
Formalizing and checking Multilevel
Consistency?

Ahmed Bouajjani1, Constantin Enea1, Madhavan Mukund2,3, Gautham
Shenoy R2, and S P Suresh2,3

1 Université Paris Diderot, France {abou,cenea}@irif.fr
2 Chennai Mathematical Institute, India {madhavan,gautshen,spsuresh}@cmi.ac.in

3 CNRS UMI 2000 ReLaX

Abstract. Developers of distributed data-stores must in general trade
consistency for performance and availability. Such systems may in fact
implement weak consistency models, e.g., causal consistency or even-
tual consistency, corresponding to different costs and guarantees to the
clients. In this work, we consider the case of distributed systems that of-
fer not just one level of consistency but multiple levels of consistency to
the clients. This corresponds to many practical situations. For instance,
popular data-stores such as Amazon DynamoDB and Apache’s Cassan-
dra allow applications to tag each query within the same session with a
separate consistency level. Other examples are data-store implementa-
tions with incremental correctness guarantees allowing an application to
obtain a sequence of responses to a query corresponding to increasingly
strong levels of consistency. In this paper, we provide a formal frame-
work for the specification of multilevel consistency, and we address the
problem of checking the conformance of a computation with respect to
such a model. We provide a principled algorithmic approach for solving
this problem and apply it to several instances of models with multilevel
consistency.

1 Introduction

To achieve availability and scalability, modern data-stores (key-value stores) rely
on optimistic replication, allowing multiple clients to issue operations on shared
data on a number of replicas, which communicate changes to each other using
message passing. One benefit of such architectures is that the replicas remain
locally available to clients even when network connections fail. Unfortunately,
the famous CAP theorem [10] shows that such high Availability and tolerance
to network Partitions are incompatible with strong Consistency, i.e., the illusion
of a single centralized replica handling all operations. For this reason, modern
replicated data-stores often provide weaker forms of consistency such as eventual
consistency [18] or causal consistency [14], which have been formalized only
recently [3, 4, 6, 17].

? Partially supported by CEFIPRA DST-Inria-CNRS Project 2014-1, AVeCSo.

Programming applications on top of weakly-consistent data-stores is difficult.
Some form of synchronization is most often unavoidable in order to preserve
correctness. Therefore, popular data-stores such as Amazon DynamoDB and
Apache’s Cassandra provide different levels of consistencies, ranging from weaker
forms to strong consistency. Applications can tag queries to the data-store with
a suitable level of consistency depending on their needs.

Implementations of large-scale data-stores are difficult to build and test. For
instance, they must account for partial failures, where some components or the
network can fail and produce incomplete results. Ensuring fault-tolerance re-
lies on intricate protocols which are difficult to design and reason about. The
black-box testing framework Jepsen 4 found a remarkably large number of subtle
problems in many production distributed data-stores.

Testing a data-store raises two issues: (1) deriving a suitable set of testing
scenarios, e.g., faults to inject into the system and the set of operations to be
executed, and (2) efficient algorithms for checking whether a given execution
satisfies the considered consistency models. The Jepsen framework shows that
the first issue can be solved using randomization, e.g., introducing faults at
random and choosing the operations randomly. The effectiveness of this solution
has been proved formally in recent work [16]. The second issue is dependent on
a suitable formalization of the consistency models.

In this work, we consider the problem of specifying data-stores which provide
multiple levels of consistency and derive algorithms to check whether a given
execution adheres to such a multilevel consistency specification.

Concerning the formalization, we build on the specification framework in [6]
which formalizes consistency models using two auxiliary relations, a visibility re-
lation defining for each operation (read or write of a key) the set of operations it
observes, and an arbitration order defining the order in which operations should
be viewed by different replicas. An execution is defined to satisfy a consistency
model if we can find a visibility relation and an arbitration order that obey cer-
tain axioms. For the case of a data-store providing multiple levels of consistency,
we consider multiple visibility relations and arbitration orders, one for each level
of consistency. Then, we consider a set of axioms which specifies each consis-
tency level in isolation, and also, how visibility relations and arbitration orders
of different consistency levels are related.

Based on this formalization, we investigate the problem of checking whether a
given execution satisfies a certain multilevel consistency specification. In general,
this problem is known to be NP-complete [3]. However, we show that for some
particular set of executions, where each value is written at most once (to some
key), this problem becomes polynomial time for many practically-interesting
multilevel consistency specifications. Since practical data-store implementations
are data-independent [19], i.e., their behavior doesn’t depend on the concrete
values read or written in the transactions, any potential buggy behavior can be
exposed in such executions. This complexity result uses the idea of bad patterns
introduced in [3] for the case of causal consistency. Intuitively, a bad pattern can

4 Available at http://jepsen.io

2

be seen as a set of operations occurring (within an execution) in some particu-
lar order corresponding to a consistency violation. In this paper, we provide a
systematic methodology for deriving bad patterns characterizing a wide range of
consistency models and combinations thereof.

Combined, these contributions form an effective algorithmic framework for
the verification of modern data-stores providing multiple levels of consistency.
To the best of our knowledge, we are the first to investigate the asymptotic
complexity for such a wide class of consistency models and their combinations,
despite their prevalence in practice.

The paper is organized as follows. We begin by illustrating the idea of mul-
tilevel consistency through some real-life examples. In Section 3, we present a
formal model for specifying and reasoning about multilevel consistency. Sec-
tion 4 describes algorithms for verifying multilevel cnonsistency. We conclude
with a discussion of related work. Some details and proofs are presented in an
Appendix.

2 Multilevel consistency in the wild

In this section we present some instances of multilevel consistency found in the
wild. For the purpose of this paper, we restrict our attention to distributed
read-write key-value data-stores (henceforth referred to as Read-write stores),
consisting of unique memory locations addressed by keys or variables. We use
keys and variables interchangeably in this work. The contents of these memory
locations come from a domain, called values.

The read-write data-store provides two APIs to access and modify the con-
tents of a particular memory location. The API to read the content of a particular
memory location is typically named Read or Get, and the API to store a value
into a particular memory location is typically named Write or Put. In this paper,
we refer to these two methods as Read and Write respectively. The Read method
does not update the state of the data-store but only reveals part of the state
to the application session which invokes the method. The Write method on the
other hand ends up modifying the state of the data-store.

Typically, applications read some location of the data-store, perform some
local computation and write some value back to the data-store. The related
sequence of read and write operations performed by the application is called a
session.

Applications can expect some sort of consistency guarantee from the data-
store in terms of how fresh or stale the data value is that they read from the
data-store. They can also seek some guarantees pertaining to monotonicity of
the results that are presented to them. These guarantees provided by the data-
store to the applications are called consistency criteria in the literature. Some
of the popular consistency criteria include:

– Read-Your-Writes: The effects of prior operations in the session will be
visible to the later operations in the same session.

3

– Monotonic Reads: Once the effect of some operation becomes visible
within a session, it remains visible to all the subsequent operations in that
session.

– Monotonic Writes: If the effect of a remote operation is visible in a session,
then the effects of all prior operations in the session of the remote operation
will also be visible.

– Causal consistency: Effects of prior operations in a session are always
visible to later operations. Further, if the effect of an operation is visible
to another operation, then every operation that has seen the effects of the
latter would have seen the effects of the former.

– Sequential Consistency: Effects of prior operations in a session are always
visible to later operations. And for every pair of operations, either the effect
of one is visible the other or vice-versa.

While most of the existing literature on testing the behaviour of read-write
stores focus on testing the correctness with respect to specific consistency cri-
teria [3, 4, 9], there are cases where data-stores such as DynamoDB and Cas-
sandra offer to applications the choice of specifying the consistency level per
read-operation [7]. There are distributed data-store libraries that allow consis-
tency rationing [13] and also allow incremental consistency guarantees for the
read operations [12]. Further, there are distributed data-store libraries that al-
low an application to upgrade the consistency level offered by the underlying
data-store to a stronger one [1]. In each of these cases we need to reason about
the correctness of the behaviour of the data-store with respect to more than one
consistency criterion.

We now look at some examples of multilevel consistency in the real world.
We assume that the Read and Write APIs are as follows:

– Write(x, val) : Updates the content of the memory location addressed by the
key/variable x, with the value val .

– Read(x, val , level) : The content of the memory location whose key is x, is
val with respect to the consistency level level .

Read-Write Stores with strong and weak reads

In case of DynamoDB, the data-store allows the application a choice of two
consistency levels for every query that it makes. If strong consistency is chosen
the query will complete only after all the replicas have been consulted and a
consensus has been arrived at. If the weaker eventual consistency is chosen,
then the query will complete after consulting a subset of the replicas. In case
of Cassandra the data-store allows the application a more fine grained choice of
consistency levels, such as ANY, ONE, QUORUM, ALL. It achieves this by ensuring
that when the Read is made with ANY, the return value is provided by consulting
any correct replica of the data store. Similarly, if the Read operation is submitted
with ONE, then the return value is provided by consulting a replica that is known
to contain at least one value for that key. On the other hand, if the Read is made

4

with QUORUM, the data-store returns the value after consulting majority of the
replicas. Finally, if Read is made with ALL, then all the replicas are consulted
before returning the response. Clearly, ANY is the weakest consistency criterion
while ALL is the strongest consistency criterion. In general, a data-store offers
responses pertaining to different consistency criteria by consulting the required
subset of replicas to answer the query.

Typically a read operation under the stronger consistency criterion will take
more time, since it might have to wait for all the operations to be visible, or run
a consensus protocol before returning the result. In certain cases, applications
may be satisfied with Read operations that return values that are correct with
respec to some weaker consistency criterion. Consider a web-application that
displays the available seats in a movie theater. The application can choose to
read the available seats based on a weaker consistency criterion, since:

– The number of users attempting to book the seats will be more than the
seats available. Waiting for a consensus or a quorum can slow down the
reads for everyone. So a quicker response is desirable.

– There is a lag between the time the users gets to see the available seats and
the time when the user decides to book particular seats. Since concurrent
bookings are ongoing, the data displayed can anyway become stale by the
time the user books the seat.

– Users can change their minds before finally settling on a set of seats, and
paying for it.

Thus, the web-application can opt for a read satisfying a weaker consistency
criterion while allowing the user to pick a seat, and then perform a read satisfying
the stronger consistency criterion only when the user pays for it.

Consider the example in Figure 1 where a write is written to only one replica.
For each session, there is a (potentially different) designated replica from which
the responses to the weak reads are returned. The strong reads correspond to
ALL.

Session 1

A : Write(x, 5)

B : Read(x, 5, strong)

C : Read(x, 4,weak)

D : Read(y, 3, strong)

E : Read(x, 6, strong)

F : Read(x, 4,weak)

so

so

so

so

so

Session 2

G : Write(x, 4)

H : Write(y, 3)

so

Session 3

I : Write(x, 6)

Fig. 1: An example of a read-write store behaviour with strong and weak reads

5

It can be seen that the strong reads correspond to sequential consistency
while the weak reads correspond to monotonic reads consistency. The fragment
consisting of all the writes and the weak reads should be correct with respect to
monotonic reads. The fragment consisting of all the writes and the strong reads
should be correct with respect to sequential consistency.

Session 1

A : Write(x, 5)

C : Read(x, 4,weak)

F : Read(x, 4,weak)

so

so

Session 2

G : Write(x, 4)

H : Write(y, 3)

so

Session 3

I : Write(x, 6)

(a) Weak Fragment from Figure 1

Session 1

A : Write(x, 5)

B : Read(x, 5, strong)

D : Read(y, 3, strong)

E : Read(x, 6, strong)

so

so

so

Session 2

G : Write(x, 4)

H : Write(y, 3)

so

Session 3

I : Write(x, 6)

(b) Strong Fragment from Figure 1

Fig. 2: Strong and Weak fragments of the hybrid behaviour

In the example in Figure 1, the weaker fragment can be seen in Figure 2(a).
This fragment is correct with respect to monotonic reads, once the write G is
visible at session 1 to the read C, it remains visible throughout the session. The
write I is not visible to any of the other sessions yet.

The stronger fragment is represented in Figure 2(b). This is correct with re-
spect to sequential consistency, as we can assume that the order of the operations
obtained by consensus is A −→ B −→ G −→ H −→ I −→ D −→ E.

However, note that since the strong reads correspond to the level ALL where
all the replicas have seen the prior writes and have agreed on the order of the
concurrent writes, it behooves a weak read following a strong read to take into
consideration the effects seen by the earlier strong read. Thus the data-store
imposes an additional constraint that once a write is visible to a strong read in a
session, it is visible to all the subsequent weak reads in that session. This ensures
that the weaker reads do incorporate the prior results seen by the session.

With this additional constraint, we can no longer explain the read operation
F , since the effects of writes G and I are both visible at read F . The strong
consistency criteria has already guaranteed that write I has happened after
write G, thereby effectively overwriting the value 4 with the value 6. Hence this
behaviour is incorrect in the multilevel setting.

Bolt-on consistency

In [1], the authors provide a way of strengthening the consistency provided by a
weakly consistent data-store by making visible to the application the effects of
only that subset of operations that is causally complete.

6

Application Application Application

Write(strong)

Read(strong)

Write(strong)

Read(strong)

Write(strong)

Read(strong)

Bolt-on shim Bolt-on shim Bolt-on shim

Write(weak)

Read(weak)

Write(weak)

Read(weak)

Write(weak)

Read(weak)

Eventually Consistent Data Store (ECDS)

Fig. 3: Bolt-on architecture

In this framework, an application that expects a stronger consistency cri-
terion such as causal consistency, but has access to an Eventually Consistent
Data-Store (ECDS) that only offers a weak consistency guarantee such as read-
your-writes can use the services of a bolt-on shim as an intermediate, which will
upgrade the weak consistency offered by the ECDS to causal consistency. The
architecture is shown in Figure 3.

The bolt-on shim has its own local memory and a buffer. Each write made
by the application is stored by the shim in its local memory. The shim then
makes the same write on the ECDS, with some additional metadata to track
causality across operations. From time to time, the bolt-on shim reads from the
ECDS and buffers the values read. When it has read enough writes that are
causally complete, it updates the local memory with these writes. Whenever the
application reads a value, the value is returned from the local memory. Thus,
the application sees only the causally complete fragment of all the operations
seen by the shim.

As before, we model this behaviour with two kinds of reads, strong and weak.
The write made by the application to the shim, and the same write forwarded
by the shim to the ECDS are modelled as a single write operation.

In Figure 4, we have an example of a behaviour in a Bolt-On setting where
the strong consistency criterion is causal consistency and the weak consistency
criterion is monotonic reads.

Session 1

A : Read(y, 2,weak)

B : Read(x, 4,weak)

C : Read(x, 4, strong)

D : Read(x, 3,weak)

so

so

so

Session 2

E : Read(z, 4,weak)

F : Read(z, 4, strong)

G : Write(y, 2)

H : Write(x, 4)

so

so

so

Session 3

I : Write(x, 3)

J : Write(z, 4)

so

Fig. 4: An example of a Bolton history with strong and weak reads

7

Session 1

A : Read(y, 2,weak)

B : Read(x, 4,weak)

D : Read(x, 3,weak)

so

so

Session 2

E : Read(z, 4,weak)

G : Write(y, 2)

H : Write(x, 4)

so

so

Session 3

I : Write(x, 3)

J : Write(z, 4)

so

(a) Weak Fragment of Bolt-on history from
Fig. 4

Session 1

C : Read(x, 4, strong)

Session 2

F : Read(z, 4, strong)

G : Write(y, 2)

H : Write(x, 4)

so

so

Session 3

I : Write(x, 3)

J : Write(z, 4)

so

(b) Strong Fragment of Bolt-on history
from Fig. 4

Fig. 5: Weak and strong fragments of Bolt-on

The fragment containing all the write operations and the weak reads is termed
the weak fragment (Figure 5(a)). This fragment is correct with respect to mono-
tonic reads, since the only remote write visible to Session 2, is the write J , whose
effects continue to remain visible throughout the session. In case of Session 1,
the effect of the write G is visible to A, and that of H is visible from the read B
onwards. At the read D, both the writes H and I are visible. Since the writes
H and I are concurrent, we can imagine that the data-store has arbitrated H
before I in the weak arbitration order, thus justifying the correctness of this
behaviour with respect to monotonic reads.

The strong fragment from Figure 5(b) is correct with respect to causal consis-
tency as we can assume that the operations have been performed in the following
order: I −→ J −→ F −→ G −→ H −→ C.

In case of bolt-on consistency, the additional constraint requires that the set
of writes visible to a strong-read be a subset of the set of writes visible to prior
weaker reads in the session. This is because the shim is only supposed to make
visible the causally complete fragment to the application through strong reads.

In the presence of this bolt-on constraint, in the example in Figure 4, since
writes G, H, I and J are visible to strong read C by the requirement of causal
consistency, the bolt-on constraint will insist that these writes be visible to
the weaker reads in Session 1 prior to C. Further since the weaker consistency
criterion is monotonic reads, no matter which prior weak read operation these
reads were first visible to, they will all be visible at read B.

Thus, since both the writes H : Write(x, 4) and I : Write(x, 3) are visible at
B, and the return value of the read at B is 4, it has to be the case that the
eventually consistent database has arbitrated I before H. Owing to monotonic
reads, the effects of both H and I are again visible to the read D. Since I has
been arbitrated before H, the read at D should have returned 4. However, from
the history the weak read at D returns 3, which is incorrect.

In both the cases of multilevel consistency that we have considered in this
section, we can see that the presence of another consistency criterion can impose
additional constraints on the choice of the visibility and arbitration relations
chosen to explain the correctness of the history. In the next section, we will

8

provide the formal framework for modelling behaviours of read-write data-stores
with multiple consistency levels.

3 Formalizing Multilevel Consistency

We now provide the formal definitions for modeling the behaviours of read-write
stores. These definitions are extensions of the formal framework provided in [5].

Each operation submitted to the data-store by the application is either a
Read or a Write operation with the following signature:

– Write(x, val) : Updates the content of the memory location addressed by the
key/variable x, with the value val .

– Read(x, val , level) : The content of the memory location whose key is x, is
val with respect to the consistency level level .

.

We denote the set of all variables in the read-write store by Vars and the set
of all values forming the contents of the read-write store by the set of natural
numbers N. We assume that the initial value of all the variables is 0. Let N+

denote the set N \ {0}.
For simplicity, we assume only two consistency levels {strong,weak}.
If o is an instance of an operation performed by the application on the read-

write store, then

– Op(o) ∈ {Read,Write} indicates whether the operation o is a Read or a Write
operation.

– Var(o) ∈ Vars denotes the variable on which the Read/Write operation is
being performed.

– Args(o) ∈ N+ ∪ {Nil} denotes the arguments passed to the operation invo-
cation. Args(o) = Nil iff Op(o) = Read and Args(o) ∈ N+ iff Op(o) = Write.

– Ret(o) ∈ N ∪ {Nil} denotes the return value obtained as a part of the
operation response. Ret(o) = Nil iff Op(o) = Write and Ret(o) ∈ N iff
Op(o) = Read.

– If Op(o) = Read then, Level(o) ∈ {strong,weak} denotes the level of the read
operation.

The behaviour of the read-write data-store as observed by the application
is the sequence of reads and writes that it performs on the stores. This related
sequence of read and write operation performed by the application is termed
a session. Thus the behaviour of the read-write store seen by each session is a
total order of read/write operations performed in that session.

The behaviour of the read-write store is the collection of behaviours seen by
all the sessions. In Figure 1 we can see the behaviour of the data-store as observed
by the three sessions accessing the data-store. We will call this behaviour a hybrid
history, formally defined as follows:

9

Definition 1 (Hybrid History) A hybrid history of a read-write store is the
tuple H = (O, so) where O is the set of read-write operations and so is a collection
of total orders where each total order is a session-order.

For a history H, we define the following subsets of O.

– ORead = {o ∈ O | Op(o) = Read} is the set of read operations.
– OWrite = {o ∈ O | Op(o) = Write} is the set of write operations.
– Oweak = OWrite ∪ {o ∈ O | Level(o) = weak} is the set of weak operations.
– Ostrong = OWrite∪{o ∈ O | Level(o) = strong} is the set of strong operations.

The weak fragment of the history H is denoted Hweak and defined to be
(Oweak, so|Oweak

). Similarly the strong fragment of the history H is denoted Hstrong

and is defined to be (Ostrong, so|Ostrong). When we say a well-defined fragment of
the history H, we refer to either H,Hweak or Hstrong.

Note that we take the write operations to be part of both the strong and weak
fragments.

If X,Y ⊆ O × O then, we use the following notations to define some well-
defined binary relations over O involving X,Y .

– For op ∈ {Read,Write}, (X)op = X ∩ (Oop ×Oop)
– For ` ∈ {weak, strong}, (X)` = X ∩ (O` ×O`)
– X;Y denotes the relation obtained by composition of X and Y defined as
X;Y = {(x, y) | ∃z : (x, z) ∈ X ∧ (z, y) ∈ Y }.

– Finally total(X) indicates that the relation X is a total order.

Now, when a replica of the read-write store receives operations from the
applications it decides how the effects of the older operations known to the
replica, either by the virtue of having received them from applications, or from
other replicas of the data-store, should be made visible to the new operation.
This is abstracted by a visibility relation over the history, which defines for every
operation in the history, which other operations of the history are visible to it.

Definition 2 (Visibility Relation) A visibility relation vis over a history H =

(O, so) is an acyclic relation over O. For o, o′ ∈ O, we write o
vis−→ o′ to indicate

that the effects of the operation o are visible to the operation o′.
If a pair of operations o, o′ are not related by vis, we term them concurrent

operations, denoted by o||viso′.
We define the View of an operation o, denoted by Viewvis(o) to be the set of

all the Write operations visible to it.

For the history in Figure 1, we can define a visibility relation to be

{A vis−→ B,G
vis−→ C,G

vis−→ D,H
vis−→ D,G

vis−→ E,H
vis−→ E, I

vis−→ E,G
vis−→ F}

When the replicas communicate with each other, they need to reconcile the
effects of concurrent write operations in order to converge to the same state even-
tually. In case of convergent data-stores this is done using some technique such

10

as Last Writer Wins which totally orders all write operations. This is abstracted
by an arbitration relation, which is a total order over all write operations in the
history. We will denote by arb the arbitration relation. We assume that the ar-
bitration relation is consistent with the visibility relation, in the sense that for
a pair of writes o and o′, if o is visible to o′ then o is arbitrated before o′.

Definition 3 (Arbitration Relation) An arbitration relation arb over a hy-
brid history H = (O, so) is a total order over OWrite. For oi, oj ∈ O, we say

oi
arb−−→ oj to indicate that operation oi has been arbitrated before the operation

operation oj.

For the history in Figure 1 the arbitration relation can be the total order
defined by:

A
arb−−→ G

arb−−→ H
arb−−→ I

The consistency criteria enforce some constraints over the choice of the visi-
bility and arbitration relations. These constraints are defined in terms of axioms.
We shall define these axioms using a grammar adapted from [8].

Definition 4 (Grammar for Consistency Criteria) Consistency criteria are
given by the set Φc generated by the following grammar:

– τ ∈ RelTerms := so | vis | τ ; τ
– β ∈ Φvis := > | total(vis) | τ ⊆ vis | β ∧ β
– γ ∈ Φarb := > | (vis)Write ⊆ arb

– α ∈ Φc := β ∧ γ

For α = β ∧ γ ∈ Φc, we define VisForm(α) and ArbForm(α) to be β and γ,
respectively. RelTerms(α) = {τ ∈ RelTerms | τ ⊆ vis is a subformula of α}.

We define VisBasic(α) to be the maximal fragment of α containing only
subformulas of the type τ ⊆ vis. Thus,

VisBasic(α) =
∧

τ∈RelTerms(α)

τ ⊆ vis

In general, each of so, vis and arb are variables to be substituted by some
binary relation over the set of operations in the history.

Suppose H = (O, so) is a history, X,Y, Z ⊆ O ×O are binary relations over
the set of operations, and α ∈ axioms. We say that X,Y, Z |= α iff α[so :=
X, vis := Y, arb := Z] is true.

We now define a consistency criterion in terms of the grammar.

Definition 5 (Consistency Criterion in a history) Suppose H` = (O`, so`)
is a well defined fragment of a hybrid history, and vis` and arb are respectively
the visibility and arbitration relations defined over H. A consistency criteria is
a formula α ∈ Φc. We say that H`, vis`, arb |= α when so`, vis`, arb |= α.

Some well known consistency criteria are given below:

11

– Basic Eventual Consistency(BEC)

BEC := >

– Read Your Writes (RYW)

RYW := so ⊆ vis ∧ (vis)Write ⊆ arb

– Monotonic Reads (MR)

MR := vis; so ⊆ vis ∧ (vis)Write ⊆ arb

– Monotonic Read Writes (MW)

MW := so; vis ⊆ vis ∧ (vis)Write ⊆ arb

– Strong Eventual Consistency (SEC)

SEC := so ⊆ vis ∧ vis; so ⊆ vis

– FIFO Consistency (FIFO)

FIFO := so ⊆ vis ∧ vis; so ⊆ vis ∧ so; vis ⊆ vis ∧ (vis)Write ⊆ arb

– Causal Consistency (CC)

CC := so ⊆ vis ∧ vis; vis ⊆ vis ∧ (vis)Write ⊆ arb

– Sequential Consistency (SEQ)

SEQ := so ⊆ vis ∧ vis; vis ⊆ vis ∧ (vis)Write ⊆ arb ∧ total(vis)

We say that a consistency criteria α is at least as strong as another consis-
tency criteria α′ if for every history H, visibility relation vis, and arbitration
relation arb over H, if H, vis, arb |= α then H, vis, arb |= α′.

Suppose H = (O, so) is a history with fragments Hweak and Hstrong. Let αw

and αs respectively be the weak and strong consistency criteria. Then we want to
choose weak and strong visibility relations visw , viss respectively and arbitration
relations arb such that Hweak, visw , arb |= αw and Hstrong, viss , arb |= αs .

As we had noted in the previous section, in a multilevel setting, it is not
sufficient to separately satisfy the axioms corresponding to the weak and strong
consistency criteria. We now define the multilevel visibility constraints as a con-
junction of formulas.

Definition 6 (Multilevel Constaints) The set of multilevel constraints Φmultilevel

is a finite conjunction φ = ψ1 ∧ · · · ∧ ψn, where each ψi is one of the following
formulas:

– ψext
strong := (visweak; so)strong ⊆ visstrong

– ψext
weak := (visstrong; so)weak ⊆ visweak

12

– ψrest
strong := (visstrong) ⊆ (visweak; so)strong

– ψrest
weak := visweak ⊆ (visstrong; so)weak

– ψmr
strong := (visstrong; so)strong ⊆ visstrong

– ψmr
weak := (visweak; so)weak ⊆ visweak

Suppose H = (O, so) is a history and X,Y, Y ′ ⊆ O ×O are binary relations
over the set of operations and φ is a multilevel visibility constraint. We say
that X,Y, Y ′ |= φ iff φ[so := X, visweak := Y, visstrong := Y ′] is true. if φ =
ψ1 ∧ ψ2 · · · ∧ ψn we say that each ψi is a subformula of φ.

The formula ψext
strong denotes strong-extension and it insists that the strong

operations see the effects seen by the prior weak operations in the session. Simi-
larly, the formula ψext

weak denoting weak-extension insists that the weak operations
see the effects seen by the prior strong operations in the session. These two guar-
antee that the effect seen by reads of one consistency level remain monotonically
visible to the subsequent reads of another consistency level. The formula ψrest

strong

denoting strong-restriction insists that the effects visible to any strong operation
is only the subset of the effects visible to the prior weak operations. Similarly,
ψrest
weak denoting weak-restriction makes sure that the effects visible to any weak

operation is only the subset of the effects visible to the prior strong operations.
Finally the formulas ψmr

strong (resp. ψmr
weak) denoting strong-monotonic-reads (resp.

weak-monotonic-reads) make sure that the effects visible to the prior strong (resp.
weak) operations remain visible to strong (resp. weak) operations later on in that
session.

We say that the multilevel constraint φ is well-defined if:

– If ψrest
strong is a subformula of φ then ψmr

weak is also a subformula of φ.
– If ψrest

weak is a subformula of φ then ψmr
strong is also a subformula of φ.

We say that a hybrid historyH = (O, so) along with weak and strong visibility
relations visw and viss satisfies multilevel constraint φ, written as H, visw , viss |=
φ iff so, visw , viss |= φ.

Now Cassandra’s multilevel consistency from the example in the prior section
required that the weaker reads should see effects seen by the prior strong reads.
This can be modelled by the formula ψext

weak .
The multilevel consistency expected by the Incremental Consistency Guaran-

tees (ICG) library from [12] requires that the weak reads see the effects of prior
strong reads and the strong reads see the effects seen by prior weak reads. This
can be modelled as the formula ψext

weak ∧ψext
strong . Finally the Bolt-On consistency

from [1] requires that the strong reads only see a subset of the effects seen by
the prior weak reads. This can be modelled as ψrest

strong ∧ ψmr
weak .

In order to explain the correctness of a Hybrid history, we need to define
correctness in terms of the specification of read-write stores.

Let H be a well defined fragment of a hybrid history. Let vis and arb be
visibility and arbitration relations over H.

We say that a write operation o′ is a related-write of a read operation o
iff o′ is in the view of o and both o and o′ operate on the same variable. The

13

set of all related writes of o, denoted as RelWritesvis(o) is defined to be {o′ ∈
Viewvis(o) | Var(o) = Var(o′)}.

The maximal among these related writes with respect to the visibility relation
vis is denoted by MaxRelWritesvis(o), defined to be the set

{o′ ∈ RelWritesvis(o) | ∀o′′ ∈ RelWritesvis(o) : o′′
vis−→ o′ ∨ o′′||viso′}

The effective write of a read-operation o, denoted by EffWritearb
vis (o) is defined

to be the maximum write operation from the set of maximal related writes of o
arbitrated as per the arbitration relation.

EffWritearb
vis (o) =

{
max (arb|MaxRelWritesvis(o)) if MaxRelWritesvis(o) 6= ∅
⊥ otherwise

Definition 7 (Correctness with respect to Read-Write Specification) A
well defined fragment H = (O, so) of a hybrid history with visibility relations vis
and arb defined over it is said to be correct with respect to the read-write speci-
fication iff for every read operation o in O

– EffWritearb
vis (o) = ⊥ iff Ret(o) = 0

– If o′ = EffWritearb
vis (o) then Ret(o) = Args(o′).

We write H, vis, arb |= SpecRW to indicate that the fragment H along with
visibility relation vis and arbitration relation arb is correct with respect to the
Read-Write Specification.

We now formally define when a Hybrid History is deemed to be correct.

Definition 8 (Multilevel Correctness of Hybrid History) A Hybrid His-
tory H = (O, so) of a Read-Write store with is said to be multilevel correct with
respect to a weak consistency criterion αw , strong consistency criterion αs and
multilevel consistency constraint φ, iff there exists visibility relations visw and
viss over Hweak and Hstrong respectively and arbitration relation arb such that

– Hweak, visw , arb |= αw ,SpecRW
– Hstrong, viss , arb |= αs ,SpecRW
– H, visw , viss |= φ.

4 Testing Multilevel Correctness of a Hybrid History

Given a read-write hybrid history H = (O, so) whose multi-level correctness we
want to test with respect to weak and strong consistency criteria αw = βw ∧ γw
and αs = βs ∧ γs and multilevel constraints given by φ.

We note that for the history to be correct for every non-initial read oper-
ation there should exist a write operation writing the exact same value to the
variable read by the read operation. Suppose we term this relation as the reads-
from relation associating a write operation to the read who reads its effect.

14

Our strategy for testing the multilevel correctness of H would be to enumer-
ate all such reads-from relation rf, for each of which we find visibility relations
visweak and visstrong respectively containing rfweak and rfstrong such that they sat-
isfy the visibility constraints imposed by the individual consistency criteria as
well as the multilevel constraints, i.e Hweak, visweak |= βw , Hstrong, visstrong |= βs
and H, visweak, visstrong |= φ. We then check for the presence of a finite number of
bad-patterns in these visibility relations. If any of the bad-patterns exist, the it
implies that for every arbitration relation arb, either the arbitration constraints
γw or γs is not satisfied, or one of the fragments fails to satisfy the correctness
with respect to the read-write specification SpecRW.

We repeat this for all possible reads-from relations for the history. If the His-
tory is multi-level correct, then we will find a witness reads-from relation rf and
visibility relations visweak and visstrong extending it such that all the constraints
are satisfied and has no bad-patterns. Otherwise, every pair of weak and strong
visibility relation extending every reads-from relation has some bad-pattern.

We will first present the bad-pattern characterization for multilevel correct-
ness of a hybrid history in the next subsection. In the subsection 4.2 we provide
a procedure for computing the minimal visibility relations visweak and visstrong for
a given reads-from relation rf that satisfies βw , βs and φ.

4.1 Bad Pattern characterization for multilevel correctness

We now present a characterization for the correctness of Hybrid Histories based
on the non-existence of certain bad patterns. This is a generalization of the
Bad-Pattern characterization presented for causal consistency in [3].

Given a hybrid history, we can associate each Read with a unique write
operation from the history whose effect the Read operation reads from. We call
this the Reads-From relation.

Definition 9 (Reads-From) A reads-from relation rf over a history H = (O, so)
is a binary relation such that

1. (oi, oj) ∈ rf =⇒ Op(oi) = Write,Op(oj) = Read,Var(oi) = Var(oj),Args(oi) =
Ret(oj)

2. (oi, oj) ∈ rf ∧ (ok, oj) ∈ rf =⇒ oi = ok.
3. ∀oi : (oi, oj) 6∈ rf =⇒ ∀ok : Op(ok) = Read ∨ Var(ok) 6= Var(oj) ∨

Args(ok) 6= Ret(oj)

Condition 1 associates a read operation with a write operation only if they
operate on the same variable and that the return value of the read operation
matches the argument of the write operation.

Condition 2 ensures that a read operation is associated with at most one
write operation.

Finally Condition 3 insists that if a read-operation doesn’t have a matching
write operation, it is only because there is no such matching write operation in
the hybrid history.

15

Let rf be a reads-from relation on a Hybrid History H = (O, so). For a Read
operation o ∈ O, if there exists a Write operation o′ such that (o′, o) ∈ rf , then
we say that rf−1(o) = o′. Suppose no such o′ exists, then we set rf−1(o) = ⊥.

Further, we denote by rfweak and rfstrong the reads-from relation restricted to
Hweak and Hstrong respectively.

Suppose rf` is a reads-from relation over the well-defined fragment H`. We
say that a visiblity relation vis` over H` extends rf` iff rf` ⊆ vis`. Suppose arb is
an arbitration relation over H`. Then, we say that (vis`, arb) realize rf` iff for all
read operations o ∈ O`, rf−1(o) = EffWritearb

vis`(o).
Given a reads-from relation and a visibility relation that extends it, we can

define a conflict relation that orders all the remaining maximal related writes of a
read behind the write that the read reads-from. The conflict relation captures the
essence of the arbitration relation for a given reads-from relation and a visibility
relation extending it.

Definition 10 (Conflict Relation) Let H` = (O`, so`) be a well-defined frag-
ment of a hybrid history. Let rf` be a reads-from relation over H`. Let vis` be a
visiblity relation over H` that extends rf`. We define the conflict relation for rf`
and vis`, denoted CF(rf`, vis`), as the set

{(o′′, o′) | ∃o ∈ O` : Op(o) = Read∧o′′, o′ ∈ MaxRelWritesvis(o)∧o′ = rf−1(o)}.

We shall define the bad patterns that characterize the correctness of the
hybrid history.

Definition 11 (Bad Patterns for a hybrid history) Let H = (O, so) be a
hybrid history with weak and strong consistency criteria αw = βw ∧ γw and
αs = βs ∧ γs respectively and multilevel constraints φ. Let rf be a reads-from
relation over H. Let visweak and visstrong be the weak and strong visibility re-
lations extending rfweak and rfstrong respectively, such that Hweak, visweak |= βw ,
Hstrong, visstrong |= βs and H, visweak, visstrong |= φ. We define the following bad
patterns

– BADVISIBILITY :
∨

`∈{weak,strong}
Cyclic(vis`)

– THINAIR : ∃o ∈ O : Op(o) = Read ∧ Ret(o) 6= 0 ∧ rf−1(o) = ⊥
– BADINITREAD:∨

`∈{weak,strong}

∃o ∈ O : Op(o) = Read∧Level(o) = `∧Ret(o) = 0∧RelWritesvis`(o) 6= ∅

– BADREAD:∨
`∈{weak,strong}

∃o ∈ O : Op(o) = Read∧Level(o) = `∧rf−1(o) 6∈ MaxRelWritesvis`(o)

– BADARB:
Cyclic(

⋃
`∈{weak,strong}

(CF(rf`, vis`) ∪ (vis`)Write))

16

BADVISIBILITY says that one of the visibility relations has a cycle.
THINAIR says that there exists a read in the history which reads a non-initial

value which is not written to by any write operation in the hybrid history.
BADINITREAD says that there is a read operation on a variable which reads

the initial value despite having non-initial write to that variable in its view.
BADREAD says that the write operation from which the read-operation reads

is not a maximal write, and there are other writes in the view of the read
operation that would have overwritten the value written by that write.

BADARB says that the union of the conflict relations along visibility relation
restricted to only the Write operations has a cycle hinting that the arbitration
relation might have a cycle, and hence is not a total order.

We will now provide a result characterizing multi-level correctness of a hy-
brid history in terms of non-existence of these bad patterns. We prove this in
Appendix A.

Theorem 12 (bad patterns characterization). A hybrid history H = (O, so)
is said to be multilevel correct with respect to weak and strong consistency crite-
ria αw = βw ∧ γw and αs = βs ∧ γs and multilevel constraint φ iff there exists
a reads-from relation rf and visibility relations visweak and visstrong that extend
rfweak and rfstrong respectively such that Hweak, visweak |= βw , Hstrong, visstrong |= βs
and H, visweak, visstrong |= φ and no bad pattern exists in H.

4.2 Constructing Minimal Visibility Relations

Suppose H = (O, so) is a hybrid history. Let αw = βw ∧ γw , αs = βs ∧ γs
be the formulas defining the weak and strong consistency criteria, and let φ
be the formula defining the multilevel constraints. Let β′w = VisBasic(βw) and
β′s = VisBasic(βs)

We will now provide a procedure for constructing a minimal visibility relation
extending a reads-from relation that satisfies the visibility constraints from βw ,
βs and φ. The pseudo-code for the procedure is presented in Algorithm 1 and 2.

In Algorithm 1, we use the notation o′
so(1)−−−→
`

o to mean that o′ is the nearest

operation with level ` preceding o in its session. Thus o′
so(1)−−−→
`

o iff the following

conditions hold:

– o′
so−→ o,

– Level(o′) = `, and

– ∀o′′ : o′′
so−→ o ∧ Level(o′′) = ` =⇒ o′′ = o′ ∨ o′′ so−→ o′

so−→ o.

In Lines 1-12 we have a method BuildMinVisSingle that takes as input a visi-
blity relation vis` for a well defined fragment of history (O`, so`) and constructs
an extension visnew that satisfies the formula VisBasic(α`). We achieve this by
iterating over the RelTerms appearing in RelTerms(α`) (Line 6) and extending
the previous visibility relation visprev with the evaluation of the term (Line 7).
We do this until we obtain a relation visnew which we can no longer extend

17

Algorithm 1 Constructing minimal visibility relations

1 BuildMinVisSingle(O`, so`, vis`, α`):
2 Let visold := vis`;
3
4 while (True):
5 Let visprev := visold;
6 for τ ∈ RelTerms(α`)):
7 visnew := visprev ∪ τ [so`, visprev];
8 visprev := visnew;
9 if (visnew == visold)

10 return visnew
11 visold := visnew
12
13
14 BuildMinVisMulti(O, so, visweak, visstrong, ψ)
15 if ψ ∈ {ψext

strong , ψ
rest
strong , ψ

mr
strong}:

16 Let ` = strong, `′ = weak;
17 else if ψ ∈ {ψext

weak , ψ
rest
weak , ψ

mr
weak}:

18 Let ` = weak, `′ = strong;
19

20 Let visold` := vis`;
21 Let visold`′ := vis`′ ;
22
23 if ψ ∈ {ψext

strong , ψ
ext
weak}:

24 Let visnew` := visold` ∪ (visold`′ ; so)`;

25 Let visnew`′ := visold`′ ;
26 else if ψ ∈ {ψmr

strong , ψ
mr
weak}:

27 Let visnew` := visold` ∪ (visold` ; so)`;

28 Let visnew`′ := visold`′ ;
29 else if ψ ∈ {ψrest

strong , ψ
rest
weak}:

30 Let UnaccountedWrites := visold` \ visold`′ ; so;

31 Let NearestPriorOther := {(o, o′) | o ∈ O` and o′
so(1)−−−→
`′

(o)}
32 visnew`′ := visold`′ ∪ UnaccountedWrites;NearestPriorOther
33 visnew` := visold`

34
35 if ψ ∈ {ψext

weak , ψ
rest
weak , ψ

mr
weak}:

36 return (visnew` , visnew`′)
37 else if ψ ∈ {ψext

strong , ψ
rest
strong , ψ

mr
weak}:

38 return (visnew`′ , vis
new
`)

39
40
41 ComputeVisSet(O`, so`, vis`, α`)
42 if total(vis) is a subformula in α`:
43 visSet` := {totvis|totvis is a total order over O` such that vis` ⊆ totvis}
44 else :
45 visSet` := {vis`}
46
47 return visSet`
48

18

(Line 9). This final visibility relation visnew extends vis` and satisfies the formula
VisBasic(α`).

In Lines 14-39, we have the procedure BuildMinVisMulti which takes as inputs
the hybrid history (O, so), visibility relations visweak and visstrong and an individ-
ual conjunct ψ appearing in φ. Note that the multilevel constraints relates the
write operations visible to the operations of level ` in terms of the writes seen
by operations of level `′ that have occured previously in the session. Depending
on the conjunct ψ, we set ` and `′ appropriately(Lines 15-18). If ψ is either
ψext
strong or ψext

weak then, we extend the visibility relation for level ` by relating
each `-operation to the Writes that have been seen by any of the `′-operations
prior to the `-operation in its session (Line 24). The visibility relation for level
`′ remains unchanged in this case (Line 25). If ψ is either ψmr

strong or ψmr
weak ,

we just ensure that the visibility relation at level ` satisfies monotonic reads
(Lines 26-28). On the other hand, if ψ is either ψrest

strong or ψrest
weak , then, we need

to ensure that any Writes visible to a `- operation is visible to some previous `′-
operation in its session. Now, since in a well-defined φ the presence of ψrest

strong

(resp. ψrest
weak) also implies the presence of the conjunct ψmr

weak (resp. ψmr
strong), it

means that any write visible to any `′-operation is visible to all the subsequent
`′-operations in its session. Thus, any Write visible to a `-operation should be
visible to its nearest preceding `′-operation in its session. We first compute the
unaccounted Writes seen by `-operations that haven’t been seen by any of the
prior `′- operations (Line 30). We then compute the nearest `′- predecessor for
each `-operation (Line 31). We then extend the visibility relation for `′ by relat-
ing these unaccounted writes seen by each of of each `-operation to the nearest
preceding `′-operation in its session(Line 32). In this case the visibility relation
for ` remains unchanged (Line 33). We return these extended visibility rela-
tions as a pair, where the weak visibility extension is followed by strong visiblity
extension (Lines 35-38).

In Lines 49-67 we have the procedure ComputeStableExtension which takes
history (O, so) a pair of visibility relations visweak and visstrong and extends it to
visnewweak and visnewstrong such that they individually satisfy VisBasic(αw) (Line 55)
and VisBasic(αs) (Line 57) respectively and jointly satisfy φ (Lines 59-62). We
repeat this till we can extend these relations no longer, which implies that they
have satisfied all the constraints (Lines 64-65).

The procedure TestMultiLevelCorrectness in Lines 79-96 takes as input a hy-
brid history H = (O, so) whose multilevel correctness we want to check with
respect to formulas αw , αs and φ.

We first check if the History has a bad-pattern for multilevel constraint
ψrest
strong (resp. ψrest

weak) where we have a strong-Read (resp. strong-Read) which
returns a non-initial value, but has no prior weak (resp. strong) operations in its
session (Lines 80-81, 69-77).

We first enumerate the set of possible reads-from relations on the history
(line 82). We then iterate through each of the Reads-from relations rf to see
whether it can be extended to construct a minimal visibility relation satisfying
all the constraints and having no bad-patterns (Lines 83-94). For each rf, we con-

19

Algorithm 2 Testing multilevel correctness of a hybrid history

49 ComputeStableExtension(O, so, visweak, visstrong, αw , αs , φ):

50 Let visoldweak := visweak, vis
old
strong := visstrong

51
52 while (True):
53 Let visprevweak := visoldweak, vis

prev
strong := visoldstrong

54
55 Let visnewweak := BuildMinVisSingle(Oweak, soweak, vis

prev
weak, αw);

56
57 Let visnewstrong := BuildMinVisSingle(Ostrong, sostrong, vis

prev
strong, αs);

58
59 for each subformula ψi in the conjunction φ:
60 visprevweak := visnewweak, vis

prev
strong := visnewstrong

61
62 (visnewweak, vis

new
strong) = BuildMinVisMulti(O, so, visprevweak, vis

prev
strong, ψi)

63

64 if visnewweak = visoldweak and visnewstrong = visoldstrong:
65 return (visnewweak, vis

new
strong)

66

67 visoldweak := visnewweak, vis
old
strong := visnewstrong

68
69 CheckBadRestrictionHistory(O, so, φ):
70 if ψrest

strong is a formula in the conjunction φ:

71 if ∃o ∈ Ostrong : Op(o) = Read and Ret(o) 6= 0 and
so(1)−−−→
weak

(o) = ⊥:

72 return BadPatterns
73 if ψrest

weak is a formula in the conjunction φ:

74 if ∃o ∈ Oweak : Op(o) = Read and Ret(o) 6= 0 and
so(1)−−−→
strong

(o) = ⊥:

75 return BadPatterns
76
77 return NoBadPatterns
78
79 TestMultiLevelCorrectness(O, so, αw , αs , φ):
80 if CheckBadRestrictionHistory(O, so, φ) = BadPatterns:
81 return BadHistory
82 Let rfSet := {rf|rf is a reads-from relation over (O, so)}
83 for rf ∈ rfSet:
84 Let vismin

weak := BuildMinVisSingle(Oweak, soweak, rfweak, αw);
85 Let visSetweak = ComputeVisSet(Oweak, soweak, vis

min
weak, αw);

86
87 Let vismin

strong := BuildMinVisSingle(Oweak, sostrong, rfstrong, αs);
88 Let visSetstrong = ComputeVisSet(Ostrong, sostrong, vis

min
strong, αs);

89
90 for visweak ∈ visSetweak, visstrong ∈ visSetstrong:
91 Let (visstableweak , vis

stable
strong) := ComputeStableExtension(O, so, visweak, visstrong,

αw , αs , φ);
92

93 if CheckBadPatterns(O, so, rf, visstableweak , vis
stable
strong) = NoBadPatterns:

94 return (rf, visstableweak , vis
stable
strong)

95
96 return BadHistory 20

struct minimal visibility relations vismin
weak and vismin

strong′ extending rfweak and rfstrong′
respectively and satisfying the subformulas VisBasic(αw) and VisBasic(αs) re-
spectively (Lines 84,87).

If αw (resp. αs) contains the subformula total(vis) , we enumerate the set
of all the total orders extending vismin

weak (resp. vismin
strong) in the set visSetweak (resp.

visSetstrong) in Line 85 (resp. Line 88). If αw (resp. Cstrong) does not contain
the subformula total(vis), then, visSetweak (resp. visSetstrong) will contain the
only minimum visibility relation extending rfweak (resp. rfstrong) , i.e vismin

weak (resp.
vismin

strong.).
For each pair of visibility relations from visSetweak and visSetstrong we compute

their stable extensions visstableweak and visstablestrong which individually satisfy VisBasic(αw)
and VisBasic(αs), respectively, and jointly satisfy φ (line 91). We then check if
this computed extension has a bad pattern (Line 93). If no bad patterns are
found, we return the (rf, visweak, visstrong) as the witness.

If none of the rf can be extended to obtain the required visibility relation,
we declare that the history is a bad history.

Theorem 13 (Correctness of TestMultiLevelCorrectness procedure). For a
hybrid read-write history H = (O, so) with weak and strong consistency crite-
ria αw and αs respectively and multilevel constraints given by φ, the procedure
TestMultiLevelCorrectness returns a witness (rf, visweak, visstrong) over H iff H is
multi-level correct with respect to αw , αs and φ

Proof. In Appendix B.

4.3 Complexity

Suppose H = (O, so) is history with |O| = N .
We note that in the procedure ComputeStableExtension, at the end of every

iteration of the outer while-loop, the values of visnewweak and visnewstrong monotonically
increase from the end of the previous iteration. Since they are binary relations
over finite history H = (O, so) their size is upper bounded by O(N2). The time
taken to evaluate each term in RelTerms(α`) is again polynomial in N . Hence,
the time-complexity of ComputeStableExtension is polynomial in N , say f(N).

We can observe from the procedure TestMultiLevelCorrectness that the main
part that adds to the complexity is iterating through all the Reads-from relation
and the total orders if αw or αs contain the totalvis subformula. Suppose the
number of read operations are k. Then the number of write operations is N − k,
and there are O((N − k)k)-many reads-from relations. Since k = O(N), this
can be bound by O(2N logN). Furthermore, for a given rf, if any of the levels
` ∈ {weak, strong} require that the visibility relation be a total order, then
we iterate over all the total-orders containing the minimal visibility relation
extending rf. Iterating through this requires time bounded by O(2N logN). Thus
the worst case time complexity of the procedure is O(f(N).2N logN).

In general, the problem of testing the correctness of a hybrid history is in NP.
We need to guess the reads-from relation, and then, extend it to obtain the min-
imal visibility relations satisfying the visibility constraints of the weak and the

21

strong consistency criteria. If the visibility relation is required to be a total order,
we can guess the order. Extending this to derive a fixed-point minimal visibil-
ity relations that satisfy all the visibility constraints via ComputeStableExtension
requires polynomial time. Subsequently checking for each of the Bad-Patterns
requires polynomial time.

Note that we can reduce the testing of the correctness of a non-hybrid regular
history with respect to consistency criteria α to this procedure by defining the
level of all the read operations to strong. We set αs to α, αw to >, and φ
to ψext

strong . For any reads-from relation rf, rfweak = ∅. Thus visweak = ∅, trivially
satisfying αw as well as ψext

strong . Thus, the lower bound for testing the correctness
of the hybrid history is the complexity of testing the correctness of the component
individual history fragments with respect to their respective consistency criteria.
It has been shown in [9] that testing the correctness of a read-write history
with respect to Sequential consistency is NP-COMPLETE. In [3], the authors use
the same reduction to show that testing the correctness with respect to Causal
Consistency is NP-COMPLETE. However, it can be shown that the reduction
works for any consistency criteria stronger than FIFO consistency, and checking
correctness with respect to such a consistency criteria is NP-COMPLETE. Thus,
in general the problem of testing the Multi-level correctness of a Hybrid History
is a hard-problem, but the hardness comes not due to the multilevel constraints
but due to the constraints of the individual consistency criteria and the read-
write specification.

In [3], the authors identify a class of read-write data-stores called data-
independent data-stores whose behaviour is not dependent on the exact values
written to the keys of the store. Thus, for these stores, if there is a bad history,
there is an equivalent bad differentiated history where a particular value is writ-
ten to a particular memory location at most once.Thus, for such data-stores, we
can restrict our testing to only the correctness of differentiated histories. The au-
thors show that the problem of testing the correctness of differentiated-histories
with respect to Causal Consistency is solvable in Polynomial time.

Note that for differentiated histories, there is exactly one Reads-From relation
which associates every Read operation with atmost one Write operation which
has written that value to the memory location read by the Read operation. Thus,
if neither of αw or αs contain total(vis) subformula, then, we can see that the
procedure TestMultiLevelCorrectness terminates in polynomial time. Thus, our
procedure generalizes the result from [3] to all the consistency criteria defined
by the grammar, which don’t require the visibility relation to be a total order.
Moreover, our procedure checks the multi-level correctness of hybrid histories
where the individual consistency levels don’t require the visibility relation to be
a total order, in polynomial time.

On the other hand, if one of αw or αs contains total(vis), then the worst
case complexity remains O(2N logN). Once again, this does not come as a sur-
prise, since the problem of testing the correctness of a differentiated history
with respect to sequential consistency is not known to have a polynomial time
solution.

22

5 Related Work

There is prior work in the literature that illustrate the need for multiple lev-
els of consistency provided by the distributed data-stores to provide a trade off
between consistency and availability/latency [1, 12, 13, 15]. The work by Kraska
et al. [13] provides a transactional paradigm that allows the applications to de-
fine the consistency level on the data instead of the transaction, and also allows
the application to switch consistency guarantees at runtime. In the work by
Guerraoui et al. [12], the authors provide a generic library that allows the appli-
cations to request multiple responses to the same query, where the response that
comes later in time is more-correct than the prior responses. Thus the subse-
quent responses are supposed to have more knowledge of the state of the system
compared to the prior responses. In our work, we have defined multilevel con-
straints, which will model the requirement of incremental consistency guarantees
by requiring that subsequent strong responses see the effects observed the prior
weak responses.

Burckhardt in his book [5] provides a generic way for formalizing the specifi-
cation of distributed data-stores in terms of histories, visibility and arbitration
orders and provides an axiomatic characterization for consistency criteria. In
our work, we have derived the specification for read-write stores based on the
formalism in this book and have following the axiomatic characterization for the
consistency criteria. We have provided a grammar that will generate the con-
sistency criteria as a conjunction of individual axioms. Our work extends [5] in
terms of the definition of Hybrid Histories and provides a definition of multi-level
correctness for read-write stores.

There is prior work on verifying the correctness of a behaviour with respect
to individual consistency criteria. Example include [4] which deals with verifying
the correctness with respect to eventual consistency, [2] which investigates the
feasibility of checking concurrent implementation with respect to consistency
criteria that has a sequential specification, including sequential consistency, lin-
earizability and conflict-serializability and [3] which focusses on correctness with
respect to Causal Consistency. Our work provides a generic procedure for check-
ing the correctness of read-write histories for all these individual consistency cri-
teria. Further, [3] show that verification of correctness of a history with respect
to Causal Consistency is NP-Complete. However, for differentiated histories, the
problem is solvable in Polynomial time. In our work, we generalize the technique
of computing the minimal visibility relation and checking for the absence of bad
patterns for all the consistency criteria defined using the grammar. In [9] we have
a detailed complexity analysis of the problem of testing the correctness of a his-
tory with respect to various consistency criteria. Our findings in this paper, are
consistent with the results from [9] with respect to hardness of testing on con-
sistency criteria that require the visiblity relation to be a total order. In a recent
work [8], the authors provide a technique for testing the correctness of a history
of a data-store with respect to a weak consistency criteria. That work also char-
acterizes correctness in terms of minimal visibility relation extending the session
order (called program-order there) and the happened-before relation (called as

23

returns-before relation in [5]). Our work applies this concept to read-write stores,
where we observe that correctness with respect to visibility constraints can be
satisfied by constructing a minimal visibility relation while the correctness with
respect to read-write specifications and arbitration constraints can be reduced
to checking for absence of certain bad patterns. In particular, our characteriza-
tion of the arbitration relation in terms of the conflict relation saves the step of
searching through all possible arbitration relations which the [8] work does.

[11] deals with verification of red-blue consistency where in a history a subset
of operations are labelled as red while the remaining are labelled as blue. The
blue operations are expected to satisfy weaker consistency criteria, while the
subset of red operations are supposed to satisfy a stronger consistency criteria.
The effects of the strong operation and weak operations are visible to each other.
We can model this by setting φ = ψext

strong ∧ ψext
weak .

References

[1] Bailis, P., Ghodsi, A., Hellerstein, J.M., Stoica, I.: Bolt-on causal consistency. In:
Proceedings of the 2013 ACM SIGMOD International Conference on Management
of Data. pp. 761–772. SIGMOD ’13, ACM, New York, NY, USA (2013), http:
//doi.acm.org/10.1145/2463676.2465279

[2] Bouajjani, A., Emmi, M.: Analysis of recursively parallel programs. ACM
Trans. Program. Lang. Syst. 35(3), 10:1–10:49 (2013), https://doi.org/10.

1145/2518188
[3] Bouajjani, A., Enea, C., Guerraoui, R., Hamza, J.: On verifying causal consis-

tency. In: Proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages. pp. 626–638. POPL 2017, ACM, New York, NY, USA
(2017), http://doi.acm.org/10.1145/3009837.3009888

[4] Bouajjani, A., Enea, C., Hamza, J.: Verifying eventual consistency of optimistic
replication systems. In: The 41st Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’14, San Diego, CA, USA,
January 20-21, 2014. pp. 285–296 (2014), https://doi.org/10.1145/2535838.

2535877
[5] Burckhardt, S.: Principles of eventual consistency. Foundations and Trends

in Programming Languages 1(1-2), 1–150 (2014), https://doi.org/10.1561/

2500000011
[6] Burkhardt, S., Gotsman, A., Yang, H., Zawirski, M.: Replicated data types: spec-

ification, verification, optimality. In: The 41st Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’14, San Diego, CA,
USA, January 20-21, 2014. pp. 271–284 (2014)

[7] Damien.: DynamoDB vs Cassandra (2017 (Accessed Nov 16, 2018)), https://

www.beyondthelines.net/databases/dynamodb-vs-cassandra/
[8] Emmi, M., Enea, C.: Monitoring weak consistency. In: Computer Aided Verifica-

tion - 30th International Conference, CAV 2018, Held as Part of the Federated
Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part I.
pp. 487–506 (2018), https://doi.org/10.1007/978-3-319-96145-3_26

[9] Furbach, F., Meyer, R., Schneider, K., Senftleben, M.: Memory model-aware test-
ing - A unified complexity analysis. In: 14th International Conference on Appli-
cation of Concurrency to System Design, ACSD 2014, Tunis La Marsa, Tunisia,
June 23-27, 2014. pp. 92–101 (2014), https://doi.org/10.1109/ACSD.2014.27

24

[10] Gilbert, S., Lynch, N.A.: Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. SIGACT News 33(2), 51–59 (2002)

[11] Gotsman, A., Yang, H., Ferreira, C., Najafzadeh, M., Shapiro, M.: ’cause i’m
strong enough: reasoning about consistency choices in distributed systems. In:
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January
20 - 22, 2016. pp. 371–384 (2016), https://doi.org/10.1145/2837614.2837625

[12] Guerraoui, R., Pavlovic, M., Seredinschi, D.A.: Incremental consistency guaran-
tees for replicated objects. In: Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation. pp. 169–184. OSDI’16, USENIX
Association, Berkeley, CA, USA (2016), http://dl.acm.org/citation.cfm?id=
3026877.3026891

[13] Kraska, T., Hentschel, M., Alonso, G., Kossmann, D.: Consistency rationing in
the cloud: Pay only when it matters. PVLDB 2(1), 253–264 (2009), http://www.
vldb.org/pvldb/2/vldb09-759.pdf

[14] Lamport, L.: How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Trans. Comput. 28(9), 690–691 (Sep 1979)

[15] Li, C., Porto, D., Clement, A., Gehrke, J., Preguiça, N., Rodrigues, R.: Making
geo-replicated systems fast as possible, consistent when necessary. In: Proceedings
of the 10th USENIX Conference on Operating Systems Design and Implementa-
tion. pp. 265–278. OSDI’12, USENIX Association, Berkeley, CA, USA (2012),
http://dl.acm.org/citation.cfm?id=2387880.2387906

[16] Ozkan, B.K., Majumdar, R., Niksic, F., Befrouei, M.T., Weissenbacher, G.: Ran-
domized testing of distributed systems with probabilistic guarantees. PACMPL
2(OOPSLA), 160:1–160:28 (2018), http://doi.acm.org/10.1145/3276530

[17] Perrin, M., Mostefaoui, A., Jard, C.: Causal consistency: Beyond memory. In:
Proceedings of the 21st ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming. pp. 26:1–26:12. PPoPP ’16, ACM, New York, NY, USA
(2016)

[18] Terry, D.B., Theimer, M., Petersen, K., Demers, A.J., Spreitzer, M., Hauser, C.:
Managing update conflicts in bayou, a weakly connected replicated storage sys-
tem. In: Proceedings of the Fifteenth ACM Symposium on Operating System
Principles, SOSP 1995, Copper Mountain Resort, Colorado, USA, December 3-6,
1995. pp. 172–183 (1995), https://doi.org/10.1145/224056.224070

[19] Wolper, P.: Expressing interesting properties of programs in propositional tem-
poral logic. In: Conference Record of the Thirteenth Annual ACM Symposium
on Principles of Programming Languages, St. Petersburg Beach, Florida, USA,
January 1986. pp. 184–193 (1986), https://doi.org/10.1145/512644.512661

25

A Correctness of the Bad Patterns Charecterization

Lemma 14. If rf` is a reads-from relation over the fragment H` and (vis`, arb)
realize rf`. Then, CF(rf`, vis`) ⊆ arb.

Proof. Suppose (o′′, o′) ∈ CF(rf`, vis`). By definition, there exists a Read oper-
ation o such that both o′, o′′ are in the maximal related writes of o and o′ =
rf−1(o). Since rf is realized by (vis`, arb), by definition, rf−1(o) = EffWritearb

vis`(()o).
Hence o′ is the effective write of o.

Now by the definition, an effective write of a read operation is arbitrated
after all the remaining maximal related writes of that read operation. Thus
(o′′, o) ∈ arb.

With this, we prove the correctness of Theorem 12
Given a hybrid history H = (O, so) with weak and strong consistency criteria

defined by αw = βw ∧ γw and αs = βs ∧ γs respectively. Let the multilevel
constraints be defined by φ. We need to show that H is multilevel correct with
respect to αw , αs and φ iff there exists a reads-from relation rf and visibility
relations visweak and visstrong that extend rfweak and rfstrong respectively such that
Hweak, visweak |= βw , Hstrong, visstrong |= βs , H, visweak, visstrong |= φ and none of the
bad patterns in
{BADVISIBILITY,THINAIR,BADINITREAD,BADREAD,BADARB} exists.

Proof. (=⇒): Suppose hybrid history H is correct. Then, there exists visibilty re-
lations visweak, visstrong and arbitration relations arb such that Hweak, visweak, arb |=
αw , Hstrong, visstrong, arb |= αs and H, visweak, visstrong |= φ.

Since αw = βw ∧γw , we have Hweak, visweak |= βw and (visweak)Write ⊆ arb since
γw = γs = (vis)Write ⊆ arb. By similar reasoning we have Hstrong, visstrong |= βs
and (visstrong)Write ⊆ arb

For ` ∈ {weak, strong},we set rf` = {(EffWritearb
vis`(o), o) | o ∈ O ∧ Op(o) =

Read∧Level(o) = `}. rf = rfweak∪ rfstrong. By definition visweak extends rfweak and
visstrong extends rfstrong.

We will now show that none of the aforementioned bad patterns exists for
H, rf, visweak and visstrong.

Since H is multilevel correct, visweak and visstrong by definitions are acyclic
relations. So BADVISIBILITY bad pattern doesn’t exist.

Further, due to correctness of H, by the definition of SpecRW, for any read
operation o of level `, EffWritearb

vis`(o) = ⊥ iff Ret(o) = 0. Since for every read

rf−1(o) = EffWritearb
vis`(o), THINAIR bad pattern doesn’t exist.

Since H`, vis`, arb is correct with respect to SpecRW, for any read operation
o with level ` such that Ret(o) = 0, EffWritearb

vis`(o) = ⊥ which implies that
RelWritesvis`(o) = ∅. Hence, BADINITREAD bad pattern doesn’t exist.

For a correct history H, for any read operation o with level `, if Ret(o) 6=
0, then EffWritearb

vis`(o) ∈ MaxRelWritesvis`(o). Since EffWritearb
vis`(o) = rf−1(o),

BADREAD bad pattern doesn’t exist.
By lemma 14 for ` ∈ {weak, strong}, CF(rf`, vis`) ⊆ arb. Since arb is consistent

with both visweak and visstrong, we have (vis`)Write ⊆ arb. Hence

26

⋃
`∈{weak,strong}

(CF(rf`, vis`) ∪ (vis`)Write) ⊆ arb. By definition arb is a total order.

Thus BADARB would imply a cycle in arb which is not true. Hence BADARB
bad pattern doesn’t exist.

(⇐=): Suppose there exists a rf and visweak and visstrong such that H, visweak |=
βw and Hstrong, visstrong |= βs and H, visweak, visstrong |= φ. We will now construct
an arbitration relation arb.

Since the BADARB bad pattern doesn’t exist,
⋃

`∈{weak,strong}
(CF(rf`, vis`) ∪

(vis`)Write) is an acyclic relation. We set arb to be a topological sort of this
acyclic relation along with the Write operations from o, not appearing in this
acyclic relations. Thus arb is a total order. By construction, (vis`)Write ⊆ arb for
` ∈ {weak, strong}. Thus, Hweak, visweak, arb |= γw and Hstrong, visstrong, arb |= γs .
From this, and what is given we can conclude that Hweak, visweak, arb |= αw and
Hstrong, visstrong, arb |= αs .

We now only need to show that for each ` ∈ {weak, strong}, H`, vis`, arb |=
SpecRW.

Let o be a read operation with level `. Suppose MaxRelWritesvis`(o) =
∅. Then EffWritearb

vis`(o) = ⊥. Since rf` ⊆ vis`, rf−1` (o) = ⊥. Since THINAIR
bad pattern doesn’t exist, it has to be the case that Ret(o) = 0. Thus, if
EffWritearb

vis`(o) = ⊥ then Ret(o) = 0. Conversely, suppose Ret(o) = 0. Then,
since BADINITREAD bad pattern doesn’t exist, RelWritesvis`(o) = ∅. Thus, by
definition, EffWritearb

vis`(o) = ⊥. Thus, we can conclude that EffWritearb
vis`(o) =

⊥ ⇐⇒ Ret(o) = 0.
Suppose MaxRelWritesvis`(o) 6= ∅. Since BADINITREAD bad pattern doesn’t

exist, Ret(o) 6= 0. Further, since THINAIR badpattern doesn’t exist, rf−1` (o) 6=
⊥. Let rf−1` (o) = o′. Since BADREAD bad pattern doesn’t exist, rf−1` (o) =
o′ ∈ MaxRelWritesvis`(o). For any o′′ ∈ MaxRelWritesvis`(o) we have (o′′, o′) ∈
CF(rf`, vis`). Now, by construction of arb, we have CF(rf`, vis`) ⊆ arb.

Thus, for any o′′ ∈ MaxRelWritesvis`(o), o
′′ arb−−→ o′. Thus by definition,

EffWritearb
vis`(o) = o′. However, since o′ = rf−1` (o) by definition of a reads-from

relation Ret(o) = Args(o′).
Since o is an arbitrary Read operation with level ` in H, what we have shown

holds for all Read operation with level `. Hence H`, vis`, arb |= SpecRW.

B Correctness of the testing procedure

We will first prove a set of lemmas with respect to the termination and the
correctness of the helper procedures.

Lemma 15 (Termination of Helper functions). For a given hybrid history,
and a given visibility relations over the history, the methods BuildMinVisSingle,
BuildMinVisMulti and ComputeStableExtension terminate.

Proof. We first observe that BuildMinVisMulti terminates since it doesn’t have
any loops. And then visibility relations it outputs is a superset of the input
visibility relations.

27

We will now show the termination of BuildMinVisSingle. Let visi,jnew denote the
value of visnew at the end of the jth iteration of the inner for-loop within the ith

iteration of the outer while-loop. Let visinew denote the value of visnew at the end
of the ith iteration of the outer while-loop.

We note that for j > 0, visi,jnew ⊇ visi,j−1new since we only keep extending visnew
inside the inner for-loop by adding to it the result of evaluation of the RelTerms
in α`. vis

i,0
new = visi−1new . If |RelTerms(α`)| = n, then, visinew = visi,nnew. Thus, visinew ⊇

visi−1new . At the end of the outer-while loop we check if visnew = visold which is
equivalent to checking visinew = visi−1new . If true, the function returns. Since visnew ⊆
O ×O, and since O is a finite set, it will be the case that visnew = visold after a
finite number of iterations. Hence the procedure terminates.

In case of ComputeStableExtension , we note that it obtains the new values
for visnewweak and visnewstrong individually by invoking the procedure BuildMinVisSingle,
which returns a relation that is a superset of the input visibility relation. Simi-
larly, in the inner for-loop, we obtain the new values for the pair (visnewweak, vis

new
strong)

by calling BuildMinVisMulti, which returns visibility relations that are supersets
of the corresponding input relations. Thus, at the end of each iteration of while-
loop, either the values of visnewweak and visnewstrong are the same as their values at the
end of the previous iteration of the while-loop, or they are a superset of their
values at the end of the the previous generation. Since both visnewweak and visnewweak

are binary relations over Oweak and Ostrong, their maximal size is bound by |O|2.
Thus, the iterations of the outer while loop are bounded by O(|O|2) iterations.
Hence ComputeStableExtension terminates

Theorem 16 (Termination of Testing Procedure). For any given hybrid-
history H, and consistency criteria αw , αs and multilevel constraints φ, the
procedure TestMultiLevelCorrectness terminates.

Proof. Since H is a finite history, the number of Reads-From relations that can
be defined over it are finite. Further, for each rf from the set of reads-from
relations, the extensions vismin

weak and vismin
strong are finite. In the worst case when

both αw as well as αs contain the subsformula total(vis), the sizes of visSetweak
and visSetstrong is finite. Since the procedures called within the inner for-loop,
i.e. ComputeStableExtension and CheckBadPatterns, terminate, the inner for-loop
(Lines 90-94) will iterate only for a finite number of times.

Thus, the procedure will terminate when either it has found a witness rf,
visstableweak and visstablestrong for the correctness of the Hybrid history, or when it has
iterated over all the finitely many reads-from relation.

Lemma 17 (Correctness of BuildMinVisSingle). Let vis` be a visiblity relation
over some fragment of a hybrid history H`. Let α` be a consistency criteria. Let
vis := BuildMinVisSingle(H`, vis`, α`). Then H`, vis |= VisBasic(α`).

Proof. We will denote the value at the end of the ith iteration of the outer
while-loop as visinew. We shall denote the value of visnew at the end of the the jth

iteration in the ith iteration of the inner for loop as visi,jnew.

28

Let vis be the value returned by BuildMinVisSingle at the end of the ith

iteration of the outer while-loop. Then, vis = visinew.
Note that visold is the value of visnew at the end of the previous iteration of

while loop. Thus visold = visi−1new . Further since visold = visnew for the function
to return, we have visinew = visi−1new . Let visi,0new denote the value of visnew at the
beginning of the inner for-loop. Then visi,0new = visi−1new . Suppose RelTerms(α)
has n terms where the kth term is denoted by τk , then, we can see that for
j ∈ [1, . . . , n], visi,jnew = visi,j−1new ∪ τj [so`, visi,j−1new]. Thus, we can conclude that
τj [so`, vis

i,j−1
new] ⊆ visi,jnew.

Also, we can note that visi−1new = visi,0new ⊆ visi,1new ⊆ · · · ⊆ visi,nnew = visinew. Since,
visi−1new = visinew, this implies that for each j ∈ [0, . . . , n], visi,jnew = visinew = vis.

Thus, for each j ∈ [1, . . . , n], we have τj [so`, vis] ⊆ vis. Hence, so`, vis |=∧
τj∈RelTerms(α`)

τj ⊆ vis. But by definition,
∧

τj∈RelTerms(α`)

τj ⊆ vis = VisBasic(α).

Hence so`, vis |= VisBasic(α) which implies that H`, vis |= VisBasic(α).

Lemma 18 (Monotonicity of RelTerms).
Let H = (O, so) be a well defined fragment of a hybrid history Let vis and

vis′ be two visibility relation over H such that vis ⊆ vis′. Then for any term
τ ∈ RelTerms, τ [so, vis] ⊆ τ [so, vis′].

Proof. We will prove this by induction over the number of compositions in the
term τ . The base case is when there are no compositions. We have two cases
τ = so and τ = vis.

In the former case, the result trivially follows. In the latter case, the result
follows since it is given that vis ⊆ vis′.

Suppose the result holds for all τ with fewer than n compositions. We now
consider a τ = τ ′; τ ′′ where both τ ′ and τ ′′ have at most n−1 compositions. Now
τ [so, vis] = τ ′[so, vis]; τ ′′[so, vis]. By induction hypothesis, τ ′[so, vis] ⊆ τ ′[so, vis′]
and τ ′′[so, vis] ⊆ τ ′′[so, vis′]. Since A ⊆ A′ and B ⊆ B′ implies A;B ⊆ A′;B′ we
can conclude that τ ′[so, vis]; τ ′′[so, vis] ⊆ τ ′[so, vis′]; τ ′′[so, vis′] = τ [so, vis′]. Thus
the result is true for a τ with n compositions.

Hence, the result is true for all τ ∈ RelTerms

Lemma 19 (Minimality of BuildMinVisSingle). Let vis` be a visiblity relation
over some fragment of a hybrid history H`. Let C` be axioms defining the con-
sistency criteria. Let vis′ be a visibility relation over H` such that H`, vis

′ |=
VisBasic(α`).

Then if, vis := BuildMinVisSingle(H`, vis`, C`), we have vis ⊆ vis′.

Proof. As before, we will denote the value at the end of the ith iteration of
the outer while-loop as visinew. We shall denote the value of visnew at the end of
the the jth iteration in the ith iteration of the inner for loop as visi,jnew. We set
vis0new = vis0,0new = vis`.

Let |RelTerms(α)| = n and let τj denote the jth member of RelTerms(α).
We will first show that for j ∈ [1, . . . , n], If visi,j−1new ⊆ vis′ then visi,jnew ⊆ vis′.

Note that visi,jnew = visi,j−1new ∪ τj [so`, visi,j−1new]. By assumption, visi,j−1new ⊆ vis′. By
lemma 18, τj [so`, vis

i,j−1
new] ⊆ τj [so`, vis′]. Thus, we can conclude that visi,jnew ⊆ vis′.

29

Since for any i, visi,0new ⊆ visi,1new ⊆ · · · ⊆ visi,nnew = visinew, we can conclude that
if visi,0new ⊆ vis′ then, visinew ⊆ vis′. Finally note that visinew = visi+1,0

new . Thus, if
visinew ⊆ vis′ then visi+1

new ⊆ vis′. Finally we note that vis0,0new = vis` ⊆ vis′. Thus for
all i > 0, visinew ⊆ vis′. Since the value vis returned by BuildMinVisSingle is the
value of visnew at the end of some iteration i, it follows that vis ⊆ vis′.

Lemma 20 (Correctness of BuildMinVisMulti). Let visweak and visstrong be vis-
ibility relations over fragments Hweak and Hstrong of a hybrid history H = (O, so).
Let ψ be a subformula in φ.

Let (visretweak, vis
ret
strong) = BuildMinVisMulti(O, so, visweak, visstrong, ψ).

Then, visweak ⊆ visretweak, visstrong ⊆ visretstrong and H, visretweak, vis
ret
strong |= ψ.

Proof. We shall prove the result for the cases when ψ = ψext
strong , ψmr

strong and
ψrest
strong . The remaining cases are symmetric to these.

For each of these cases, we note that ` = strong and `′ = weak and visoldstrong =

visstrong and visoldweak = visweak.

Suppose ψ = ψext
strong . Now visnewstrong = visoldstrong ∪ (visoldweak; so)strong and visnewweak =

visoldweak. Thus, we can rewrite this as visnewstrong = visoldstrong ∪ (visnewweak; so)strong. Thus,
(visnewweak; so)strong ⊆ visnewstrong. Hence, we can write that so, visnewweak, vis

new
strong |= ψext

strong .
The proof follows for this case.

Suppose ψ = ψmr
strong . Then, visnewstrong = visoldstrong∪(visoldstrong; so)strong, and visnewweak =

visoldweak. Now if (o′, o) ∈ (visnewstrong; so)strong. Then, there exists an operation o1 such
that (o′, o1) ∈ visnewstrong and (o1, o) ∈ sostrong ⊆ so. Thus o1 ∈ Ostrong.

We consider two subcases. If (o′, o1) was already present in visoldstrong then, since

(visoldstrong; so)strong ⊆ visnewstrong it implies that (o′, o) ∈ visnewstrong. Suppose (o′, o1) was

not originally present in visoldstrong. It implies that (o′, o1) ∈ (visoldstrong; so)strong. This

implies that there exists an o2 such that (o′, o2) ∈ visoldstrong and (o2, o1) ∈ so.
Thus o2 ∈ Ostrong. Which implies that (o2, o1) ∈ sostrong. We have already shown

that (o1, o) ∈ sostrong. Thus, (o2, o) ∈ sostrong ⊆ so. Since (o′, o2) ∈ visoldstrong and

(o2, o) ∈ sostrong ⊆ so, it implies that (o′, o) ∈ (visoldstrong; so)strong ⊆ visnewstrong. Thus,
(visnewstrong; so)strong ⊆ visnewstrong. Thus so, visweak, visstrong |= (visstrong; so)strong ⊆
visstrong. We can conclude that H, visnewweak, vis

new
strong |= ψmr

strong

Suppose ψ = ψrest
strong . Now visnewstrong = visoldstrong and

visnewweak = visoldweak ∪ (UnaccountedWrites;NearestPriorOther). We need to show that
if (o′, o) ∈ visnewstrong then, there should exist an o′′ in Oweak such that (o′, o′′) ∈
visnewweak and (o′′, o) ∈ so.

We consider two subcases. (o′, o) 6∈ UnaccountedWrites. Then, since visoldstrong =

visnewstrong, and UnaccountedWrites = visoldstrong \ (visoldweak; so), it implies that (o′, o) ∈
visoldweak; so. Since visoldweak ⊆ visnewweak, we have visoldweak; so ⊆ visnewweak; so. This implies
that (o′, o) ∈ visnewweak; so which proves this subcase.

Suppose (o′, o) ∈ UnaccountedWrites. We set o′′ to be the event such that

o′′
so(1)−−−→
weak

o. Thus by definition, (o, o′′) ∈ NearestPriorOther.

Which implies that (o′, o′′) ∈ UnaccountedWrites;NearestPriorOther.

30

Thus, by definition of visnewweak in this case, (o′, o′′) ∈ visnewweak. Since o′′ =
so(1)−−−→
weak

(o), (o′′, o) ∈ so. This completes the proof for this subcase.
From this we can conclude that visnewstrong ⊆ visnewweak; so. Thus so, visnewweak, vis

new
strong |=

visstrong ⊆ visweak; so. Hence H, visnewweak, vis
strong
weak |= ψrest

strong .

Thus in each of these cases, H, visnewweak, vis
strong
weak |= φ. Further, in case when

ψ = ψext
strong or ψmr

strong , visnewweak = visoldweak and visnewstrong ⊇ visoldstrong. Similarly in case

when ψ = ψrest
strong , visnewstrong = visoldstrong and visnewweak ⊇ visoldweak. Since visretweak = visnewweak

and visretstrong = visnewstrong, the proof of this lemma is complete.

Lemma 21 (Minimality of BuildMinVisMulti). Let visweak and visstrong be visi-
bility relations over fragments Hweak and Hstrong of a hybrid history H = (O, so).
Let ψ be a subformula in the hybrid constraint φ.

Suppose there exists vis′weak and vis′strong over Hweak and Hstrong respectively
such that

– visweak ⊆ vis′weak
– visstrong ⊆ vis′strong
– H, vis′weak, vis

′
strong |= ψ.

Then, if (visretweak, vis
ret
strong) = BuildMinVisMulti(O, so, visweak, visstrong, φ), it is

the case that visretweak ⊆ vis′weak and visretstrong ⊆ vis′strong

Proof. We have visoldweak = visweak ⊆ vis′weak and visoldstrong = visstrong ⊆ vis′strong We
will prove the result for the case when ψ is one of ψext

strong , ψmr
strong or ψrest

strong the
other cases follow in a similar fashion.

Suppose ψ is ψext
strong .

Since visoldweak ⊆ vis′weak, we have visoldweak; so ⊆ vis′weak; so. From this, we have
(visoldweak; so)strong ⊆ (vis′weak; so)strong. This implies visoldstrong ∪ (visoldweak; so)strong ⊆
vis′strong ∪ (vis′weak; so)strong since visoldstrong ⊆ vis′strong. Since H, vis′weak, vis

′
strong |=

ψext
strong implies (vis′weak; so)strong ⊆ vis′strong we can conclude that

visoldstrong∪(visoldweak; so)strong ⊆ vis′strong. However visoldstrong∪(visoldweak; so)strong = visnewstrong.

Thus visnewstrong ⊆ vis′strong. Hence this case is proved.

The argument for ψ = ψmr
strong is same as above with visoldweak replaced with

visoldstrong, vis
′
weak replaced by vis′strong.

Suppose ψ is ψrest
strong . Then, visnewstrong = visoldstrong ⊆ vis′strong.

visnewweak = visoldweak ∪ UnaccountedWrites;NearestPriorOther. We need to prove
that if (o′, o) ∈ visnewweak then, (o′, o) ∈ vis′weak.

Now,if (o′, o) ∈ visoldweak, since visoldweak ⊆ vis′weak, the proof follows.
Suppose (o′, o) 6∈ visoldweak. Then, (o′, o) ∈ UnaccountedWrites;NearestPriorOther.

This implies that there exists an Ostrong operation o′′ such that (o′, o′′) ∈ visoldstrong

and o =
so(1)−−−→
weak

(o′′). Since visoldstrong ⊆ vis′strong, (o′, o′′) ∈ vis′strong.

But then, H, vis′weak, vis
′
strong |= ψrest

strong . Thus, the write o′ should be visible to

some Oweak operation o′′′ preceding o′′ in its session. Thus, o′
vis′weak−−−→ o′′′

so−→ o′′.

31

Since o is the nearest Oweak-predecessor of o′′ in its session, we have

o′
vis′weak−−−→ o′′′

so−→ o
so−−−→

weak
o′′. Further, since since φ is well defined, if ψrest

strong is a

subformula, then ψmr
weak is also a subformula, which implies that (vis′weak; so)weak ⊆

vis′weak. Thus o′
vis′weak−−−→ o′′′

so−→ o implies (o′, o) ∈ vis′weak. This completes the proof
for this case.

Lemma 22 (Correctness of ComputeStableExtension). Let visweak and visstrong
be a visibility relation over the fragments Hweak and Hstrong of a hybrid history
H. Let αw and αs respectively be the weak and strong consistency criteria and
let φ be the multilevel constraints. Let
(visstableweak , vis

stable
strong) be the return value obtained from

ComputeStableExtension(O, so, visweak, visstrong, αw , αs , φ). Then

– Hweak, visweak |= VisBasic(αw)
– Hstrong, visstrong |= VisBasic(αs)
– H, visweak, visstrong |= φ

Proof. We note that the value returned by ComputeStableExtension is the values
of variables visnewweak and visnewstrong at the end of the outer while loop, when they

respectively match the values visoldweak and visoldstrong, which were the values of visnewweak

and visnewstrong at the end of the previous iteration of the outer while-loop.
We will replay the iteration of the outer-while loop which returned the value.

Here, we note that visprevweak = visoldweak and visprevstrong = visoldstrong.
Let the value computed in line 55 by invoking the method BuildMinVisSingle

be denoted as vis1weak. Now vis1weak ⊆ visprevweak = visoldweak. Further, by Lemma 17
Hweak, soweak, vis

1
weak |= VisBasic(αw).

Let the value computed in line 57 by invoking the method BuildMinVisSingle
be denoted as vis1strong. Now vis1strong ⊆ visprevstrong = visoldstrong.

Further, Hstrong, sostrong, vis
1
strong |= VisBasic(αs).

Let φ = ψ2 ∧ . . . ,∧ψk.
We let (visiweak, vis

i
strong) = BuildMinVisMulti(O, so, visi−1weak, vis

i−1
strong, ψi) for i ∈

[2, . . . , k]
By lemma 20, for i ∈ [2, . . . , k], we have

– visi−1weak ⊆ visiweak
– visi−1strong ⊆ visistrong
– H, visiweak, vis

i
strong |= ψi

And viskweak = visnewweak, vis
k
strong = visnewstrong

Thus, for ` ∈ {weak, strong} we have visold` ⊆ vis1` ⊆ vis2` ⊆ . . . visnew` = visold` .
From this we can conclude that each of visi` = visnew` for i ∈ [1, . . . , k]. This

proves the result.

Lemma 23 (Minimality of ComputeStableExtension). Let visweak and visstrong
be a visibility relation over the fragments Hweak and Hstrong of a hybrid history
H. Let αw , αs be weak and strong consistency criteria and let φ be multilevel

32

constraints.Let
(visstableweak , vis

stable
strong) := ComputeStableExtension(O, so, visweak, visstrong, αw , αs , φ). If

there exists visibility relations vis′weak and vis′strong over Hweak and Hstrong respec-
tively such that Then

– visweak ⊆ vis′weak
– visstrong ⊆ vis′strong
– Hweak, vis

′
weak |= VisBasic(αw)

– Hstrong, vis
′
strong |= VisBasic(αs)

– H, vis′weak, vis
′
strong |= φ

Then visstableweak ⊆ vis′weak and visstablestrong ⊆ vis′strong

Proof. The proof for this follows the line of argument showing the minimal-
ity of BuildMinVisSingle. We note that at each step we compute extensions
of the weak and strong visibility relations via invoking BuildMinVisSingle and
BuildMinVisMulti.

From Lemmas 19 and 21, the output produced by these procedures visretweak

and visretstrong from inputs visweak and visstrong respectively will satisfy visretweak ⊆
vis′weak and visretstrong ⊆ vis′strong whenever it is the case that visweak ⊆ vis′weak and

visstrong ⊆ vis′strong.

Thus, even the final output (visstableweak , vis
stable
strong) will satisfy the containment.

We shall prove another interesting result pertaining to the conflict relations
of two visibility relations extending the same reads-from relations, with one
visibility relation contained inside another.

Lemma 24. Let rf` be a reads-from relation over the well defined fragment H`

and let vis` and vis′` be two visibility relations over H`, both extending rf`. Then,
CF(rf`, vis`) ⊆ (CF(rf`, vis

′
`) ∪ (vis′`)Write)

+

Proof. Suppose (o′′, o′) ∈ CF(rf`, vis`). That implies that there exists a read
operation o such that o′′, o′ ∈ MaxRelWritesvis`(o) and o′ = rf−1` (o).

Since vis` ⊆ vis′`, it implies that o′′, o′ ∈ RelWritesvis′`(o).
We consider two cases.
Suppose o′′ ∈ MaxRelWritesvis′`(o), then by definition, (o′′, o′) ∈ CF(rf`, vis

′
`).

Therefore, in this case (o′′, o′) ∈ (CF(rf`, vis
′
`) ∪ (vis′`)Write)

+.
Suppose o′′ 6∈ MaxRelWritesvis′`(o). Then, this implies that o′′ is not a max-

imal write in the vis′` view of o restricted to its related writes. Thus, either

o′′
(vis′`)Write−−−−−→ o′ or there exists a path from o′′

(vis′`)Write−−−−−→ o1
(vis′`)Write−−−−−→ . . .

(vis′`)Write−−−−−→
ok

(vis′`)Write−−−−−→ o′′′ where o′′′ ∈ MaxRelWritesvis′`(o) and each of
o1, . . . , ok ∈ RelWritesvis′`(o). In this case too, either o′′′ = o′ or (o′′′, o′) ∈
CF(rf`, vis

′
`). Thus even in this case (o′′, o′) ∈ (CF(rf`, vis

′
`) ∪ (vis′`)Write)

+.

With this we can now prove the correctness of Theorem 13. We need to prove
the following:

33

For a hybrid read-write history H = (O, so), weak and strong consistency
criteria αw , αs and multilevel constraints φ, the procedure
TestMultiLevelCorrectness returns a witness (rf, visweak, visstrong) over H iff H is
multi-level correct with respect to αw , αs and φ.

Proof. Suppose the hybrid history H is multi-level correct with respect to the
consistency criteria αw = βw ∧ γw , αs = βs ∧ γs , and multilevel constraints φ.
Then, by theorem 12, there exists a reads-from relation rf and visibility relations
vis′weak and vis′strong over Hweak and Hstrong extending rfweak and rfstrong respectively
such that

– Hweak, vis
′
weak |= βw

– Hstrong, vis
′
strong |= βs

– H, vis′weak, vis
′
strong |= φ

Since the procedure, iterates through all possible Reads-From relation, if it
returns before encountering the rf mentioned earlier, then we have nothing to
prove. Suppose it does not return. Then, we will consider the iteration with the
Reads-From relation being rf.

Note that since vismin
weak and vismin

strong are extensions of rfweak and rfstrong via

the procedure BuildMinVisSingle, by Lemma 19, we have vismin
weak ⊆ vis′weak and

vismin
strong ⊆ vis′strong.

Now, suppose for total(vis) is a subformula in αw . Then vis′weak is a total
order. Similarly if total(vis) is a subformula in αs , then vis′strong is a total order.

For ` ∈ {weak, strong},since we iterate through all the total orders extending
vismin

` , if the procedure returns before the iteration reaches vis′`, then, there is
nothing to prove. Suppose, the procedure returns with none of the prior total
orders extending vismin

` . Then we consider the case where the iterating variable
vis` is the total order vis′`.

On the other hand, if totalvis is not a subformula in αw or αs , then we
would set the corresponding vis` to vismin

` . In both these cases, we can notice
that vis` ⊆ vis′`.

Now, we obtain (visstableweak , vis
stable
strong) by invoking ComputeStableExtension with

visweak and visstrong. By Lemma 22,Hweak, vis
stable
weak |= VisBasic(αw)Hstrong, vis

stable
strong |=

VisBasic(αs) and H, visstableweak , vis
stable
strong |= φ.

Further, by Lemma 23, for ` ∈ {weak, strong}, visstable` ⊆ vis′`. Which implies
that if total(vis) is a subformula in the `-consistency criteria then, visstable` is a
total order as vis′` is.

From this, we can conclude that Hweak, vis
stable
weak |= βw , Hstrong, vis

stable
strong |= βs in

addition to H, visstableweak , vis
stable
strong |= φ.

Now we check H, rf, visstableweak , vis
stable
strong for bad patterns.

Note that, (H, rf, visstableweak , vis
stable
strong) cannot have BADVISIBILITY, THINAIR,

BADINITREAD or BADREAD bad patterns, since that would imply the existence
of those bad patterns in (H, rf, vis′weak, vis

′) since visstable` is contained within vis′`
for ` ∈ {weak, strong}.

34

We will show by contradiction that BADARB bad pattern doesn’t exist for
(H, rf, visstableweak , vis

stable
strong) doesn’t exist. Suppose this bad pattern did exist. Then,

there is a cycle C = o1
σ1−→ o2

σ2−→ . . .
σn−−→ o1 where each σi is one of CF(rf`, vis

stable
`)

or (visstable`)Write for ` ∈ {weak, strong}
Note that since visstable` ⊆ vis′`, in the Cycle C above, we can rewrite the edge

oi
visstable`−−−−→ oi+1 by oi

vis′`−−→ oi+1.
Further from Lemma 24, we have CF(rf`, vis

stable
`) ⊆ (CF(rf`, vis

′
`)∪(vis′`)Write)

+.

Which means that the any edge oi
CF(rf`,vis

stable
`)−−−−−−−−→ oi+1 in the cycle C can be re-

placed by a path oi
σ′
1−→ . . .

σ′
n′−−→ oi+1 where each σ′k is either CF(rf`, vis

′
`) or

(vis′`)Write. Thus, we get a cycle C ′ from C whose edges comprise of CF(rf`, vis
′
`)

and (vis′`)Write for ` ∈ {weak, strong}. Thus, BADARB bad pattern exists for
(H, rf, vis′weak, vis

′
strong), which is a contradiction. Thus, if H is correct, then we

have proved that the procedure TestMultiLevelCorrectness produces a satisfying
witness.

Conversely we will show that if TestMultiLevelCorrectness produces a satisfy-
ing witness then the hybrid history H is multi-level correct.

Suppose rf is the witness reads-from relation and visweak and visstrong are the
visibility relations extending rf which are extended via ComputeStableExtension
to obtain vis′weak and vis′strong. Suppose that none of the bad patterns exist for

(H, rf, vis′weak, vis
′
strong).

By lemma22, we know that

– Hweak, vis
′
weak |= VisBasic(αw)

– Hstrong, vis
′
strong |= VisBasic(αs)

– H, vis′weak, vis
′
strong |= φ.

If for ` ∈ {weak, strong} if the corresponding consistency criteria contains
the subformula total(vis). Then the iterating variable vis` would have been a
total order. By lemma 22, we know that vis` ⊆ vis′`. Suppose vis` (vis′`, it
implies that vis′` has atleast one additional edges between the operations of O`
over what is present in vis`. However, since vis` is a total order, it implies that
in the additional edges introduce a cycle in vis′`. But this is not the case since
BADVISIBILITY bad-pattern would have caught it. Hence vis′` = vis` in this case
which implies that if total is a subformula in the consistency criteria for level `,
then, H`, vis

′
` |= total(vis).

Thus, we can conclude that there exists a reads-from relation rf and weak and
strong visibility relations vis′weak and vis′strong extending rfweak and rfstrong respec-

tively such thatHweak, vis
′
weak |= βw ,Hstrong, vis

′
strong |= βs ,H, vis′weak, vis

′
strong |= φ,

and none of the bad patterns exist.By theorem 12, this implies that the hybrid
history H is multi-level correct with respect to αw , αs , φ

35

