
Proof-theory for term representation
Internship report

Ulysse Gérard, supervised by Dale Miller, team Parfisal*

November 7, 2015

The general context
Since the introduction of typed λ-calculus and the discovery of the Curry-Howard
isomorphism, term calculi and proof systems evolved in an interlaced way. This fruit-
ful symbiosis has brought numerous applications. On the one hand, typing systems
helped develop mathematically well founded high-level programming languages with
rich features, and the λ-calculus turned out to be a useful tool to study computa-
tion and complexity. On the other hand, formal logic led to the development of logic
programming, a new paradigm of which Prolog is the most famous representative.

This internship lies within the framework of logic with focusing and the proof-theory
point of view is adopted here, not the one of typing systems. Since its appearance in the
early 1990’s with Andreoli’s LLF system [And92], focusing has had many important
applications in computational logic. Many systems appeared realizing different kinds of
focusing such as LJT and LJQ [Her95b, DL06]. However, more recently, in the past ten
years, a new kind of focused systems for linear, classical and intuitionistic logic stood
out from the crowd [LM09]. Named LKF and LJF, these systems are generalizations
of the previous ones. Their flexibility comes from the use of polarized formulas and
focusing on the right and left hand-sides of sequents. Simultaneously appeared multi-
focusing systems [CMS08] which allow the identification of sequent calculi to known
parallel structures such as proof nets [Gir87] and expansion trees [CHM13].

If LJT and LJQ were initially proposed with two term calculi associated to them,
the annotation of LJF with terms is a very recent work by Brock-Nannestad, Gue-
naud and Gustafsson [BNGG15] which shows many interesting features. That was the
starting point of this internship, which led us to annotate a multi-focused version of
LJF.

The research problem
The internship covered various aspects around terms representation and proof theory.
The goal was to adopt a fresh point of view in the study of links between terms and
logic. One of the main foci was the study of sharing and parallelism: what can we learn
about terms from proof theory, and vice versa? This work may have repercussions on
concrete projects such as compilation, logic programming and proof certification (in
the framework of ProofCert), but it is also interesting in a purely theoretical point

*This internship was found by the ERC grant ProofCert. Details about the project can be found
at https://team.inria.fr/parsifal/proofcert/.

1

of view as it is a step further in our comprehension of the interactions between logic
and computation. Logic is a fundamental discipline and focusing a fundamental logical
technique, thus there are big hopes to find interesting behaviors of the terms associated
to these systems.

Your contribution
Many paths were followed during the internship, some more interesting than others.
Not all of them will be exposed in this report. The main contribution is the creation
of a term calculus for a multi-focused system. In this setting parallelism can be seen
directly in normal (cut-free) terms. To achieve this goal, a progressive study of existing
proof systems with more or less expressive terms has been carried out. We dissected the
existing calculi to understand the way they work, their advantages, their flaws. Then
we modeled and reused them in a more complex calculus, the one which annotates
multi-focusing. Multi-focusing is an addition to focusing, therefore no features of the
previous calculi are lost in the process, but its complexity and expressivity increases.

Arguments supporting its validity
The new term calculus presented in this report corresponds to a very interesting se-
quent calculus (with multi-focusing). In fact it shares a lot of features with other
structures like proof-nets and expansion trees even if sequent calculi are not parallel in
essence – while proof nets have been designed to eliminate some forms of bureaucracy
in proofs such as the choice of order of application of inference rules. It is therefore
natural to expect to find some parallelism in this calculus and in the terms associated
to it.

Therefore, the major part of internship was about design. Multi-focused version of
LJF with terms are new systems whose shape is still subject to changes and the main
challenge was to find coherent structural rules and terms. While we are confident that
this term calculus really implements the kind of sharing and parallelism that we were
looking for, more formal evidences of that should now be developed.

Summary and future work
As stipulated in the previous paragraph, the established calculus seems fairly robust,
but a priority future work would be to study how cut-elimination and β-reduction
would apply to it and if they are compatible with the sharing and parralel features
of our calculus. That being said, the research conducted during this internship opens
lots of interesting fields of thought covering concrete subjects such as compilation, logic
programming and automatic proof search and certification as well as more theoretical
concerns about proof-theory and term representations.

2

Contents
1 Introduction 3

2 Logic reminder 4

3 Focusing 8

4 Adding terms 11

5 Multi-focusing and parallelism 15

6 Examples worthy of interest 17

7 Conclusion 19

A Equality test in λProlog 21

1 Introduction
Introduced by Alonzo Church in the thirties, the lambda-calculus (λ-calculus) first
appeared as a tool to study computation – it is actually equal to a Turing machine
in expressiveness. However it also played an important role in the development of
functional programming languages such as ML or Haskell which essentially implement
an augmented (with constants and data types among others) version of it.

One of the first interactions between λ-calculus and logic appeared with the simply-
typed λ-calculus of Alonzo Church in 1940. Created to avoid paradoxical uses of the
untyped λ-calculus by restricting function applications to acceptable types of inputs,
it has since known a huge success, an uncountable number of reformulations and a
great variety of extensions and this especially after the discovery of the Curry-Howard
isomorphism.

Matching types with formulas, cuts with reductions, proofs with programs, the
Curry-Howard correspondence highlighted the tight link that exists between logic and
typing systems, and nowadays it is traditional to present such systems in the form of
sequent calculi similar to the ones used in logic.

The purpose of this internship was to understand and refine the term represen-
tations associated with newest logical systems implying focusing, and especially the
multi-focused ones. How can we define a term representations for such systems, what
are the computational impacts and which tools and uses could emerge from them?
Those are some of the questions that will guide us in the course of this report.

We will first show basic notions about the logical systems that we are going to
use by recalling their precursors, namely natural deduction and sequent calculus. Then
focusing will be introduced before addressing the crux of the subject: how to add terms
to such systems, and what are the interesting properties of these typing systems.

3

2 Logic reminder
This part will recall some basic notions about natural deduction, sequent calculus and
their interactions with λ-terms. It has been kept deliberately simple and concise as
only the notions that are of interest for the remainder of this report are developed.

As we are focused on “very simply typed” λ-calculi (only base and arrow types),
the sole logic connective that we will use is ⊃, namely the intuitionistic implication,
and others won’t be mentioned (except in the section 3.2 about LJF). Indeed, the
logical systems presented here, such as LJ for intuitionistic logic, are truncated and
thus not complete with regards to intuitionistic logic. The generalization of the ideas
exposed in this report to full intuitionistic logic should be relatively straightforward
and similar to what has already been done for other type systems.

2.1 General definitions
First of all we will need a notion of formula to describe our systems. The propositional
calculus we will be using is most simple:

Definition 2.1. Let A be a set of symbols (a, b, c, ...) whose elements are called
atoms, then formulas (denoted by capital letters A,B,C, ...) are described by the
following grammar:

A,B ::= a ∈ A | A ⊃ B

Here A ⊃ B is read “A implies B” as ⊃ is the intuitionistic implication.

We also need some basic terms to annotate the systems:

Definition 2.2. Let X be a set of symbols (x, y, z, ...) whose elements are called
term variables, the terms of our basic calculus are made of variables, applications
and abstractions:

t, u, v ::= x ∈ X | u v | λx.t

We describe here administrative normal forms that will be used later on the report,
it is a normal form for terms organizing sharing (naming of subterms) in a very specific
way:

Definition 2.3. Terms in Administrative normal form (or A-normal form) are de-
scribed by the following grammar:

val ::= x ∈ X | λx.t

vlist ::= val vlist | ε

t, u ::= val | let x = val vlist in u

Finally we need to formalize the containers of formulas that we will use:

4

Definition 2.4.

• We call t : A a type assignment when t is a term and A a formula.

• We call a declaration a type assignment of the form x : A with x ∈ X and A a
formula.

• Context and store may refer to different objects. They can either be sets,
multisets, lists or any other container. Contexts contains formulas while stores
contains declarations. The kind of context or store used will be specified for
each studied system.

Definition 2.5. Given a term t, the set of free variables of t, denoted FV(t), is
inductively defined on the structure of the term:

FV(x) = x for x ∈ X FV(λx.t) = FV(t)\{x} FV(tu) = FV(t) ∪ FV(u)

And the set of bound variables of t, BV(t) is defined on the same way:

BV(x) = ∅ BV(λx.t) = BV(t) ∪ {x} BV(tu) = BV(t) ∪ BV(u)

Definition 2.6. For x ∈ X and t, u two terms, we name substitution of x in t by u

and denote t{x/u} the operation of replacing all free occurrences of x in t by u.
We will also see explicit substitutions in the remainder of this report. Denoted

t[x/u] or let x = u in t, these are terms augmenting the syntax of our simple
calculus and not writing tricks such as the implicit substitutions we just defined.
When used, the grammar of the augmented calculus will be made explicit.

Definition 2.7. As usual we call β-reduction the rewriting rule

(λx.t) u →β t{x/u}

and η-expansion the following

t →η λx.(t x) with x not free in t

and α-conversion the act of renaming (with a fresh name) every occurrences of a
bound variable in a term.

We will work under the ”Barendregt conventions”:

• No variable is both free and bound.

• Bound variables have all different names.

Readers looking for a more comprehensive introduction to typed λ-calculus may have
a look at Barendregt’s writings [Bar93][BG].

5

2.2 Natural deduction
Natural deduction is a proof system introduced by Gentzen for propositional logic. His
goal was to establish a more natural treatment of deduction in logic. But it is also
well known that a fragment of this system matches the simply typed λ-calculus. This
fragment is composed of the axiom rule and both the introduction and the elimination
rules for implication:

Ax
A ∈ Γ ⊢ A

Γ,A ⊢ B ⊃ intro
Γ ⊢ A ⊃ B

Γ ⊢ A ⊃ B Γ ⊢ A ⊃ elim
Γ ⊢ B

where the context Γ is a set of formulas.

This system can directly be annotated with terms, giving us Church’s simply-typed
λ-calculus [Chu40]:

Ax
x : A ∈ Γ ⊢ x : A

Γ, x : A ⊢ t : B ⊃ i
Γ ⊢ λx.t : A ⊃ B

Γ ⊢ u : A ⊃ B Γ ⊢ v : A ⊃ e
Γ ⊢ u v : B

where the store Γ is a set of declarations.

Definition 2.8. In natural deduction the proofs ending with an elimination rule
whose main premise is the output of an introduction rule for the same symbol are
called cuts.

One of the main features of natural deduction is the possibility to transform any
proof in a cut-free proof of the same formula with an algorithm that we will called the
cut-elimination procedure. Noticeably, a step in this procedure corresponds to a step
of β-reduction in the calculus, for example:

D1

Γ, x : A ⊢ t : B ⊃ i
Γ ⊢ λx.t : A ⊃ B

D2

Γ ⊢ u : A ⊃ e
Γ ⊢ (λx.t) u : B

→cut−elim

D2

Γ ⊢ u : A
D1

Γ ⊢ t{x/u} : B

Here the cut is eliminated by suppressing the hypothesis A in all sequents in the proof
D1 and then replacing with the proof D2 each axiom rule used with A.

2.3 The sequent calculus LJ
Sequent calculi are deductive systems manipulating sequents. Sequents are usually
constituted of at least two zones separated by a metalogical connective called turnstile
(⊢). These zones can be either lists, sets, multisets or singletons of formulas. The
choice of stores behaviors may seem frivolous at first sight, but it is very important
in the design of an inference system. Often several choices are available, but choosing

6

the fittest one allows for much simpler and more canonical proofs, by enforcing some
strategies, or regrouping small inferences steps into bigger and more suitable ones.

Here is the example of the sequent calculus LJ for intuitionistic logic:

Definition 2.9. The sequents in LJ are of the form Γ ⊢ B where Γ is a multiset of
formulas and B is a formula1.

As before, we will only be interested in the implicational fragment of LJ for which
the inference rules are:

Γ ⊢ u : A Γ, x : B ⊢ t : C ⊃l
Γ, y : A ⊃ B ⊢ t{x = y u} : C

Γ, x : A ⊢ t : B ⊃r
Γ ⊢ λx.t : A ⊃ B

Γ ⊢ u : A Γ, x : A ⊢ t : B cut
Γ ⊢ t{x/u} : B

Ax
Γ, x : A ⊢ x : A

Where t{x/u} is the term t in which all occurrences of x have been
substituted by u.

Once again, cut-elimination steps corresponds to β-reduction steps, but in a more
straightforward way than for natural deduction (cuts are directly materialized by the
presence of the cut rule):

Ax
Γ, x : A ⊢ x : A ⊃r

Γ ⊢ λx.x : A ⊃ A

Ax
u : B ⊢ u : B

Ax
Γ, z : A ⊢ z : A ⊃l

Γ, y : A ⊃ A ⊢ y a = z{z/y a} : A
Cut

Γ = {u : B} ⊢ (λx.x) u = (y u){y/λx.x} : B

→cut−elim
Ax

u : B ⊢ u : B

Thus, when designing a proof system it is possible to infer the reduction rules
of the associated calculus by carefully studying cut-elimination. An example of this
construction is present in [BNGG15] for LJF, and the resulting system will be described
in 4.3.

In the rest of this report cut-elimination won’t be our major concern. In fact
we will mostly work with cut-free sequent calculi (from which the rule Cut has been
removed). These systems are interesting because they only type terms which are in a
sort of normal form. For example the previous one, LJ, without Cut would exactly
correspond to the classical β-normal terms of the λ-calculus .

But the rough sequent calculus presentation of typing systems has at least one
major drawback: a unique term can have several typing derivations, that is, a formula
typing a term can have several proofs. (For example the sequent f : A ⊃ B, y : A ⊢
λx.f y : C ⊃ B is provable either by applying ⊃l followed by ⊃r or by the other way
round).

We will now introduce the notion of focusing which addresses this issue.
1It is interesting to remark that LJ is obtained from LK, its classical counterpart, by restricting

the right-hand-sides of sequents to contain at most one formula.

7

3 Focusing
Sequent calculus has encountered a lot of success in giving a proof theory to classical,
intuitionistic and linear logics. However its main feature, tiny low-level building blocks
for proofs, is a major drawback for proof generation. A simple algorithm based on it
would give rise to a lot of non-determinism. Moreover, this chaos allows for numerous
proofs of the same formula implying a lack of canonicity. For example, there are many
choices in the order of the inference rules which are completely equivalents. Focusing
techniques appeared has a mean to guide the proving process and to reduce mayhem
in the application of inference rules in LJ and LK, its classical counterpart.

One of these early techniques, uniform proofs [MNPS91], consists in an alternation
of two phases: goal-directed search and backchaining. It was developed for the purpose
of enriching logic programming languages such as Prolog. The result of this operation
is the λProlog language [MN12]2.

Then Andreoli extended the same two-phases technique to linear logic giving birth
to focusing [And92]. Latter appeared several systems with different kinds of focusing
such as Herbelin’s LJT [Her95b] and Dyckhoff and Lengrand’s LJQ [DL06].

But our main system of interest will be the LJF system elaborated by Liang and
Miller [LM09] which is a more general focused version of LJ more general than LJT and
LJQ. We will then see how these fragments can be obtained from LJF by restricting
atoms polarities.

3.1 Essential mechanisms
Invertibility The main principle of focusing is to organize a proof in an alternation
of two phases. The asynchronous phase during which are applied invertible rules only
and the synchronous phase.

Definition 3.1. We call invertible the rules whose conclusion and premises are
equiprovable. Two such rules can always be permuted in the tree of inferences.

Thus the application order of a series of invertible rules has no impact on the prov-
ability of a formula. We will then choose to always apply them following the left-most
order. In the two-phases framework these sequences will constitute the asynchronous
phase. As we shall see, connectives whose rules are invertible will be called negatives
or asynchronous whereas the others will be called positives or synchronous.

Connectives and polarity As stated previously, we will describe the entire LJF
system, which is complete with respects to first-order intuitionistic logic, even if we
will only use the implicational fragment.

The usual conjunction connective of intuitionistic logic comes in two versions: ∧+

and ∧− which are equivalent in terms of provability. The polarity of a formula is
therefore entirely determined by its top-level connective. The disjunction connective
only has a positive occurrence, ∨, because of the intuitionistic setting, but the ⊃
connective can be seen to be a form of ∨− that needs to be controlled.

The formulas (denoted A,B . . .), positive formulas (P,Q . . .) and negative formulas
(N,M . . .) are defined as follows:

2λProlog which was used during this internship as a prototyping language.

8

Definition 3.2. Let A+ be a set of symbols (a+, b+, c+, ...) whose elements are
called positive atoms and A− its negative counterpart. Formulas are:

• A,B ::= P | N

• P,Q ::= a+ ∈ A+ | t | f | A∧+ B | A∨ B | ∃x.A

• N,M ::= a− ∈ A− | A∧− B | A ⊃ B | ∀x.A

The provability of a formula is not changed by the choice of polarities attributed to
its atom. That is, erasing the polarities of atoms and connective of a provable formula
in LJF always leads to a provable formula in LJ.

3.2 LJF, an intuitionistic focused sequent calculus
Schematic variables

• Γ is a multiset of polarized formulas.

• Θ is a list of polarized formulas.

• C denotes either a negative formula or positive atom.

• E denotes either a positive formula or negative atom.

• R denotes ∆1 ⇓ ∆2 where ∆1 ∪ ∆2 should contain exactly one element.

• As usual, P and N respectively denote positive and negative formulas and A,B, ..

arbitrary polarized ones.

Three kinds of sequents

• Γ ⇑ Θ ⊢ ∆1 ⇑ ∆2 are unfocused sequents, where ∆1 ∪ ∆2 should contain exactly
one element.

• Γ ⇓ A ⊢ E are left-focused sequents.

• Γ ⊢ A ⇓ · are right-focused sequents.

The system (Fig. 1) The rules are divided in four groups:

• Asynchronous rules used during the negative phases;

• Synchronous rules used during the focusing phases;

• Structural rules which mediate between the phases: D-ecide rules start focusing
and R-elease rules stop it.

In the asynchronous phase it has been chosen to consume the list Θ in the left-most
order until it is empty and then ∆1. The phases are maximal, that is to say that it
is not possible to focus on the left if the right formula is not positive (or a negative
atom) and the foci can’t be released until it turns positive. Therefore Γ will always
contain only negative formulas or positive atoms.

9

Asynchronous Introduction Rules

Γ ⇑A ⊢ B ⇑ · ⊃r
Γ ⇑ · ⊢ A ⊃ B ⇑ ·

Γ ⇑ · ⊢ A ⇑ · Γ ⇑ · ⊢ B ⇑ ·
∧−

r
Γ ⇑ · ⊢ A∧− B ⇑ ·

t−r
Γ ⇑ · ⊢ t− ⇑ ·

Γ ⇑ · ⊢ [y/x]A ⇑ ·
∀r

Γ ⇑ · ⊢ ∀x.A ⇑ ·
Γ ⇑ [y/x]A,Θ ⊢ R

∃l
Γ ⇑ ∃x.A,Θ ⊢ R

f+lΓ ⇑ f+, Θ ⊢ R

Γ ⇑A,B,Θ ⊢ R
∧+

lΓ ⇑A∧+ B,Θ ⊢ R

Γ ⇑Θ ⊢ R
t+lΓ ⇑ t+, Θ ⊢ R

Γ ⇑ B1, Θ ⊢ R Γ ⇑ B2, Θ ⊢ R
∨l

Γ ⇑ B1 ∨ B2, Θ ⊢ R

Synchronous Introduction Rules

Γ ⊢ A ⇓ · Γ ⇓ B ⊢ E ⊃l
Γ ⇓ A ⊃ B ⊢ E

Γ ⊢ A ⇓ · Γ ⊢ B ⇓ ·
∧+

r
Γ ⊢ A∧+ B ⇓ ·

Γ ⇓ Ai ⊢ E
∧−

lΓ ⇓ A1 ∧− A2 ⊢ E

Γ ⊢ Ai ⇓ ·
∨r

Γ ⊢ A1 ∨A2 ⇓ ·
Γ ⇓ [t/x]A ⊢ E

∀l
Γ ⇓ ∀x.A ⊢ E

Γ ⊢ [t/x]A ⇓ ·
∃r

Γ ⊢ ∃x.A ⇓ ·
t+r

Γ ⊢ t+ ⇓ ·

Identity rules

Il
Γ ⇓ a− ⊢ a− Ir

Γ, a+ ⊢ a+ ⇓ ·
Γ ⇑ · ⊢ B ⇑ · Γ ⇑ B ⊢ · ⇑ E

Cut
Γ ⇑ · ⊢ · ⇑ E

Structural rules (Decide, Release, Store)

Γ,N ⇓ N ⊢ E
Dl

Γ,N ⇑ · ⊢ · ⇑ E

Γ ⊢ P ⇓ ·
Dr

Γ ⇑ · ⊢ · ⇑ P

Γ ⇑ P ⊢ · ⇑ E
Rl

Γ ⇓ P ⊢ E

Γ ⇑ · ⊢ N ⇑ ·
Rr

Γ ⊢ N ⇓ ·

C, Γ ⇑Θ ⊢ R
Sl

Γ ⇑ C,Θ ⊢ R

Γ ⇑ · ⊢ · ⇑ E
Sr

Γ ⇑ · ⊢ E ⇑ ·

Figure 1: The focused intuitionistic sequent calculus LJF.

10

3.3 Switching strategies using polarity
One of the main success of LJF is the ability to change the proof search strategy with
different choices of atom’s polarities. We will illustrate this with the standard forward
/ backward chaining example.

Let us consider the following start sequent:

Γ ⇑ · ⊢ · ⇑ c where Γ = {a, a ⊃ b, b ⊃ c}

Forward chaining On the one hand, choosing positive polarities for a and b forces
to adopt the forward chaining style (where a ⊃ b is processed before b ⊃ c). Indeed
starting by focusing over b ⊃ c and then applying ⊃l would require the use of the rule
Il with atom c which would fail because of c being positive. The correct derivation is
the following:

Ir
a ∈ Γ ⊢ a ⇓ ·

Ir
Γ, b ⊢ b ⇓ ·

Ir
Γ, b, c ⊢ c ⇓ ·

Dr
Γ, b, c ⇑ · ⊢ · ⇑ c

Rl + Sl
Γ, b ⇓ c ⊢ c

Ir
Γ, b ⇓ b ⊃ c ⊢ c

Dl
Γ, b ⇑ · ⊢ · ⇑ c

Rl + Sl
b ⊢ c ⇓ · ⊃l

Γ ⇓ a ⊃ b ⊢ c
Dl

Γ ⇑ · ⊢ · ⇑ c

Backward chaining On the other hand, and for a similar reason to the previous
case, with negative atoms the proof becomes:

Il
Γ ⇓ a ⊢ a

Dl
Γ ⇑ · ⊢ · ⇑ a

Rr + Sr
Γ ⊢ a ⇓ · Il

Γ ⇓ b ⊢ b ⊃l
Γ ⇓ a ⊃ b ⊢ b

Dl
Γ ⇑ · ⊢ · ⇑ b

Rr + Sr
Γ ⊢ b ⇓ · Il

Γ ⇓ c ⊢ c ⊃l
Γ ⇓ b ⊃ c ⊢ c

Dl
Γ ⇑ · ⊢ · ⇑ c

In fact these two strategies are the ones implemented in the focused sequent calculi
LJQ (Dyckhoff & Lengrand [DL06]) and LJT (Herbelin [Her95b]) which turned out to
be fragments of LJF. It is interesting to note that the λ-calculus associated with these
systems will respectively adopt the call-by-name and call-by-value reduction strategies.

4 Adding terms
Now that we have efficient proof systems, we want to study their computational con-
tent. We will now add terms to these systems and study the behavior of these calculi.

For this section we will again restrict the calculus to a much weaker one where only
the ⊃ connective is allowed. This part of the internship is based on a recent work by

11

Brock-Nannestad and Guenot and Gustafsson [BNGG15]. We will first describe the
terms added to the LJT and LJQ fragments, and then the unified system for LJF.

In each system, we will try to model a nested term of the form . We are interested
in such a term because some of its representations implies sharing (see Fig. 2), and
our goal is to investigate how focusing can express or not this aspect of the term.

If a term syntax allows for naming of subterms, such as the ones we are going to
use, then it is possible to write the same term with different levels of sharing. But all
these representations, with or without sharing should be equal after replacement of all
named vars by their associated terms.

Between two “equivalent” representations of the same term the gain of compression
can be very substantial. Our canonical example will be the term f(f(a, a), f(a, a)), of
type ι in the store Γ = {f : ι ⊃ ι ⊃ ι, a : ι}. As illustrated by Fig. 2, the size of
its representation can either grow exponentially or linearly which is a considerable
difference.

f

f

a a

f

a a

f

f

a

Figure 2: Two equivalent representations of the same term: a tree and a minimal
Directed acyclic graphs (DAG4).

4.1 In LJT
By restricting LJF to atoms with negative polarity we get Herbelin’s LJT system
shown in Fig. 3.

I
Γ ⇓ a ⊢ ε : a

Γ, x : A ⇓ A ⊢ k : B
D

Γ, x : A ⊢ x k : B

Γ ⊢ u : A Γ ⇓ B ⊢ k : C ⊃l
Γ ⇓ A ⊃ B ⊢ u :: k : C

Γ, x : A ⊢ t : B ⊃r
Γ ⊢ λx.t : A ⊃ B

t, u ::= x k | λx.t

k,m ::= ε | u :: k

Figure 3: The focused sequent calculus LJT.

Terms are divided in two syntactic categories, the new one being the representation
of a list of arguments. In fact, applications ((f a) b) c are here denoted as f [a, b, c].
This form introduced by Herbelin [Her95a] is more suited to annotate sequent calculus.

In this calculus, the previously mentioned term is denoted

f (f (a ε) :: (a ε) :: ε) :: (f (a ε) :: (a ε) :: ε) :: ε

4A directed graph with no directed cycles, formed by a collection of vertices and directed edges.
DAGs naturally fit well the representation of terms with sharing.

12

which is not satisfying at all from the point of view of sharing, this encoding clearly
corresponds to the first case of Fig. 2, the worst one. However, due to the use of the
backward chaining strategy, it is not possible to obtain a more compressed encoding
of our term in this framework.

4.2 In LJQ
By restricting LJF to atoms with positive polarity we get Lengrand’s LJQ system
[DL06] shown in Fig. 4:

I
A ∈ Γ ⊢ x : A ⇓ ·

Γ, x : A ⊢ t : B ⊃r
Γ ⊢ λx.t : A ⊃ B ⇓ ·

Γ ⊢ p : A ⇓ ·
D

Γ ⊢ ↑ p : A

Γ ⊢ p : A ⇓ · Γ, z : B ⊢ t : C ⊃l
x : A ⊃ B ∈ Γ ⊢ t[z = x p] : C

t, u ::= ↑ p | t[z = x p]

p, q ::= x | λx.t

Figure 4: The focused sequent calculus LJQ.

The philosophy of this calculus is very different, here every application pass through
numerous explicit substitutions. In this setting, we can write our test term in the first
fashion of Fig. 2: (without the heavy shifts (↑))

z3[z2 = z1(z6[z6 = z5 a][z5 = f a])][z1 = f(z4[z4 = z3 a][z3 = f a])]

but also in the second one:

z4[z4 = z3 z2][z3 = f z2][z2 = z1 a][z1 = f a]

This calculus allows more proofs of the same formula, some are enormous, others are
more efficient. Here sharing is feasible unlike in LJT. As LJQ is the restriction of LJF
to positive atoms, such a shared term should be reproducible in LJF and we will do it
in the next section.

It is important to remark that here sharing appears directly in normal terms. The
explicit substitution t[x/u] is different from the cut-full term (λx.t) u.

It is interesting to have such “static” features in our calculus because it makes
possible the description of structures having these features without having a dynamic
behavior. We can imagine for example studying data structures with built-in sharing
and parallelism properties.

4.3 Back to LJF
As we have seen, polarity choices have a major impact on the representation of terms
and especially in matter of sharing. Extreme choices have extreme consequences, all
negative atoms create no sharing and all positive atoms add a lot of unexpected naming
of subterms.

These two behaviors can go together in a unique system which is LJF annotated
with terms presented in the next figure.

13

Γ, x : N ⇓ N ⊢ k : E
Dl

Γ,N ⇑ · ⊢ · ⇑ x k : E

Γ ⇑ x : P ⊢ · ⇑ t : E
Rl

Γ ⇓ P ⊢ κx.t : E

x : C, Γ ⇑Θ ⊢ R
Sl

Γ ⇑ x : C,Θ ⊢ R

Γ ⊢ p : P ⇓ ·
Dr

Γ ⇑ · ⊢ · ⇑ ↑p : P

Γ ⇑ · ⊢ t : N ⇑ ·
Rr

Γ ⊢ ↓t : N ⇓ ·
Γ ⇑ · ⊢ · ⇑ t : E

Sr
Γ ⇑ · ⊢ t : E ⇑ ·

Il
Γ ⇓ a− ⊢ ε : a− Ir

Γ, x : a+ ⊢ x : a+ ⇓ ·

Γ ⇑ x : A ⊢ t : B ⇑ · ⊃r
Γ ⇑ · ⊢ λx.t : A ⊃ B ⇑ ·

Γ ⊢ p : A ⇓ · Γ ⇓ B ⊢ k : E ⊃l
Γ ⇓ A ⊃ B ⊢ p :: k : E

Terms : t, u ::= λx.t | x k | ↑p
Values : p, q ::= x | ↓t

Continuations : k ::= ε | p :: k | κx.t

Figure 5: LJF with terms.

In this calculus there are two kinds of binders, λ and κ. The first one is the usual
binder of λ-calculus while the other one can be understood as what we will call a
continuation binder. It is used at the end of function application to store the resulting
term, making it available in the rest of the term.

Reductions rules (extracted from the cut-elimination procedure) are numerous for
this calculus and we will not recall all of them here. However it is important to under-
stand how the continuation binder works. The two main rules of function application
are the followings (in a relax and handy syntax):

(λx.t) (q :: k) → (t{x/q}) k (1)
↑q (κx.t) → t{x/q} (2)

Rule (1) applies the first argument q of the list and is called several times until the
list is empty. Then rule (2) propagates the result q of the computation to the rest of
the term t. Here is an example of such a reduction:

(λx.↑x) (a :: (κx.t)) → ↑a (κx.t) → t{x/a}

As we are studying the cut-free segment of LJF, it does not really make sense to discuss
term reduction, but it is important to understand how such continuations work, as this
kind of term representations will be used in the remainder of this report.

In this system, our companion-term of Fig. 2 with positive ι atoms could be derived
as follows:

14

Ir
Γ ⊢ a : ι ⇓ ·

Ir
Γ ⊢ a : ι ⇓ ·

Ir
Γ, x : ι ⊢ x : ι ⇓ ·

Ir
Γ, x : ι ⊢ x : ι ⇓ ·

Ir
Γ, x : ι, y : ι ⊢ y : ι ⇓ ·

Dr
Γ, x : ι, y : ι ⇑ · ⊢ · ⇑ ↑y : ι

Sl
Γ, x : ι ⇑ y : ι ⊢ · ⇑ ↑y : ι

Rl
Γ, x : ι ⇓ ι ⊢ κy. ↑ y : ι ⊃l

Γ, x : ι ⇓ ι ⊃ ι ⊢ x :: (κy. ↑ y) : ι ⊃l
Γ, x : ι ⇓ ι ⊃ ι ⊃ ι ⊢ x :: x :: (κy. ↑ y) : ι

Dl
Γ, x : ι ⇑ · ⊢ · ⇑ f x :: x :: (κy. ↑ y) : ι

Sl
Γ ⇑ x : ι ⊢ · ⇑ f x :: x :: (κy. ↑ y) : ι

Rl
Γ ⇓ ι ⊢ κx.(f x :: x :: (κy. ↑ y)) : ι ⊃l

Γ ⇓ ι ⊃ ι ⊢ a :: κx.(f x :: x :: (κy. ↑ y)) : ι ⊃l
Γ ⇓ ι ⊃ ι ⊃ ι ⊢ a :: a :: κx.(f x :: x :: (κy. ↑ y)) : ι

Dl
Γ ⇑ · ⊢ · ⇑ f a :: a :: κx.(f x :: x :: (κy. ↑ y)) : ι

As we can see the multi-ary applications are done in unique focusing phases and
a continuation binder is created when the phase is exited (with a Rl), allowing use of
the constructed sub-term in the rest of the term.

This form is interesting because it is very similar to the A-normal form:
l e t x = f a a in

l e t y = f x x in ↑y

As we will see, our work often resonates with compiling processes. Here, the ap-
parition of A-normal forms is of interest because it as been showed in [FSDF93] that
they could replace the Continuation Passing Style transformation in compilers: the
same optimization remain possible, but the process of transforming code in A-normal
form is more straightforward than the CPS transformation. This article has gone fa-
mous and A-normal forms are now an important object of study in the compilation
community even if some more recent papers do advocate for the use of CPS [Ken07].

Furthermore it is relevant to remark that this framework works perfectly with
higher order structure such as:

l e t x = f a (λz . l e t y = f z z in y) in ↑x

5 Multi-focusing and parallelism
As we have seen with the example of sharing, even if each of the previous systems are
able to prove the same set of formulas, some offer more proofs of the same formula,
which translates into more possibilities of sharing in terms. Now, we also want to be
able to describe terms with parallel computations. It seems that this feature relate to
the relatively new notion of multi-focusing proposed in [MS07].

5.1 Presentation
As we saw earlier there are a lot of proofs of the same formula in sequent calculus
systems, and lot of them differ only from simple permutations of inferences rules.
Other proof systems like natural deduction or proof nets capture more parallelism and
don’t have this flaw.

By using multi-focusing techniques Chaudhuri, Miller and Saurin addressed that
issue to recover a form of canonicity within the cut-free sequent calculus itself [CMS08].

15

Their system allows focusing on multiple formulas in the same phase. They showed
that selecting a ”maximal focus” results in canonical proofs, in the same sense as in
proof nets.

We are here interested in the impact of multi-focusing on terms. Indeed, as multi-
focusing was introduced to be equivalent to heavily parallel frameworks such as proof-
nets or expansion trees, it is natural to ask if this approach leads to terms involving a
form of parallelism.

The system (restricted to implication only) that we are going to describe is a new
formulation of the one in [CMS08] which decompose the process of focusing.

Γ ⇓ ·; · ⊢ t : E
Co

Γ ⇑ · ⊢ · ⇑ t : E

Γ, f : N ⇓ Θ;N ⊢ (· A) :: L : E
Dl

Γ, f : N ⇓ Θ; · ⊢ (f A) :: L : E

x : C, Γ ⇑Θ ⊢ t : R
Sl

Γ ⇑ C,Θ ⊢ κx.t : R

Γ ⇓ Θ, P; · ⊢ L : E
Cl

Γ ⇓ Θ;P ⊢ (· ε) :: L : E

Γ ⊢ t : P ⇓ ·
Dr

Γ ⇑ ·; · ⊢ t : P⇑
Γ ⇑ P ⊢ · ⇑ t : E

Rl
Γ ⇓ P; · ⊢ t : E

Γ ⇑ · ⊢ · ⇑ t : E
Sr

Γ ⇑ · ⊢ t : E ⇑ ·

Figure 6: Structural rules of the multi-focusing system MLJF

For this purpose the left-focused zone is now divided in two parts separated by a
semicolon and the asynchronous phase is decomposed in small pieces:

• It starts with the commence rule Co

• Then a first focus is selected with Dl and put on the right of the semicolon

• Next a series of ⊃l rules is applied until the focus turns positive

• Then classify is called, moving the positive formula to the left of the semicolon

• Therewith we can select a new focus or end the synchronous phase with a release
Rl and a series of stores Sl.

Γ ⊢ t : A ⇓ · Γ ⇓ P;B,Θ ⊢ (· A) :: L : E ⊃l
Γ ⇓ P;A ⊃ B,Θ ⊢ (· t :: A) :: L : E

Γ ⇑ x : A ⊢ t : B ⇑ · ⊃r
Γ ⇑ · ⊢ λx.t : A ⊃ B ⇑ ·

Ir
Γ, x : a+ ⊢ x : a+ ⇓ ·

Figure 7: Other rules of MLJF

The terms of this calculus are described by the following grammar:

Terms : t, u ::= x ∈ X | λx.t

Arguments : A ::= ε | t :: A

Continuations : L ::= κx.t | (f A) :: L | (· A) :: L

Again an extensive use of lists is made, as it fits well the construction of multi-focused
proofs.

16

5.2 An example
In this calculus the term

l e t x1 = f a a and x2 = f b b in
l e t x3 = f x1 x2 in

x3

is encoded as:

(f a :: a :: ε) :: (f b :: b :: ε) :: κx1.κx2((f x1 :: x2 :: ε) :: κx3.x3)

and in the store Γ = {f : ι ⊃ ι ⊃ ι, a : ι, b : ι}, it has type ι. The proof associated to
this term illustrates well the sequential introduction of foci during multi-focusing and
how continuations are created only at the end of the multi-focused phase, with the two
successive stores:

Ir
Γ ⊢ a : ι ⇓ ·

Ir
Γ ⊢ a : ι ⇓ ·

b b

x1 x2

Ir
Γ, x1, x2, x3 : ι ⊢ x3 : ι ⇓ ·

Sl +Dr
Γ, x1, x2 ⇑ ι; · ⊢ · ⇑ κx3.x3 : ι

Cl+ Rl
Γ, x1, x2 ⇓ ·; ι ⊢ (· ε) :: κx3.x3 : ι

Co+Dl + 2× ⊃l
Γ, x1, x2 : ι ⇑ · ⊢ · ⇑ (f x1 :: x2 :: ε) :: κx3.x3 : ι

Sl
Γ, x1 : ι ⇑ ι ⊢ · ⇑ κx2.((f x1 :: x2 :: ε) :: κx3.x3) : ι

Sl
Γ ⇑ ι, ι ⊢ · ⇑ κx1.κx2.((f x1 :: x2 :: ε) :: κx3.x3) : ι

Rl
Γ ⇓ ι, ι; · ⊢ κx1.κx2.((f x1 :: x2 :: ε) :: κx3.x3) : ι

Cl
Γ ⇓ ι; ι ⊢ (· ε) :: κx1.κx2.((f x1 :: x2 :: ε) :: κx3.x3) : ι

Dl + 2× ⊃l
Γ ⇓ ι; · ⊢ (f b :: b :: ε) :: κx1.κx2.((f x1 :: x2 :: ε) :: κx3.x3) : ι

Cl
Γ ⇓ ·; ι ⊢ (· ε) :: (f b :: b :: ε) :: κx1.κx2.((f x1 :: x2 :: ε) :: κx3.x3) : ι ⊃l

Γ ⇓ ·; ι ⊃ ι ⊢ (· a :: ε) :: (f b :: b :: ε) :: κx1.κx2.((f x1 :: x2 :: ε) :: κx3.x3) : ι ⊃l
Γ ⇓ ·; ι ⊃ ι ⊃ ι ⊢ (· a :: a :: ε) :: (f b :: b :: ε) :: κx1.κx2.((f x1 :: x2 :: ε) :: κx3.x3) : ι

Dl
Γ ⇓ ·; · ⊢ (f a :: a :: ε) :: (f b :: b :: ε) :: κx1.κx2.((f x1 :: x2 :: ε) :: κx3.x3) : ι

Co
Γ ⇑ · ⊢ · ⇑ (f a :: a :: ε) :: (f b :: b :: ε) :: κx1.κx2.((f x1 :: x2 :: ε) :: κx3.x3) : ι

6 Examples worthy of interest
The following section mostly relates to work in progress at the time of writing. Its
purpose is to underline the richness of the questioning related to this internship’s
subject. As some links with compiling optimizations appeared to be relevant and will
be discussed here, readers not familiar with them can skim through [AND98] and
[Muc97] for classical data-and-control-flow analysis algorithms.

6.1 Non-vacuous check
Now that we have terms enhanced with sharing ability, we may want to check that each
named term is used at least once. It is a well known problem in compiler optimization:
the code author or previous optimizations may have introduced unused variables and
such useless code is eliminated via an iterative algorithm.

Such a check can also be performed on the proof associated to the term by rigorously
checking that each variable added to the context is used at least once. Indeed a proof
search algorithm could easily be enhanced to check that property by keeping a record
of used variables.

17

This aspect also appeared to be directly related to linear logic in which it is possible
to maintain a fine control of resources. Thus it would be interesting to give a term
representation to LLF, a focused sequent calculus for linear logic, and to see if this
non-vacuous property can be guaranteed by the proof-theory itself.

6.2 Maximal multi-focusing
In [CMS08] the authors introduce a global property named maximal multi-focusing.
In a maximally multi-focused proof no focused phases can be moved down and merged
with a lower focused phase. The hope is that terms associated to maximally multi-
focused proofs indeed are as ”parallel” as possible. Furthermore, as every term naming
has been pushed as down as possible this could simplify a lot the search for vacuous
assignments.

Furthermore, one could want to check if a term is “maximally shared”, hence, if
the proof associated to it is maximally multi-focused. To that intend an algorithm to
turn a multi-focused proof to a maximal one would be useful. For now no efficient
algorithm exists since only the existence of such proofs is formalized in the literature.
The relation with terms, enhanced with parallelism, may be an inspiration to create
an optimal algorithm as this problem is very similar to the common subexpression
elimination procedure of compilers.

6.3 Equality check
Term equality is a complex problem. One should first ask themselves what kind of
equality they want to achieve. Syntactic equality is often the simplest one to check,
but is it a good criterion? In fact, in a term with sharing, two nested let-expressions
may be permuted if none depends on the other. Similarly, in a term with parallelism
bindings under the same let-expression can be treated in any order. Furthermore,
one might imagine to unfold terms with let-expression by performing the substitutions
before checking equality.

During the internship, several experiments have been carried out in λProlog , im-
plementing simple algorithms to check term equality with permutations and without
unfolding. An example of a λProlog program testing such equality is present in an-
nexe A. This algorithm is neither the most intelligent nor the quickest, but it shows
that λProlog is a very good language for prototyping algorithms about logic and term
representations.

But the major progress may once again come from maximally multi-focused proofs
as they, like proof-nets, get rid of a lot of syntactic bureaucracy. This directly tackles
the obstacle of proof identity criteria and may play a role in understanding problems
such as the concurrent equality of CLF [WCPW03].

6.4 Prospects in ProofCert
The ProofCert machinery makes use of LJF and LKF (LJF’s classical counterpart) to
develop what is called Foundational Proof Certificates [CM15]. The main idea is that
the kernel being LJF or LKF, users will be able to align the inference rules of their
own systems with phases of the kernel system.

The certificates may have many forms and even λ-terms can be used in this frame-
work. Indeed, as we have seen, a term encodes a proof of its type. Such a checker has

18

already been described for simply-typed terms in βη-long normal form in a not-yet-
published paper by Chihani and Miller [CM15].

But some more unexpected usages of terms could be made. The ProofCert project
has nearly reached its first goal: providing a framework to check proofs for correctness
with any number of implementations of proof checkers. The next big thing would be
to structure libraries of theorems and proofs that would allow them to be retrieved,
further analyzed and rechecked by skeptical users. Such libraries would greatly benefit
from efficient sharing features to manage the uncountable number of dependencies of
complex theorems. One way to tackle this issue could be to use terms as libraries, and
of course terms with sharing and concurrent abilities such as the ones described in this
report.

7 Conclusion
Term representations and proof theory have a long common history, and this enriching
relationship does not seems to have exhausted all its resources. Focused proof systems
may lead to new typing system as some features – such as term sharing and parallelism
– of the associated calculi emerge quite naturally from them. Indeed, as we have seen,
LJF allows for the encoding of terms with sharing abilities, and its multi-focused
version also adds support for parallel structures in a very straightforward way.

The inquiry led during this internship exposes clearly the tight links uniting term
representations and sequent calculi. The chaotic essence of sequent calculi inference
rules actually gives a great deal of liberty to model term calculi by restricting them
with focusing. It is most likely that there is still much to learn about terms from logic
and vice versa.

The calculi proposed during this internship do not enjoy formal proofs and this will
be the first of numerous future works. Validating the calculi may be done by studying
the cut-elimination processes of associated logic systems, extracting from them the
reduction rules of the calculi and finally checking that the semantics is the one we are
waiting for.

References
[And92] Jean-Marc Andreoli. Logic Programming with Focusing Proofs in Linear

Logic. Journal of Logic and Computation, 2(3):297–347, June 1992.

[AND98] W. APPEL ANDREW. Modern Compiler Implementation in ML. Cam-
bridge University Press, 1998.

[Bar93] Henk Barendregt. Lambda Calculi with Types, volume 2 of Handbook of
Logic in Computer Science. 1993.

[BG] Henk Barendregt and Silvia Ghilezan. Lambda Terms for Natural Deduc-
tion, Sequent Calculus and Cut Elimination.

[BNGG15] Taus Brock-Nannestad, Nicolas Guenot, and Daniel Gustafsson. Compu-
tation in focused intuitionistic logic. In Proceedings of the 17th Interna-
tional Symposium on Principles and Practice of Declarative Programming,
pages 43–54. ACM, 2015.

19

[CHM13] Kaustuv Chaudhuri, Stefan Hetzl, and Dale Miller. A Multi-Focused Proof
System Isomorphic to Expansion Proofs. 2013.

[Chu40] Alonzo Church. A Formulation of the Simple Theory of Types. The
Journal of Symbolic Logic, 5(2):56–68, June 1940.

[CM15] Zakaria Chihani and Dale Miller. A semantic framework for proof evi-
dence. Journal of Automated Reasoning, 2015. Draft.

[CMS08] Kaustuv Chaudhuri, Dale Miller, and Alexis Saurin. Canonical Sequent
Proofs via Multi-Focusing. In Giorgio Ausiello, Juhani Karhumäki, Gian-
carlo Mauri, and Luke Ong, editors, Fifth Ifip International Conference
On Theoretical Computer Science – Tcs 2008, number 273 in IFIP Inter-
national Federation for Information Processing, pages 383–396. Springer
US, 2008.

[DL06] Roy Dyckhoff and Stéphane Lengrand. LJQ: A Strongly Focused Calculus
for Intuitionistic Logic. In Arnold Beckmann, Ulrich Berger, Benedikt
Löwe, and John V. Tucker, editors, Logical Approaches to Computational
Barriers, number 3988 in Lecture Notes in Computer Science, pages 173–
185. Springer Berlin Heidelberg, 2006.

[FSDF93] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen.
The Essence of Compiling with Continuations. In Proceedings of the ACM
SIGPLAN 1993 Conference on Programming Language Design and Imple-
mentation, PLDI ’93, pages 237–247, New York, NY, USA, 1993. ACM.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–
101, 1987.

[Her95a] Hugo Herbelin. Sequents qu’on calcule : de l’interpretation du calcul des
sequents comme calcul de lambda-termes et comme calcul de strategies
gagnantes. PhD thesis, Paris 7, January 1995.

[Her95b] Hugo Herbelin. A �-calculus structure isomorphic to Gentzen-style sequent
calculus structure. In Leszek Pacholski and Jerzy Tiuryn, editors, Com-
puter Science Logic, number 933 in Lecture Notes in Computer Science,
pages 61–75. Springer Berlin Heidelberg, 1995.

[Ken07] Andrew Kennedy. Compiling with Continuations, Continued. In Proceed-
ings of the 12th ACM SIGPLAN International Conference on Functional
Programming, ICFP ’07, pages 177–190, New York, NY, USA, 2007. ACM.

[LM09] Chuck Liang and Dale Miller. Focusing and polarization in lin-
ear, intuitionistic, and classical logics. Theoretical Computer Science,
410(46):4747–4768, 2009.

[MN12] Dale Miller and Gopalan Nadathur. Programming with Higher-Order
Logic. Cambridge University Press, 2012.

[MNPS91] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uni-
form proofs as a foundation for logic programming. Annals of Pure and
Applied Logic, 51(1-2):125–157, March 1991.

20

[MS07] Dale Miller and Alexis Saurin. From proofs to focused proofs: a modular
proof of focalization in linear logic. In CSL 2007: Computer Science Logic,
volume 4646 of LNCS, pages 405–419. Springer-Verlag, 2007.

[Muc97] Steven S. Muchnick. Advanced Compiler Design Implementation. Morgan
Kaufmann, 1997.

[WCPW03] Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David Walker. A
Concurrent Logical Framework: The Propositional Fragment. In Stefano
Berardi, Mario Coppo, and Ferruccio Damiani, editors, Types for Proofs
and Programs, number 3085 in Lecture Notes in Computer Science, pages
355–377. Springer Berlin Heidelberg, April 2003.

A Equality test in λProlog
The signature

s i g permLets .
%Libas i c conta ins very pr imi t ive addons to LProlog such as pa i r s and l i s t u t i l i t i e s
accum_sig l i b a s i c .

kind var , cst , tm, cont , ty type .

% The constants o f our ca l cu lu s :
type a , b tm.
type f , g tm.

% The vars , a p p l i c a t i on s and abs t rac t i ons :
type coer var −> tm.
type app tm −> l i s t tm −> tm.
type abs (var −> tm) −> tm.

% The p a r a l l e l l e t s :
type body tm −> cont .
type l oc (var −> cont) −> cont .
type par l e t l i s t tm −> cont −> tm.

% The lot f contaux method :
type pr iv var −> o .
type assoc var −> nat −> o .
type lo fcontaux nat −> cont −> l i s t nat −> o .

% The equa l i ty algorithm :
type eqAux l i s t tm −> l i s t nat −> l i s t tm −> l i s t nat −> o .
type eq2 tm −> tm −> o .

The module

module permLets .
accumulate l i b a s i c .

% lo fcontaux numbers the v a r i a b l e s dec lared in a p a r a l l e l l e t expres s ion :
lo fcontaux _ (body b) [] .
lo fcontaux _ (body a) [] .
lo fcontaux _ (body f) [] .

21

lo fcontaux _ (body g) [] .
lo fcontaux _ (body (coer X)) [N] :− not (pr iv X) , assoc X N.

lo fcontaux N (body (app A B)) L :−
enum B T, lo fcontaux N (body T) LB,
lo fcontaux N (body A) LA,
concat LA LB L.

lo fcontaux N (body (abs A)) L :−
pi x\ pr iv x => lofcontaux N (body (A x)) L .

lo fcontaux N (loc Loc) L :−
pi x\ assoc x N => lofcontaux (nat_s N) (Loc x) L .

% eqAux Checks equa l i ty o f each subterms named in the l e t :
eqAux _ [] _ [] .
eqAux LA1 (N1 : : L1) LA2 (N2 : : L2) :−

ext ract LA1 N1 U, extract LA2 N2 V,
eq2 U V, eqAux LA1 L1 LA2 L2 .

% Fina l ly eq2 checks the equa l i ty between two terms with p a r a l l e l l e t s :
eq2 a a .
eq2 b b .
eq2 f f .
eq2 g g .

eq2 (abs A1) (abs A2) :−
% Here a higher−order f ea tu re o f LProlog i s used to take care o f bound v a r i a b l e s .
p i x\ eq2 (A1 x) (A2 x) .

eq2 (app U LA1) (app V LA2) :−
eq2 U V,
l i s t_eq LA1 LA2 eq2 . % Checks the equa l i ty o f two l i s t s

eq2 (pa r l e t LA1 B1) (pa r l e t LA2 B2) :−
l ist_perm LA1 LA2, % Checks i f LA2 i s a permutation o f LA1
lo fcontaux nat_z B1 L1 ,
lo fcontaux nat_z B2 L2 ,
eqAux LA1 L1 LA2 L2 .

22

