something that does not unify with the term we supply for y2. So let x1 and x2 be

two distinct, non-unifiable terms of type i. If we use x1 for y1, and then apply defL and

∀L again using x2 for y2, we get

seqi2 nil (p x1 t1 ⇒ p x2 t2 ⇒ ⟨p x2 t3⟩) −→ t2 ≡ t3 .
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We now apply defL two more times, each of which corresponds to reasoning that the object

logic derivation must proceed with a use of the right rule for ⇒. This yields the sequent

seqi3 ((p x2 t2) :: (p x1 t1) ::nil) ⟨p x2 t3⟩ −→ t2 ≡ t3 .

Another application of defL reflects the fact that in the object logic derivation only the

initial rule now applies:

element (p x2 t3) ((p x2 t2) :: (p x1 t1) ::nil) −→ t2 ≡ t3 .

For p x2 t3 to be the first element of the list, t2 and t3 must be the same, and this is what we

want to prove. We have chosen x1 and x2 to be terms that do not unify, so p x2 t3 cannot

be the other element of the list. This reasoning is represented formally by the FOλ∆IN

derivation

⊤ −→ ⊤ ⊤R
⊤ −→ t2 ≡ t2

defR
element (p x2 t3) nil −→ t2 ≡ t3

defL

element (p x2 t3) ((p x1 t1) ::nil) −→ t2 ≡ t3
defL

element (p x2 t3) ((p x2 t2) :: (p x1 t1) ::nil) −→ t2 ≡ t3
defL

.

If we are able to construct the two non-unifiable terms x1 and x2, we are able to conduct

this analysis in FOλ∆IN. But the need for these two terms is rather disturbing. The informal

proof is independent of the type of y1 and y2 and the term structure of this type. In fact,

the informal proof is valid even for a type that is uninhabited; this is obviously not the case

for our representation in FOλ∆IN. The problem is that our representation of object-level

quantification in terms of FOλ∆IN quantification doesn’t allow us to examine a derivation

that is generic over certain terms. Although the formula ∀y seqi L (B y) indicates that the

proposition B y is derivable from the hypotheses in L for any y, it does not indicate that

the derivation is the same for all y, and we cannot examine that derivation generically. All

we can do is use the ∀L rule, which requires us to substitute a specific term for y, and

then examine the derivation for that specific term. This is analagous to the problem we

encountered before related to the encoding of object logic implication in terms of FOλ∆IN

implication.
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5.1.4 Explicit Eigenvariable Encoding

To solve this problem we must explicitly keep track of the eigenvariables introduced by the

quantifier rules. We do not wish to abandon, however, our higher-order abstract syntax

representation of quantification. In the earlier encodings of this section, we encoded the

rules for object logic quantification using FOλ∆IN quantification; the key idea of our solution

is to replace that use of FOλ∆IN quantification with the use of FOλ∆IN λ-abstraction. If

we follow this idea naively and simply replace the quantification by λ-abstraction, we get

the following encoding of the right rule for
∧
:

seq(s I) L (
∧
i B)

△
= λx seqI L (B x) .

This does not work, of course, since the body of this clause now has type i → o instead of

type o. To address this problem, it is important to first realize that as more eigenvariables

are added and propositions are moved between the left and right sides of the sequent, we

must deal more generally with “judgements” of the form

λx1 . . . λxn seqI (Lx1 . . . xn) (B x1 . . . xn)

for arbitrary n ≥ 0. First consider “uncurrying” this expression by replacing the λ-

abstractions over x1, . . . , xn by a single λ-abstraction over the n-tuple (x1, . . . , xn):

λx.seqI (L (π1 x) . . . (πn x)) (B (π1 x) . . . (πn x)) .

Now we can deal with the arbitrary n by replacing the n-tuple with a list, and using fst x

in place of π1 x, fst (rst x) in place of π2 x, fst (rst (rst x)) in place of π3 x, etc. Finally,

we push the λ-abstraction into the seq predicate by changing its type:

seq : nt → (evs → prplst) → (evs → prp) → o .

Here evs is a new type representing a list of eigenvariables. We have already seen the

two operators on this type, fst: evs → i and rst: evs → evs; fst l represents the first

eigenvariable in the list l, and rst l represents the remainder of the list. The right rule for∧
is now encoded as follows:

seq(s I) L (λl
∧
i(B l))

△
= seqI (λl′ L(rst l′)) (λl′ B (rst l′) (fst l′)) .
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The bound variable l′ in the body of the clause should be thought of as a list whose length is

one longer than the length of the bound variable l in the head of the clause; fst l′ represents

the new eigenvariable, and rst l′ represents the eigenvariables in l. The left rule for
∨
i is

similarly modified:

seq(s I) L C
△
= ∃b(element (λl

∨
i(b l)) L ∧

seqI (λl′ (b (rst l′) (fst l′)) :: (L (rst l′))) (λl′ C (rst l′)) .

The remainder of the clauses are only modified to reflect the change in the type of seq.

Note in particular that FOλ∆IN quantification can still be used in the encodings of the left

rule for
∧

and the right rule for
∨
; since these rules do not introduce eigenvariables, this

use of FOλ∆IN quantification is not problematic. The type of the predicate element also

changes:

element : (evs → prp) → (evs → prplst) → o .

Table 5.4 presents the definition for the entire logic.

Since we have not changed the representation of quantification, we get α-equivalence

of quantified object logic formulas and substitution for object logic bound variables from

the relevant features of FOλ∆IN as before. Substitution for eigenvariables is a little more

involved, as shown by its encoding via the predicates

subst : nt → (evs → i) → (evs → i) → (evs → i) → o

subst0 : nt → (evs → evs → i) → (evs → evs → i) → (evs → evs → i) → o .

The judgement subst i t1 t2 t
′
2 indicates that t′2 is the result of substituting t1 in t2 for the

(i + 1)th eigenvariable. We could just as easily use the actual encoding (fst (rsti l)) of the

(i+1)th eigenvariable in place of its index, but we find it more convenient to use the index

so that we can perform induction on it. (Here we use (rsti l) for n applications of rst to l,

i.e. (rst0 l) is l, (rst1 l) is (rst l), (rst2 l) is (rst (rst l)), etc.) The subst0 predicate is used in

the definition of subst; the extra evs argument is used to keep track of eigenvariables at the

beginning of the list as we search down the list for the substitution variable. The encoding

of these predicates is shown in Table 5.5. Substitution for the first eigenvariable can be

done directly; to substitute for the (i + 2)th eigenvariable we move the first eigenvariable

from the list l to the list l′ and substitute for the (i+ 1)th eigenvariable of l.
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Table 5.4: Explicit eigenvariable encoding of intuitionistic logic

seqI L λl ⟨(A l)⟩ △
= element λl ⟨(A l)⟩ L

seqI L (λl tt)
△
= ⊤

seq(s I) L λl ((B l) & (C l))
△
= seqI L B ∧ seqI L C

seq(s I) L λl ((B l)⊕ (C l))
△
= seqI L B

seq(s I) L λl ((B l)⊕ (C l))
△
= seqI L C

seq(s I) L λl ((B l) ⇒ (C l))
△
= seqI λl ((B l) :: (L l)) C

seq(s I) L (λl
∧
i(B l))

△
= seqI (λl′ L (rst l′)) (λl′ B (rst l′) (fst l′))

seq(s I) L (λl
∨
i(B l))

△
= ∃x seqI L (λl B l (x l))

seqI L B
△
= element (λl ff ) L

seq(s I) L D
△
= ∃b∃c(element λl ((b l) & (c l)) L ∧

seqI λl ((b l) :: (L l)) D)

seq(s I) L D
△
= ∃b∃c(element λl ((b l) & (c l)) L ∧

seqI λl ((c l) :: (L l)) D)

seq(s I) L D
△
= ∃b∃c(element λl ((b l)⊕ (c l)) L ∧

seqI λl ((b l) :: (L l)) D ∧ seqI λl ((c l) :: (L l)) D)

seq(s I) L D
△
= ∃b∃c(element λl ((b l) ⇒ (c l)) L ∧

seqI λl ((c l) :: (L l)) D ∧
seqI L b)

seq(s I) L C
△
= ∃b(element (λl

∧
i(b l)) L ∧

∃x seqI λl ((b l (x l)) :: (L l)) C)

seq(s I) L C
△
= ∃b(element (λl

∨
i(b l)) L ∧

seqI λl′ ((b (rst l′) (fst l′)) :: (L (rst l′))) (λl′ C (rst l′)))

element X λl ((X l) :: (L l))
△
= ⊤

element X λl ((Y l) :: (L l))
△
= element X L
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Table 5.5: Encoding of substitution for eigenvariables

subst I T1 T2 T
′
2

△
= subst0 I (λl′ T1) (λl

′ T2) (λl
′ T ′

2)

subst0 z T1 (λl′λl T2 l
′ (fst l) (rst l)) (λl′λl T2 l

′ (T1 l
′ l) (rst l))

△
= ⊤

subst0 (s I) (λl′λl T1 l
′ (fst l) (rst l))

(λl′λl T2 l
′ (fst l) (rst l)) (λl′λl T ′

2 l
′ (fst l) (rst l))

△
= subst0 I (λl′λl T1 (rst l

′) (fst l′) l)
(λl′λl T2 (rst l

′) (fst l′) l) (λl′λl T ′
2 (rst l

′) (fst l′) l)

As with the previous encoding of intuitionistic logic, we must derive the admissibility of

the structural rules and the cut rule by induction. We have retained the atomic encoding of

sequents, so we can still analyze derivations of propositions from hypotheses. In addition,

the explicit encoding of eigenvariables allows us to better analyze derivations of generic

propositions. To see this, we revisit the example from before; the sequent we wish to derive

is

−→ ∀p∀t1∀t2∀t3(∃i seqi λl nil (λl
∧
i y1

∧
i y2(p y1 t1 ⇒ p y2 t2 ⇒ ⟨p y2 t3⟩)) ⊃ t2 ≡ t3) .

As before, we begin by applying the ∀R, ⊃ R, and ∃L rules to obtain the sequent

seqi λl nil (λl
∧
i y1

∧
i y2(p y1 t1 ⇒ p y2 t2 ⇒ ⟨p y2 t3⟩)) −→ t2 ≡ t3 .

The derivation of the object logic formula
∧
y1

∧
y2 . . . must end with two applications of

the right rule for
∧
; we formalize this by applying defL twice, which results in the sequent

seqi1 λl nil λl (p (fst (rst l)) t1 ⇒ p (fst l) t2 ⇒ ⟨p (fst l) t3⟩) −→ t2 ≡ t3 .

The object logic derivation must proceed with two applications of the right rule for ⇒; we

deduce this formally by two more applications of the defL rule, yielding

seqi2 λl ((p (fst l) t2) :: (p (fst (rst l)) t1) ::nil) λl ⟨p (fst l) t3⟩ −→ t2 ≡ t3 .

An additional use of the defL rule corresponds to the realization that the initial rule must

complete the object logic derivation, giving us the sequent

element (λl p (fst l) t3) λl ((p (fst l) t2) :: (p (fst (rst l)) t1) ::nil) −→ t2 ≡ t3 .
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If p (fst l) t3 is the first element of the list, then t2 and t3 are the same, which is the result

we are trying to establish. The formula p (fst l) t3 cannot be the other element of the list,

because the first argument to p differs; thus we are done. This is all formally encoded by

the derivation

⊤ −→ ⊤ ⊤R
⊤ −→ t2 ≡ t2

defR
element (λl p (fst l) t3) (λl nil) −→ t2 ≡ t3

defL

element (λl p (fst l) t3) λl ((p (fst (rst l)) t1) ::nil) −→ t2 ≡ t3
defL

element (λl p (fst l) t3) λl ((p (fst l) t2) :: (p (fst (rst l)) t1) ::nil) −→ t2 ≡ t3
defL

.

5.1.5 Discussion

Before going on to formally derive theorems about encodings of logics, let us reflect on

the encoding styles we have discussed. What we have is a spectrum of styles, all of which

share the same higher-order abstract syntax encoding of formulas, but which vary in the

degree to which they use the higher-order abstract syntax encoding of inference rules.

The first encoding used the typical higher-order abstract syntax techniques, which made

a number of significant properties of the object logic fall out easily from the properties of

FOλ∆IN. Unfortunately this encoding did not lend itself to formal analysis within FOλ∆IN,

since it could not be expressed as a definition nor given an induction measure. We then

progressed through three other encodings, each of which compromised the use higher-

order abstract syntax a bit more. The cost of each compromise was a decrease in the

elegance and an increase in the complexity of the encoding, and a reduction in the extent

to which fundamental properties of the object logic followed from corresponding properties

of FOλ∆IN. The benefit, of course, was a greater ability to perform formal meta-theoretic

analysis.

In Chapter 6 we will discuss an approach which lets us use the typical higher-order

abstract syntax encodings and also perform meta-theoretic analyses on these encodings.

The key to this approach is the use of a specification logic that is separate from FOλ∆IN,

and in fact is itself specified in FOλ∆IN. In the next section we present two logics which

will be used for this purpose, and which also serve as examples of the last two encoding

techniques discussed in this section.
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5.2 Examples

In this section we illustrate the use of the some of the encoding techniques just presented.

In Section 5.2.1 we use the explicit sequent technique of Section 5.1.3 to encode a fragment

of intuitionistic logic; Section 5.2.2 discusses a fragment of linear logic encoded with the

explicit eigenvariable technique of Section 5.1.4. In each case we prove the adequacy of the

encoding and also derive in FOλ∆IN some properties of the object logic. The results of

Section 5.2.1 were presented in [31], coauthored with Miller.

5.2.1 Intuitionistic Logic

Consider the fragment of second-order intuitionistic logic given by the grammar

D ::= A | G ⇒ A |
∧

α x.D |
∧

α→α x.D

G ::= A | tt | G&G | A ⇒ G |
∧

α x.G ,

where A ranges over atomic formulas and α ranges over ground types. D and G represent

definite clauses and goal formulas, respectively. Although this seems like a rather simple

fragment, higher-order abstract syntax encodings generally fall within the set of definite

clauses given by this grammar. The set of goal formulas can be encoded by the following

constants:

⟨ ⟩ : atm → prp & : prp → prp → prp
∧
i : (i → prp) → prp

tt : prp ⇒ : atm → prp → prp .

Notice that the antecendent of the implication is restricted to be atomic.

If we take any sequent calculus inference rule and restrict the conclusion to be a sequent

whose antecedents are definite clauses and whose consequent is a goal formula, then the

premises will also be sequents of this form. In fact, any antecedent in the premises will

either be an antecedent of the conclusion or an atomic formula. Thus in a derivation in this

fragment of intuitionistic logic, all non-atomic antecedents in any sequent of the derivation

appear as antecedents in the end-sequent. So we can divide the antecedents into the original

theory, which remains constant throughout the derivation, and some atomic antecedents,

which vary throughout the derivation. Leaving the fixed theory aside for the moment, we
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can restrict our sequents to have only atomic antecedents:

seq : nt → atmlst → prp → o ,

where atmlst is the same as the type lst introduced in Section 2.2.2, using atm for the type

of elements. Since the antecedents are atomic, only the initial and right rules are necessary:

seqI (A′ ::L) ⟨A⟩ △
= element A (A′ ::L)

seqI L tt
△
= ⊤

seq(s I) L (B & C)
△
= seqI L B ∧ seqI L C

seq(s I) L (A ⇒ B)
△
= seqI (A ::L) B

seq(s I) L (
∧
i B)

△
= ∀ix seqI L (B x) .

We now turn to consider the set of definite clauses that make up the theory for the

derivation. Notice that the atomic formula A is equivalent to the formula tt ⇒ A, so every

definite clause can be written in the form
∧
x1 · · ·

∧
xn(G ⇒ A). In addition, the logic

under consideration is a subset of the logic of hereditary Harrop formulas. As a result, for

any derivable sequent there is a uniform derivation of that sequent [34, 39]. In our setting,

a derivation is uniform if every subderivation ending in a left rule is of the form

....
Γ −→ G[t1, . . . , tn/x1, . . . , xn] A′,Γ −→ A′ init

(G ⇒ A)[t1, . . . , tn/x1, . . . , xn],Γ −→ A′ ⇒ L∧
L∧

x1 · · ·
∧
xn(G ⇒ A),Γ −→ A′ ,

where A′ and A[t1, . . . , tn/x1, . . . , xn] are the same. If we group these steps together, our

aggregate left rule encoding needs to say that seq(s I) L ⟨A′⟩ holds if and only if there is

a clause
∧
x1 · · ·

∧
xn(G ⇒ A) in the theory such that A can be instantiated to match A′,

and seq(s I) L ⟨G′⟩ holds, where G′ is the corresponding instantiation of G. We use the

predicate

prog : atm → prp → o

to encode the theory. The fact that the definite clause
∧
x1 · · ·

∧
xn(G ⇒ A) is in the theory

is represented by the definitional clause prog A G
△
= ⊤; the quantification of the definite

clause is encoded by the (elided) quantification of the definitional clause. The encoding for
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the aggregate left rule is

seq(s I) L ⟨A⟩ △
= ∃b(prog A b ∧ seqI L b) ;

notice that the matching between A and the head of the definite clause is accomplished

by the definition rules. Different object-level theories can be considered by varying the

definition of prog, as illustrated in Chapter 6. The object-level formulas encoded using

prog are treated by the object logic as a theory and not as a definition: there is no rule

corresponding to FOλ∆IN’s defL in the object logic.

We will refer to the six clauses for seq given in this section as D(intuit). For convenience

we will abbreviate the formula ∃i(nat i ∧ seqi L B) as L > B (or as >B when L is nil).

We now state the following properties about this presentation of the object logic. If B is a

term of type prp, then let ⟨[B]⟩ be its (obvious) translation into a formula of intuitionistic

logic. If L is a term of type atmlst, let ⟨[L]⟩ be its (obvious) translation to a multiset of

atomic formulas of intuitionistic logic.

Theorem 5.1 Let D(prog) be the definition {∀x̄1[prog A1 G1
△
= ⊤], . . . , ∀x̄n[prog An Gn

△
=

⊤]} (n ≥ 0) which represents an object-level theory, and let P be the corresponding theory

in intuitionistic logic (i.e. the set of formulas
∧
x̄i(⟨[Gi]⟩ ⇒ ⟨[Ai]⟩), for all i ∈ {1, . . . , n}).

Let D be a definition that extends D(nat)∪D(list(atm))∪D(intuit)∪D(prog) with clauses

that do not define nat, seq, element, or prog. Then the sequent −→ L > B is derivable in

FOλ∆IN with definition D if and only if ⟨[B]⟩ is an intuitionistic consequence of ⟨[L]⟩ ∪ P.

Proof The reverse direction follows easily from the definition D(intuit). For the forward

direction, the use of the defR rule with D(intuit) will cause the structure of the FOλ∆IN

derivation to closely follow that of the corresponding derivation in intuitionistic logic. How-

ever, we need to be sure that the natL and defL rules don’t allow us to derive anything

that we can’t derive in intuitionistic logic. By Theorem 3.13, we only need to consider

cut-free FOλ∆IN derivations. By Lemma 5.2 a cut-free derivation of −→ L>B will consist

only of sequents with empty antecedents. Thus the natL and defL rules are not used, since

they both require a formula in the antecedent.
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Lemma 5.2 If D is an implication-free definition, C is an implication-free formula, and

Π is a cut-free derivation of the sequent −→ C in FOλ∆IN using D, then every sequent in

Π has an empty antecedent and an implication-free consequent.

Proof Consider the following two observations about the inference rules in FOλ∆IN:

1. The only rule that can have a non-empty antecedent in a premise and an empty

antecedent in the conclusion is ⊃ R.

2. The only rules that allow an implication in the consequent of a premise without one

in the consequent of the conclusion are ⊃ L and natL. (The defR rule does not,

since the clauses in D do not contain implications. The defL rule does not, since the

types of variables cannot contain o.)

But the ⊃ L and natL rules have conclusions with a non-empty antecedent, and the ⊃ R

rule has a conclusion with an implication in the consequent. Since the end-sequent has an

empty antecedent and an implication-free consequent, a simple induction on the height of

the proof shows that all sequents in the proof have this property.

The following theorems state that we can derive in FOλ∆IN that the specialization rule,

the cut rule and the usual structural rules are admissible for our object logic.

Theorem 5.3 The formula

∀i∀b∀l(nat i ⊃ seq(s i) l
∧

b ⊃ ∀x seqi l (b x))

is derivable in FOλ∆IN using the definition D(nat) ∪ D(list(atm)) ∪ D(intuit).

Theorem 5.4 The formula ∀a∀b∀l((a :: l) > b ⊃ l > ⟨a⟩ ⊃ l > b) is derivable in FOλ∆IN

using the definition D(nat) ∪ D(list(atm)) ∪ D(intuit).

Theorem 5.5 The formula

∀i∀b∀l∀l′(nat i ⊃ ∀a(element a l ⊃ element a l′) ⊃ seqi l b ⊃ seqi l
′ b)

is derivable in FOλ∆IN using the definition D(nat) ∪ D(list(atm)) ∪ D(intuit).
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Table 5.6: Inference rules for a fragment of intuitionistic linear logic

Γ;A −→ A initial
B,Γ;B,∆ −→ C

B,Γ;∆ −→ C absorb Γ;∆ −→ tt ttR

Γ;B,∆ −→ E

Γ;B & C,∆ −→ E &L
Γ;C,∆ −→ E

Γ;B & C,∆ −→ E &L
Γ;B[t/x],∆ −→ C

Γ;
∧
x.B,∆ −→ C

∧
L

Γ;∆ −→ B Γ;∆ −→ C

Γ;∆ −→ B & C &R
Γ;∆ −→ B[y/x]

Γ;∆ −→
∧
x.B

∧
R

Γ;∆1 −→ B Γ;A,∆2 −→ C

Γ;B −◦A,∆1,∆2 −→ C −◦L
Γ;A,∆ −→ B

Γ;∆ −→ A−◦B −◦R

Γ;−→ B Γ;A,∆ −→ C

Γ;B ⇒ A,∆ −→ C ⇒ L
A,Γ;∆ −→ B

Γ;∆ −→ A ⇒ B ⇒ R

Γ;∆1 −→ B Γ;B,∆2 −→ C

Γ;∆1,∆2 −→ C cut
Γ;−→ B B,Γ;∆ −→ C

Γ;∆ −→ C cut!

5.2.2 Linear Logic

Now consider the fragment of second-order linear logic given by the grammar

D ::= A | G−◦A | G ⇒ A |
∧

α x.D |
∧

α→α x.D

G ::= A | tt | G&G | A−◦G | A ⇒ G |
∧

α x.G ,

where A ranges over atomic formulas and α ranges over ground types. As in Section 5.2.1,

D and G represent definite clauses and goal formulas, respectively. A derivation system

for this logic is shown in Table 5.6; the left side of the sequent is divided into a set Γ of

intuitionistic (non-linear) antecedents and a multiset ∆ of linear antecedents. In the
∧
R

rule, y is an eigenvariable that is not free in the lower sequent of the rule. We encode the

set of goal formulas using the following constants:

⟨ ⟩ : atm → prp & : prp → prp → prp ⇒ : atm → prp → prp

tt : prp −◦ : atm → prp → prp
∧
i : (i → prp) → prp .

We again separate the antecedents of sequents in a derivation into a theory, which re-

mains constant throughout the derivation and is encoded via a predicate prog, and some
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atomic antecedents, which vary from sequent to sequent in the derivation and are shown

explicitly in the sequent. The atomic antecedents are further divided into linear and intu-

itionistic antecedents:

seq : nt → (evs → atmlst) → (evs → atmlst) → (evs → prp) → o .

The second and third arguments to seq represent multisets of intuitionistic and linear

antecedents, respectively. Notice that we follow the explicit eigenvariable encoding style

of Section 5.1.4 by encoding the antecedents and consequent as funtions whose domain is

a list of eigenvariables. In order to highlight both the similarities and differences between

this encoding and the encoding of Section 5.2.1, we will use a number of abbreviations;

we introduce the first of these now. For any type τ , we will use τ∗ as an abbreviation for

evs → τ . Thus the type of seq above can be expressed as

seq : nt → atmlst∗ → atmlst∗ → prp∗ → o .

We must modify the definition D(list(τ)) from Section 2.2.2 to work over the type lst∗.

The predicates will now have the following types:

length : lst∗ → nt → o split : lst∗ → lst∗ → lst∗ → o

list : lst∗ → o permute : lst∗ → lst∗ → o

element : τ∗ → lst∗ → o .

The new definition D(list∗(τ)) is shown in Table 5.7; we use nil∗ and A ::∗L as abbreviations

for λl nil and λl ((A l) :: (L l)).

We similarly introduce abbreviations corresponding to constructors of prp∗: ⟨A⟩∗ abbre-

viates λl ⟨A l⟩, tt∗ abbreviates λl tt, B&∗C abbreviates λl ((B l)&(C l)), A−◦∗B abbreviates

λl ((A l)−◦(B l)), A ⇒∗ B abbreviates λl ((A l) ⇒ (B l)), and
∧∗B abbreviates λl (

∧
(B l)).

Any definite clause in our fragment of linear logic is equivalent to a formula of the form

∧
x1 · · ·

∧
xk(B1 ⇒ · · ·Bm ⇒ C1 −◦ · · ·Cn −◦A) ,

for some k,m, n ≥ 0 and goal formulas B1, . . . , Bm, C1, . . . , Cn. Uniform derivations have

also been shown to be complete for this logic [25]; thus we use the predicate

prog : atm∗ → prplst∗ → prplst∗ → o
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Table 5.7: Explicit eigenvariable encoding of lists

length nil∗ z
△
= ⊤

length (A ::∗L) (s I)
△
= length L I

list L
△
= ∃i(nat i ∧ length L i)

element A (A ::∗L)
△
= ⊤

element A (A′ ::∗L)
△
= element A L

split nil∗ nil∗ nil∗
△
= ⊤

split (A ::∗L1) (A ::∗L2) L3
△
= split L1 L2 L3

split (A ::∗L1) L2 (A ::∗L3)
△
= split L1 L2 L3

permute nil∗ nil∗
△
= ⊤

permute (A ::∗L1) L2
△
= ∃l22(split L2 (A ::∗nil∗) l22 ∧ permute L1 l22 )

to encode the set of definite clauses that make up the theory. The first argument represents

the atomic head of the definite clause; the second and third arguments represent the lists

C1, . . . , Cn of linear hypotheses and B1, . . . , Bm of intuitionistic hypotheses, respectively.

The quantification of the definite clause is again encoded by the (elided) quantification of

the definitional clause. The predicate

split seq : nt → atmlst∗ → atmlst∗ → prplst∗ → o

will be used to express the idea that the propositions in the last argument are derivable from

the intuitionistic and linear antecedents in the second and third arguments. Each linear

antecedent must be used exactly once in the derivation of all propositions in the last list.

The inference rules for this logic are encoded in the definition D(linear) of Table 5.8, which

defines the predicates seq and split seq. In the clause for
∧
i we subscript the constant fst

with the type i because we will also be introducing a constant fsti→i for the representation

of second-order eigenvariables. As in the previous section, different object-level theories

can be considered by varying the definition of prog; an example theory will be given in

Chapter 6. For convenience we will abbreviate the formula ∃i(nat i ∧ seqi IL LL B) as

IL;LL >B (or as >B when IL and LL are nil∗).
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Table 5.8: Explicit eigenvariable encoding of linear logic

seqI IL (A′ ::∗nil∗) ⟨A⟩∗ △
= ⊤

seqI (A′ ::∗ IL) nil∗ ⟨A⟩∗ △
= element ⟨A⟩∗ (A′ ::∗ IL)

seq(s I) IL LL ⟨A⟩∗ △
= ∃ll∃il (list ll ∧ list il ∧ prog A ll il ∧

split seqI IL LL ll ∧ split seqI IL nil∗ il)

seqI IL LL tt∗
△
= ⊤

seq(s I) IL LL (B &∗ C)
△
= seqI IL LL B ∧ seqI IL LL C

seq(s I) IL LL (A−◦∗ B)
△
= seqI IL (A ::∗LL) B

seq(s I) IL LL (A ⇒∗ B)
△
= seqI (A ::∗ IL) LL B

seq(s I) IL LL (
∧
i B)

△
= seqI (λl IL (rst l)) (λl LL (rst l)) (λl B (rst l) (fsti l))

split seqI IL nil∗ nil∗
△
= ⊤

split seqI IL LL (B ::∗L)
△
= ∃ll1∃ll2 (split LL ll1 ll2 ∧

seqI IL ll1B ∧ split seqI IL ll2 L)

We now proceed to prove the adequacy of this encoding. Since the representation is

more complex and varies more from the typical higher-order abstract syntax encoding than

the one presented in Section 5.2.1, we show its adequacy proof in more detail. We assume

that all constants with return type i have at most second-order types built from only i

and →. The restriction to types built from i is reasonable, since we expect the terms of

our object logic to only be applied to other terms in the object logic. The second-order

restriction reflects the second-order nature of the object logic. We also assume that rst is

the only constant with return type evs, and that rst, fsti , and fsti→i are the only constants

taking arguments of type evs. As a result, all terms of type evs will be of the form (rstn l);

furthermore, if such a term occurs as a subterm within a term of a different type, it must

occur as an argument to either fsti or fsti→i .

As a first step toward proving the adequacy of our encoding, we formally define the

mappings from closed terms (in βη long normal form) of type i∗, atm∗, and prp∗ to the

terms, atoms, and formulas they represent. We assume that we have a canonical list of

variables x1, x2, x3, . . . that do not occur in the term under consideration; we will use these

both for the free variables that are represented by the parameter of type evs and for bound

variables. An upper bound on the number of free variables in a term can be determined
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Table 5.9: Decoding function for terms, atoms and goal formulas

⟨[λl fstυ (rstm l)]⟩υn = xn−m

⟨[λl c]⟩τn = c where c is a constant symbol
⟨[λlλy : υ t]⟩υ→τ

n = λxn.⟨[λl′ t[rst l′/l][fstτ l′/y]]⟩τn+1

⟨[λl (f t)]⟩τn = ⟨[λl f ]⟩υ→τ
n (⟨[λl t]⟩υn)

⟨[λl (p t1 . . . tm)]⟩atmn = p ⟨[λl t1]⟩υ1n . . . ⟨[λl tm]⟩υmn

⟨[λl ⟨A⟩]⟩prpn = ⟨[λl A]⟩atmn

⟨[λl tt]⟩prpn = tt
⟨[λl (B & C)]⟩prpn = ⟨[λl B]⟩prpn & ⟨[λl C]⟩prpn

⟨[λl (A−◦B)]⟩prpn = ⟨[λl A]⟩atmn −◦ ⟨[λl B]⟩prpn

⟨[λl (A ⇒ B)]⟩prpn = ⟨[λl A]⟩atmn ⇒ ⟨[λl B]⟩prpn

⟨[λl
∧
i(λy B)]⟩prpn =

∧
xn.⟨[λl′ B[rst l′/l][fsti l

′/y]]⟩prpn+1

as follows: given the term λl.X, if X contains occurrences of (rstn l), but does not contain

occurrences of (rstm l) for n < m, then at most n + 1 free variables will be needed for

the mapping of λl.X. We parameterize our mappings by a number n that we assume is

no less than this number of free variables in the term under consideration. This n will

determine the specific variables from the list x1, x2, . . . that will be used as free variables.

The mappings for terms, atoms, and goal formulas are defined in Table 5.9. In this table

we use τ and υ to range over types built only from i and →; τ is used when the order of the

type may be at most 2, and υ is used when the order may be at most 1. We will generally

omit the type superscript when it is evident from the context. The mappings from lists to

sets and multisets are obvious extensions of these. The definitional clause

∀y1 . . .∀yk.[prog A (C1 ::
∗ · · ·Cn ::

∗nil∗) (B1 ::
∗ · · ·Bm ::∗nil∗)

△
= ⊤]

represents the definite clause

∧
x1 . . .

∧
xk (⟨[B1θ]⟩k ⇒ · · · ⟨[Bmθ]⟩k ⇒ ⟨[C1θ]⟩k −◦ · · · ⟨[Cnθ]⟩k −◦ ⟨[Aθ]⟩k) ,

where θ is the substitution that replaces each variable yi : τ by λl fstτ (rstk−i l). Since

we allow first and second order variables in definite clauses, τ is either i or i → i. The

constant fsti→i : evs → i → i is only used in this translation for definite clauses. Notice that
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the quantified variables y1, . . . , yk should be able to match terms containing object-level

eigenvariables, so should be of the type evs → τ . On the other hand, the definite clause

itself should be closed, so the constants fstτ and rst should not occur in the definitional

clause and only bound variables should be needed by the mapping.

The adequacy of the logic encoding depends on the adequacy of the encoding of lists.

The following proposition is provable by induction on L.

Proposition 5.6 Let D be a definition that extends D(list∗(τ)) with clauses that do not

define length, element, split, or permute. Then for any X: τ∗, L,L′: lst∗, multisets L′
1 and

L′
2, and natural number n such that ⟨[X]⟩n, ⟨[L]⟩n, and ⟨[L′]⟩n are well-defined,

• ⟨[L]⟩n is a multiset with cardinality m if and only if the sequent −→ length L (sm z)

is derivable in FOλ∆IN with definition D;

• ⟨[X]⟩n ∈ ⟨[L]⟩n if and only if the sequent −→ element X L is derivable in FOλ∆IN with

definition D;

• ⟨[L]⟩n is the multiset union of L′
1 and L′

2 if and only if there exist L1 and L2 such that

⟨[L1]⟩n = L′
1, ⟨[L2]⟩n = L′

2, and the sequent −→ split L L1 L2 is derivable in FOλ∆IN

with definition D;

• ⟨[L]⟩n and ⟨[L′]⟩n are the same multiset if and only if the sequent −→ permute L L′

is derivable in FOλ∆IN with definition D.

Theorem 5.7 Fix a FOλ∆IN signature whose only constants with types involving evs are

fsti , fsti→i , and rst. Let D(prog) be the definition

{∀ȳ1[prog A1 LL1 IL1
△
= ⊤], . . . , ∀ȳm[prog Am LLm ILm

△
= ⊤]}

(m ≥ 0), where the quantified variables in the list ȳi each have type evs → i or evs → i → i,

and the constants fstτ and rst do not occur in Ai, LLi, or ILi, for all i ∈ {1, . . . ,m}. Let

P be the theory in linear logic that corresponds to D(prog), and let D be a definition that

extends D(nat) ∪ D(list∗(atm)) ∪ D(list∗(prp)) ∪ D(linear) ∪ D(prog) with clauses that do

not define nat, length, list, element, split, split seq, prog, or seq. Finally, let IL: atmlst∗,

LL: atmlst∗, and B: prp∗ be terms that do not contain occurrences of the constant fsti→i
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and let n be a natural number such that ⟨[IL]⟩n,⟨[LL]⟩n, and ⟨[B]⟩n are well-defined. Then the

sequent −→ IL;LL>B is derivable in FOλ∆IN with definition D if and only if the sequent

P, ⟨[IL]⟩n; ⟨[LL]⟩n −→ ⟨[B]⟩n is derivable in linear logic.

Proof: We can restrict our attention to uniform derivations in linear logic, since they

are complete for this fragment of linear logic [25]. By Theorem 3.13 we can focus on

cut-free FOλ∆IN derivations, and by Lemma 5.2 these derivations will consist only of

sequents with empty antecedents. Thus the definition of seq will ensure that the struc-

ture of the FOλ∆IN derivation will closely follow that of the corresponding derivation in

linear logic. The proof of the forward direction goes by induction on the structure of

the FOλ∆IN derivation, and the reverse direction by induction on the structure of the

linear logic derivation. In general each case follows easily from the induction hypoth-

esis. When the derivation ends with the initial rule using an intuitionistic antecedent,

Proposition 5.6 is needed. When the derivation ends with the use of a definite clause

in the theory, we need to know that there is an i such that the sequents −→ nat i and

−→ split seqi IL LL (B1 ::
∗ · · ·Bm ::∗ nil∗) are derivable in FOλ∆IN if and only if there

are multisets LL′
1, . . . ,LL

′
m such that ⟨[LL]⟩n is the multiset union of LL′

1, . . . ,LL
′
m and the

sequents P, ⟨[IL]⟩n;LL′
1 −→ ⟨[B1]⟩n, . . . , P, ⟨[IL]⟩n;LL′

m −→ ⟨[Bm]⟩n are derivable in linear

logic. This follows from the induction hypothesis by Proposition 5.6 and an additional

induction on m. For the reverse direction of this case and the &R case, we also need to

know that the formulas

∀i(nat i ⊃ ∀j(nat j ⊃ ∃k(nat k ∧ i < k ∧ j < k)))

∀i∀j∀il∀ll∀b(nat i ⊃ i < j ⊃ seqi il ll b ⊃ seqj il ll b)

∀i∀j∀l∀il∀ll(nat i ⊃ i < j ⊃ split seqi il ll l ⊃ split seqj il ll l)

are derivable in FOλ∆IN; this follows from Propositions 2.17 and 5.11.

We now present the theorems that we have derived in FOλ∆IN about our object logic.

In order to express and prove these theorems, we need additional predicates for operations

related to the evs parameter. The predicates

subst : nt → i∗ → τ∗ → τ∗ → o

subst0 : nt → i∗∗ → τ∗∗ → τ∗∗ → o ,
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Table 5.10: Encoding of eigenvariable operations

subst I T X X ′ △
= subst0 I (λl′ T ) (λl′X) (λl′X ′)

subst0 z T (λl′λlX l′ (fst l) (rst l)) (λl′λlX l′ (T l′ l) (rst l))
△
= ⊤

subst0 (s I) (λl′λl T l′ (fst l) (rst l))
(λl′λlX l′ (fst l) (rst l)) (λl′λlX ′ l′ (fst l) (rst l))

△
= subst0 I (λl′λl T (rst l′) (fst l′) l)

(λl′λlX (rst l′) (fst l′) l) (λl′λlX ′ (rst l′) (fst l′) l)

extend evars I X X ′ △
= extend evars0 I (λl′X) (λl′X ′)

extend evars0 z (λl′λlX l′ l) (λl′λlX l′ (rst l))
△
= ⊤

extend evars0 (s I) (λl′λlX l′ (fst l) (rst l)) (λl′λlX ′ l′ (fst l) (rst l))
△
= extend evars0 I (λl′λlX (rst l′) (fst l′) l)

(λl′λlX ′ (rst l′) (fst l′) l)

will be use to represent substitution for eigenvariables; this is a simple generalization of the

predicate of Section 5.1.4 to allow substitution in expressions of an arbitrary type τ . The

type τ∗∗ should be understood to mean (τ∗)∗, i.e. an abbrevation for (evs → evs → τ). We

will also use the predicates

extend evars : nt → τ∗ → τ∗ → o

extend evars0 : nt → τ∗∗ → τ∗∗ → o ,

to add a new eigenvariable to the list at an offset. Thus extend evars i x x′ indicates

that x′ is the result of adding a new eigenvariable in x at the (i + 1)th position in the

list; the eigenvariables that previously occupied positions (i + 1) or greater are shifted to

one position later in the list. These predicates are defined in the definition D(evars(τ))

of Table 5.10. We will also need an version of D(list(τ)) to work over the type lst∗∗; it is

similar to D(list∗(τ)) and we will refer it as D(list∗∗(τ)).

Since we want our theorems about the object logic to be independent of any particular

object logic theory, we need to include some assumptions about the predicate prog. Specif-

ically, we will need to know that if an atom matches the head of a clause in the theory, then
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if we substitute for an eigenvariable in the atom or extend the list of eigenvariables, then

the resulting atom will still match the head of the clause. We encode these assumptions as

the following two formulas:

∀i∀t∀a∀a′∀ll∀il(nat i ⊃ prog a ll il ⊃ subst i t a a′ ⊃

∃ll′∃il′(prog a′ ll′ il′ ∧ subst i t ll ll′ ∧ subst i t il il′)) ,

which we will refer to as Psubst, and

∀i∀a∀a′∀ll∀il(nat i ⊃ prog a ll il ⊃ extend evars i a a′ ⊃

∃ll′∃il′(prog a′ ll′ il′ ∧ extend evars i ll ll′ ∧ extend evars i il il′ )) ,

which we will refer to as Pextend. The theory should not contain occurrences of eigenvari-

ables, and if the definition of prog does not contain occurrences of fst or rst, then Psubst

and Pextend will be derivable in FOλ∆IN.

The following theorems state that we can derive in FOλ∆IN that the specialization rule,

the cut rule, and the usual linear logic structural rules are admissible for our object logic.

We refer to the definition

D(list∗(atm)) ∪ D(list∗(prp)) ∪ D(list∗∗(atm)) ∪ D(list∗∗(prp))

as D(lists) and the definition

D(evars(atm)) ∪ D(evars(prp)) ∪ D(evars(atmlst)) ∪ D(evars(prplst))

as D(evars).

Theorem 5.8 The formula

Psubst ⊃

∀i∀b∀il∀ll(nat i ⊃ list il ⊃ list ll ⊃ seq(s i) il ll
∧∗ b ⊃ ∀x seqi il ll (b x))

is derivable in FOλ∆IN using the definition D(nat) ∪ D(lists) ∪ D(evars) ∪ D(linear).

Theorem 5.9 The formulas

Pextend ⊃

∀a∀b∀il∀ll(list il ⊃ list ll ⊃ (a ::∗ il); ll > b ⊃ il; nil∗ > ⟨a⟩∗ ⊃ il; ll > b)
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Pextend ⊃

∀a∀b∀il∀ll∀ll1∀ll2(list il ⊃ list ll ⊃ split ll ll1 ll2 ⊃

il; (a ::∗ ll1) > b ⊃ il; ll2 > ⟨a⟩∗ ⊃ il; ll > b)

are derivable in FOλ∆IN using the definition D(nat) ∪ D(lists) ∪ D(evars) ∪ D(linear).

Theorem 5.10 The formula

∀i∀b∀il∀il′∀ll∀ll′(nat i ⊃ list il ⊃ list il′ ⊃ list ll ⊃

∀a(element a il ⊃ element a il′) ⊃ permute ll ll′ ⊃

seqi il ll b ⊃ seqi il
′ ll′ b)

is derivable in FOλ∆IN using the definition D(nat) ∪ D(lists) ∪ D(evars) ∪ D(linear).

The last proposition of this section states two additional properties of our object logic

that are derivable in FOλ∆IN.

Proposition 5.11 The following formulas are derivable in FOλ∆IN using the definition

D(nat) ∪ D(lists) ∪ D(evars) ∪ D(linear):

∀i∀j∀il∀ll∀b(nat i ⊃ i < j ⊃ seqi il ll b ⊃ seqj il ll b)

∀i∀j∀l∀il∀ll(nat i ⊃ i < j ⊃ split seqi il ll l ⊃ split seqj il ll l) .

5.3 Related Work

In this chapter we have presented several different encodings of logics; for each we discussed

the extent to which reasoning about the encoded logic can take place within the meta-logic

FOλ∆IN. None of the encoding techniques is completely original, but their ability to support

formal meta-theoretic analysis is a relatively new concern.

The natural deduction-style encoding of Section 5.1.1 is the prototypical representation

style of higher-order abstract syntax. For example, the seminal paper on the Edinburgh

Logical Framework (LF) [24] encodes first-order and higher-order logic in this manner

and proves the adequacy of these encodings. The issue of meta-theoretic analysis of the

encodings within the meta-logic is not addressed.
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The use of separate predicates for formulas on the left and right sides of the sequent,

as was done in Section 5.1.2, is also common. Pfenning [45], for example, uses this repre-

sentation style to encode structural cut-elimination proofs for intuitionistic, classical, and

linear logics. The induction cases of these proofs are represented in Elf, so some amount of

reasoning about the encoded logics is done in the meta-logic. However Elf does not itself

contain any support for induction, so the completeness of the cases must be checked outside

of the formal framework using techniques such as schema checking [47, 48]. Miller [37] uses

both this sequent style of encoding and the natural deduction style. The two encodings are

used to show that natural deduction and sequent calculus presentations of minimal logic

have the same theorems. The proof of this result combines informal reasoning with formal

reasoning in the meta-logic Forum.

Section 5.1.3 presented an encoding of logic which encoded the derivability of a sequent

in a single predicate. This style of encoding was used in an early paper on the use of

higher-order abstract syntax [38]. The paper focuses on an operational interpretation of

such a specification, however, and does not discuss the potential for reasoning about the

encoded logic in the meta-logic.

The idea of representing free variables as a list, discussed in Section 5.1.4, was first used

in the context of higher-order abstract syntax by Despeyroux and Hirschowitz [9]. Their

intent was to develop a way to use higher-order abstract syntax within the setting of the

inductive definition facility of Coq. A key difference between their technique and ours is

that they use both constructor and deconstructor operators for lists in the context of an

equality theory. The encoding of the right rule for universal quantification in that setting

might look like the following:

seq(s I) L (λl
∧
i(λxB (cons x l)))

△
= seqI (λl′ L(rst l′)) B .

Within terms, bound and free variables are accessed by selecting the appropriate element

from the list. In our simpler setting (without an equality theory) we use unification to

get by with only deconstructors. The paper [9] was the first attempt to fully support

formal reasoning about higher-order abstract syntax encodings within a meta-logic. Their

examples involved encodings of simply-typed λ-terms, so we will further discuss their work

at the end of the next chapter.
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Chapter 6

Reasoning about Programming

Languages in FOλ∆IN

In this chapter we consider reasoning about higher-order abstract syntax encodings of

programming languages. We could choose one of the representation strategies used for

logics in the previous chapter; instead we adopt a different strategy that allows us to use

the traditional higher-order abstract syntax representation to its full advantage and still

reason formally about the encoded system. The key to accomplishing this is to not specify

the programming language directly in FOλ∆IN, but in a small object logic that is itself

specified in FOλ∆IN. In this way we can reason in FOλ∆IN about the structure of object

logic sequents and their derivability.

The use of object-level sequents may seem at first a rather drastic step to take to embed

the kind of hypothetical judgements common with higher-order abstract syntax into a meta-

logic. Such a representation is, however, used in various areas of programming language

semantics. For example, Mitchell, in his textbook [41], uses typing judgements of the form

Γ > M : σ and performs induction over their (sequent-style) derivation. This separation

of the (object) specification logic from the meta-logic (FOλ∆IN) in which reasoning is

performed also reflects the usual structure of informal reasoning about higher-order abstract

syntax encodings.

In the next section we motivate this approach through an informal proof of subject
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reduction for the untyped λ-calculus. We proceed in Section 6.2 to formalize this proof

by encoding the static and dynamic semantics for untyped λ-terms in the intuitionistic

object logic of Section 5.2.1. We also list a variety of other theorems about the language

that we have derived in FOλ∆IN. Section 6.3 extends the encoding of Section 6.2 to the

Programming language of Computable Functions (PCF) [52]. We examine a derivation of

the unicity of typing for PCF to show that the encoding of quantification in the object logic

does not support the kinds of analysis used in the typical informal proof of this theorem.

In Section 6.4 we consider an encoding of PCF with references (PCF:=) [18] in the linear

object logic of Section 5.2.2. Since the encoding of this object logic uses the explicit

eigenvariable style of Section 5.1.4, we are able to encode the standard proof of the unicity

of typing in FOλ∆IN. Finally, Section 6.5 compares the framework of this chapter with

other research in formal reasoning about higher-order abstract syntax encodings. Most of

the research discussed in this chapter was presented in [31], coauthored with Miller; the

notable exception is Section 6.4, which is new.

6.1 Motivation from Informal Reasoning

In order to motivate our framework for reasoning about higher-order abstract syntax en-

codings, we consider a specification in intuitionistic logic of call-by-name evaluation and

simple typing for the untyped λ-calculus. We introduce two types, tm and ty , to denote

object-level terms and types. To represent the untyped λ-terms we introduce the two con-

stants abs of type (tm → tm) → tm and app of type tm → tm → tm to denote object-level

abstraction and application, respectively. Object-level types will be built up from a single

primitive type using the arrow type constructor; these are denoted in the specification logic

by the constants gnd of type ty and arr of type ty → ty → ty .

To specify call-by-name evaluation, we use an infix predicate ⇓ of type tm → tm → o

and the two formulas

∧
r((abs r) ⇓ (abs r))∧

m
∧
n
∧
v
∧
r((m ⇓ (abs r) & (r n) ⇓ v) ⇒ (app m n) ⇓ v) .

To specify simple typing at the object-level, we use the binary predicate typeof of type
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tm → ty → o and the two formulas∧
m

∧
n
∧
t
∧
u((typeof m (arr u t) & typeof n u) ⇒ typeof (app m n) t)∧

r
∧
t
∧
u(

∧
x(typeof x t ⇒ typeof (r x) u) ⇒ typeof (abs r) (arr t u)) .

Proofs that these two predicates correctly capture the notions of call-by-name evaluation

and of simple typing can be found in various places in the literature: see, for example,

[3, 23].

Now consider the following subject reduction theorem and its proof. We use ⊢ here to

represent derivability in intuitionistic logic from the above formulas encoding evaluation

and typing; we omit displaying these formulas on the left of the turnstile to simplify the

presentation.

Proposition 6.1 If ⊢ P ⇓ V and ⊢ typeof P T , then ⊢ typeof V T .

Proof We prove this theorem by induction on the height of the derivation of P ⇓ V .

Since P ⇓ V is atomic, its derivation must end with the use of one of the formulas encoding

evaluation. If the ⇓ formula for abs is used, then P and V are both equal to abs R, for

some R, and the consequent is immediate. If P ⇓ V was derived using the ⇓ formula for

app, then P is of the form (app M N), and for some R there are shorter derivations of

M ⇓ (abs R) and (RN) ⇓ V . Since ⊢ typeof (app M N) T , this typing judgement must

have been derived using one of the formulas encoding the typing rules and, hence, there is

a U such that ⊢ typeof M (arr U T ) and ⊢ typeof N U . Using the inductive hypothesis,

we have ⊢ typeof (abs R) (arr U T ). This atomic formula must have been derived using

the typeof formula for abs, and, hence, ⊢
∧
x(typeof x U ⇒ typeof (Rx) T ). Since our

specification logic is intuitionistic logic, we can instantiate this quantifier with N and use

cut and cut-elimination to conclude that ⊢ typeof (RN) T . Using the inductive hypothesis

a second time yields ⊢ typeof V T .

This proof is clear and natural, and we would like to be able to formally capture proofs

quite similar to this in structure. This suggests that the following features would be valuable

in our framework:

1. Two distinct logics. One of the logics would correspond to the one written with logical

syntax above and would capture judgements, e.g. about typability and evaluation.
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The second logic would represent a formalization of the English text in the proof

above. Atomic formulas of that logic would encode judgements in the object logic.

2. Induction over at least natural numbers.

3. Instantiation of meta-level eigenvariables. In the proof above, for example, the meta-

level variable P was instantiated in one part of the proof to (abs R) and in another

part of the proof to (app M N). Notice that this instantiation of eigenvariables

within a proof does not happen in a strictly intuitionistic sequent calculus.

4. Analysis of the derivation of an assumed judgement. In the proof above this was done

a few times, leading, for example, from the assumption

⊢ typeof (abs R) (arr U T )

to the assumption

⊢
∧

x(typeof x U ⇒ typeof (Rx) T ) .

The specification of typeof allows the implication to go in the other direction, but

given the structure of the specification of typeof, this direction can also be justified

at the meta-level.

In our framework, we accommodate the first feature by specifying an object logic within the

meta-logic FOλ∆IN, as illustrated in Chapter 5. The natL rule of FOλ∆IN provides natural

number induction. The last two features are accommodated by the definition facilities of

FOλ∆IN.

6.2 The Language of Untyped λ-Terms

We first demonstrate our approach to formal reasoning about higher-order abstract syntax

encodings using the example of untyped λ-terms. This encoding will be similar to the

one used to motivate the framework in the preceding section. The object logic used will

be the fragment of second-order intuitionistic logic encoded by the definition D(intuit) of

Section 5.2.1.
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Table 6.1: Object logic encoding of typing and evaluation of untyped λ-terms

prog (typeof (abs R) (arr T U))
∧
n((typeof n T ) ⇒ ⟨typeof (Rn) U⟩)

prog (typeof (app M N) T ) ⟨typeof M (arr U T )⟩& ⟨typeof N U⟩

prog ((abs R) ⇓ (abs R)) tt
prog ((app M N) ⇓ V ) ⟨M ⇓ (abs R)⟩& ⟨(RN) ⇓ V ⟩

prog ((app (abs R) M) ; (RM)) tt
prog ((app M N) ; (app M ′ N)) ⟨M ; M ′⟩

prog (M ;∗ M) tt
prog (M ;∗ N) ⟨M ; M ′⟩& ⟨M ′ ;∗ N⟩

The required constants to represent λ-terms are abs : (itm → itm) → itm and app :

itm → itm → itm; for simple types (over one primitive type) we need gnd: ity and arr: ity →

ity → ity . Since both types and terms in the language are represented by the object logic

type i, we have added subscripts tm and ty. These subscripts should not be considered

part of the encoding, but are added to improve the readability of these declarations.

Our object logic predicate representing typability is denoted by the FOλ∆IN constant

typeof of type itm → ity → atm. The predicates for natural semantics and transition

semantics are denoted by the constants ⇓, ;, and ;∗, all of type itm → itm → atm. The

object logic specifications for these are the usual ones, written in the Lλ subset of higher-

order logic [35] and are those common to specifications written in, say, λProlog [22] and Elf

[44]. This object-level specification is represented in FOλ∆IN as the definition D(lambda)

shown in Table 6.1. (We have dropped the
△
= ⊤ body of these clauses.) This definition can

be interpreted in a logic programming fashion to compute object-level simple type checking

and call-by-name evaluation in both structural operational semantic and natural semantic

styles. Call-by-value is just as easily represented and used.

The following theorems list the properties of the untyped λ-calculus that we have derived

in FOλ∆IN: determinacy of semantics, equivalence of semantics, and subject reduction. The

FOλ∆IN derivations closely follow the informal proofs of these properties.

Theorem 6.2 The following formulas are derivable in FOλ∆IN from the definition that
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accumulates D(nat), D(list(atm)), D(intuit), D(lambda) and the clause X ≡ X
△
= ⊤

defining the predicate ≡: i → i → o:

∀m∀m1∀m2(>⟨m ⇓ m1⟩ ⊃ >⟨m ⇓ m2⟩ ⊃ m1 ≡ m2)

∀m∀m1∀m2(>⟨m ; m1⟩ ⊃ >⟨m ; m2⟩ ⊃ m1 ≡ m2)

∀m∀r1∀r2(>⟨m ;∗ (abs r1)⟩ ⊃ >⟨m ;∗ (abs r2)⟩ ⊃ (abs r1) ≡ (abs r2)) .

Theorem 6.3 The following formulas are derivable in FOλ∆IN from the definition that

accumulates D(nat), D(list(atm)), D(intuit), D(lambda) and the clause X ≡ X
△
= ⊤

defining the predicate ≡: i → i → o:

∀m∀r(>⟨m ⇓ (abs r)⟩ ⊃ >⟨m ;∗ (abs r)⟩)

∀m∀r(>⟨m ;∗ (abs r)⟩ ⊃ >⟨m ⇓ (abs r)⟩) .

Theorem 6.4 The following formulas are derivable in FOλ∆IN from the definition that

accumulates D(nat), D(list(atm)), D(intuit), D(lambda) and the clause X ≡ X
△
= ⊤

defining the predicate ≡: i → i → o:

∀m∀n(>⟨m ⇓ n⟩ ⊃ ∀t(>⟨typeof m t⟩ ⊃ >⟨typeof n t⟩))

∀m∀n(>⟨m ; n⟩ ⊃ ∀t(>⟨typeof m t⟩ ⊃ >⟨typeof n t⟩))

∀m∀n(>⟨m ;∗ n⟩ ⊃ ∀t(>⟨typeof m t⟩ ⊃ >⟨typeof n t⟩)) .

Proof We show the derivation of the first subject reduction property, which is a formal-

ization of Proposition 6.1.

We wish to show that evaluation preserves types:

−→ ∀p∀v(>⟨p ⇓ v⟩ ⊃ ∀t(>⟨typeof p t⟩ ⊃ >⟨typeof v t⟩)) .

(We have changed the names of the quantified variables to agree with those in the informal

proof.) Applying the ∀R, ⊃ R, ∃L, cL, and ∧L rules to the above sequent yields

nat i, seqi nil ⟨p ⇓ v⟩, >⟨typeof p t⟩ −→ >⟨typeof v t⟩ .

(Recall that >⟨p ⇓ v⟩ is an abbreviation for ∃i(nat i ∧ seqi nil ⟨p ⇓ v⟩).)

As in the informal proof, we proceed with an induction on the height of the derivation

of p ⇓ v, which is represented here by i. We will use the derived rule for complete induction

(Proposition 2.16) and our induction predicate will be

λi∀p∀v∀t(seqi nil ⟨p ⇓ v⟩ ⊃ >⟨typeof p t⟩ ⊃ >⟨typeof v t⟩) ,
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which we will denote by IP. The derivation of the conclusion from the induction predicate

applied to i is trivial, so it only remains to derive the induction step

nat j, ∀k(nat k ⊃ k < j ⊃ (IP k)) −→ (IP j) .

In the informal proof we use the fact that the derivation of the atomic formula p ⇓ v

must end with the use of a clause from the specification of evaluation. We deduce this

formally using the defL rule as follows:

nat (s j0), ∀k . . . , ∃b(prog (p ⇓ v) b ∧ seqj0 nil b), >⟨typeof p t⟩ −→ >⟨typeof v t⟩
nat j,∀k . . . , seqj nil ⟨p ⇓ v⟩, >⟨typeof p t⟩ −→ >⟨typeof v t⟩ defL

⊃ R
nat j,∀k . . . −→ seqj nil ⟨p ⇓ v⟩ ⊃ >⟨typeof p t⟩ ⊃ >⟨typeof v t⟩

∀R
nat j, ∀k(nat k ⊃ k < j ⊃ (IP k)) −→ (IP j) .

We next apply the ∃L, cL, and ∧L rules, and then apply the defL rule to prog (p ⇓ v) b

which yields the two sequents

nat (s j0), ∀k . . . , seqj0 nil tt, >⟨typeof (abs r) t⟩ −→ >⟨typeof (abs r) t⟩

nat (s j0), ∀k . . . , seqj0 nil ⟨m ⇓ (abs r)⟩& ⟨(r n) ⇓ v⟩,

>⟨typeof (app m n) t⟩−→ >⟨typeof v t⟩ .

This use of the defL rule corresponds to the case analysis of the formula used to derive

p ⇓ v. As in the informal case, the abs case (represented here by the first sequent) is

immediate. The derivation of the second sequent, representing the app case, begins with

the use of the defL, cL, and ∧L, bringing us to the sequent

nat (s2 j1), ∀k . . . , seqj1 nil ⟨m ⇓ (abs r)⟩, seqj1 nil ⟨(r n) ⇓ v⟩,

>⟨typeof (app m n) t⟩−→ >⟨typeof v t⟩ .

(We use the term s2 j1 as an abbreviation for s (s j1).)

The informal proof continues with an analysis of the derivation of typeof (app m n) t.

Again we accomplish this through two uses of the defL rule, the first to indicate that the

derivation must end with the use of a specification clause, and the second to determine the

applicable clauses. In this case there is only one applicable clause, so we are left to derive

the sequent

. . . , nat (s j′0), seqj′0 nil ⟨typeof m (arr u t)⟩& ⟨typeof n u⟩ −→ >⟨typeof v t⟩ .
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Additional uses of the defL, cL and ∧L rules bring us to the sequent

. . . , nat (s2 j′1), seqj′1 nil ⟨typeof m (arr u t)⟩, seqj′1 nil ⟨typeof n u⟩ −→ >⟨typeof v t⟩ .

In the informal proof we now apply the induction hypothesis to the evaluation and

typing judgments for m. We accomplish this here by applying the appropriate left rules to

the elided induction hypothesis ∀k . . .. This requires the derivation of the five sequents

nat (s2 j1), . . . −→ nat j1 nat (s2 j1), . . . −→ j1 < (s2 j1)

. . . , seqj1 nil ⟨m ⇓ (abs r)⟩, . . . −→ seqj1 nil ⟨m ⇓ (abs r)⟩

. . . , nat (s2 j′1), seqj′1 nil ⟨typeof m (arr u t)⟩, . . . −→ >⟨typeof m (arr u t)⟩

nat (s2 j1), ∀k . . . , seqj1 nil ⟨(r n) ⇓ v⟩,

>⟨typeof (abs r) (arr u t)⟩,

nat (s2 j′1), seqj′1 nil ⟨typeof n u⟩−→ >⟨typeof v t⟩ .

The first two of these represent the fact that the measure of the evaluation derivation for m

is a natural number that is smaller than the measure of the original evaluation derivation

for p. By Proposition 2.17 these are derivable in FOλ∆IN from D(nat). The third sequent

is immediate, and the fourth also follows from Proposition 2.17:

. . . , nat (s2 j′1), . . . −→ nat j′1 . . . −→ seqj′1 ⟨typeof m (arr u t)⟩ init

. . . −→ nat j′1 ∧ seqj′1 ⟨typeof m (arr u t)⟩ ∧R

. . . ,nat (s2 j′1), seqj′1 nil ⟨typeof m (arr u t)⟩, . . . −→ >⟨typeof m (arr u t)⟩ ∃R
.

The derivation of the fifth sequent proceeds with another two applications of the defL

rule, corresponding to the analysis of the proof of typeof (abs r) (arr u t) in the informal

proof. This yields the sequent

. . . , nat (s j′′0 ), seqj′′0 nil
∧

x((typeof x u) ⇒ ⟨typeof (r x) t⟩), . . . −→ >⟨typeof v t⟩ .

This is followed by applications of the defL and ∀L rules to give us

. . . , nat (s3 j′′1 ), seqj′′1 ((typeof n u) ::nil) ⟨typeof (r n) t⟩, . . . −→ >⟨typeof v t⟩ .
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The informal proof proceeds with a use of the cut rule, and here we use the derived

object-level cut rule (Theorem 5.4) with the elided assumption seqj′1 nil ⟨typeof n u⟩ to

obtain

. . . , nat (s3 j′′1 ), seqj′′1 ((typeof n u) ::nil) ⟨typeof (r n) t⟩,

. . . −→ ((typeof n u) ::nil) > ⟨typeof (r n) t⟩

. . . , nat (s2 j′1), seqj′1 nil ⟨typeof n u⟩ −→ >⟨typeof n u⟩

. . . , >⟨typeof (r n) t⟩ −→ >⟨typeof v t⟩ .

The first two of these follow easily from Proposition 2.17.

The informal proof concludes by applying the induction hypothesis to the evaluation

and typing judgments for (r n). Again we accomplish this by applying the appropriate left

rules to the induction hypothesis ∀k . . ., which requires the derivation of the five sequents

nat (s2 j1) −→ nat j1 nat (s2 j1) −→ j1 < (s2 j1)

. . . , seqj1 nil ⟨(r n) ⇓ v⟩, . . . −→ seqj1 nil ⟨(r n) ⇓ v⟩

. . . , >⟨typeof (r n) t⟩ −→ >⟨typeof (r n) t⟩

. . . , >⟨typeof v t⟩ −→ >⟨typeof v t⟩ .

The first two sequents follow from Proposition 2.17, and the last three are all immediate.

6.3 A Language for Computable Functions

We now extend the encoding of the static and dynamic semantics for untyped λ-terms

from the previous section to the programming language PCF [52]. The necessary FOλ∆IN

constants for PCF types are

num : ity bool : ity arr : ity → ity → ity .

Those for PCF terms are

zero : itm succ : itm → itm if : itm → itm → itm → itm

true : itm pred : itm → itm abs : ity → (itm → itm) → itm

false : itm is zero : itm → itm app : itm → itm → itm

rec : ity → (itm → itm) → itm .
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Table 6.2: Object logic encoding of typing for PCF

prog (typeof zero num) tt
prog (typeof true bool) tt
prog (typeof false bool) tt
prog (typeof (succ M) num) ⟨typeof M num⟩
prog (typeof (pred M) num) ⟨typeof M num⟩
prog (typeof (is zero M) bool) ⟨typeof M num⟩
prog (typeof (if M N1 N2) T ) ⟨typeof M bool⟩& ⟨typeof N1 T ⟩& ⟨typeof N2 T ⟩
prog (typeof (abs T R) (arr T U))

∧
n((typeof n T ) ⇒ ⟨typeof (Rn) U⟩)

prog (typeof (app M N) T ) ⟨typeof M (arr U T )⟩& ⟨typeof N U⟩
prog (typeof (rec T R) T )

∧
n((typeof n T ) ⇒ ⟨typeof (Rn) T ⟩)

We have again labeled the type i with subscripts to improve the readability of these dec-

larations. The first argument to abs and rec represent the PCF type tag for the variable

bound by the abstraction and recursion constructs.

The object logic predicates representing typability and evaluation are denoted by the

same FOλ∆IN constants as in Section 6.2, plus the additional constant value : itm → atm.

The object-level specification is represented in FOλ∆IN as the definition D(PCF) shown

in Tables 6.2, 6.3, and 6.4; we have again omitted the
△
= ⊤ body of the clauses. The

following theorems list the properties of PCF that we have derived in FOλ∆IN. The type

tags in PCF terms allow the unicity of typing to hold in addition to the determinacy of

semantics, equivalence of semantics and subject reduction. The FOλ∆IN derivations again

closely follow the informal proofs of these properties; the only exception is the derivation

of the unicity of typing property, which we sketch below.

Theorem 6.5 The following formulas are derivable in FOλ∆IN from the definition that

accumulates D(nat), D(list(atm)), D(intuit), D(PCF) and the clause X ≡ X
△
= ⊤ defining

the predicate ≡: i → i → o:

∀m∀m1∀m2(>⟨m ⇓ m1⟩ ⊃ >⟨m ⇓ m2⟩ ⊃ m1 ≡ m2)

∀m∀m1∀m2(>⟨m ; m1⟩ ⊃ >⟨m ; m2⟩ ⊃ m1 ≡ m2)

∀m∀v1∀v2(>⟨value v1⟩ ⊃ >⟨m ;∗ v1⟩ ⊃ >⟨value v2⟩ ⊃ >⟨m ;∗ v2⟩ ⊃ v1 ≡ v2) .
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Table 6.3: Object logic encoding of natural semantics for PCF

prog (zero ⇓ zero) tt
prog (true ⇓ true) tt
prog (false ⇓ false) tt
prog ((succ M) ⇓ (succ V )) ⟨M ⇓ V ⟩
prog ((pred M) ⇓ zero) ⟨M ⇓ zero⟩
prog ((pred M) ⇓ V ) ⟨M ⇓ (succ V )⟩
prog ((is zero M) ⇓ true) ⟨M ⇓ zero⟩
prog ((is zero M) ⇓ false) ⟨M ⇓ (succ V )⟩
prog ((if M N1 N2) ⇓ V ) ⟨M ⇓ true⟩& ⟨N1 ⇓ V ⟩
prog ((if M N1 N2) ⇓ V ) ⟨M ⇓ false⟩& ⟨N2 ⇓ V ⟩
prog ((abs T R) ⇓ (abs T R)) tt
prog ((app M N) ⇓ V ) ⟨M ⇓ (abs T R)⟩& ⟨(RN) ⇓ V ⟩
prog ((rec T R) ⇓ V ) ⟨(R (rec T R)) ⇓ V ⟩

Table 6.4: Object logic encoding of transition semantics for PCF

prog ((succ M) ; (succ M ′)) ⟨M ; M ′⟩
prog ((pred zero) ; zero) tt
prog ((pred (succ V )) ; V ) ⟨value V ⟩
prog ((pred M) ; (pred M ′)) ⟨M ; M ′⟩
prog ((is zero zero) ; true) tt
prog ((is zero (succ V )) ; false) ⟨value V ⟩
prog ((is zero M) ; (is zero M ′)) ⟨M ; M ′⟩
prog ((if true M N) ; M) tt
prog ((if false M N) ; N) tt
prog ((if M N1 N2) ; (if M ′ N1 N2)) ⟨M ; M ′⟩
prog ((app (abs TR) N) ; (RN)) tt
prog ((app M N) ; (app M ′ N)) ⟨M ; M ′⟩
prog ((rec T R) ; (R (rec T R))) tt

prog (M ;∗ M) tt
prog (M ;∗ N) (⟨M ; M ′⟩& ⟨M ′ ;∗ N⟩)

prog (value zero) tt
prog (value true) tt
prog (value false) tt
prog (value (succ V )) ⟨value V ⟩
prog (value (abs TR)) tt
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Theorem 6.6 The following formulas are derivable in FOλ∆IN from the definition that

accumulates D(nat), D(list(atm)), D(intuit), D(PCF) and the clause X ≡ X
△
= ⊤ defining

the predicate ≡: i → i → o:

∀m∀v(>⟨m ⇓ v⟩ ⊃ (>⟨value v⟩ ∧ >⟨m ;∗ v⟩))

∀m∀v((>⟨value v⟩ ∧ >⟨m ;∗ v⟩) ⊃ >⟨m ⇓ v⟩) .

Theorem 6.7 The following formulas are derivable in FOλ∆IN from the definition that

accumulates D(nat), D(list(atm)), D(intuit), D(PCF) and the clause X ≡ X
△
= ⊤ defining

the predicate ≡: i → i → o:

∀m∀n(>⟨m ⇓ n⟩ ⊃ ∀t(>⟨typeof m t⟩ ⊃ >⟨typeof n t⟩))

∀m∀n(>⟨m ; n⟩ ⊃ ∀t(>⟨typeof m t⟩ ⊃ >⟨typeof n t⟩))

∀m∀n(>⟨m ;∗ n⟩ ⊃ ∀t(>⟨typeof m t⟩ ⊃ >⟨typeof n t⟩)) .

Theorem 6.8 The following formula is derivable in FOλ∆IN from the definition that ac-

cumulates D(nat), D(list(atm)), D(intuit), D(PCF) and the clause X ≡ X
△
= ⊤ defining

the predicate ≡: i → i → o:

∀m∀t1∀t2(>⟨typeof m t1⟩ ⊃ >⟨typeof m t2⟩ ⊃ t1 ≡ t2) .

Proof We wish to show that every term has at most one type:

−→ ∀m∀t1∀t2(>⟨typeof m t1⟩ ⊃ >⟨typeof m t2⟩ ⊃ t1 ≡ t2) .

Applying the ∀R, ⊃ R, ∃L, cL, and ∧L rules to the above sequent yields

nat i, seqi nil ⟨typeof m t1⟩, >⟨typeof m t2⟩ −→ t1 ≡ t2 .

(Recall that >⟨typeof m t1⟩ is an abbreviation for ∃i(nat i ∧ seqi nil ⟨typeof m t1⟩).)

We proceed with a complete induction on the height i of the first typing derivation,

using the derived rule of Proposition 2.16. If we let P be the binary predicate

λmλt1∀t2(>⟨typeof m t2⟩ ⊃ >t1 ≡ t2) ,

then our induction predicate IP will be

λj∀l∀m∀t(∀n∀u(element (typeof n u) l ⊃ (P nu)) ⊃ seqj l ⟨typeof m t⟩ ⊃ (Pmt)) .
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If (Pmt) holds, then t is the only type we can derive for m from an empty list of typing

assumptions. The induction predicate then states that if this is true for every type assign-

ment in the list l of hypotheses, then it is also true for every type assignment we can derive

from l. We omit the derivation of the conclusion from IP i, which is straightforward if we

choose nil for l.

It remains to derive the induction step

nat j, ∀k(nat k ⊃ k < j ⊃ (IP k)) −→ (IP j) .

We proceed with applications of the ∀R and ⊃ R rules, which yield the sequent

nat j, ∀k(nat k ⊃ k < j ⊃ (IP k)),∀n∀u . . . , seqj l ⟨typeof m t⟩ −→ (Pmt) .

Since ⟨typeof m t⟩ is atomic, its object logic derivation must end with the use of either a

typing assumption or a clause from the specification of typing. We obtain this formally by

the application of the defL rule to the hypothesis seqj l ⟨typeof m t⟩, which gives us the

two sequents

nat j, ∀k . . . ,∀n∀u . . . , element (typeof m t) l −→ (Pmt)

nat (s j0), ∀k . . . , ∀n∀u . . . , ∃b(prog (typeof m t) b ∧ seqj0 l b) −→ (Pmt) .

To derive the first sequent, we can use the ∀n∀u . . . hypothesis (via ∀L and ⊃ L) to conclude

that P holds of m and t. For the second sequent, we can apply the ∃L, cL and ∧L rules,

and then apply the defL rule to the hypothesis prog (typeof m t) b. This corresponds to

a case analysis of the last typing rule in the typing derivation for m.

If the typing derivation for m ends with a typing rule for zero, then m is zero and t is

num:

nat (s j0), ∀k . . . , ∀n∀u . . . −→ (P zero num) .

If we recall that (P zero num) is ∀t2(>⟨typeof zero t2⟩ ⊃ >num ≡ t2), then it is easy to

derive this formula. The typing derivation for zero and t2 must also end with the typing

rule for zero, since no other typing rules apply and there are no typing assumptions in

that derivation. Thus t2 must also be num. This is accomplished by first applying the

∀R and ⊃ R rules, then applying the ∃L, ∧L, and defL rules to >⟨typeof zero t2⟩ twice,
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and finally using the defR rule. The cases for true, false, succ, pred, is zero, and rec are

similar.

If the typing derivation for m ends with a typing rule for if, then we know that m is of

the form (if m′ n1 n2), m
′ has type bool, and both n1 and n2 have type t:

nat (s j1), ∀k . . . , ∀n∀u . . . ,

seqj1 l (⟨typeof m′ bool⟩& ⟨typeof n1 t⟩& ⟨typeof n2 t⟩) −→ (P (if m′ n1 n2) t) .

Applying the ∀R and ⊃ R rules brings us to the sequent

nat (s j1), ∀k . . . , ∀n∀u . . . , seqj1 l . . . , >⟨typeof (if m′ n1 n2) t2⟩ −→ num ≡ t2 .

This second typing derivation for (if m′ n1 n2) must also end with the typing rule for if;

applying the ∃L, cL, ∧L, and defL rules twice yields

nat (s j1),∀k . . . , ∀n∀u . . . , seqj1 l . . . ,nat (s k1),

seqk1 nil (⟨typeof m′ bool⟩& ⟨typeof n1 t2⟩& ⟨typeof n2 t2⟩) −→ t1 ≡ t2 .

If we apply the defL and ∧L rules to both seqj1 l . . . and seqk1 nil . . . we can obtain

hypotheses seqj2 l ⟨typeof n1 t1⟩ and seqk2 nil ⟨typeof n1 t2⟩. We can then apply the

induction hypothesis ∀k . . . to these to conclude that t1 ≡ t2. The case for app is similar.

It remains to derive the case for abs:

nat (s j1), ∀k . . . , ∀n∀u . . . ,

seqj1 l
∧
x((typeof x u1) ⇒ ⟨typeof (r x) u2⟩) −→ (P (abs u1 r) (arr u1 u2)) .

As in the other cases, we apply the ∀R and ⊃ R rules to obtain the sequent

nat (s j1),∀k . . . , ∀n∀u . . . , seqj1 l . . . , >⟨typeof (abs u1 r) t2⟩ −→ (arr u1 u2) ≡ t2 ,

and then the ∃L, cL, ∧L,and defL rules, yielding

nat (s j1),∀k . . . , ∀n∀u . . . , seqj1 l . . . ,nat (s k1),

seqk1 nil
∧
x((typeof x u1) ⇒ ⟨typeof (r x) u′2⟩) −→ (arr u1 u2) ≡ (arr u1 u

′
2) .

We would like to proceed as before to obtain formulas

seqj2 (typeof x u1 :: l) ⟨typeof (r x) u2⟩
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and

seqk2 (typeof x u1 ::nil) ⟨typeof (r x) u′2⟩ ,

and then apply the induction hypothesis to conclude that u2 ≡ u′2. This requires the use of

the ∀L rule, so we must actually choose a term for x. In order for the induction hypothesis

to apply, we must also remove the (typeof x u1) assumption from the second formula to

obtain an empty list of typing assumptions. We choose the term (rec u1 (λy y)) for x. It

is a simple matter to construct a derivation of −→ >⟨typeof (rec u1 (λy y)) u1⟩, so we can

apply the derived object logic cut rule (Theorem 5.4) to get rid of the unwanted typing

assumption:

. . . , >⟨typeof (r (rec u1 (λy y))) u
′
2⟩ −→ (arr u1 u2) ≡ arr u1 u

′
2) .

To apply the induction hypothesis to

seqj2 (typeof (rec u1 (λy y)) u1 :: l) ⟨typeof (r (rec u1 (λy y)) u2⟩

and >⟨typeof (r (rec u1 (λy y))) u′2⟩, we must show that P holds for the new typing

assumption typeof (rec u1 (λy y)) u1. But we have already shown how to do this in the rec

case of our derivation. Therefore we conclude by the induction hypothesis that u2 ≡ u′2,

and hence (arr u1 u2) ≡ (arr u1 u
′
2).

The usual informal proof of the unicity of typing relies on the requirement that the

list of assumptions contains only typing assignments for variables and no more than one

assignment for any particular variable. Since we have encoded the variables of PCF as

variables of our object logic, which in turn are encoded as variables of FOλ∆IN, we cannot

state the first part of this requirement in FOλ∆IN. Thus our derivation must differ from

the informal proof. In fact, we make essential use of the PCF recursion construct in the

abs case of the derivation; for an arbitrary type u, the term (rec u (λy y)) has the type u

and no other type. As a result, our derivation so does not generalize to languages without

this construct. In the next section we give an encoding of an extension of PCF in the linear

object logic of Section 5.2.2, which is encoded in FOλ∆IN using the explicit eigenvariable

encoding. That encoding will allow us to capture in FOλ∆IN the typical proof of the unicity

of typing.



122 CHAPTER 6. REASONING ABOUT PROGRAMMING LANGUAGES

6.4 A Language with References

In this section we consider the programming language PCF:=, an extension of PCF with

state [18]. This language extends PCF with reference types and constructs for referencing,

dereferencing, assignment, and sequential evaluation. The type (refty τ) is the type of

references to values of type τ . If m is a term of type τ , then (ref m) has type (refty τ)

and evaluates to a new memory location containing the value of m. If m is a term of type

(refty τ), then !m has type τ and evaluates to the contents of the value of m. If m has

type (refty τ) and n has type τ , then (m := n) has type τ . The evaluation of (m := n)

changes the contents of the value of m to be the value of n; its value is the same as the

value of n. If m1 and m2 have types τ1 and τ2, respectively, then (m1;m2) has type τ2. To

evaluate (m1;m2), we first evaluate m1, then evaluate m2, and finally return the value of

m2. Clearly the value of a PCF:= term will depend on the state in which it is evaluated, and

the state may be modified in the evaluation process; thus evaluation becomes a mapping

from a term-state pair to a value-state pair. The natural semantics for PCF:= is given in

Table 6.5; following [18] we specify call-by-value evaluation. In these evaluation rules, c is

used to range over locations (reference cells). In the evaluation rule for (ref M), c must

be a new location, i.e. a location that does not occur in σ1. The expression σ[c 7→ V ]

represents the state that is the same as σ except that location c contains the value V .

To encode PCF:=, we use the linear object logic of Section 5.2.2, since linear logic is

well-suited as a specification logic for programming languages with state [5, 6, 37]. For

such languages, the order of evaluation becomes important, and so a continuation-based

operational semantics is often used for the encoding. In a continuation-based semantics,

each rule has at most one premise, and any additional evaluation steps are encoded in the

continuation. This encoding of the evaluation steps into the continuation makes the order

of evaluation explicit. Table 6.6 shows a continuation-based variation of the semantics for

PCF:= given in Table 6.5. These semantics and their object logic encoding given below are

a variation of those found in [5]. The judgement κ ⊢ (M,σ) ↪→ ϕ represents the idea that

the evaluation of the term M in state σ with continuation κ results in the final answer ϕ. A

continuation is a list whose elements are of the form x̂.M , where M is a term containing the

variable x. (We use x̂ instead of λx to avoid confusion with λ-abstraction in PCF:=.) The
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Table 6.5: Natural semantics for PCF:=

(c, σ0) ⇓ (c, σ0)

(M,σ0) ⇓ (V, σ1)

(ref M,σ0) ⇓ (c, σ1[c 7→ V ])

(M,σ0) ⇓ (c, σ1)

(!M,σ0) ⇓ (σ1(c), σ1)

(M,σ0) ⇓ (c, σ1) (N, σ1) ⇓ (V, σ2)

(M := N, σ0) ⇓ (V, σ2[c 7→ V ])

(M,σ0) ⇓ (W,σ1) (N, σ1) ⇓ (V, σ2)

(M ;N, σ0) ⇓ (V, σ2)

(zero, σ0) ⇓ (zero, σ0) (true, σ0) ⇓ (true, σ0) (false, σ0) ⇓ (false, σ0)

(M,σ0) ⇓ (V, σ1)

(succ M,σ0) ⇓ (succ V, σ1)

(M,σ0) ⇓ (zero, σ1)

(pred M,σ0) ⇓ (zero, σ1)

(M,σ0) ⇓ (succ V, σ1)

(pred M,σ0) ⇓ (V, σ1)

(M,σ0) ⇓ (zero, σ1)

(is zero M,σ0) ⇓ (true, σ1)

(M,σ0) ⇓ (succ V, σ1)

(is zero M,σ0) ⇓ (false, σ1)

(M,σ0) ⇓ (true, σ1) (N1, σ1) ⇓ (V, σ2)

(if M N1 N2, σ0) ⇓ (V, σ2)

(M,σ0) ⇓ (false, σ1) (N2, σ1) ⇓ (V, σ2)

(if M N1 N2, σ0) ⇓ (V, σ2)

(M,σ0) ⇓ (λx : τ.M ′, σ1) (N, σ1) ⇓ (W,σ2) (M ′[W/x], σ2) ⇓ (V, σ3)

(M N,σ0) ⇓ (V, σ3)

(λx : τ.M, σ0) ⇓ (λx : τ.M, σ0)

(M [rec x : τ.M /x], σ0) ⇓ (V, σ1)

(rec x : τ.M , σ0) ⇓ (V, σ1)
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answer ϕ is a pair including the final value and the final state. The judgement κ ⊢ (V, σ) ˙↪→ϕ

indicates that passing the value V with state σ to the continuation κ results in the final

answer ϕ.

To encode PCF:=, we use the constants

refty : ity → ity deref : itm → itm

cell : ilc → itm assign : itm → itm → itm

ref : itm → itm sequence : itm → itm → itm

in addition to the constants of Section 6.3. Once again we have labeled the type i with

subscripts to improve the readability of these declarations. The subscript lc indicates that

the argument to cell represents a PCF:= location.

The object logic predicate representing typability is denoted by the same FOλ∆IN con-

stants as in Sections 6.2 and 6.3; its object-level specification is represented in FOλ∆IN as

the definition shown in Table 6.7. Recall that prog A (C1 :: . . . Cn ::nil) (B1 :: . . . Bm ::nil)

represents the definite clause

∧
x̄(B1 ⇒ · · ·Bm ⇒ C1 −◦ · · ·Cn −◦A) ,

where the free variables of A, B1, . . . , Bm, C1, . . . , Cn are included in the list x̄. This

means that to derive an instance of A, we can instead derive the corresponding instances

of B1, . . . , Bm, C1, . . . , Cn. To establish LL; IL > ⟨A⟩, the rules of linear logic require

that each assumption in IL be used exactly once in the derivation of one of the Ci’s; it

cannot be used in the derivation of any of the Bi’s, or in the derivation of more than

one Ci. In the specification of typing, no linear assumptions are introduced, so IL will be

empty. In general, we will use linear formulas (C1, . . . , Cn) in the bodies of specification

clauses; we use intuitionistic formulas (B1, . . . , Bn) only where we specifically wish to

preclude the use of linear assumptions. This is only done in one clause in the encoding

of the operational semantics, and will be discussed when it is introduced. We extend the

abbreviation convention of Section 5.2.2 to the constants of this section. Thus (typeof ∗ m t)

abbreviates (λl typeof (ml) (t l)), (refty∗ t) abbreviates (λl refty (t l)), etc.

The semantics for PCF:= is more complicated than those in the previous sections. The

constant ⇓ now has type itm → ist → ians → atm. The object logic atom (m, s) ⇓ f
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Table 6.6: Continuation-based natural semantics for PCF:=

⊢ (V, σ) ˙↪→(V, σ)

x̂.ref x, κ ⊢ (M,σ) ↪→ ϕ

κ ⊢ (ref M,σ) ↪→ ϕ

x̂.!x, κ ⊢ (M,σ) ↪→ ϕ

κ ⊢ (!M,σ) ↪→ ϕ

κ ⊢ (c, σ) ˙↪→ϕ

κ ⊢ (c, σ) ↪→ ϕ

κ ⊢ (c, σ[c 7→ V ]) ˙↪→ϕ

x̂.ref x, κ ⊢ (V, σ) ˙↪→ϕ

κ ⊢ (σ(c), σ) ˙↪→ϕ

x̂.!x, κ ⊢ (c, σ) ˙↪→ϕ

x̂.x := N,κ ⊢ (M,σ) ↪→ ϕ

κ ⊢ (M := N,σ) ↪→ ϕ

x̂.V := x, κ ⊢ (N, σ) ↪→ ϕ

x̂.x := N,κ ⊢ (V, σ) ˙↪→ϕ

κ ⊢ (V, σ[c 7→ V ]) ˙↪→ϕ

x̂.c := x, κ ⊢ (V, σ) ˙↪→ϕ

x̂.x;N,κ ⊢ (M,σ) ↪→ ϕ

κ ⊢ (M ;N, σ) ↪→ ϕ

κ ⊢ (N,σ) ↪→ ϕ

x̂.x;N,κ ⊢ (V, σ) ˙↪→ϕ

κ ⊢ (zero, σ) ˙↪→ϕ

κ ⊢ (zero, σ) ↪→ ϕ

κ ⊢ (true, σ) ˙↪→ϕ

κ ⊢ (true, σ) ↪→ ϕ

κ ⊢ (false, σ) ˙↪→ϕ

κ ⊢ (false, σ) ↪→ ϕ

x̂.succ x, κ ⊢ (M,σ) ↪→ ϕ

κ ⊢ (succ M,σ) ↪→ ϕ

κ ⊢ (succ V, σ) ˙↪→ϕ

x̂.succ x, κ ⊢ (V, σ) ˙↪→ϕ

x̂.pred x, κ ⊢ (M,σ) ↪→ ϕ

κ ⊢ (pred M,σ) ↪→ ϕ

κ ⊢ (zero, σ) ˙↪→ϕ

x̂.pred x, κ ⊢ (zero, σ) ˙↪→ϕ

κ ⊢ (V, σ) ˙↪→ϕ

x̂.pred x, κ ⊢ (succ V, σ) ˙↪→ϕ

x̂.is zero x, κ ⊢ (M,σ) ↪→ ϕ

κ ⊢ (is zero M,σ) ↪→ ϕ

x̂.if x N1 N2, κ ⊢ (M,σ) ↪→ ϕ

κ ⊢ (if M N1 N2, σ) ↪→ ϕ

κ ⊢ (true, σ) ˙↪→ϕ

x̂.is zero x, κ ⊢ (zero, σ) ˙↪→ϕ

κ ⊢ (N1, σ) ↪→ ϕ

x̂.if x N1 N2, κ ⊢ (true, σ) ˙↪→ϕ

κ ⊢ (false, σ) ˙↪→ϕ

x̂.is zero x, κ ⊢ (succ V, σ) ˙↪→ϕ

κ ⊢ (N2, σ) ↪→ ϕ

x̂.if x N1 N2, κ ⊢ (false, σ) ˙↪→ϕ

x̂.xN, κ ⊢ (M,σ) ↪→ ϕ

κ ⊢ (M N,σ) ↪→ ϕ

x̂.V x, κ ⊢ (N, σ) ↪→ ϕ

x̂.xN, κ ⊢ (V, σ) ˙↪→ϕ

κ ⊢ (λx : τ.M, σ) ˙↪→ϕ

κ ⊢ (λx : τ.M, σ) ↪→ ϕ

κ ⊢ (M ′[V/y], σ) ↪→ ϕ

x̂.(λy : τ.M ′)x, κ ⊢ (V, σ) ˙↪→ϕ

κ ⊢ (M [rec x : τ.M /x], σ) ↪→ ϕ

κ ⊢ (rec x : τ.M , σ) ↪→ ϕ
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Table 6.7: Object logic encoding of typing for PCF:= terms

prog (typeof ∗ zero∗ num∗)
nil∗ nil∗

prog (typeof ∗ true∗ bool∗)
nil∗ nil∗

prog (typeof ∗ false∗ bool∗)
nil∗ nil∗

prog (typeof ∗ (succ∗ M) num∗)
(⟨typeof ∗ M num∗⟩∗ ::∗nil∗) nil∗

prog (typeof ∗ (pred∗ M) num∗)
(⟨typeof ∗ M num∗⟩∗ ::∗nil∗) nil∗

prog (typeof ∗ (is zero M) bool∗)
(⟨typeof ∗ M num∗⟩∗ ::∗nil∗) nil∗

prog (typeof ∗ (if ∗ M N1 N2) T )
(⟨typeof ∗ M bool∗⟩∗ ::∗ ⟨typeof ∗ N1 T ⟩∗ ::∗ ⟨typeof ∗ N2 T ⟩∗ ::∗nil∗) nil∗

prog typeof ∗ (abs∗ T R) (arr∗ T U))
λl(

∧
n(typeof n (T l) ⇒ ⟨typeof (R l n) (U l)⟩) ::nil) nil∗

prog (typeof ∗ (app∗ M N) T )
(⟨typeof ∗ M (arr∗ U T )⟩∗ ::∗ ⟨typeof ∗ N U⟩∗ ::∗nil∗) nil∗

prog (typeof ∗ (rec∗ T R) T )
λl(

∧
n(typeof n (T l) ⇒ ⟨typeof (R l n) (T l)⟩) ::nil) nil∗

prog (typeof ∗ (ref ∗ M) (refty∗ T ))
(⟨typeof ∗ M T ⟩∗ ::∗nil∗) nil∗

prog (typeof ∗ (deref ∗ M) T )
(⟨typeof ∗ M (refty∗ T )⟩∗ ::∗nil∗) nil∗

prog (typeof ∗ (assign∗ M N) T )
(⟨typeof ∗ M (refty∗ T )⟩∗ ::∗ ⟨typeof ∗ N T ⟩∗ ::∗nil∗) nil∗

prog (typeof ∗ (sequence∗ M N) T )
(⟨typeof ∗ M U⟩∗ ::∗ ⟨typeof ∗ N T ⟩∗ ::∗nil∗) nil∗
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represents the evaluation of the term m in the state s yielding the final answer f . State

is encoded using the constants null st: ist and extend st: ilc → itm → ist → ist; null st

represents the state with no locations, and (extend st c v s) represents the state obtained

by adding the location c containing value v to the state s. A value and a state are combined

into an answer using the constant answer: itm → ist → ians; variables representing new

locations are bound using new : (ilc → ians) → ians . Our specification of evaluation will

also use the predicates

ns mach 1 : icntn → iinstr → ist → ians → atm

ns mach 2 : icntn → iinstr → ians → atm

contains : ilc → itm → atm

collect state : ist → atm .

The object logic atom ns mach 1 k i s f corresponds to the two judgements of Table 6.6.

Continuations are constructed using init: icntn to represent the initial continuation and

≻: (itm → iinstr) → icntn → icntn to extend a continuation. Instructions, constructed from

the constants

eval : itm → iinstr eval arg : itm → itm → iinstr

return : itm → iinstr apply : itm → itm → iinstr

monus : itm → iinstr new ref : itm → iinstr

zero test : itm → iinstr lookup : itm → iinstr

switch : itm → itm → itm → iinstr eval rvalue : itm → itm → iinstr

update : itm → itm → iinstr ,

are used to indicate the current task in the evaluation of a term. The object logic atom

ns mach 2 k i f is a variation of ns mach 1 k i s f which does not contain the state; instead

the contents of each location is recorded using the object logic predicate denoted by the

constant contains. The evaluation of terms is specified using this distributed representation

of state; the state portion of the final answer is constructed again using the predicate

collect state. The specifications for all of these predicates are represented by the FOλ∆IN

definition in Tables 6.8, 6.9, and 6.10.

This encoding differs slightly from the continuation semantics in Table 6.6. The object

logic judgement nil∗; ll > ⟨ns mach 2 k (return v) f⟩∗ corresponds to the judgement
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Table 6.8: Object logic encoding of natural semantics for PCF:= (part I)

prog ((M,S) ⇓∗ F )
nil∗ (⟨ns mach 1∗ init∗ (eval∗ M) S F ⟩∗ ::∗nil∗)

prog (ns mach 1∗ K I (extend st∗ C V S) F )
((contains∗ C V −◦∗ ⟨ns mach 1∗ K I S F ⟩∗) ::∗nil∗) nil∗

prog (ns mach 1∗ K I null st∗ F )
(⟨ns mach 2∗ K I F ⟩∗ ::∗nil∗) nil∗

prog (collect state∗ (extend st∗ C V S))
(⟨contains∗ C V ⟩∗ ::∗ ⟨collect state∗ S⟩∗ ::∗nil∗) nil∗

prog (collect state∗ null st∗)
nil∗ nil∗

κ ⊢ (v′, σ) ˙↪→ϕ, where κ is the continuation encoded by k, v′ is the value encode by v, σ

is the state encoded by the list ll of contains assumptions, and ϕ is the answer encoded

by f . However, the specification for ns mach 2∗ k (return∗ v) f takes the first instruction

from k and substitutes in the value v to obtain the new instruction. This new instruction

then determines the next step in the evaluation. On the other hand, the rules of Table 6.6

examine the return value and the first term of the continuation to determine the next

evaluation step. Other than this small difference, the encoding mirrors the continuation

semantics very closely.

The distributed encoding of state in Tables 6.8, 6.9, and 6.10 makes vital use of linear

implication. Since each assumption of the form contains∗ c v is a linear assumption, it

can only be used once. This linearity is used, for example, in the clause for ns mach 2

with the instruction (update∗ (cell∗ c) v); the desired behavior is that the contents of

location c be replaced by the value v. This clause has two linear formulas in its body,

⟨contains∗ c w⟩∗ and (contains∗ c v −◦∗ ⟨ns mach 2∗ k (return∗ v) f⟩∗). Each contains

assumption must be used exactly once in the derivation of these two formulas. Since there

is no clause for contains in the object logic theory, the first formula must be derived by the

initial rule, and so will use the one assumption representing the contents of location c. The

remainder of the state is then available for the other formula, which adds a new assumption
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Table 6.9: Object logic encoding of natural semantics for PCF:= (part II)

prog (ns mach 2∗ init∗ (return∗ V ) (answer∗ V S))
(⟨collect state∗ S⟩∗ ::∗nil∗) nil∗

prog (ns mach 2∗ (I ≻∗ K) (return∗ V ) F )
(⟨ns mach 2∗ K (λl I l (V l)) F ⟩∗ ::∗nil∗) nil∗

prog (ns mach 2∗ K (eval∗ (cell∗ C)) F )
(⟨ns mach 2∗ K (return∗ (cell∗ C)) F ⟩∗ ::∗nil∗) nil∗

prog (ns mach 2∗ K (eval∗ (ref ∗ M)) F )
(⟨ns mach 2∗ ((λlλv new ref v) ≻∗ K) (eval∗ M) F ⟩∗ ::∗nil∗) nil∗

prog (ns mach 2∗ K (new ref ∗ V ) (new∗ F ))
λl(

∧
c(contains c (V l)−◦ ⟨ns mach 2 (K l) (return (cell c)) (F l c)⟩) ::nil∗)

nil∗

prog (ns mach 2∗ K (eval∗ (deref ∗ M)) F )
(⟨ns mach 2∗ ((λlλv lookup v) ≻∗ K) (eval∗ M) F ⟩∗ ::∗nil∗) nil∗

prog (ns mach 2∗ K (lookup∗ (cell∗ C)) F )
(⟨contains∗ C V ⟩∗ ::∗
(contains∗ C V −◦∗ ⟨ns mach 2∗ K (return∗ V ) F ⟩∗) ::∗nil∗)
nil∗

prog (ns mach 2∗ K (eval∗ (assign∗ M N)) F )
(⟨ns mach 2∗ ((λlλv eval rvalue v (N l)) ≻∗ K) (eval∗ M) F ⟩∗ ::∗nil∗)
nil∗

prog (ns mach 2∗ K (eval rvalue∗ V N) F )
(⟨ns mach 2∗ ((λlλv update (V l) v) ≻∗ K) (eval∗ N) F ⟩∗ ::∗nil∗) nil∗

prog (ns mach 2∗ K (update∗ (cell∗ C) V ) F )
(⟨contains∗ C W ⟩∗ ::∗
(contains∗ C V −◦∗ ⟨ns mach 2∗ K (return∗ V ) F ⟩∗) ::∗nil∗)
nil∗

prog (ns mach 2∗ K (eval∗ (sequence∗ M N)) F )
(⟨ns mach 2∗ ((λlλv eval (N l)) ≻∗ K) (eval∗ M) F ⟩∗ ::∗nil∗) nil∗
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Table 6.10: Object logic encoding of natural semantics for PCF:= (part III)

prog (ns mach 2∗ (K l) (eval∗ zero∗) F )
(⟨ns mach 2∗ K (return∗ zero∗) F ⟩∗ ::∗nil∗) nil∗

prog (ns mach 2∗ K (eval∗ true∗) F )
(⟨ns mach 2∗ K (return∗ true∗) F ⟩∗ ::∗nil∗) nil∗

prog (ns mach 2∗ K (eval∗ false∗) F )
(⟨ns mach 2∗ K (return∗ false∗) F ⟩∗ ::∗nil∗) nil∗

prog (ns mach 2∗ K (eval∗ (succ∗ M)) F )
(⟨ns mach 2∗ ((λlλv return (succ v)) ≻∗ K) (eval∗ M) F ⟩∗ ::∗nil∗) nil∗

prog (ns mach 2∗ K (eval∗ (pred∗ M)) F )
(⟨ns mach 2∗ ((λlλv monus v) ≻∗ K) (eval∗ M) F ⟩∗ ::∗nil∗) nil∗

prog (ns mach 2∗ K (monus∗ zero∗) F )
(⟨ns mach 2∗ K (return∗ zero∗) F ⟩∗ ::∗nil∗) nil∗

prog (ns mach 2∗ K (monus∗ (succ∗ V )) F )
(⟨ns mach 2∗ K (return∗ V ) F ⟩∗ ::∗nil∗) nil∗

prog (ns mach 2∗ K (eval∗ (is zero∗ M)) F )
(⟨ns mach 2∗ (λlλv zero test v) ≻∗ K (eval∗ M) F ⟩∗ ::∗nil∗) nil∗

prog (ns mach 2∗ K (zero test∗ zero∗) F )
(⟨ns mach 2∗ K (return∗ true∗) F ⟩∗ ::∗nil∗) nil∗

prog (ns mach 2∗ K (zero test∗ (succ∗ V )) F )
(⟨ns mach 2∗ K (return∗ false∗) F ⟩∗ ::∗nil∗) nil∗

prog (ns mach 2∗ K (eval∗ (if ∗ M N1 N2)) F )
(⟨ns mach 2∗ ((λlλv switch v (N1 l) (N2 l)) ≻∗ K) (eval∗ M) F ⟩∗ ::∗nil∗)
nil∗

prog (ns mach 2∗ K (switch∗ true∗ N1 N2) F )
(⟨ns mach 2∗ K (eval∗ N1) F ⟩∗ ::∗nil∗) nil∗

prog (ns mach 2∗ K (switch∗ false∗ N1 N2) F )
(⟨ns mach 2∗ K (eval∗ N2) F ⟩∗ ::∗nil∗) nil∗

prog (ns mach 2∗ K (eval∗ (app∗ M N)) F )
(⟨ns mach 2∗ ((λlλv eval arg v (N l)) ≻∗ K) (eval∗ M) F ⟩∗ ::∗nil∗) nil∗

prog (ns mach 2∗ K (eval arg∗ V N) F )
(⟨ns mach 2∗ ((λlλv apply (V l) v) ≻∗ K) (eval∗ N) F ⟩∗ ::∗nil∗) nil∗

prog (ns mach 2∗ K (apply∗ (abs∗ T R) V ) F )
(⟨ns mach 2∗ K (eval∗ (λl R l (V l))) F ⟩∗ ::∗nil∗) nil∗

prog (ns mach 2∗ K (eval∗ (abs∗ T R)) F )
(⟨ns mach 2∗ K (return∗ (abs∗ T R)) F ⟩∗ ::∗nil∗) nil∗

prog (ns mach 2∗ K (eval∗ (rec∗ T R)) F )
(⟨ns mach 2∗ K (eval∗ (λl R l (rec (T l) (R l)))) F ⟩∗ ::∗nil∗) nil∗
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about the contents of c and then continues the evaluation encoded in the continuation

k. The linearity of the contains assumptions is also used in the clause for ns mach 2

with the instruction (return∗ v) and the continuation init∗. This clause represents the

situation where the evaluation is complete and we wish to construct the final answer from

the value v and the state encoded in the assumptions. The clause has the single linear

formula ⟨collect state∗ s⟩∗ as its body. Thus the derivation of this formula must use all

of the contains assumptions; this ensures that the constructed state includes all of the

locations represented in the assumptions. Dually, the clause for ⇓ in Table 6.8 has a single

intuitionistic formula ⟨ns mach 1∗ init∗ (eval∗ m) s f⟩∗ as its body. This clause represents

the situation where we wish to evaluate the term m in the state s. Since the formula in the

body is intuitionistic, it must be derived from an empty set of linear assumptions. Since

there are no linear formulas in the body, this means that (m, s) ⇓∗ f is only derivable from

an empty set of linear assumptions, i.e. the state is entirely represented in s.

We also introduce typing predicates for continuations, instructions, and answers:

typeof cntn : icntn → ity → atm

typeof instr : iinstr → ity → atm

typeof ans : ians → ity → atm .

The object-level specification for these predicates is represented in FOλ∆IN by the definition

of Table 6.11. A continuation has type (arr∗ t u) if it expects a value of type t in order to

produce a value of type u. Instructions are typed in the same way as the corresponding

terms. The type of an answer is the same as the type of its value component under some

typing assumptions for any new memory locations. These assumptions must be consistent

with the values stored in those locations; this consistency is expressed by the predicate

well typed: ist → atm.

We now present the theorems we have derived in FOλ∆IN about this object logic encod-

ing of PCF:=. We will refer to the collected clauses of Tables 6.7, 6.8, 6.9, 6.10, and 6.11

as the definition D(PCF:=). To simplify the presentation of our theorems, we introduce
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Table 6.11: Encoding of typing for PCF:= continuations, instructions, and answers

prog (typeof ∗cntn init∗ (arr∗ T T ))
nil∗ nil∗

prog (typeof ∗cntn (I ≻∗ K) (arr∗ T U))
(λl

∧
v(typeof v (T l) ⇒ ⟨typeof instr (I l v) (T ′ l)⟩) ::∗

⟨typeof ∗cntn K (arr∗ T ′ U)⟩∗ ::∗nil∗)
nil∗

prog (typeof ∗instr (eval∗ M) T )
(⟨typeof ∗ M T ⟩∗ ::∗nil∗) nil∗

prog (typeof ∗instr (return∗ V ) T )
(⟨typeof ∗ V T ⟩∗ ::∗nil∗) nil∗

prog (typeof ∗instr (monus∗ M) num∗)
(⟨typeof ∗ M num∗⟩∗ ::∗nil∗) nil∗

prog (typeof ∗instr (zero test∗ M) bool∗)
(⟨typeof ∗ M num∗⟩∗ ::∗nil∗) nil∗

prog (typeof ∗instr (switch∗ M N1 N2) T )
(⟨typeof ∗ M bool⟩∗ ::∗ ⟨typeof ∗ N1 T ⟩∗ ::∗ ⟨typeof ∗ N2 T ⟩∗ ::∗nil∗) nil∗

prog (typeof ∗instr (eval arg∗ M N) T )
(⟨typeof ∗ M (arr∗ U T )⟩∗ ::∗ ⟨typeof ∗ N U⟩∗ ::∗nil∗) nil∗

prog (typeof ∗instr (apply∗ M N) T )
(⟨typeof ∗ M (arr∗ U T )⟩∗ ::∗ ⟨typeof ∗ N U⟩∗ ::∗nil∗) nil∗

prog (typeof ∗instr (new ref ∗ M) (refty∗ T ))
(⟨typeof ∗ M T ⟩∗ ::∗nil∗) nil∗

prog (typeof ∗instr (lookup∗ M) T )
(⟨typeof ∗ M (refty∗ T )⟩∗ ::∗nil∗) nil∗

prog (typeof ∗instr (eval rvalue∗ M N) T )
(⟨typeof ∗ M (refty∗ T )⟩∗ ::∗ ⟨typeof ∗ N T ⟩∗ ::∗nil∗) nil∗

prog (typeof ∗instr (update∗ M N) T )
(⟨typeof ∗ M (refty∗ T )⟩∗ ::∗ ⟨typeof ∗ N T ⟩∗ ::∗nil∗) nil∗

prog (typeof ∗ans (answer∗ V S) T )
(⟨typeof ∗ V T ⟩∗ ::∗ ⟨well typed∗ S⟩∗ ::∗nil∗) nil∗

prog (typeof ∗ans (new∗ F ) T )
λl (

∧
c(typeof (cell c) (refty (U l)) ⇒ ⟨typeof ans (F l c) (T l)⟩) ::nil) nil∗

prog (well typed∗ null st∗)
nil∗ nil∗

prog (well typed∗ (extend st∗ C V S))
(⟨typeof ∗ (cell∗ C) (refty∗ T )⟩∗ ::∗ ⟨typeof ∗ V T ⟩∗ ::∗ ⟨well typed∗ S⟩∗ ::∗nil∗)
nil∗
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Table 6.12: Meta-logic predicates for PCF:= stores

store LL
△
= list LL ∧ ∀a(element a LL ⊃

∃c∃v(a ≡atm∗ (contains∗ c v)))

store typing IL
△
= list IL ∧

∀a(element a IL ⊃
∃c∃t(a ≡atm∗ (typeof ∗ (cell∗ c) (refty∗ t)))) ∧

∀c∀t1∀t2(element (typeof ∗ (cell∗ c) (refty∗ t1)) IL ⊃
element (typeof ∗ (cell∗ c) (refty∗ t2)) IL ⊃
t1 ≡i∗ t2)

store typeof LL IL
△
= ∀c∀v(element (contains∗ c v) LL ⊃

∃t(element (typeof ∗ (cell∗ c) (refty∗ t)) IL ∧
IL; nil∗ > ⟨typeof ∗ v t⟩∗))

A ≡atm∗ A
△
= ⊤

X ≡i∗ X
△
= ⊤

several FOλ∆IN predicates:

store : atmlst∗ → o ≡∗
atm : atm∗ → atm∗ → o

store typing : atmlst∗ → o ≡∗
i : i∗ → i∗ → o

store typeof : atmlst∗ → atmlst∗ → o .

The store predicate indicates that a list of object logic atoms is a valid distributed encoding

of state, that is, its elements are of the form contains∗ c v. The predicate store typing holds

if its argument is a valid list of typing assumptions for locations. The store typeof predicate

holds for a store and store typing if every location in the store is assigned a type by the

store typing that agrees with a type of the value stored in the location. Finally, ≡∗
atm and

≡∗
i encode syntactic identity over the types atm∗ and i∗. The definition D(store) for these

predicates is presented in Table 6.12. The following theorems state that we have derived

the subject reduction and unicity of typing properties for PCF:= in FOλ∆IN. The FOλ∆IN

derivations again closely follow the informal proofs of these properties. We expect that

the determinacy of semantics is also derivable, but have not yet shown this. We use the
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following abbreviations from Section 5.2.2: D(lists) for

D(list∗(atm)) ∪ D(list∗(prp)) ∪ D(list∗∗(atm)) ∪ D(list∗∗(prp)) ,

and D(evars) for

D(evars(atm)) ∪ D(evars(prp)) ∪ D(evars(atmlst)) ∪ D(evars(prplst)) .

Theorem 6.9 The following formulas are derivable in FOλ∆IN from the definition that

accumulates D(nat), D(lists), D(evars), D(linear), D(PCF:=), and D(store):

∀m∀s∀f(>(⟨(m, s) ⇓∗ f⟩∗) ⊃

∀ts∀t(store typing il ⊃ il; nil∗ > ⟨well typed∗ s⟩∗ ⊃

il; nil∗ > ⟨typeof ∗ m t⟩∗ ⊃

il; nil∗ > ⟨typeof ∗ans f t⟩∗))

∀ll∀k∀i∀f(store ll ⊃ nil∗; ll > ⟨ns mach 2∗ k i f⟩∗ ⊃

∀il∀t∀u(store typing il ⊃ store typeof ll il ⊃

il; nil∗ > ⟨typeof ∗cntn k (arr∗ t u)⟩∗ ⊃

il; nil∗ > ⟨typeof ∗instr i t⟩∗ ⊃

il; nil∗ > ⟨typeof ∗ans f u⟩∗)) .

Theorem 6.10 The formula

∀m∀t1∀t2(>⟨typeof ∗ m t1⟩∗ ⊃ >⟨typeof ∗ m t2⟩∗ ⊃ t1 ≡i∗ t2)

is derivable in FOλ∆IN from the definition that accumulates D(nat), D(lists), D(evars),

D(linear), D(PCF:=), and D(store).

Proof To derive the unicity of typing

−→ ∀m∀t1∀t2(>⟨typeof ∗ m t1⟩∗ ⊃ >⟨typeof ∗ m t2⟩∗ ⊃ t1 ≡i∗ t2) ,

we begin by applying the ∀R, ⊃ R, ∃L, cL, and ∧L rules, obtaining

nat i, seqi nil
∗ nil∗ ⟨typeof ∗ m t1⟩∗, >⟨typeof ∗ m t2⟩∗ −→ t1 ≡i∗ t2 .
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We proceed with a complete induction on the height i of the first typing derivation. Let

P1 be the predicate

λil∀a(element a il ⊃ ∃x∃t(a ≡atm∗ (typeof ∗ (fst∗i x) t)))

and P2 the predicate

λil∀x∀t1∀t2(element (typeof ∗ x t1) il ⊃ element (typeof ∗ x t2) il ⊃ t1 ≡i∗ t2) .

These predicates encode the requirements that the list of assumptions contains only typing

assignments for variables and assigns only one type to any one variable. Our induction

predicate IP is then

λj∀il(list il ⊃ P1 il ⊃ P2 il ⊃

∀m∀t1∀t2(seqj il nil∗ ⟨typeof ∗ m t1⟩∗ ⊃

il; nil∗ > ⟨typeof ∗ m t2⟩∗ ⊃ t1 ≡i∗ t2)) .

The desired conclusion follows easily from this induction predicate, since P1 and P2 hold

vacuously for nil∗.

For the induction step, we must derive the sequent

nat j, ∀k(nat k ⊃ k < j ⊃ (IP k)) −→ (IP j) .

We proceed with applications of the ∀R and ⊃ R rules, which yield the sequent

nat j, ∀k . . . , list il,P1 il,P2 il,

seqj il nil
∗ ⟨typeof ∗ m t1⟩∗,

il;nil∗ > ⟨typeof ∗ m t2⟩∗ −→ t1 ≡i∗ t2 .

Since ⟨typeof ∗ m t1⟩∗ represents an atomic proposition, its object logic derivation must

end with the use of either a typing assumption or a clause from the specification of typing.

We obtain this formally by applying the defL rule to the hypothesis seqj . . ., which gives

us the two sequents

. . . , element (typeof ∗ m t1) il, il; nil
∗ > ⟨typeof ∗ m t2⟩∗ −→ t1 ≡i∗ t2
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. . . , ∃ll0∃il0 (list ll0 ∧ list il0 ∧ prog (typeof ∗ m t1) ll0 il0 ∧

split seqj1 il nil∗ ll0 ∧ split seqj1 il nil∗ il0),

il; nil∗ > ⟨typeof ∗ m t2⟩∗ −→ t1 ≡i∗ t2 .

We proceed to derive the first sequent, representing the case where the first typing

derivation for m ends with the use of a typing assumption. First we can use the elided

hypothesis (P1 il) to conclude that m is an eigenvariable:

. . . , element (typeof ∗ (fst∗i m
′) t1) il, il;nil

∗ > ⟨typeof ∗ (fst∗i m
′) t2⟩∗ −→ t1 ≡i∗ t2 .

Given that, the second typing derivation for m must also end with the use of a typing

assumption, since none of the specification clauses apply. We obtain this formally by

applying the ∃L, ∧L, and defL rule to the hypothesis il; nil∗ > . . ., which gives us the two

sequents

. . . , element (typeof ∗ (fst∗i m
′) t1) il, element (typeof ∗ (fst∗i m

′) t2) il −→ t1 ≡i∗ t2

. . . , element (typeof ∗ (fst∗i m
′) t1) il,

∃ll0∃il0(list ll0 ∧ list il0 ∧ prog (typeof ∗ (fst∗i m
′) t2) ll0 il0 ∧

split seqk1 il nil∗ ll0 ∧ split seqk1 il nil∗ il0) −→ t1 ≡i∗ t2 .

The second sequent corresponds to the possibility that the typing derivation ends with the

use of a specification clause. We show this is not applicable by applying the ∃L and ∧L

rules, and then apply the defL rule to the hypothesis prog (typeof ∗ (fst∗i m
′) t2) ll0 il0. The

first sequent indicates that the typing derivation ends with a use of a typing assumption.

As a result, the elided hypothesis (P2 il) allows us to conclude t1 ≡i∗ t2.

We now return to the sequent that representing the case where the first typing derivation

of m ends with the use of a clause specifying a typing rule:

. . . , ∃ll0∃il0 (list ll0 ∧ list il0 ∧ prog (typeof ∗ m t1) ll0 il0 ∧

split seqj1 il nil∗ ll0 ∧ split seqj1 il nil∗ il0),

il; nil∗ > ⟨typeof ∗ m t2⟩∗ −→ t1 ≡i∗ t2 .

We apply the ∃L, cL and ∧L rules, and then apply the defL rule to the hypothesis

prog (typeof ∗ m t1) ll0 il0. This corresponds to a case analysis of the last typing rule used

in the first typing derivation for m.
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If the first typing derivation for m ends with a typing rule for zero, then m is zero∗ and

t1 is num∗:

. . . , split seqj1 il nil∗ nil∗, il; nil∗ > ⟨typeof ∗ zero∗ t2⟩∗ −→ num∗ ≡i∗ t2 .

The second typing derivation for m must also end with the typing rule for zero, since no

other typing rules apply and by (P1 il) the typing assumptions only apply to variables. We

deduce this in FOλ∆IN by first applying the ∃L, ∧L, and defL rules to il; nil∗ > . . .. This

gives us two sequents corresponding to the possibilities that the typing derivation ends with

the use of a typing assumption or the use of a typing rule:

. . . , split seqj1 il nil∗ nil∗, element (typeof ∗ zero∗ t2) il −→ num∗ ≡i∗ t2

. . . , split seqj1 il nil∗ nil∗,

∃ll0∃il0 (list ll0 ∧ list il0 ∧ prog (typeof ∗ zero∗ t2) ll0 il0 ∧

split seqk1 il nil∗ ll0 ∧ split seqk1 il nil∗ il0) −→ num∗ ≡i∗ t2 .

We show that the first case is not relevant by using the elided hypothesis (P1 il) to get the

hypothesis

(typeof ∗ zero∗ num∗) ≡atm∗ (typeof ∗ (fst∗i x) t) ,

and then applying defL to it. For the second sequent we apply the ∃L and ∧L rules and

then apply the defL to prog (typeof ∗ zero∗ t2) ll0 il0, yielding

. . . , split seqj1 il nil∗ nil∗ −→ num∗ ≡i∗ num∗ .

This shows that since the second typing derivation ends with the typing rule for zero, t2

must also be num∗. We complete the derivation with an application of the defR rule. The

cases for true, false, succ, pred, is zero, and rec are similar.

If the first typing derivation for m ends with a typing rule for if, then we know that m

is of the form (if ∗ m′ n1 n2), m
′ has type bool, and both n1 and n2 have type t1:

. . . , split seqj1 il nil∗ (⟨typeof ∗ m′ bool∗⟩∗ ::∗

⟨typeof ∗ n1 t1⟩∗ ::∗

⟨typeof ∗ n2 t1⟩∗ ::∗nil∗),

il; nil∗ > ⟨typeof ∗ (if ∗ m′ n1 n2) t2⟩∗ −→ t1 ≡i∗ t2 .
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The second typing derivation for (if ∗ m′ n1 n2) must also end with the typing rule for

if; this is deduced in FOλ∆IN in the same way as in the zero case. This brings us to the

sequent

. . . , split seqj1 il nil∗ . . . , nat (s k1),

split seqk1 il nil∗ (⟨typeof ∗ m′ bool∗⟩∗ ::∗

⟨typeof ∗ n1 t2⟩∗ ::∗

⟨typeof ∗ n2 t2⟩∗ ::∗ nil∗) −→ t1 ≡i∗ t2 .

By applying the defL, ∃L, cL, and ∧L rules to both split seqj1 . . . and split seqk1 . . . we

can obtain hypotheses seqj2 il nil∗ ⟨typeof n1 t1⟩ and seqk2 il nil∗ ⟨typeof n1 t2⟩. We can

then apply the induction hypothesis ∀k . . . to these to conclude that t1 ≡ t2. The cases for

app, ref , deref, assign, and sequence are similar.

It remains to derive the case for abs:

. . . , split seqj1 il nil∗ λl(
∧
x((typeof x (u l)) ⇒

⟨typeof (r l x) (t′1 l)⟩) ::nil),

il; nil∗ > ⟨typeof ∗ (abs∗ u r) t2⟩∗ −→ (arr∗ u t′1) ≡i∗ t2 .

As in the other cases, we deduce that the second typing derivation must end with the same

typing rule:

. . . , split seqj1 il nil∗ . . . , nat (s k1),

split seqk1 il nil∗ λl(
∧
x((typeof x (u l)) ⇒

⟨typeof (r l x) (t′2 l)⟩) ::nil)−→ (arr∗ u t′1) ≡i∗ (arr∗ u t′2) .

By applying the defL, ∃L, cL, and ∧L rules to both split seqj1 . . . and split seqk1 . . . we

can obtain hypotheses

seqj2 λl((typeof (fsti l) (u (rst l))) :: (il (rst l))) nil
∗ λl⟨typeof (r (rst l) (fsti l)) (t

′
1 l)⟩

and

seqk2 λl((typeof (fsti l) (u (rst l))) :: (il (rst l))) nil
∗ λl⟨typeof (r (rst l) (fsti l)) (t

′
2 l)⟩ .

To apply the elided induction hypothesis ∀k . . . to these, we must be able to show that the

extended list of typing assumptions satisfies the predicates list, P1 and P2. To show these,
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we first derive the following formulas by simple induction:

∀il(list il ⊃ list (λl il (rst l)))

∀a∀il(list (λl il (rst l)) ⊃ element a (λl il (rst l)) ⊃

∃a′(a ≡atm∗ (λl a′ (rst l)) ∧ element a′ il)) .

It follows easily from the first of these that the extended list of assumptions satisfies the

list predicate, since it has length one greater than λl il (rst l)). Since il satisfies P1, to

show that the extended list of assumptions satisfies P1, it suffices by the second formula

above to show that the new typing assumption λl (typeof (fsti l) (u (rst l))) gives a type

for a variable; this is immediate. Similarly, to show that the extended list of assumptions

satisfies P2, it suffices to show that the new typing assumption is consistent with any other

typing assumption for (fsti l) in λl il (rst l):

. . . , element (λl typeof (fsti l) (u
′ l)) (λl il(rst l)) −→ (λl u(rst l)) ≡i∗ u′ .

But λl il (rst l) cannot contain any typing assumptions for (fsti l), since it cannot contain

occurrences of (fsti l). We derive this in FOλ∆IN by applying the second formula above to

the hypothesis element (λl typeof (fsti l) (u
′ l)) (λl il (rst l)), yielding

. . . ,∃a′((λl typeof (fsti l) (u
′ l)) ≡atm∗ (λl a′ (rst l)) ∧

element a′ il) −→ (λl u(rst l)) ≡i∗ u′ .

Applying ∃L and ∧L to this, and then applying defL to λl (typeof (fsti l) (u′ l)) ≡atm∗

(λl a′ (rst l)) will complete the derivation. Having shown that the induction hypothesis

applies, we can now conclude that t′1 ≡i∗ t′2, and hence (arr∗ u t′1) ≡i∗ (arr∗ u t′2).

6.5 Related Work

There are several approaches others have taken to reason about higher-order abstract syntax

encodings directly in a formalized meta-language. Despeyroux, Felty, and Hirschowitz [9, 8]

show that induction principles for a restricted form of second-order abstract syntax can be

derived in the Coq proof development system. To keep the definitions monotone, they
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introduce a separate type for variables and explicit coercions from variables to other types.

For example, their constructors for λ-terms would be

var : vr → tm abs : (vr → tm) → tm app : tm → tm → tm ,

and the corresponding definition of typeof would be

typeof vr : vr → ty → o typeof : tm → ty → o

typeof (var X) T
△
= typeof vr X T

typeof (abs M) (arr T U)
△
= ∀x(typeof vr x T ⊃ typeof (M x) U)

typeof (app M N) T
△
= ∃u(typeof M (arr u T ) ∧ typeof N u) .

This is similar to our use of the two predicates hyp and conc in our encoding of intuitionistic

logic in Section 5.1.2. Notice that the type tm does not occur negatively in the type of

any of its constructors, nor does the predicate typeof occur negatively in its definition.

This allows Coq to automatically construct induction principles for tm and typeof. Since

object-level variable binding is still represented by meta-level λ-abstraction, the object

language still inherits α-equivalence from the meta-language. Because the abstraction is

over the type vr, however, meta-level β-reduction cannot be used for substitution. These

approaches also lessen the power of the meta-level cut as a reasoning tool. Suppose that

∀x(typeof vr x T ⊃ typeof (M x) U) and typeof N T are derivable. In contrast to our

encoding, it is not immediate that substituting N for (var x) in (M x) yields a term M ′

such that typeof M ′ U is derivable. Thus of the three key benefits to higher-order abstract

syntax, they only retain α-conversion. In addition, the Coq type (vr → tm) includes

functions besides those expressible as λ-terms, so the type tm includes expressions that

do not encode terms of the object language. They avoid these exotic terms through the

definition and use of a validation predicate.

Despeyroux, Pfenning, and Schürmann [10] address the problem of exotic terms by

using a modal operator to distinguish the types of parametric functions (expressible as

λ-terms) from the types of arbitrary functions. As a result, their calculus allows prim-

itive recursive functionals while preserving the adequacy of higher-order abstract syntax

encodings. This represents a start toward a logical framework supporting meta-theoretic
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reasoning, higher-order abstract syntax, and the judgments-as-types principle. In such a

framework a derivation would be represented as a function whose type is the derived prop-

erty. Thus the → type constructor must be rich enough to include the mappings from

derivations to derivations such as the realizations of case analysis and induction. Their

work is orthogonal to our work presented in this paper. We are not attempting to support

the judgments-as-types principle, so the types of our meta-logic are only used to encode

syntactic structure. Thus we can restrict these types to include only λ-terms, ensuring the

adequacy of encodings in higher-order abstract syntax. They, on the other hand, do not

address the issue of induction principles for higher-order abstract syntax, or more generally,

the issue of formal reasoning about higher-order abstract syntax encodings.

Schürmann [51] offers another framework supporting higher-order abstract syntax and

meta-theoretic analysis. He constructs a meta-logic MLF to reason about deductive systems

represented in the Horn fragment of LF. This meta-logic includes a recursion rule that is

used for induction and case analysis. This approach is similar in spirit to ours in that

there are three levels: the deductive system(s) under consideration, the logic in which the

deductive systems are encoded, and the logic in which meta-theoretic analysis takes place.

His meta-logic MLF, however, is designed for a specific, fixed intermediate logic, the Horn

fragment of LF. In our case, the meta-logic is a general framework capable of representing

and reasoning about a variety of logics. In addition, the validity of Schürmann’s work

depends on cut-elimination for MLF, which is still an open question.

Still another strategy for meta-theoretic reasoning about higher-order abstract syntax

encodings is to perform each case of a proof in the meta-logic, but verify the completeness

of the proof outside the logical framework. Rohwedder and Pfenning [47, 48] investigate

the design and implementation of such external validity conditions.

Matthews seeks to reconcile the advantages of LF-style encodings with the facilities for

meta-theoretic analysis found in theories of inductive definitions [29]. His approach has

some similarity to our own, in that he creates a three-level hierarchy, with each level being

encoded in the previous. As in our approach, his top level contains a definition facility

and induction principles for reasoning about encodings at the next level. However, his

logic at the intermediate level contains only an implication connective and no quantifiers.
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Thus he does not address the treatment of object-level bound variables, a major feature of

higher-order abstract syntax and, consequently, of our work.
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Chapter 7

Conclusion and Future Work

7.1 Summary of Accomplishments

In this dissertation we presented a logic FOλ∆IN with definitions and natural number

induction. Induction is a fundamental tool for reasoning about formal systems. The notion

of definition supported by FOλ∆IN extends the concept of a theory to include the sense

that there are no other ways that defined concepts can be established. This sense of closure

increases the logic’s capabilities for both expression and reasoning. In addition, the term

language of FOλ∆IN is the simply-typed λ-calculus, which is appropriate for the use of

higher-order abstract syntax. We have proved cut-elimination and consistency theorems

for FOλ∆IN. The usual cut-elimination proofs for logics with definitions do not apply to

FOλ∆IN because of the presence of the induction rule; we instead used an extension of a

technique due to Tait and Martin-Löf.

We demonstrated the expressive power of our logic in the realm of abstract transition

systems. The sense of closure in FOλ∆IN’s definitions made it possible to encode both

may and must behavior of systems, and thus to express the notions of simulation and

bisimulation. By also using induction over natural numbers, we were able to capture the

greatest fixed-point of these notions, and thus the largest simulation and bisimulation

relations, and to prove some high-level properties about them.

Finally, we developed a framework for formal reasoning about systems expressed in

higher-order abstract syntax, avoiding the apparent tradeoff between the benefits of this
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representation technique and the ability to perform meta-theoretic analyses of encodings.

We demonstrated this framework on encodings of three programming languages encompass-

ing both functional and imperative paradigms. A number of significant theorems about

these languages were derived in this framework, including unicity of typing and subject

reduction. The flexibility of the framework was also shown through the use of intuitionistic

and linear specification logics.

7.2 Future Work

There are many ways in which this work could be continued, both in extensions to the logic

and in additional applications of it.

An obvious extension of FOλ∆IN would be to replace the induction rule for natural

numbers with induction over arbitrary definitions. Coq and FS0, for example, both support

induction for definitions in this manner. Care must be taken here to ensure that the cut-

elimination and consistency results extend to the extended logic.

Another interesting extension to consider is enriching the class of definitions to include

the form of typical higher-order abstract syntax encodings. This would involve relaxing the

level restriction, and it is not clear if this can be done without losing the cut-elimination

and consistency properties. This also would cause the logic to support definitions outside

the class of monotone inductive definitions, so the existence of induction principles for these

definitions would be in question. With such an extension, however, it might become possible

to both use higher-order abstract syntax and reason effectively about the encodings in the

same logic. The presence of case analysis and induction in the logic make its implication

connective stronger than that of intuitionistic logic, so a modal operator along the lines of

[10] might become necessary to maintain the adequacy of encodings.

The implementation of the logic could also be improved. For this dissertation, the

Pi derivation editor for the finitary calculus of partial inductive definitions was used. To

ensure that the constructed derivations were valid for FOλ∆IN, the induction rule was

only used in a restricted manner, definitions for additional connectives were constructed,

and all definitions were checked by hand to ensure that they satisfied the FOλ∆IN level

restrictions. An implementation of FOλ∆IN would remove this burden from the user and
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further increase confidence in the derivations. Improvements to Pi itself are also possible;

our use showed the need for increased robustness, more powerful unification, and the ability

to import other derivations as lemmas or derived rules. In addition, a graphical display

showing the shape of the entire derivation and allowing movement within the derivation

would be helpful, and some automatic theorem proving capabilities would also be useful.

In terms of applications of the logic, an interesting extension of the work presented

here would be to explore the encoding of simulation and bisimulation for languages with

significant variable-binding constructs. For example, Howe [26] explores a bisimulation

relation for functional programming languages and uses a syntactic technique to prove that

it is a congruence. It would be interesting to see if this could be done formally within

the framework presented in this dissertation. The logic could also be used to formally

establish equivalences among specific programs; Chirimar [6] used linear logic specifications

to informally prove various equivalences suggested by Meyer and Sieber [33].

Additional work in analysis of programming languages along the lines of Chapter 6

could also be done. Time precluded us from proving the determinacy of evaluation for

PCF:=, for example, and a transition semantics for the language could be constructed

and shown to be equivalent to the natural semantics we constructed. It would also be

interesting to formalize other analyses; Hannan and Miller, for example, construct abstract

machines from operational semantics by applying of a series of transformations and argue

informally that the transformations preserve correctness [22]. Richer languages could also

be considered, including features such as concurrency, exceptions, polymorphism, etc.

Finally, alternatives to the explicit eigenvariable encoding of Section 5.1.4 could be

explored. Although this encoding supports the higher-order abstract syntax representa-

tion of bound variables and allows substantial meta-theoretic analysis, it does have some

drawbacks. The pervasive presence of the evs parameter representing the free variable

list is somewhat cumbersome, and numerous lemmas must be proved to show that various

properties are preserved by extensions of this list or substitution for free variables. The

obvious alternative, a de Bruin-style encoding of free variables, would require a similar

amount of work and would not support the higher-order abstract syntax representation for

bound variables. It is important to point out that this issue relates to the encoding of the
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specification logic, not the object systems, of our framework. Thus these lemmas need to

be proved only once for any specification logic, not for every object system, and so the

representational advantage of higher-order abstract syntax for the object systems is not

lost.
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