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The semantics of logic programming languages, particularly those based on first-order Horn clauses,
have traditionally been given a denotational semantics using model theory and an operational semantics
using SLD-resolution. Connecting these two different forms of semantic description has been satisfying,
since it reassures us that the language is not ad hoc, and productive, since it supports new language
designs based on, for example, stable models and constraints.

The theory of proof, particularly the approach developed by Gentzen in the 1930s and by Girard in
the 1980s, is a different and appealing framework for developing computational logic. Employing proof
theory as a framework for logic programming has at least two significant benefits.

First, proof theory—mainly, the theory of natural deduction proofs—has been used to describe the
foundations of functional programming (via the Curry-Howard Correspondence). Thus from the proof
theory point-of-view, a clear difference between these paradigms appears: functional programming can
be seen as proof-normalization and logic programming as proof-search. The role of cut-elimination is
different in these two programming paradigms: cut-elimination can be used in functional programming
to describe computation steps, while it can be used to reason about computation in logic programming.

Second, proof theory provides a framework for extending the role of logical connectives and quanti-
fiers in logic programs, thus allowing for much more expressive logic programs than those defined using
first-order classical logic.

This talk will focus on the second of these benefits.

Proof theory supports extensions to logic programming

The first such extensions to the Horn clause framework for which proof-search was systematically studied
involved allowing both hypothetical and universally quantified goal formulas. Such extensions were
explored from the proof-search perspective nearly simultaneously by Gabbay & Reyle [6], Paulson [21],
McCarty [13], Miller [14], and Hallnäs & Schroeder-Heister [9]. Once these extensions were understood
within the structural proof theory of intuitionistic logic (using the technical notion of uniform proofs
[20]), it was natural to make additional extensions using higher-order quantification [20, 21] and linear
logic [1, 7, 16].

These extensions to logic programming have helped to increase the influence of logic programming
ideas, techniques, and tools. For example, embracing linear logic within logic programming provided
new means for specifying the operational semantics of imperative and object-orient programming lan-
guages [15]. Also, higher-order quantification in logic programming has had a significant impact in those
areas where researchers need to manipulate syntax containing binding structures, e.g., the syntax of pro-
grams and quantificational formulas. There are many implementations of bindings in term structures,
ranging from using De Bruijn numerals to nominal logic techniques. Proof theory, however, provides
a different means for computing with binding structures in which bindings are allowed to move. For
example, a term-level λ -binding can move to be a formula-level quantifier, and the latter can move again
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to be an eigenvariable (a proof-level binding device introduced by Gentzen). This mobility of binders
approach, which requires some extension to unification in logic programming [17], is now a popular
device for implementing logical frameworks and meta-level reasoning systems, such as λProlog [19],
Twelf [22], and the Abella theorem prover [2].

Logic programming has driven innovations in proof theory

By taking proof search as a serious computational principle, proof theoreticians have been lead to develop
new proof-theoretic notions [18]. In particular, focusing and polarization [1, 8] are a significant extension
to the earlier idea of uniform proofs [12]. With these innovations, we can return to Kowalski’s equation
Algorithm = Logic+Control [11] and give a completely proof-theoretical explanation of the difference
between bottom-up and top-down search within Horn clause programs using polarity and focusing [5].

Links between the logic programming paradigm and proof theory continue to be developed. For
example, there is the recent work on cyclic proofs and coinductive logic programming [3, 4] as well as
a new foundation for viewing model checking as proof search within an extension of (linear) logic using
least fixed points [10].
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