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Abstract. We describe a framework for reasoning about programs with lists car-
rying integer numerical data. We use abstract domains to describe and manipulate
complex constraints on configurations of these programs mixing constraints on
the shape of the heap, sizes of the lists, on the multisets of data stored in these
lists, and on the data at their different positions. Moreover, we provide power-
ful techniques for automatic validation of Hoare-triples and invariant checking,
as well as for automatic synthesis of invariants and procedure summaries using
modular inter-procedural analysis. The approach has been implemented in a tool
called CELIA and experimented successfully on a large benchmark of programs.

1 Introduction

Reasoning about heap-manipulating programs can be quite complex and its automatiza-
tion is a real challenge both from the theoretical and the practical point of view. Indeed,
the specification of such a program (consider for instance a sorting algorithm), includes
in general various types of constraints, for instance constraints on the structure of the
heap (i.e., being a list, acyclic, etc.), on the (unbounded)sizes of the different parts of
the heap (i.e., equality of the lengths of two lists), on the (muti)sets of elements stored
in different parts of the heap (i.e., equality between the multisets of data stored in two
different lists), as well as on the relations existing between the data (potentially ranging
over infinite domains) stored in the heap (i.e., sortedness of a list).

For example, the procedurequicksort given in Fig. 1 sorts the input list pointed
to by the variablea. The specification ofquicksort includes (1) the sortedness of the
output list pointed to byres, expressed by the formula:

∀y1,y2. 0≤ y1 ≤ y2 < len(res)⇒ data(res,y1)≤ data(res,y2) (i)

wherey1 and y2 are interpreted as integers and used to refer to positions inthe list
pointed to byres, len(res) denotes the length of this list, anddata(res,y1) denotes
the integer stored in the element ofres at positiony1, and (2) the preservation property
saying that input and output lists have the same (multisets of) elements. This property
is expressed by the equation

ms(a0) = ms(res) (ii)

wherems(a0) (resp.ms(res)) denotes the multiset of integers stored in the list pointed
to bya at the beginning of the procedure (resp.res at the end of the procedure).

⋆ This work was partly supported by the French National Research Agency (ANR) project
Veridyc (ANR-09-SEGI-016).



1 typedef struct list {
2 struct list *next;
3 int data;
4 } list;
5

6 void split(list *a, int v, list **sm, list **gr){
7 list *x=a;
8 while (x != NULL){
9 if (x->data <= v){

10 ...
11 /* adds the element pointed
12 to by x to sm */
13 }
14 else{
15 ...
16 /* adds the element pointed
17 to by x to gr */
18 }
19 x = x->next;
20 } }

21 list* quicksort(list* a){
22 list *left,*right,*pivot,*res,*start;
23 int d;
24 if (a == NULL || a->next == NULL)
25 copy(a,res);
26 else {
27 d = a->data;
28 alloc(&pivot,1);
29 pivot->data = d;
30 start = a->next;
31

32 split (start,d,&left,&right);
33

34 left = quicksort(left);
35 right = quicksort(right);
36

37 res = concat(left,pivot,right);
38 }
39 return res;
40 }

Fig. 1: Thequicksort algorithm on singly-linked lists.

Therefore, reasoning on the correctness of such programs requires designing formal
frameworks where such kind of constraints (and their combinations) can be manipu-
lated, i.e., expressed, proved valid, and synthesized.

From the expressiveness point of view, multi-sorted logicsinterpreted on labelled
graphs over infinite alphabets can be naturally considered in this context. As said above,
such a logic should allow expressing (1) structural properties on graphs using reacha-
bility predicates, as well as (2) constraints on (multi)sets of reachable elements: con-
straints on their sizes using some arithmetics like Presburger arithmetics for instance,
equality/inclusion constraints on the multisets of data they are carrying, etc., and also
(3) constraints on the data attached to the different nodes in the graph using some theory
on the considered type of data, for instance in the case of integers, it would be possible
to consider again Presburger arithmetics to express data constraints.

Given such an expressive specification language, the challenge then is to provide
algorithmic techniques allowing to carry out automatically correctness proofs of pro-
grams w.r.t. some specifications. (Here we consider partialcorrectness proofs, i.e.,
checking safety properties.) This task is not trivial sinceof course the considered prob-
lem is undecidable in general for the considered class of programs and specifications.
Nevertheless, our aim is to provide sound techniques that are powerful enough to handle
most of the cases that arise in practice.

A first objective is to provide automatic support for pre/post-condition reasoning,
assuming that we are given a program together with annotations specifying assump-
tions and requirements on the configurations at its different control points, including
loop invariants and procedure specifications. The aim is to automatize each step in the
correction proof using algorithms for checking the validity of Hoare triples, i.e., given a
program statements, a pre-conditionφ and a post-conditionψ, check that starting from
any configuration satisfyingφ, executings always leads to a configuration satisfying
ψ. Phrased in the logic-based framework mentioned above, this corresponds to check-
ing whether the formulapost(φ,St)⇒ ψ is valid, wherepost(φ,St) is supposed to
be a formula that characterizes the set of all immediate successors ofφ after executing



St. Therefore, we need to have (1) procedures for computing effectively the formula
post(φ,St) for any givenStandφ, and (2) algorithms for deciding entailments between
two formulas in order to check thatpost(φ,St)⇒ ψ holds.

Beyond that, a more ambitious objective is to provide algorithms for automatic syn-
thesis of invariants and procedure summaries (i.e., assertions specifying the relations
between the inputs and outputs of the procedures). This allows to augment the degree
of automation since the user would not need to provide all thenecessary annotations
for the correctness proof, which is usually cumbersome and quite complex. Instead,
he would be able to rely on synthesis techniques that can discover automatically the
missing assertions (e.g., strong enough loop invariants) to complete the proof.

To achieve these goals, several problems must be faced. First, we must be able to
decide the validity of the manipulated formulas. The problem is that it is very hard to
define classes of formulas for which this is possible and thatare expressive enough
to cover relevant program properties such as those mentioned above, mixing complex
constraints on the shape, sizes, and data. In fact, in many cases, the needed assertions
are expressed using formulas that are outside the known decidable logics.

As for assertion synthesis, the additional problem is that the space of assertions
is infinite, and it is hard to discover the relevant properties that hold for all possible
configurations at some point in the program. Especially, it is important to have clever
techniques for the generation of universally quantified formulas that capture such prop-
erties that may involve in general quite intricate relations between elements of the heap.
Naive procedures would not be able to generate accurate enough assertions.

In this work, we propose an approach for addressing these issues based on the
framework of abstract interpretation [11]. We focus on the case of (sequential) pro-
grams manipulating dynamic linked lists carrying integer numerical data.

First, we consider that constraints are expressed as elements of abstract domains, the
latter being equipped with appropriate meet, join, and entailment operations. These op-
erations correspond to approximations of the logical operations of conjunction, disjunc-
tion, and logical implication in the sense that the meet (resp. join) under-approximates
conjunction (resp. over-approximates disjunction), and the entailment is a sound ap-
proximation of logical implication, i.e., if the entailment holds, then necessarily the
implication holds also. In addition to these operations, abstract transformers are intro-
duced allowing to define an over-approximation ofpost(φ,St), for every statementSt
and constraintφ in the considered abstract domain. Therefore, validating Hoare triples
in this framework amounts to checking an entailment betweentwo elements of some
abstract domain. Notice that entailment checking in this context does not need to be
complete in general. But then, the difficulty is of course in the design of the abstract
domains (and the associated operations mentioned above) sothat they allow expressing
the kind of constraints that are needed for reasoning about significant classes of pro-
grams, and they offer powerful mechanisms for computing abstract post-images and for
checking entailment that are accurate enough to be successful and efficient in practice.

Furthermore, invariant synthesis and procedure summary generation can naturally
be done in this framework using intra/inter-procedural analyses. These analyses are de-
fined as fixpoint computations using the abstract domains mentioned above. However,
an additional, and quite delicate, issue that must be addressed in this case is how to



guarantee termination while ensuring accuracy of the analyses. In particular, quite elab-
orate extrapolation (or widening) techniques are needed togenerate universally quan-
tified formulas that combine ordering and data constraints.Another important issue to
address is scalability of the analyses. A natural approach for tackling this issue is to
design modular inter-procedural analyses where the analysis of each procedure call is
performed locally, by considering only the part of the heap that is accessible by the
variables of the procedure. Then, a delicate problem ariseswhich is how to maintain
the relations that might exist between the elements of the local heap before and after
the procedure call and the rest of the elements in the heap.

We propose in this paper abstract domains allowing to reasonabout the various kind
of constraints that we have mentioned above, i.e., constraints on the shape of the heap,
on the lengths of the lists starting at some locations, on themultisets of the data in these
lists, and on the values of the data at different positions onthese lists. We show that the
proposed domains allow to reason accurately about complex constraints, in particular,
our entailment checking techniques allow to establish the validity of formulas that are
beyond the capabilities of the existing tools, including the currently most advanced
SMT solvers such as CVC3 [2] and Z3 [14].

Moreover, we propose modular inter-procedural analysis techniques allowing to
generate automatically invariants as well as procedure summaries. We show that in
order to be accurate, modular reasoning requires nontrivial combinations of abstract
analyses using different domains, in particular the domainof universally quantified for-
mulas and the domain of multiset constraints. We have implemented the abstract do-
mains and the techniques described in the paper in a tool called CELIA , and we have
carried out a large set of experimentations showing the strength and the efficiency of
our approach.

2 Programs

We consider a class of strongly typed sequential programs which manipulate singly
linked lists. We suppose that all manipulated lists have thesame type, i.e., pointer to
a record calledlist consisting of one pointer fieldnext and one data fielddata of
integer type. The generalization to records with several data fields is straightforward.

Syntax: Let PVar be a set of variables of type pointer tolist (PVar includes the con-
stantNULL) andDVar a set of variables interpreted as integers. Aprogram is defined
by a set of procedures, each of them defined by a tupleP = (fpi , fpo, loc,G), where
loc⊆ PVar∪DVar is the vector of local variables,fpi ⊆ loc andfpo⊆ loc are the vec-
tors of formal input, resp. output, parameters, andG is anintra-procedural control flow
graph(CFG, for short). The edges of the CFG are labeled by (1) statements of the form
p=new, p=q, p->next=q, p->data=dt, andy=Q(x), wherep,q ∈ PVar, dt is a term
representing an integer,Q is a procedure name, andy,x ⊆ PVar∪DVar, (2) boolean
conditions on data built using predicates overZ, (3) boolean conditions on pointers of
the form p==q, wherep,q ∈ PVar, or (4) statementsassert ϕ andassume ϕ, where
ϕ is a formula in the logicSL3 defined in Section 3. The semantics assumes a garbage
collector and consequently, the statementfree is useless. We assume a call-by-value



semantics for the procedure input parameters and that each procedure has its own set of
local variables. We forbid pointers to procedures and pointer arithmetic.
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∃n1,ns,ng, ♯.(
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Universally quantified formula:

∧hd(ns)≤ v∧hd(ng)> v
∧len(na) = len(ns)+len(ng)
∧∀y. y∈ tl(ns)⇒ ns[y]≤ v
∧∀y. y∈ tl(ng)⇒ ng[y]> v

Multiset formula:

∧ms(na) = ms(ns)∪ms(ng)
)

(a) (b) (c)

Fig. 2: Heap (a), heap decomposition (b), andSL3 (c) representations of a program
configuration in the proceduresplit.

Semantics:A program configuration consists of a valuation of the variables interpreted
as integers and a configuration of the allocated memory. The latter is represented by a
labeled directed graph where nodes represent list elementsand edges represent values
of the fieldnext (every node has exactly one successor). The constantNULL is rep-
resented by the distinguished node♯. Nodes are labeled with values of the fielddata
and program pointer variables. Such a representation is called aheap. For example, the
valuation[v← 6] and the graph in Fig. 2(a) represents a program configurationof the
proceduresplit from Fig. 1.

Definition 1 (Heap).A heap overPVar andDVar is a tuple H= (N,S,V,L,D) where:
(1) N is a finite set of nodes which contains a distinguished node ♯, (2) S: N ⇀ N is
a successor partial function s.t. only S(♯) is undefined, (3) V: PVar→ N is a function
associating nodes to pointer variables s.t. V(NULL) = ♯, (4) L : N ⇀ Z is a partial
function associating nodes to integers s.t. only L(♯) is undefined, and (5) D: DVar→ Z

is a valuation for the data variables.

Definition 2 (Simple/Crucial node).A node labeled with a pointer variable or which
has at least 2 predecessors is calledcrucial. Otherwise, it’s called asimple node. 2

For example, the circled nodes in Fig. 2(a) are crucial nodes. All the other nodes
are simple. Since the semantics we consider is based on garbage collection, the heaps
do not contain garbage, i.e., all the nodes of the graph are reachable from nodes labeled
with pointer variables.

Theintra-procedural semanticsis defined by a mappingδ which associates to each
control pointc in the program a set of heaps overPVarandDVar, representing the set of
program configurations reachable atc. As usual, the mappingδ is obtained as the least
fixed point of a system of recursive equations. For any statementStand any set of heaps
H overPVar andDVar, postc(H ,St) denotes the concrete post-condition operator.

We consider aninter-procedural semanticsbased on relations between program
configurations. To have a compositional semantics, we follow the approach oflocal



heap semanticsintroduced in [25], where at each procedure call, the calleehas access
only to the part of the heap that is reachable from its actual parameters, called thelocal
heap. For example, in Fig. 3(a), the local heap for the procedure call quicksort(left)
contains only the nodes reachable from the node labeled byleft. This approach sim-
plifies the semantics since it avoids the representation of the call stack in the program
configurations. However, its use is delicate because the nodes in the local heap of the
callee may be shared with the local heaps of other procedures. If during the call these
nodes become locally unreachable or deleted, the local heaps of the other procedures
must also be updated accordingly. To solve this problem, [25] proposes to maintain for
each procedure call the nodes of the local heap from which theshared paths start, but
which are not pointed to by the procedure parameters. These nodes are calledcut-points.
Notice that, in general, the number of cut-points may be unbounded. However, there is a
significant class of programs for which cut-points are nevergenerated during the execu-
tion. This class, calledcut-point free programs[26], includes programs such as sorting
algorithms, traversal of lists, insertion, deletion, etc.In this paper, we consider cut-point
free programs and we focus on the problems induced by data manipulation.

For any procedureP= (fpi , fpo, loc,G) and any control pointc in P, we consider
relations between a program configuration at the entry pointof P and a program config-
uration atc. These relations are represented using a double vocabularyloc∪ loc0, where
loc0 = {v0 | v ∈ loc} denote the values of the variables inloc at the entry point ofP.
A relation associated toP at c is represented by a heap overloc∪ loc0 consisting of a
valuation for the integer variables in(loc∩DVar)∪ (loc∩DVar)0 and a graph which is
the union of two sub-graphs:G0 represents the local heap at the entry point ofP and
G represents the local heap at the control pointc. For example, a relation associated
to quicksort at line 33 is represented by the valuation

[
d0← 0,d← 6

]
and the graph

in Figure 3(a) (we suppose that integer variables are initialized to 0). The subgraph
containing only the nodes reachable from the node labeled bya0 represents the input
configuration while the rest of the graph represents the configuration at line 33.
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Universally quantified formula:

∧hd(nl )≤ hd(np)∧hd(nr )> hd(np)
∧d = hd(np)∧len(np) = 1
∧len(na) = len(nl )+len(nr )+len(np)
∧∀y. y∈ tl(nl )⇒ nl [y]≤ hd(np)
∧∀y. y∈ tl(nr )⇒ nr [y]> hd(np)

∧eq∀(na,n0
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Multiset formula:

∧ms(na) = ms(nl )∪ms(nr )∪ms(np)

∧ms(n0
a) = ms(na)

)

(a) (b) (c)

Fig. 3: Heap (a), heap decomposition (b), andSL3 (c) representations of a relation be-
tween program configurations in the procedurequicksort.



The inter-procedural semantics is defined by a mappingρ which associates to each
control pointc in the CFG of a procedureP a set of heaps overloc∪ loc0. The mapping
ρ is obtained as the least fixed point of a system of recursive equations [12, 29]. The
extension of the postcondition operatorpostc over relations is also denoted bypostc.

3 Specification logic

We introduce hereafterSingly-Linked List Logic(SL3, for short) whose models are
heaps. Its definition is based on adecompositionof heaps obtained as follows. Given a
heapH, its decompositionH is defined by (1) keeping only some nodes fromH but at
least all the crucial nodes, (2) adding an edge between any two nodes which are reach-
able inH, and (3) labeling every noden with a sequence, which contains the integers
on the path fromH starting inn and ending in its successor in the new graphH. The
valuation for the program integer variables is unchanged. For example, Fig. 2(b), resp.
Fig. 3(b), gives a decomposition for the heap in Fig. 2(a), resp. Fig. 3(a).

Syntax of SL3: Formulas inSL3 describe heap decompositions. LetNVar be a set of
node variablesinterpreted as nodes of the decomposition. AnSL3 formula is a disjunc-
tion of formulas of the form∃N. ϕG∧ϕP∧ϕD, N⊆ NVar, without free node variables:

– ϕG defines the edges of the decomposition; it contains a set of atomic formulas of
the formls(n,m) denoting an edge between the nodesn andm, which are con-
nected using the∗ operator (notation borrowed from separation logic [24]). The
operator∗ states that there is no sharing between the list segments represented by
the edges of the decomposition;

– ϕP is a conjunction of formulas of the formx(n) with x ∈ PVar and n ∈ NVar,
expressing the fact thatx labels the noden;

– ϕD, called adata formula, is a first-order formula that describes the integer variables
and the integer sequences labeling the nodes of the decomposition.

Syntax of data formulas: In the following, the sequence of integers labeling the node
n is denoted also byn. The formulaϕD has the following form:

(
E∧

∧

G(y)∈G

∀y. G(y)⇒U(y)
)
∧

(∧

i

t i
1 = t i

2

)
, where

– E is a Presburger formula, calledexistential constraint, which characterizes the
first elements of the sequences labeling the nodes of the decomposition (denoted
by hd(n)), the lengths of the integer sequences (denoted bylen(n)), and the values
of the variables fromDVar,

– y is a set ofposition variablesinterpreted as integers representing positions in the
sequences labeling the nodes of the decomposition,

– G is a set of guardsG(y), which are conjunctions of (1) formulas that associate
vectors of position variables with sequences (y ∈ tl(n) means that the position
variables from the vectory are interpreted as positions in the tail of the sequencen)
and (2) a conjunction of linear constraints over the position variables that may use
terms of the formlen(n),



– U(y) is a Presburger formula over terms of the formy, n[y], denoting the integer at
positiony in the sequencen, len(n), andhd(n). A termn[y] appears inU(y) only
if the guardG(y) contains a constrainty∈ tl(n) with y∈ y. This restriction is used
to avoid undefined terms. For instance, ifn denotes a sequence of length 2 then the
termn[y] with y interpreted as 3 is undefined,

– t i
1, t

i
2 are multiset terms of the formu1∪ ·· · ∪us (s≥ 1 and∪ is the union of mul-

tisets) where basic termsui are of the form (1)mhd(n) (resp.d) representing the
singleton containing the first integer of the sequence labeling n (resp. the value of
d), or (2) mtl(n) representing the multiset containing all the integers of the se-
quencen except the first one. As a shorthand,mhd(n)∪mtl(n) is denoted byms(n).

For example, the formula from Fig. 2(c) describes the decomposition from Fig. 2(b).
Analogously, the formula from Fig. 3(c) describes the decomposition from Fig. 3(b),
where the equality of sequences is described by:

eq∀(n,n
0) := hd(n) = hd(n0)∧len(n) = len(n0)∧

∀y1,y2. (y1 ∈ tl(n)∧y2 ∈ tl(n
0)∧y1 = y2)⇒ n[y1] = n0[y2] (iii)

Semantics ofSL3: For simplicity, we assume that any two distinct node variables
represent two distinct nodes in the decomposition. Given a decompositionH and an
SL3 formula ϕ, H satisfiesϕ if there exists a disjunctψ of ϕ, which is of the form
∃N. ϕG∧ϕP∧ϕD, and an interpretationI of the node variables inψ as nodes inH
s.t. (1)(I (n), I (m)) is an edge inH iff ϕG contains the formulals(n,m), (2) I (n) is
labeled withx∈ PVar iff ϕP contains the atomic formulax(n), and (3) the integer data
in H satisfies the properties given byϕD. Then, a heapH satisfies anSL3 formulaϕ if
there exists a decompositionH of H that satisfiesϕ. The set of heaps satisfying anSL3
formulaϕ is denoted by[ϕ].
Fragments of SL3: The fragment ofSL3 which contains formulas without multiset
constraints is denoted bySL3U while the fragment ofSL3 which describes the integer
data using only multiset constraints is denoted bySL3M. An SL3 formula is called
succinctif it describes heap decompositions that do not contain simple nodes.

4 Reasoning about programs without procedure calls

In this section, we present solutions based on abstraction for checking and synthesizing
assertions for programs without procedure calls.

4.1 Pre/post condition reasoning

We describe a framework for pre/post-condition reasoning when the annotations
are given in SL3. In general, the difficulty is to check entailments of the form
post(ϕpre,St)⇒ ϕpost, wherepost(ϕpre,St) is anSL3 formula that models exactly
(over-approximates) the set of heapspostc([ϕpre],St). In the following, we consider
only entailments where the heap decompositions described by ϕpost do not contain sim-
ple nodes, i.e.,ϕpost is succinct. This implies that the invariants and the post-conditions
we can check must satisfy this restriction, which is usuallythe case in practice.



As a running example, we consider the problem of checking an invariant for the
while loop in the proceduresplit from Fig. 1. This invariant, denoted byInv, con-
tains several disjuncts. Two of them, denoted byψ1 andψ2, are pictured in Fig. 4(c)
and Fig. 4(d); the sub-formula that describes the edges and the labeling with pointer
variables of the heap decomposition is represented by a graph. The disjuncts ofInv
not represented in Fig. 4(c) are similar, i.e., they consider the cases wherex, sm, or
gr point to NULL. Instead of checking the validity ofpost(Inv,St)⇒ Inv, whereSt
is the body of the loop, we consider the problem of checking the simpler entailment
(ψp

1 ∨ψp
2)⇒ (ψ1∨ψ2), whereψp

1 andψp
2 are given in Fig. 4(a) and Fig. 4(b), respec-

tively (ψp
1 is a sub-formula ofpost(ψ1,St) while ψp

2 is a sub-formula ofpost(ψ2,St)).

Let ϕ andϕ′ be twoSL3 formulas and consider the problem of checking the validity
of the entailmentϕ⇒ ϕ′. To efficiently handle the disjunction, we check if for any
disjunctψ of ϕ there exists a disjunctψ′ of ϕ′ such thatψ⇒ ψ′. For example,(ψp

1 ∨
ψp

2)⇒ (ψ1∨ψ2) is valid if ψp
1 ⇒ ψ1 andψp

2 ⇒ ψ2. This approach is complete only
if both SL3 formulaeϕ and ϕ′ are succinct and if any two disjuncts ofϕ′ describe
non-isomorphic heap decompositions (the isomorphism ignores the integer sequences).

Next, to check an entailment of the formψ⇒ ψ′, whereψ is of the form∃N. ϕG∧
ϕP∧ϕD andψ′ is of the form∃N′. ϕ′G∧ϕ′P∧ϕ′D, a first approach is to check that the
labeled graphs described byψ andψ′ are isomorphic and thatϕD entailsϕ′D. This check
is complete only if bothψ andψ′ are succinct. Then, the entailment betweenϕD and
ϕ′D is valid if (1) the existential constraint ofϕD implies the existential constraint ofϕ′D,
(2) the right part of any universally quantified implicationin ϕ′D is implied by the right
part of an universally quantified implication inϕD having a similar guard, and (3) the
multiset constraints inϕD imply the multiset constraints inϕ′D. A sufficient condition
to test the validity of⊑

M
is: for every multiset equality inϕ′D of the form t1 = t2,

ϕD contains the multiset equalitiest1 = t1
1 ∪ t2

1 · · · ∪ t p
1 , t2 = t1

2 ∪ t2
2 · · · ∪ t p

2 , and for any
1≤ i ≤ p, t i

1 = t i
2. The approximation for the entailment that we obtain in thisway is

denoted by⊑. For example, in Fig. 4,ψp
2 ⊑ ψ2 and consequently,ψp

2⇒ ψ2.

The operator fold#: To prove entailments of the formψ⇒ ψ′, whereψ is not suc-
cinct, we define an operatorfold#, which computes a succinctSL3 formula that over-
approximatesψ (i.e., it eliminates the existential node variables inψ which represent
simple nodes). The extension offold# to SL3 formulas is defined byfold#(

∨
i ψi) =∨

i fold
#(ψi). Clearly, iffold#(ψ)⊑ ψ′ thenψ⇒ψ′. Such entailments arise naturally

when checking loop invariants. Even if we consider a succinct invariantInv, the post-
condition operatorpost will unfold the structures and introduce simple nodes. Conse-
quently,Inv describes heap decompositions that are not isomorphic to heap decompo-
sitions inpost(Inv,St) andpost(Inv,St)⊑ Inv does not hold. However, it may happen
thatfold#(post(Inv,St))⊑ Inv which is enough to provepost(Inv,St)⇒ Inv. In the
running example, we have thatfold#(ψp

1)⇒ ψ1 which impliesψp
1⇒ ψ1.

Let ψ be the disjunct of someSL3 formula. In general,fold#(ψ) is defined such
that every maximal pathn0,n1, . . . ,nk−1,nk in the graph described byψ between two
crucial nodesn0 and nk is replaced by one edge betweenn0 and nk and the integer
sequence labelingn0 in the models offold#(ψ) is the concatenation of the integer se-
quences labelingn0, n1,. . .,nk−1 in ψ. For example,fold#(ψp

1) is defined such that the
pathsna,n′x,nx andn′g,ng, ♯ are replaced by an edge fromna to nx and an edge fromn′g
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(d) The disjunctψ2

Fig. 4: Checking the invariant for the loop in the proceduresplit.

to ♯, respectively. Also, the sequences labelingna andn′g in fold#(ψp
1) are the concate-

nation of the sequences labelingna, n′x andn′g, ng, respectively. The multiset constraints
are handled independently of the other constraints. Thus,fold#(ψp

1) contains the mul-
tiset constraintms(na) = ms(n′g), which is obtained by (1) applying an inference rule in
ψp

1 that infers the constraintms(n′x)∪ms(na) = ms(n′g)∪ms(ng) (the hypotheses of the
inference rule aremhd(n′x) = mhd(n′g), ms(na) = ms(ng), andlen(n′x) = len(n′g) = 1)
and (2) substitutingms(n′x)∪ms(na) with ms(na) andms(n′g)∪ms(ng) with ms(n′g).

The other type of constraints are computed as follows. The properties of the se-
quences labelingna in the models offold#(ψp

1) are easy to obtain because there are
no universal formulas that describe the sequences labelingna andn′x in ψp

1. We have
to update only the length constraints, i.e., substitutelen(na) by len(na)−len(n′x) and
project out the termlen(n′x). Then, the properties of the sequences labelingn′g in the
models ofψp

1 are obtained as follows:

– we update the length constraints as in the previous case, i.e., we substitutelen(ng)
by len(ng)−len(n′g) and project out the termlen(n′g).

– the universal formula that describesn′g in fold#(ψp
1) has the same guard as the one

describingng in ψp
1. It is obtained by taking into consideration that the tail ofn′g in

fold#(ψp
1) is the concatenation between the head and the tail ofng in ψp

1. Thus, we
obtain a formula of the form∀y. y∈ tl(n′g)⇒ (U1∨U2), whereU1 is the property
of hd(ng) andU2 is the property oftl(ng). The formulaU1 is E

[
hd(ng)← n′g[y]

]
,

whereE is the existential constraint ofψp
1, andU2 is obtained from the right part

of ∀y. y∈ tl(ng)⇒ ng[y]> v by substitutingng[y] with n′g[y], i.e.,U2 is n′g[y]> v.



The relation Closure: In the example above, the input given tofold# contains only
universally-quantified implications over one position variable. When these implications
contain at least two position variables, the computation ofthe universally-quantified im-
plications describing the concatenations is more involved. Let us consider the following
formula expressing the fact that the sequences labelingn1 andn2 are sorted:

ψ3 := ∃n1,n2.
(
ls(n1,n2)∗ls(n2, ♯)∧x(n1)∧sorted(n1)∧less(n1)∧sorted(n2)∧less(n1)

)

sorted(n) := ∀y1,y2. ([y1,y2] ∈ tl(n)∧y1 ≤ y2)⇒ n[y1]≤ n[y2]

less(n) := ∀y. [y] ∈ tl(n)⇒ hd(n)≤ n[y].

In fold#(ψ3), the sequence labelingn1 should be the concatenation of the se-
quences labelingn1 andn2 in ψ3 (n2 represents a simple node inψ3). The universal
formulas describing this sequence should have the same guards as the formulas inψ3,
i.e.,G1(y1,y2) = [y1,y2] ∈ tl(n1)∧y1 ≤ y2 andG2(y) = y∈ tl(n1). In the following,
we focus on the first guard. An approach similar to the one usedfor guards of the form
y∈ tl(n) could take the union of the properties expressed using the guardG1(y1,y2)
on each sequence (n1 andn2) and define it as a property of the concatenation. Unfortu-
nately, this definition is unsound. The formula∀y1,y2. G1(y1,y2)⇒ n1[y1] ≤ n1[y2] is
not implied byψ because the concatenation of two sorted words is not always sorted.

The definition offold# is based on a relation between guards and sets of guards,
called Closure (see [1] for more details). If we go back to the formulaψ then
sorted(n1) ∧ less(n1) characterizes the data values in the first part of the con-
catenation andsorted(n2) ∧ less(n2) characterizes the data values in the second
part. But, out of two positions in the concatenation, one might be in n1 (differ-
ent from the first element ofn1) and the other one inn2. Therefore, to define a
soundfold# operator, we need a universally-quantified implication having as guard
G3(y1,y2) = y1 ∈ tl(n1) ∧ y2 ∈ tl(n2). In fact, Closure(G1(y1,y2)) is the set of
guards{G1(y1,y2),G2(y),G3(y1,y2)}. The operatorfold# combines universal formu-
las with guards fromClosure(G1(y1,y2)) in order to compute the formula of the form
∀y1,y2. G1(y1,y2)⇒U (see [5, 1] for more details). If these formulas are not present in
the input formula thenfold# over-approximates it totrue.

4.2 Invariant synthesis

We consider a static analysis for programs with singly-linked lists based onabstract in-
terpretation[11]. We define in [5] a generic abstract domain whose elements represent
sets of heaps. Two important instances areAHS(k,AU) andAHS(k,AM) (the parameter
k may be omitted). The elements ofAHS(k,AU) areSL3U formulas and the elements
of AHS(k,AM) areSL3M formulas. The conjunctions of universally-quantified implica-
tions fromSL3U formulas are elements of an abstract domain denoted byAU and the
conjunctions of equalities between multiset terms fromSL3M formulas are elements
of an abstract domain denoted byAM. The elements ofAHS(k,AU) andAHS(k,AM)
are also calledabstract heap sets. The abstract values satisfy the following restrictions:
(1) any two disjuncts describe non-isomorphic heap decompositions and (2) any dis-
junct describes a heap decomposition with at mostk simple nodes. Also,AHS(k,AU)
has another two parameters which restrict the form of the universally-quantified for-
mula describing the integer sequences. The first parameter is a set of guardsP, also



calledguard patterns, and the second one is a numerical abstract domainAZ (such as
theOctagonsabstract domain [22], thePolyhedraabstract domain [13], etc.). Then, the
formulas belonging toAHS(k,AU) are disjunctions of formulas of the form:

∃N.
(

ϕG∧ϕP∧E∧
∧

G(y)∈P(N)

∀y. G(y)⇒U(y)
)

,

where (1)P(N) is a set of guards obtained fromP by substituting all node variables
with elements ofN and (2)E andU(y) are elements of the numerical abstract domain
AZ. The order relation between elements ofAHS(k,AU) (resp.AHS(k,AM)) is exactly
⊑ restricted toSL3U (resp.SL3M) formulas. If we ignore integer data, the number of
heap decompositions without garbage and with at mostk simple nodes is bounded.
Consequently, the latticeAHS(k,AM) is finite and there is no need to define a widening
operator. The latticeAHS(k,AU) is infinite due to the numerical abstract domainAZ.
We define a widening operator which is parametrized by the widening operator ofAZ.

Unfolding/folding: The analysis over these abstract domains iterates the following two
steps: (1) unfolding the structures in order to reveal the properties of some internal
nodes in the lists, which makes necessary to introduce some simple nodes and then,
(b) folding the structures, in order to keep the graphs finite, by eliminating the simple
nodes and in the same time collecting the informations on these nodes using a formula
that speaks about data sequences. To terminate, the widening operator is applied.

void initEven(list* head) {
list *headi = head;
int i = 0;
while(headi != NULL) {

headi->data = 2*i;
headi = headi->next;
i++;

}
}

Fig. 5

We define sound abstract transformers for the
statements in the class of programs we consider. The
statements that dereference thenext pointer field
(x=y->next andx->next=y) introduce simple nodes.
The folding step is applied every time the number of
simple nodes becomes greater thank. It consists in
applying the operatorfold# described in Sec. 4.1. In
particular, this is the crucial step that allows to gener-
ate universally quantified properties from a number of
relations between a finite (bounded) number of nodes.
To make the operatorfold# precise, we should con-

sider abstract domainsAHS(k,AU) parametrized by sets of guard patternsP which are
closed under the relationClosure, i.e., they includeClosure(G), for anyG in P.

We illustrate the unfold/fold mechanism on the procedureinitEven from Fig. 5.
We analyze this program using the abstract domainAHS(1,AU) parametrized by (1) a
set of guard patterns consisting of one elementy∈ tl(n) and (2) thePolyhedraabstract
domain. The analysis begins to unroll the loop of the procedure starting from the first
SL3 formula given in Fig. 6. This formula represents the set of all heaps that consist of
a path between a vertex labeled byhead andheadi, and the distinguished node♯.

Every symbolic execution of the statementheadi=headi->next in the loop gen-
erates a formula with two disjuncts: the first one corresponds to the case whenheadi
points toNULL (the list traversal ends) and the second one unfolds the structure, i.e.,
introduces a new node which is pointed to byheadi. The formulas obtained after un-
rolling once and thrice the loop are given in Fig. 6. An edge starting in some noden and
labeled by 1 means that the formula contains the constraintlen(n) = 1. Also, a noden
labeled by some integerv means that the formula contains the constrainthd(n) = v.
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Folding:

n1
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0

n2

headi

♯

NULL

∀y. y∈ tl(n1)⇒ n1[y] = 2∗y
∨

n1

head

0

♯

NULL,headi

∀y. y∈ tl(n1)⇒ n1[y] = 2∗y

Fig. 6

The size of the list pointed to byhead is po-
tentially unbounded, so the size of the graphs
grows at each unrolling. In order to guaran-
tee termination, the analysis manipulates graphs
that contain at most one simple node (i.e.,k= 1).
Notice that after the third unrolling of the loop,
the graphs contain two simple nodes. To keep
the size of the abstract heaps bounded, the anal-
ysis eliminates these nodes but, before that, it
collects the information that the unrolling of the
loop revealed about them. This step is called
folding the structure and consists in applying
fold#. We obtain a universal formula that de-
scribes the data properties of the nodes that
have been eliminated. Because the analysis is
parametrized by the pattern∀y. y∈ tl(n), fold#

generates a universally quantified formula of the
form∀y. y∈ tl(n1)⇒U . To this, it searches for
all possible instantiations of the variabley that
satisfy the pattern, in this case the nodes labeled
by 2 and 4, and it applies the join in the numer-
ical abstract domain between the constraints on
these nodes, i.e.,dt(y) = 2 anddt(y) = 4. The
resulting formula is given in Fig. 6.

The unfolding and folding steps are repeated
until the analysis reaches a fixed point. To en-
sure the convergence of the fixed point computa-
tion, apart from bounding the size of the graphs,
we use the widening operator of the numerical
abstract domainAZ. In the considered example,

widening makes the length constraints converge to the fact that the list pointed to by
head is greater than or equal to one. Consequently, the universally quantified formula
from Fig. 6 is generalized to the entire list.

4.3 A sound decision procedure based on abstraction

In Sec. 4.1, we have shown that for anyϕ and ϕ′ two SL3U formulas, the entail-
mentϕ⇒ ϕ′ is valid if for any disjunctψ′ of ϕ′ there exists a disjunctψ of ϕ such
thatfold#(ψ) ⊑ ψ′. Notice thatfold#(ψ) ⊑ ψ′ holds only ifψ′ contains universally-
quantified implications having the same guards as some universally-quantified impli-
cations inψ. For example, the entailmentψ4 ⇒ ψ5 in Fig. 7 is valid butψ4 6⊑ ψ5

(becauseψ4 is succinct there is no need to apply the operatorfold#). This happens
becauseψ4 does not contain an universally-quantified implication having as guard
[y1,y2] ∈ tl(n1)∧y2 = y1+1.
The operator convertP: In order to increase the precision of entailment checking
betweenSL3U formulas, we define an operatorconvertP [6], parametrized by a set of
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NULL,headi

∀y1,y2. ([y1,y2] ∈ tl(n1)∧y2 = y1+1)
⇒ n1[y2] = n1[y1]+2

Fig. 7: An entailment between two formulas denoted byψ4 andψ5.

guard patternsP. For anySL3U formulaϕ, convertP(ϕ) is anSL3U formula equivalent
to ϕ which contains universally-quantified implications having as guards constraints
from P. Therefore, for anyϕ andϕ′ two SL3U formulas, ifconvertP(ϕ) ⊑ ϕ′ then
ϕ⇒ ϕ′. The operatorconvertP is defined as follows:

– we consider a program containing severalwhile loops that traverse the list seg-
ments constrained byϕ. For example, in the case ofψ4, we consider the program:

list *headi = head;
while (headi != NULL)

headi = headi->next;

– the program is analyzed usingAHS(k,AU) parametrized by a set of guard patterns
P
′ = P∪Pϕ ∪Closure(P∪Pϕ), wherePϕ are the patterns inϕ. The precondition

is exactlyϕ. We denote byϕP the postcondition (i.e., the formula describing the
configurations reachable at the end of the program) synthesized using this analysis.

– convertP(ϕ) is the conjunction ofϕ andϕP.

The formulaconvertP(ϕ) is equivalent toϕ because, by definition,ϕP is implied
by ϕ. For example,convertP1(ψ1), whereP1 consists ofy∈ tl(n1), [y1,y2]∈ tl(n1)∧
y2 = y1 + 1, and the closure of these two patterns, is a formula which contains both
universally quantified implications from Fig. 7 (see [6] formore details). The fact that
convertP1(ψ1)⊑ ψ2 proves thatψ1⇒ ψ2 is valid.

5 Reasoning about programs with procedure calls

In this section, we extend the pre/post condition reasoningframework and the static
analysis from the previous section to (recursive) programswith procedure calls.

5.1 Pre/post condition reasoning

We assume that, besides loop invariants, each procedure is annotated by a precondition
and a postcondition. Following the local heap semantics, they describe only the part of
the heap relevant to the procedure. The precondition describes heaps where all nodes are
reachable from the input parameters and the postcondition describes relations between
the input and the output configurations, i.e., heaps over thedouble vocabularyloc∪ loc0.

The validity of Hoare triples corresponding to procedure calls can be checked as fol-
lows. LetP be a procedure annotated by a preconditionϕpre and a postconditionϕpost

and let{ϕ1}P(ai,ao){ϕ2}, be a Hoare triple, whereai, resp.ao, are the input, resp.



output, actual parameters (the validity of Hoare triples corresponding toq= P(ai,ao)
is checked in a similar manner). This Hoare triple is valid if(1) for any heapH mod-
eled byϕ1, the sub-graph ofH containing all the nodes reachable from the actual input
parametersai satisfiesϕpre and (2)post(ϕ,P(ai,ao))⇒ ϕ2. The first condition holds
if the entailmentlocal(ϕ1)⇒ ϕpre[γ] is valid, wherelocal(ϕ1) is a sub-formula ofϕ1

describing only nodes reachable from the actual parametersin ai and γ is a substi-
tution that replaces formal parameters with actual parameters. For example, consider
the Hoare triple in Fig. 10 for the first recursive call of the procedurequicksort in
Fig. 1. The sub-formulalocal(ϕ1), whereϕ1 is the formula in the left of Fig. 10, is
ls(nl , ♯)∧ left(nl )∧ hd(nl ) ≤ hd(np)∧∀y. y ∈ tl(nl )⇒ nl [y] ≤ hd(np). Clearly, it
implies the precondition ofquicksort, which states that the input list is acyclic.

Then,post(ϕ1,P(ai,ao)) is a disjunction of formulas obtained by combining a dis-
junct ψ1 of ϕ1 and a disjunctψpost of ϕpost s.t. the decomposition of the input heap in
ψpost is isomorphic to the decomposition of the local heap inψ1 (the isomorphism is
denoted byh). Thus, (1) we replace inψ1 the sub-formula that describes the local heap
(without integer data) with the sub-formula that describesthe output heap inψpost (with-
out integer data), (2) we redirect all edges ending in nodes labeled by actual parameters
(from ψ1) to the nodes labeled by the corresponding formal parameters (from ψpost),
and (3) integer data is described by a formula of the formσ = ∃N0. (ϕD ∧ϕD,post[h]),
whereϕD (resp.ϕD,post) is the sub-formula ofψ1 (resp.ψpost) that describes integer
data andN0 is the set of variables denoting nodes from the input heap inψpost (the
isomorphismh is used as a substitution for node variables). Notice that the logicSL3 is
extended by allowing existential quantification over node variables in the part that de-
scribes the integer data. For example, given the postcondition ofquicksort in Fig. 9(b)
and the formulaϕ1 in the left of Fig. 10,ϕ = post(ϕ1,left= quicksort(left)) is
the formula in Fig. 11 (ϕD,qst is given in Fig. 9).

caller heap

callee input non-local

callee output

ψsum(xin,xout)

ϕ(xin,xgl)

ϕ′(xout,xgl)

Fig. 8: Relation between caller and
callee local heaps.

The approach based on local heaps can
be too weak for proving the validity of Hoare
triples corresponding to procedure calls. Ele-
ments in the local heap of the callee are linked
at the call point to external elements by some
data relation,ϕ, and the procedure is anno-
tated by some postconditionψsum that relates
the input heap with the output heap. This sit-
uation is depicted in Fig. 8. The problem is
how to recover the linkϕ′ between the ele-
ments in the callee output heap and the exter-
nal elements in the caller heap.

Annotations in SL3U for quicksort: For the procedurequicksort, annotations in
SL3U are not sufficient to prove that it outputs a sorted list. Thisprocedure takes the
first elementd of the input lista as the pivot, splits the tail ofa into two listsleft and
right, where all the elements ofleft, resp.right, are smaller, resp. greater, thand,
and then performs two recursive calls on the listsleft andright, before composing
the results, together withd, into a sorted list.
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Fig. 9: Postconditions forsplit andquicksort.

Assume that theSL3U postcondition ofsplit, resp.quicksort, is the formula in
Fig. 9(a), resp. Fig. 9(b), without the multiset constraints. We show that the approach
based on local heaps can not be used to prove the validity of the Hoare triple given
in Fig.10; for the moment, we ignore the multiset constraints in ϕD. When computing
ϕ′= post(ϕ′1,left= quicksort(left)), whereϕ′1 is the formula in the left of Fig.10
without the multiset equalities, the constraint that all the elements ofleft are less than
or equal to the pivot is lost. The only constraint over the list pointed to byleft in ϕ′ is
that the list is sorted. The reason for this is twofold: (1) the annotations ofquicksort
describe only the input and the output list and they don’t refer to other variables from
the context of the call (i.e., they don’t contain the property that all the elements of the
input list are less than or equal to the pivot) and (2) the postcondition ofquicksort
contains no relation between the elements of the input and the output list becauseSL3U

cannot express the fact that a list is a permutation of another list.

{

n0
aa0

naa ♯ NULL

nlleft

nrright np pivot

} left=quicksort(left) {

ϕD







hd(nl )≤ hd(np)∧hd(nr )> hd(np)

∧d = hd(np)∧len(np) = 1∧eq∀(na,n0
a)

∧len(na) = len(nl )+len(nr )+len(np)

∧∀y. y∈ tl(nl )⇒ nl [y]≤ hd(np)

∧∀y. y∈ tl(nr )⇒ nr [y]> hd(np)

∧ms(na) = ms(nl )∪ms(nr )∪ms(np)

∧ms(n0
a) = ms(na)

{

n0
aa0

naa ♯ NULL

nlleft

nrright np pivot

}

ϕD ∧sorted(nl )

Fig. 10: A Hoare triple inSL3 for the first recursive call inquicksort.

Combining universal formulas and multiset constraints: To be able to prove that
quicksort outputs a sorted list, we must consider annotations with formulas from the
full SL3. That is, the list segments are now described by universally-quantified formulas



andmultiset constraints. The new postcondition forsplit, resp.quicksort, is the one
in Fig. 9(a), resp. Fig. 9(b). Now, the difficulty is to reasonin the combined theory.

With the new annotations, we have to check the validity of theHoare triple from
Fig.10 (multiset constraints are now taken into consideration). The crucial point in prov-
ing the validity ofpost(ϕ1,left= quicksort(left))⇒ ϕ2, whereϕ2 is the formula
in the right of Fig.10, is to prove that the data constraints in Fig. 11 imply that all the
elements of the sequencenres (the new value of the list pointed to byleft) are smaller
than or equal tohd(np), i.e.,

∃nl .
(

hd(nl )≤ hd(np)∧∀y. y∈ tl(nl )⇒ nl [y]≤ hd(np)∧ms(nres) = ms(nl )
)

⇒
(

hd(nres)≤ hd(np)∧∀y. y∈ tl(nres)⇒ nres[y]≤ hd(np)
)

.
(iv)

In words, if the sequencesnl andnres have the same multisets of elements and all ele-
ments ofnl are less than the pivot then, the latter also holds about the elements ofnres.
Notice that the operator⊑ from Sec. 4.1 is not precise enough to prove this entailment.

n0
aa0

naa ♯ NULL

nresleft

nrright np pivot

∃nl .
(
hd(nl )≤ hd(np)

∧∀y. y∈ tl(nl )⇒ nl [y]≤ hd(np)

∧ms(nres) = ms(nl )
)

∧ . . .
)







∃nl . (ϕD ∧ϕD,qst

[
n0

a← nl
]
)

Fig. 11: The formulaϕ = post(ϕ1,left= quicksort(left)).

We define an operator calledstregthen [6] which can be used to prove such im-
plications. It considers the same program as inconvertP, consisting of a sequence
of loops that traverse the list segments. Then, it performs an analysis of this program
using a partially reduced product [10] between the domain ofabstract heap sets with
universal formulas,AHS(AU), and the domain of abstract heap sets with multiset con-
straints,AHS(AM). The elements of this product are pairs fromAHS(AU)×AHS(AM).
Almost all the abstract transformers are defined byF#(A1,A2) = (F#

U
(A1),F#

M
(A2)),

for any (A1,A2) ∈ AHS(AU)× AHS(AM), where F#
U

is the abstract transformer in
AHS(AU) andF#

M
is the abstract transformer inAHS(AM). The only exception is the

abstract transformer forp=q->next, denoted byG#, which is defined byG#(A1,A2) =
σ(G#

U
(A1),G#

M
(A2)), whereσ is a partial reduction operator that transfers information

between the two abstract elements. To check the validity ofϕ⇒ ϕ2, the analysis starts
from a precondition defined as a pair(ϕU,ϕM), whereϕU is obtained fromϕ by re-
moving all multiset constraints andϕM is obtained fromϕ by removing all universally-
quantified implications. The output ofstregthen is the conjunction between the in-
put formula and the postcondition synthesized by the analysis. In this case, applying
stregthen on the formulaϕ, we obtainϕ∧hd(nl )≤ hd(np)∧∀y. y∈ tl(nl )⇒ nl [y]≤
hd(np). Now, the fact thatϕ ⊑ ϕ2 holds proves the validity ofϕ⇒ ϕ2 which implies
the validity of the Hoare triple from Fig. 10.



5.2 Synthesis of procedure summaries

For programs with procedure calls, we define a compositionalanalysis such that the
summary of a procedure is computed only once and then reused whenever the proce-
dure is called. Again, in order to solve the problems raised by the use of local heaps, we
strengthen the analysis in the domain of universally-quantified formulas with the anal-
ysis in the domain of multiset constraints. Thus, we define anabstract domain which is
a partial reduced product betweenAHS(AU) andAHS(AM). The partial reduction op-
erator is exactlystrengthen and it is used in the abstract transformers for procedure
returns andassert statements. The analysis over this partial reduced productis able
for instance to synthesize the expected summary for the procedurequicksort.

Proc P
AHS(AU(P))

Proc Q1

AHS(AU(P1))

Proc Q2

AHS(AU(P2))

call

return

return

call

Fig. 12

Another problem that we address for the design
of a compositional analysis is due to the use of pat-
terns for guards of universally-quantified implica-
tions. Indeed, the analysis of different procedures
may need to use different sets of patterns and there-
fore, it is important to be able to localize the choice
of these patterns to each procedure. Otherwise, it
would be necessary to use a set of patterns that in-
cludes the union of all the sets that are used during
the whole analysis. This would obviously make the
analysis inefficient.

Consequently, during the analysis, at procedure
calls and returns, we need to switch from an abstract domain of formulas parametrized
by some set of patterns, sayP, to an abstract domain parametrized by another set of
patternsP1 or P2 as shown in Figure 12 (AHS(AU(P)) denotes the domain of abstract
heap sets with universally-quantified implications parametrized by the set of patternsP).
This transformation is defined using the operatorconvertP (see [6] for more details).

6 Experimental results

We have implemented the inter-procedural analysis in a toolcalled CELIA [9]. CELIA

is a plugin of the FRAMA -C platform [8], thus taking as input annotated C programs.
CELIA instantiates the generic moduleFIXPOINT (http://gforge.inria.fr/) of fix-
point computation over control-flow graphs with the implementation of the abstract
domainsAHS(AU) andAHS(AM) and their abstract transformers. The implementation
of theAHS(AU) domain considers the patternsy ∈ tl(w), (y1,y2) ∈ tl(w)∧ y1 ≤ y2,
(y1,y2)∈ tl(w)∧y2 = y1+1, andy1 ∈ tl(w1)∧y2 ∈ tl(w2)∧y1 = y2 and it is generic
on the numerical domainAZ used to represent data and length constraints. For this, we
use theAPRON platform [20] to access domains like octagons or polyhedra.

Benchmark: We have applied CELIA to a benchmark of C programs which is available
on the web site of CELIA . The benchmark includes the basic functions that are used
in usual libraries on singly-linked lists, for example the GTK gslist library which is
part of the Linux distribution. These functions belong to several classes: (1) (recursive)
functions performing elementary operations on list: adding/deleting the first/last ele-
ment, initializing a list of some length, (2) (recursive) functions performing a traversal



of one resp. two lists, without modifying their structures,but modifying their data, (3)
functions computing from one resp. two input lists some output parameters of type list
or integer, and (4) sorting algorithms on lists. The benchmark also contains programs
which do several calls of the above functions on lists. For example, we handle some
programs manipulating chaining hash tables. For that, we use abstraction techniques
(slicing, unfolding fixed-size arrays) available through the Frama-C platform.

We have used CELIA for checking equivalence between sorting algorithms. The
strengthen operation plays an essential role. LetP1 andP2 be two sorting procedures
working on two input listsI1 andI2, and producing two outputsO1 andO2. The equiv-
alence ofP1 andP2 is reduced to the validity of the implication

(
equal(I1, I2)∧ sorted(O1)∧ms(I1) = ms(O1)

∧ sorted(O2)∧ms(I2) = ms(O2)
)

⇒ equal(O1,O2),
(v)

whereequalandsortedare expressed by universally quantified implications as inSL3.
Our techniques are able to find that this formula is indeed valid. For instance, this
entailment and the one in (iv) can not be proved using SMT solvers like CVC3 [2]
and Z3 [14] (the multiset equality of two sequencesms(n1) = ms(n2) is rewritten as
∃m. permutation(m)∧∀i. n1[m[i]] = n2[i], wherepermutation(m) expresses the fact that
the sequencem defines a permutation).

7 Conclusions and related work

The paper presents a logic-based framework the verificationand the analysis of pro-
grams with lists and data. It introduces a family of abstractdomains whose elements
are first-order formulas that describe the shape/size of theallocated memory and the
scalar data stored in the list cells. The latter is characterized using universal formulas or
multiset constraints. The elements of these abstract domains can be used as annotations
within pre/post-condition reasoning. In this context, we introduce sound procedures for
checking the validity of Hoare triples. Then, we define an accurate inter-procedural
analysis that is able to automatically synthesize invariants and procedure summaries.
This analysis is compositional and it is based on unfolding/folding the program data
structures. The precision is obtained using partial reduction operators, which allow to
combine analyses over different abstract domains. Overall, our framework allows to
combine smoothly pre-post condition reasoning with assertion synthesis.

Related Work: Assertion synthesis for programs with dynamic data structures has been
addressed using different approaches, like constraint solving, e.g. [3], abstract interpre-
tation, e.g., [7, 12, 19, 15–18,23, 28, 26, 27, 30], Craig interpolants [21], and automata-
theoretic techniques [4].

Several works [19, 15, 23] consider invariant synthesis forprograms with uni-
dimensional arrays of integers. The class of invariants they can generate is included in
the one handled by our approach usingAHS(AU). These techniques are based on an au-
tomatically generated finite partitioning of the array indices. We consider a larger class
of programs for which these techniques can not be applied. The analysis introduced in



[23] for programs with arrays can synthesize invariants on multisets of the elements in
array fragments. This technique differs from ours based on the domainAHS(AM) by the
fact that it can not be applied directly to programs with dynamic lists.

In [18], a synthesis technique for universally quantified formulas is presented. Our
technique differs from this one by the type of user guiding information. Indeed, the
quantified formulas in [18] are of the form∀y. F1⇒ F2, whereF2 must be given by the
user. In contrast, our approach fixes the formulas in left hand side of the implication
and synthesizes the right hand side. The two approaches are in principle incomparable.

Concerning the approaches based on abstract interpretation which can handle proce-
dure calls, most of them [7, 12, 17, 26, 27] focus on shape properties and do not consider
constraints on sizes or data. The approach in [26] can synthesize procedure summaries
that describe data if the instrumentation predicates whichguide the abstraction speak
about data. Providing patterns is simpler than providing instrumentation predicates on
data because patterns contain only constraints between (universally-quantified) posi-
tions (in the left-hand-side of the implication) and no constraints on data. Actually,
patterns are in many cases simple (ordering/equality constraints) and can be discovered
using natural heuristics based on the program syntax or proposed by the user, whereas
constraints on data can be more complex. Our approach allowsto discover (maybe un-
predictable) data constraints for given guard patterns. The analysis in [17] combines a
numerical abstract domain with a shape analysis. It is not restricted by the class of data
structures but the generated assertions describe only the shape and the size of the heap.
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