
Finding Unity in Computational Logic

Dale Miller

INRIA-Saclay & LIX, École Polytechnique
Palaiseau, France

ISCL: International School on Computational Logic
Bertinoro, 11-15 April 2011

Lecture 3: Some slides about proof theory for logic programming.

Dale Miller Finding Unity in Computational Logic

A single proof system for classical and intuitionistic logic

Sequents are of the form Σ: Γ − ∆, where Γ is a set of formulas
and ∆ is a multiset of formulas.

Weakening and contraction on the left is “built in” and is explicit
on the right.

Structural rules

Σ: Γ − ∆

Σ: Γ − ∆,B
wR

Σ: Γ − ∆,B,B

Σ: Γ − ∆,B
cR

Identity rules

Σ: Γ,B − B
init

Σ: Γ − ∆1,B Σ: B, Γ − ∆2

Σ: Γ − ∆1,∆2
cut

Dale Miller Finding Unity in Computational Logic

The introduction rules

Σ: B, Γ − ∆

Σ: B ∧ C , Γ − ∆
∧L

Σ: C , Γ − ∆

Σ: B ∧ C , Γ − ∆
∧L

Σ: Γ − ∆,B Σ: Γ − ∆,C

Σ: Γ − ∆,B ∧ C
∧R

Σ: Γ − >
>R

Σ: B, Γ − ∆ Σ: C , Γ − ∆

Σ: B ∨ C , Γ − ∆
∨L

Σ: Γ,⊥−
⊥L

Σ: Γ − ∆,B

Σ: Γ − ∆,B ∨ C
∨R

Σ: Γ − ∆,C

Σ: Γ − ∆,B ∨ C
∨R

Σ: Γ1 − ∆1,B Σ: C , Γ2 − ∆2

Σ: B ⊃ C , Γ1, Γ2 − ∆1,∆2
⊃L

Σ: B, Γ − ∆,C

Σ: Γ − ∆,B ⊃ C
⊃R

Dale Miller Finding Unity in Computational Logic

The introduction rules (the quantifiers)

Σ: Γ,B[t/x] − ∆

Σ: Γ,∀τx B − ∆
∀L

Σ, c : τ : Γ − ∆,B[c/x]

Σ: Γ − ∆,∀τx B
∀R

Σ, c : τ : Γ,B[c/x] − ∆

Σ: Γ, ∃τx B − ∆
∃L

Σ: Γ − ∆,B[t/x]

Σ: Γ − ∆, ∃τx B
∃R

Dale Miller Finding Unity in Computational Logic

Provability defined

A C-proof (classical proof) is any proof using these inference rules.

An I-proof (intuitionistic proof) is a C-proof in which the
right-hand side of all sequents contain either 0 or 1 formula.

Let Σ be a given first-order signature over S , let ∆ be a finite set
of Σ-formulas, and let B be a Σ-formula.

Write Σ; ∆ `C B and Σ; ∆ `I B if the sequent Σ: ∆ − B has,
respectively, a C-proof or an I-proof.

Dale Miller Finding Unity in Computational Logic

Exercise 8 (page 17)

Provide a C-proof only if there is no I-proof. Assume that the
signature for non-logical constants is
{p : o, q : o, r : i → o, s : i → i → o, a : i , b : i}.

1 [p ∧ (p ⊃ q) ∧ ((p ∧ q) ⊃ r)] ⊃ r

2 (p ⊃ q) ⊃ (¬q ⊃ ¬p)

3 (¬q ⊃ ¬p) ⊃ (p ⊃ q)

4 p ∨ (p ⊃ q)

5 ((r a ∧ r b) ⊃ q) ⊃ ∃x(r x ⊃ q)

6 ((p ⊃ q) ⊃ p) ⊃ p (Pierce’s formula)

7 ∃y∀x(r x ⊃ r y)

8 ∀x∀y(s x y) ⊃ ∀z(s z z)

N.B. Negation is defined: ¬B = (B ⊃⊥).

Dale Miller Finding Unity in Computational Logic

Cut elimination: permuting a cut up

Ξ1

Σ: Γ1 − A1,∆1

Ξ2

Σ: Γ1 − A2,∆1

Σ: Γ1 − A1 ∧ A2,∆1
∧R

Ξ3

Σ: Γ2,Ai − ∆2

Σ: Γ2,A1 ∧ A2 − ∆2
∧L

Σ: Γ1, Γ2 − ∆1,∆2
cut

Here, i ∈ {1, 2}. Change this fragment to

Ξi

Σ: Γ1 − Ai ,∆1

Ξ3

Σ: Γ2,Ai − ∆2

Σ: Γ1, Γ2 − ∆1,∆2
cut

The cut rule is on a smaller formula.

Dale Miller Finding Unity in Computational Logic

Cut elimination: permuting a cut up

Ξ1

Σ: Γ1,A1 − A2,∆1

Σ: Γ1 − A1 ⊃ A2,∆1
⊃R

Ξ2

Σ: Γ2 − A1,∆2

Ξ3

Σ: Γ3,A2 − ∆3

Σ: Γ2, Γ3,A1 ⊃ A2 − ∆2,∆3
⊃L

Σ: Γ1, Γ2, Γ3 − ∆1,∆2,∆3
cut

This part of the proof can be changed locally to

Ξ2

Σ: Γ2 − A1,∆2

Ξ1

Σ: Γ1,A1 − A2,∆1

Σ: Γ1, Γ2 − ∆1,∆2,A2
cut Ξ3

Σ: Γ3,A2 − ∆3

Σ: Γ1, Γ2, Γ3 − ∆1,∆2,∆3
cut

Although there are now two cut rules, they are on smaller formulas.

Dale Miller Finding Unity in Computational Logic

Cut elimination: permuting a cut away

Ξ
Σ: Γ1 − ∆,B Σ: Γ2,B − B

init

Σ: Γ1, Γ2 − ∆,B
cut

Rewrite this proof to the following.

Ξ
Σ: Γ1 − ∆1,B

Σ: Γ1, Γ2 − ∆1,B
wL

We have removed one occurrence of the cut rule.
N.B. wL is not an official rule: one must show that it is admissible.

Dale Miller Finding Unity in Computational Logic

Cut elimination

Theorem. If a sequent has a C-proof (respectively, I-proof) then
it has a cut-free C-proof (respectively, I-proof).

This theorem was stated and proved by Gentzen 1935.

Dale Miller Finding Unity in Computational Logic

Consequences of cut elimination

Theorem. Logic is consistency: It is impossible for there to be a
proof of B and ¬B.

Proof. Assume that − B and B − have proofs. But cut, − has
a proof. Thus, it also has a cut-free proof, but this is impossible.

Theorem. A cut-free proof system of a sequent is composed only
of subformula of formulas in the root sequent.

Proof. Simple inspection of all rules other than cut.

Should I eliminate cuts in general?

NO! Cut-free proofs of
interesting mathematical statement do not exists in nature.

If you are using cut-free proofs, you are probably modeling
computation (like modeling the execution of a Turing machine).

Dale Miller Finding Unity in Computational Logic

Consequences of cut elimination

Theorem. Logic is consistency: It is impossible for there to be a
proof of B and ¬B.

Proof. Assume that − B and B − have proofs. But cut, − has
a proof. Thus, it also has a cut-free proof, but this is impossible.

Theorem. A cut-free proof system of a sequent is composed only
of subformula of formulas in the root sequent.

Proof. Simple inspection of all rules other than cut.

Should I eliminate cuts in general? NO! Cut-free proofs of
interesting mathematical statement do not exists in nature.

If you are using cut-free proofs, you are probably modeling
computation (like modeling the execution of a Turing machine).

Dale Miller Finding Unity in Computational Logic

Addressing various choices doing proof search

Issue 1: The cut-rule can always be chosen.
Solution: Search for only cut-free proofs.

Issue 2: The structural rules of weakening and contraction can be
applied (almost) anytime.
Solution: Build these rules into the other rules.

Issue 3: What term to use in the ∃R and ∀L rules?
Solution: Use logic variables and unification (standard theorem
proving technology).

Issue 4: Of the thousands of non-atomic formulas in a sequent,
which should be select to introduce?
Solution: Good question. We concentrate on this question soon.

Dale Miller Finding Unity in Computational Logic

Addressing various choices doing proof search

Issue 1: The cut-rule can always be chosen.
Solution: Search for only cut-free proofs.

Issue 2: The structural rules of weakening and contraction can be
applied (almost) anytime.
Solution: Build these rules into the other rules.

Issue 3: What term to use in the ∃R and ∀L rules?
Solution: Use logic variables and unification (standard theorem
proving technology).

Issue 4: Of the thousands of non-atomic formulas in a sequent,
which should be select to introduce?
Solution: Good question. We concentrate on this question soon.

Dale Miller Finding Unity in Computational Logic

Addressing various choices doing proof search

Issue 1: The cut-rule can always be chosen.
Solution: Search for only cut-free proofs.

Issue 2: The structural rules of weakening and contraction can be
applied (almost) anytime.
Solution: Build these rules into the other rules.

Issue 3: What term to use in the ∃R and ∀L rules?
Solution: Use logic variables and unification (standard theorem
proving technology).

Issue 4: Of the thousands of non-atomic formulas in a sequent,
which should be select to introduce?
Solution: Good question. We concentrate on this question soon.

Dale Miller Finding Unity in Computational Logic

Addressing various choices doing proof search

Issue 1: The cut-rule can always be chosen.
Solution: Search for only cut-free proofs.

Issue 2: The structural rules of weakening and contraction can be
applied (almost) anytime.
Solution: Build these rules into the other rules.

Issue 3: What term to use in the ∃R and ∀L rules?
Solution: Use logic variables and unification (standard theorem
proving technology).

Issue 4: Of the thousands of non-atomic formulas in a sequent,
which should be select to introduce?
Solution:

Good question. We concentrate on this question soon.

Dale Miller Finding Unity in Computational Logic

Addressing various choices doing proof search

Issue 1: The cut-rule can always be chosen.
Solution: Search for only cut-free proofs.

Issue 2: The structural rules of weakening and contraction can be
applied (almost) anytime.
Solution: Build these rules into the other rules.

Issue 3: What term to use in the ∃R and ∀L rules?
Solution: Use logic variables and unification (standard theorem
proving technology).

Issue 4: Of the thousands of non-atomic formulas in a sequent,
which should be select to introduce?
Solution: Good question. We concentrate on this question soon.

Dale Miller Finding Unity in Computational Logic

Addressing various choices doing proof search

Issue 1: The cut-rule can always be chosen.
Solution: Search for only cut-free proofs.

Issue 2: The structural rules of weakening and contraction can be
applied (almost) anytime.
Solution: Build these rules into the other rules.

Issue 3: What term to use in the ∃R and ∀L rules?
Solution: Use logic variables and unification (standard theorem
proving technology).

Issue 4: Of the thousands of non-atomic formulas in a sequent,
which should be select to introduce?
Solution: Good question. We concentrate on this question soon.

Dale Miller Finding Unity in Computational Logic

Horn clauses: three presentations

G ::= A | G ∧ G

D ::= A | G ⊃ A | ∀x D. (1)

Program clauses in this style presentation are formulas of the form

∀x1 . . . ∀xn(A1 ∧ · · · ∧ Am ⊃ A0),

Disjunction and existentials can be permitted in goal formulas.

G ::= > | A | G ∧ G | G ∨ G | ∃x G

D ::= A | G ⊃ D | D ∧ D | ∀x D. (2)

A compact presentation of Horn clauses and goals is:

G ::= A

D ::= A | A ⊃ D | ∀x D. (3)

No occurrences of logical connectives to the left of an implication.

Dale Miller Finding Unity in Computational Logic

Horn clauses: three presentations

G ::= A | G ∧ G

D ::= A | G ⊃ A | ∀x D. (1)

Program clauses in this style presentation are formulas of the form

∀x1 . . . ∀xn(A1 ∧ · · · ∧ Am ⊃ A0),

Disjunction and existentials can be permitted in goal formulas.

G ::= > | A | G ∧ G | G ∨ G | ∃x G

D ::= A | G ⊃ D | D ∧ D | ∀x D. (2)

A compact presentation of Horn clauses and goals is:

G ::= A

D ::= A | A ⊃ D | ∀x D. (3)

No occurrences of logical connectives to the left of an implication.

Dale Miller Finding Unity in Computational Logic

Horn clauses: three presentations

G ::= A | G ∧ G

D ::= A | G ⊃ A | ∀x D. (1)

Program clauses in this style presentation are formulas of the form

∀x1 . . . ∀xn(A1 ∧ · · · ∧ Am ⊃ A0),

Disjunction and existentials can be permitted in goal formulas.

G ::= > | A | G ∧ G | G ∨ G | ∃x G

D ::= A | G ⊃ D | D ∧ D | ∀x D. (2)

A compact presentation of Horn clauses and goals is:

G ::= A

D ::= A | A ⊃ D | ∀x D. (3)

No occurrences of logical connectives to the left of an implication.
Dale Miller Finding Unity in Computational Logic

Horn clauses in classical and intuitionistic logic

Let Σ be a signature, let P be a set of Horn clauses, and let Γ be a
multiset Horn goals.

Proposition. If Σ: P − Γ has a cut-free C-proof then there is a
G ∈ Γ such that Σ: P − G has an I-proof.

Proved by a simple induction on the structure of C-proofs.

Proposition. Any set of Horn clauses is consistent.
Proof. By the above Proposition, Σ;P `C is impossible.

Dale Miller Finding Unity in Computational Logic

Horn clauses in classical and intuitionistic logic

Let Σ be a signature, let P be a set of Horn clauses, and let Γ be a
multiset Horn goals.

Proposition. If Σ: P − Γ has a cut-free C-proof then there is a
G ∈ Γ such that Σ: P − G has an I-proof.

Proved by a simple induction on the structure of C-proofs.

Proposition. Any set of Horn clauses is consistent.
Proof. By the above Proposition, Σ;P `C is impossible.

Dale Miller Finding Unity in Computational Logic

hereditary Harrop formulas: three presentations

G ::= A | G ∧ G | D ⊃ G | ∀τx .G
D ::= A | G ⊃ A | ∀x .D (4)

Again, disjunctions and existentials are allowed in goal formulas.

G ::= > | A | G ∧ G | G ∨ G | ∃x .G | D ⊃ G | ∀x .G
D ::= A | G ⊃ D | D ∧ D | ∀x .D (5)

A more compact presentation is:

G ::= A | D ⊃ G | G ∧ G | ∀x .G
D ::= A | G ⊃ D | D ∧ D | ∀x .D (6)

These provide a foundation for the λProlog programming language.

Dale Miller Finding Unity in Computational Logic

A new proof system for intuitionistic logic: right rules

The single conclusion version of the rules we listed before.

Σ: Γ − B Σ: Γ − C

Σ: Γ − B ∧ C
∧R

Σ: Γ − >
>R

Σ: Γ − B

Σ: Γ − B ∨ C
∨R

Σ: Γ − C

Σ: Γ − B ∨ C
∨R

Σ: B, Γ − C

Σ: Γ − B ⊃ C
⊃R

Σ, c : i : Γ − B[c/x]

Σ: Γ − ∀x B
∀R

Σ: Γ − B[t/x]

Σ: Γ − ∃x B
∃R

Dale Miller Finding Unity in Computational Logic

A new proof system for intuitionistic logic: left rules

Σ: P D−−− A

Σ: P − A
decide

Σ: P A−−− A
init

Σ: P D1−−− A

Σ: P D1∧D2−−− A
∧L

Σ: P D2−−− A

Σ: P D1∧D2−−− A
∧L

Σ: P − G Σ: P D−−− A

Σ: P G⊃D−−− A
⊃L

Σ: P
D[t/x]
−−− A

Σ: P ∀τ x .D−−− A
∀L

These rules capture the notions of goal-directed search and
backchaining.

Dale Miller Finding Unity in Computational Logic

Now, the bigger questions

• Can we provide restrictions on proofs to more of logic?

• Can we account for program-directed search (more generally
called bottom-up search)?

• Can we account for all of intuitionistic logic? and classical
logic?

Dale Miller Finding Unity in Computational Logic

