
Checking Robustness Against Snapshot
Isolation⋆

Sidi Mohamed Beillahi, Ahmed Bouajjani, and Constantin Enea

Université de Paris, IRIF, CNRS, Paris, France, {beillahi,abou,cenea}@irif.fr

Abstract. Transactional access to databases is an important abstrac-
tion allowing programmers to consider blocks of actions (transactions) as
executing in isolation. The strongest consistency model is serializability,
which ensures the atomicity abstraction of transactions executing over
a sequentially consistent memory. Since ensuring serializability carries a
significant penalty on availability, modern databases provide weaker con-
sistency models, one of the most prominent being snapshot isolation. In
general, the correctness of a program relying on serializable transactions
may be broken when using weaker models. However, certain programs
may also be insensitive to consistency relaxations, i.e., all their properties
holding under serializability are preserved even when they are executed
over a weak consistent database and without additional synchronization.
In this paper, we address the issue of verifying if a given program is robust
against snapshot isolation, i.e., all its behaviors are serializable even if it
is executed over a database ensuring snapshot isolation. We show that
this verification problem is polynomial time reducible to a state reach-
ability problem in transactional programs over a sequentially consistent
shared memory. This reduction opens the door to the reuse of the classic
verification technology for reasoning about weakly-consistent programs.
In particular, we show that it can be used to derive a proof technique
based on Lipton’s reduction theory that allows to prove programs robust.

1 Introduction

Transactions simplify concurrent programming by enabling computations on
shared data that are isolated from other concurrent computations and resilient to
failures. Modern databases provide transactions in various forms corresponding
to different tradeoffs between consistency and availability. The strongest con-
sistency level is achieved with serializable transactions [20] whose outcome in
concurrent executions is the same as if the transactions were executed atomi-
cally in some order. Since serializability carries a significant penalty on avail-
ability, modern databases often provide weaker consistency models, one of the
most prominent being snapshot isolation (SI) [4]. Then, an important issue is to
ensure that the level of consistency needed by a given program coincides with
the one that is guaranteed by its infrastructure, i.e., the database it uses. One

⋆ This work is supported in part by the European Research Council (ERC) under the
Horizon 2020 research and innovation programme (grant agreement No 678177).

2 S.M. Beillahi, A. Bouajjani, and C. Enea.

way to tackle this issue is to investigate the problem of checking robustness of
programs against consistency relaxations: Given a program 𝑃 and two consis-
tency models 𝑆 and 𝑊 such that 𝑆 is stronger than 𝑊 , we say that 𝑃 is robust
for 𝑆 against 𝑊 if for every two implementations 𝐼𝑆 and 𝐼𝑊 of 𝑆 and 𝑊 re-
spectively, the set of computations of 𝑃 when running with 𝐼𝑆 is the same as its
set of computations when running with 𝐼𝑊 . This means that 𝑃 is not sensitive
to the consistency relaxation from 𝑆 to 𝑊 , and therefore it is possible to reason
about the behaviors of 𝑃 assuming that it is running over 𝑆, and no additional
synchronization is required when 𝑃 runs over the weak model 𝑊 such that it
maintains all its properties satisfied with 𝑆.

In this paper, we address the problem of verifying robustness of transactional
programs for serializability, against snapshot isolation. Under snapshot isolation,
any transaction 𝑡 reads values from a snapshot of the database taken at its start
and 𝑡 can commit only if no other committed transaction has written to a loca-
tion that 𝑡 wrote to, since 𝑡 started. Robustness is a form of program equivalence
between two versions of the same program, obtained using two semantics, one
more permissive than the other. It ensures that this permissiveness has no effect
on the program under consideration. The difficulty in checking robustness is to
apprehend the extra behaviors due to the relaxed model w.r.t. the strong model.
This requires a priori reasoning about complex order constraints between opera-
tions in arbitrarily long computations, which may need maintaining unbounded
ordered structures, and make robustness checking hard or even undecidable.

Our first contribution is to show that verifying robustness of transactional
programs against snapshot isolation can be reduced in polynomial time to the
reachability problem in concurrent programs under sequential consistency (SC).
This allows (1) to avoid explicit handling of the snapshots from where trans-
actions read along computations (since this may imply memorizing unbounded
information), and (2) to leverage available tools for verifying invariants/reach-
ability problems on concurrent programs. This also implies that the robustness
problem is decidable for finite-state programs, PSPACE-complete when the num-
ber of sites is fixed, and EXPSPACE-complete otherwise. This is the first result
on the decidability and complexity of the problem of verifying robustness in the
context of transactional programs. The problem of verifying robustness has been
considered in the literature for several models, including eventual and causal
consistency [5, 9, 10, 11, 19]. These works provide (over- or under-)approximate
analyses for checking robustness, but none of them provides precise (sound and
complete) algorithmic verification methods for solving this problem.

Based on this reduction, our second contribution is a proof methodology
for establishing robustness which builds on Lipton’s reduction theory [17]. We
use the theory of movers to establish whether the relaxations allowed by SI are
harmless, i.e., they don’t introduce new behaviors compared to serializability.

We tested the applicability of the proposed verification techniques on a
benchmark suite containing 10 challenging applications extracted from previ-
ous work [2, 5, 10, 13, 15, 18, 23]. These techniques were precise enough for
proving or disproving the robustness of all of these applications.

Checking Robustness Against Snapshot Isolation 3

p1:
t1: [r1 = y //0

x = 1]
||

p2:
t2: [r2 = x //0

y = 1]

(a) Write Skew (WS).

[r1 = y; x = 1] [r2 = x; y = 1]

conflict

conflict

(b) A WS execution trace.

Fig. 1: Examples of non-robust programs illustrating the difference between SI

and serializability. causal dependency means that a read in a transaction obtains
its value from a write in another transaction. conflict means that a write in a
transaction is not visible to a read in another transaction, but it would affect
the read value if it were visible. Here, happens-before is the union of the two.

2 Overview

In this section, we give an overview of our approach for checking robustness
against snapshot isolation. While serializability enforces that transactions are
atomic and conflicting transactions, i.e., which read or write to a common lo-
cation, cannot commit concurrently, SI [4] allows that conflicting transactions
commit in parallel as long as they don’t contain a write-write conflict, i.e., write
on a common location. Moreover, under SI, each transaction reads from a snap-
shot of the database taken at its start. These relaxations permit the “anomaly”
known as Write Skew (WS) shown in Figure 1a, where an anomaly is a pro-
gram execution which is allowed by SI, but not by serializability. The execution
of Write Skew under SI allows the reads of x and y to return 0 although this
cannot happen under serializability. These values are possible since each trans-
action is executed locally (starting from the initial snapshot) without observing
the writes of the other transaction.
Execution trace. Our notion of program robustness is based on an abstract
representation of executions called trace. Informally, an execution trace is a set
of events, i.e., accesses to shared variables and transaction begin/commit events,
along with several standard dependency relations between events recording the
data-flow. The transitive closure of the union of all these dependency relations
is called happens-before. An execution is an anomaly if the happens-before of its
trace is cyclic. Figure 1b shows the happens-before of the Write Skew anomaly.
Notice that the happens-before order is cyclic in both cases.

Semantically, every transaction execution involves two main events, the is-
sue and the commit. The issue event corresponds to a sequence of reads and/or
writes where the writes are visible only to the current transaction. We interpret
it as a single event since a transaction starts with a database snapshot that it up-
dates in isolation, without observing other concurrently executing transactions.
The commit event is where the writes are propagated and made visible to all
processes. Under serializability, the two events coincide, i.e., they are adjacent
in the execution. Under SI, this is not the case and in between the issue and the
commit of the same transaction, we may have issue/commit events from concur-
rent transactions. When a transaction commit does not occur immediately after
its issue, we say that the underlying transaction is delayed. For example, the

4 S.M. Beillahi, A. Bouajjani, and C. Enea.

following execution of WS corresponds to the happens-before cycle in Figure 1b
where the write to 𝑥 was committed after 𝑡2 finished, hence, 𝑡1 was delayed:

begin(𝑝1, 𝑡1)ld(𝑝1, 𝑡1, 𝑦, 0)isu(𝑝1, 𝑡1, 𝑥, 1) com(𝑝1, 𝑡1)

begin(𝑝2, 𝑡2)ld(𝑝2, 𝑡2, 𝑥, 0)isu(𝑝2, 𝑡2, 𝑦, 1)com(𝑝2, 𝑡2)

Above, begin(𝑝1, 𝑡1) stands for starting a new transaction 𝑡1 by process 𝑝1, ld
represents read (load) actions, while isu denotes write actions that are visible only
to the current transaction (not yet committed). The writes performed during 𝑡1
become visible to all processes once the commit event com(𝑝1, 𝑡1) takes place.

Reducing robustness to SC reachability. The above SI execution can be
mimicked by an execution of the same program under serializability modulo an
instrumentation that simulates the delayed transaction. The local writes in the
issue event are simulated by writes to auxiliary registers and the commit event is
replaced by copying the values from the auxiliary registers to the shared variables
(actually, it is not necessary to simulate the commit event; we include it here
for presentation reasons). The auxiliary registers are visible only to the delayed
transaction. In order that the execution be an anomaly (i.e., not possible under
serializability without the instrumentation) it is required that the issue and the
commit events of the delayed transaction are linked by a chain of happens-before
dependencies. For instance, the above execution for WS can be simulated by:

begin(𝑝1, 𝑡1)ld(𝑝1, 𝑡1, 𝑦, 0)st(𝑝1, 𝑡1, 𝑟𝑥, 1) st(𝑝1, 𝑡1, 𝑥, 𝑟𝑥)

begin(𝑝2, 𝑡2)ld(𝑝2, 𝑡2, 𝑥, 0)isu(𝑝2, 𝑡2, 𝑦, 1)com(𝑝2, 𝑡2)

The write to 𝑥 was delayed by storing the value in the auxiliary register 𝑟𝑥 and
the happens-before chain exists because the read on 𝑦 that was done by 𝑡1 is
conflicting with the write on 𝑦 from 𝑡2 and the read on 𝑥 by 𝑡2 is conflicting
with the write of 𝑥 in the simulation of 𝑡1’s commit event. On the other hand,
the following execution of Write-Skew without the read on 𝑦 in 𝑡1:

begin(𝑝1, 𝑡1)st(𝑝1, 𝑡1, 𝑟𝑥, 1) st(𝑝1, 𝑡1, 𝑥, 𝑟𝑥)

begin(𝑝2, 𝑡2)ld(𝑝2, 𝑡2, 𝑥, 0)isu(𝑝2, 𝑡2, 𝑦, 1)com(𝑝2, 𝑡2)

misses the conflict (happens-before dependency) between the issue event of
𝑡1 and 𝑡2. Therefore, the events of 𝑡2 can be reordered to the left of 𝑡1 and
obtain an equivalent execution where st(𝑝1, 𝑡1, 𝑥, 𝑟𝑥) occurs immediately after
st(𝑝1, 𝑡1, 𝑟𝑥, 1). In this case, 𝑡1 is not anymore delayed and this execution is
possible under serializability (without the instrumentation).

If the number of transactions to be delayed in order to expose an anomaly
is unbounded, the instrumentation described above may need an unbounded
number of auxiliary registers. This would make the verification problem hard
or even undecidable. However, we show that it is actually enough to delay a
single transaction, i.e., a program admits an anomaly under SI iff it admits
an anomaly containing a single delayed transaction. This result implies that
the number of auxiliary registers needed by the instrumentation is bounded
by the number of program variables, and that checking robustness against SI

can be reduced in linear time to a reachability problem under serializability
(the reachability problem encodes the existence of the chain of happens-before

Checking Robustness Against Snapshot Isolation 5

dependencies mentioned above). The proof of this reduction relies on a non-
trivial characterization of anomalies.
Proving robustness using commutativity dependency graphs. Based on
the reduction above, we also devise an approximated method for checking robust-
ness based on the concept of mover in Lipton’s reduction theory [17]. An event
is a left (resp., right) mover if it commutes to the left (resp., right) of another
event (from a different process) while preserving the computation. We use the
notion of mover to characterize happens-before dependencies between transac-
tions. Roughly, there exists a happens-before dependency between two transac-
tions in some execution if one doesn’t commute to the left/right of the other one.
We define a commutativity dependency graph which summarizes the happens-
before dependencies in all executions of a given program between transactions
𝑡 as they appear in the program, transactions 𝑡 ∖ {𝑤} where the writes of 𝑡 are

𝑡1

𝑡2

𝑡1 ∖ {𝑟}

𝑡2 ∖ {𝑟}

𝑡1 ∖ {𝑤}

𝑡2 ∖ {𝑤}

Fig. 2: Commutativity dependency
graph of WS where the read of 𝑦 is
omitted.

deactivated (i.e., their effects are not vis-
ible outside the transaction), and trans-
actions 𝑡 ∖ {𝑟} where the reads of 𝑡 ob-
tain non-deterministic values. The trans-
actions 𝑡 ∖ {𝑤} are used to simulate is-
sue events of delayed transactions (where
writes are not yet visible) while the trans-
actions 𝑡∖{𝑟} are used to simulate commit
events of delayed transactions (which only
write to the shared memory). Two trans-
actions 𝑎 and 𝑏 are linked by an edge iff 𝑎 cannot move to the right of 𝑏 (or 𝑏
cannot move to the left of 𝑎), or if they are related by the program order (i.e.,
issued in some order in the same process). Then a program is robust if for every
transaction 𝑡, this graph doesn’t contain a path from 𝑡 ∖ {𝑤} to 𝑡 ∖ {𝑟} formed of
transactions that don’t write to a variable that 𝑡 writes to (the latter condition
is enforced by SI since two concurrent transactions cannot commit at the same
time when they write to a common variable). For example, Figure 2 shows the
commutativity dependency graph of the modified WS program where the read
of 𝑦 is removed from 𝑡1. The fact that it doesn’t contain any path like above
implies that it is robust.

3 Programs

A program is parallel composition of processes distinguished using a set of iden-
tifiers P. Each process is a sequence of transactions and each transaction is a
sequence of labeled instructions. Each transaction starts with a begin instruc-
tion and finishes with a commit instruction. Each other instruction is either an
assignment to a process-local register from a set R or to a shared variable from
a set V, or an assume statement. The read/write assignments use values from a
data domain D. An assignment to a register ⟨𝑟𝑒𝑔⟩ := ⟨𝑣𝑎𝑟⟩ is called a read of the
shared-variable ⟨𝑣𝑎𝑟⟩ and an assignment to a shared variable ⟨𝑣𝑎𝑟⟩ := ⟨𝑟𝑒𝑔-𝑒𝑥𝑝𝑟⟩
is called a write to ⟨𝑣𝑎𝑟⟩ (⟨𝑟𝑒𝑔-𝑒𝑥𝑝𝑟⟩ is an expression over registers whose syn-
tax we leave unspecified since it is irrelevant for our development). The assume

6 S.M. Beillahi, A. Bouajjani, and C. Enea.

⟨𝑏𝑒𝑥𝑝𝑟⟩ blocks the process if the Boolean expression ⟨𝑏𝑒𝑥𝑝𝑟⟩ over registers is
false. They are used to model conditionals as usual. We use goto statements to
model an arbitrary control-flow where the same label can be assigned to multi-
ple instructions and multiple goto statements can direct the control to the same
label which allows to mimic imperative constructs like loops and conditionals.
To simplify the technical exposition, our syntax includes simple read/write in-
structions. However, our results apply as well to instructions that include SQL
(select/update) queries. The experiments reported in Section 7 consider pro-
grams with SQL based transactions.

The semantics of a program under SI is defined as follows. The shared vari-
ables are stored in a central memory and each process keeps a replicated copy of
the central memory. A process starts a transaction by discarding its local copy
and fetching the values of the shared variables from the central memory. When
a process commits a transaction, it merges its local copy of the shared variables
with the one stored in the central memory in order to make its updates visible
to all processes. During the execution of a transaction, the process stores the
writes to shared variables only in its local copy and reads only from its local
copy. When a process merges its local copy with the centralized one, it is re-
quired that there were no concurrent updates that occurred after the last fetch
from the central memory to a shared variable that was updated by the current
transaction. Otherwise, the transaction is aborted and its effects discarded.

More precisely, the semantics of a program 𝒫 under SI is defined as a labeled
transition system [𝒫]SI where transactions are labeled by the set of events

Ev = {begin(𝑝, 𝑡), ld(𝑝, 𝑡, 𝑥, 𝑣), isu(𝑝, 𝑡, 𝑥, 𝑣), com(𝑝, 𝑡) : 𝑝 ∈ P, 𝑡 ∈ T2, 𝑥 ∈ V, 𝑣 ∈ D}
where begin and com label transitions corresponding to the start and the com-
mit of a transaction, respectively. isu and ld label transitions corresponding to
writing, resp., reading, a shared variable during some transaction. The precise
definition of this semantics is given in Appendix ??.

An execution of program 𝒫, under snapshot isolation, is a sequence of events
ev1 · ev2 · . . . corresponding to a run of [𝒫]CM. The set of executions of 𝒫 under
SI is denoted by ExSI(𝒫).

4 Robustness Against SI

A trace abstracts the order in which shared-variables are accessed inside a trans-
action and the order between transactions accessing different variables. Formally,
the trace of an execution 𝜌 is obtained by (1) replacing each sub-sequence of
transitions in 𝜌 corresponding to the same transaction, but excluding the com
transition, with a single “macro-event” isu(𝑝, 𝑡), and (2) adding several standard
relations between these macro-events isu(𝑝, 𝑡) and commit events com(𝑝, 𝑡) to
record the data-flow in 𝜌, e.g. which transaction wrote the value read by an-
other transaction. The sequence of isu(𝑝, 𝑡) and com(𝑝, 𝑡) events obtained in the
first step is called a summary of 𝜌. We say that a transaction 𝑡 in 𝜌 performs
an external read of a variable 𝑥 if 𝜌 contains an event ld(𝑝, 𝑡, 𝑥, 𝑣) which is not

Checking Robustness Against Snapshot Isolation 7

preceded by a write on 𝑥 of 𝑡, i.e., an event isu(𝑝, 𝑡, 𝑥, 𝑣). Also, we say that a
transaction 𝑡 writes a variable 𝑥 if 𝜌 contains an event isu(𝑝, 𝑡, 𝑥, 𝑣), for some 𝑣.

The trace tr(𝜌) = (𝜏,PO,WR,WW,RW,STO) of an execution 𝜌 consists of
the summary 𝜏 of 𝜌 along with the program order PO, which relates any two
issue events isu(𝑝, 𝑡) and isu(𝑝, 𝑡′) that occur in this order in 𝜏 , write-read relation
WR (also called read-from), which relates any two events com(𝑝, 𝑡) and isu(𝑝′, 𝑡′)
that occur in this order in 𝜏 such that 𝑡′ performs an external read of 𝑥, and
com(𝑝, 𝑡) is the last event in 𝜏 before isu(𝑝′, 𝑡′) that writes to 𝑥 (to mark the
variable 𝑥, we may use WR(𝑥)), the write-write order WW (also called store-
order), which relates any two store events com(𝑝, 𝑡) and com(𝑝′, 𝑡′) that occur
in this order in 𝜏 and write to the same variable 𝑥 (to mark the variable 𝑥, we
may use WW(𝑥)), the read-write relation RW (also called conflict), which relates
any two events isu(𝑝, 𝑡) and com(𝑝′, 𝑡′) that occur in this order in 𝜏 such that 𝑡
reads a value that is overwritten by 𝑡′, and the same-transaction relation STO,
which relates the issue event with the commit event of the same transaction. The
read-write relation RW is formally defined as RW(𝑥) = WR−1(𝑥);WW(𝑥) (we

use ; to denote the standard composition of relations) and RW =
⋃︁
𝑥∈V

RW(𝑥). If a

transaction 𝑡 reads the initial value of 𝑥 then RW(𝑥) relates isu(𝑝, 𝑡) to com(𝑝′, 𝑡′)
of any other transaction 𝑡′ which writes to 𝑥 (i.e., (isu(𝑝, 𝑡), com(𝑝′, 𝑡′)) ∈ RW(𝑥))
(note that in the above relations, 𝑝 and 𝑝′ might designate the same process).

Since we reason about only one trace at a time, to simplify the writing, we
may say that a trace is simply a sequence 𝜏 as above, keeping the relations PO,
WR, WW, RW, and STO implicit. The set of traces of executions of a program
𝒫 under SI is denoted by Tr(𝒫)SI.

Serializability semantics. The semantics of a program under serializability
can be defined using a transition system where the configurations keep a single
shared-variable valuation (accessed by all processes) with the standard inter-
pretation of read and write statements. Each transaction executes in isolation.
Alternatively, the serializability semantics can be defined as a restriction of [𝒫]SI
to the set of executions where each transaction is immediately delivered when it
starts, i.e., the start and commit time of transaction coincide 𝑡.𝑠𝑡 = 𝑡.𝑐𝑡. Such ex-
ecutions are called serializable and the set of serializable executions of a program
𝒫 is denoted by ExSER(𝒫). The latter definition is easier to reason about when
relating executions under snapshot isolation and serializability, respectively.

Serializable trace. A trace tr is called serializable if it is the trace of a se-
rializable execution. Let TrSER(𝒫) denote the set of serializable traces. Given
a serializable trace tr = (𝜏,PO,WR,WW,RW,STO) we have that every event
isu(𝑝, 𝑡) in 𝜏 is immediately followed by the corresponding com(𝑝, 𝑡) event.

Happens before order. Since multiple executions may have the same trace,
it is possible that an execution 𝜌 produced by snapshot isolation has a serial-
izable trace tr(𝜌) even though isu(𝑝, 𝑡) events may not be immediately followed
by com(𝑝, 𝑡) actions. However, 𝜌 would be equivalent, up to reordering of “in-
dependent” (or commutative) transitions, to a serializable execution. To check
whether the trace of an execution is serializable, we introduce the happens-before

8 S.M. Beillahi, A. Bouajjani, and C. Enea.

relation on the events of a given trace as the transitive closure of the union of
all the relations in the trace, i.e., HB = (PO ∪WW ∪WR ∪ RW ∪ STO)+.

Finally, the happens-before relation between events is extended to transac-
tions as follows: a transaction 𝑡1 happens-before another transaction 𝑡2 ̸= 𝑡1 if the
trace tr contains an event of transaction 𝑡1 which happens-before an event of 𝑡2.
The happens-before relation between transactions is denoted by HB𝑡 and called
transactional happens-before. The following characterizes serializable traces.

Theorem 1 ([1, 22]). A trace tr is serializable iff HB𝑡 is acyclic.

A program is called robust if it produces the same set of traces as the seri-
alizability semantics.

Definition 1. A program 𝒫 is called robust against SI iff TrSI(𝒫) = TrSER(𝒫).

Since TrSER(𝒫) ⊆ TrX(𝒫), the problem of checking robustness of a program
𝒫 is reduced to checking whether there exists a trace tr ∈ TrSI(𝒫) ∖ TrSER(𝒫).

5 Reducing Robustness against SI to SC Reachability

A trace which is not serializable must contain at least an issue and a commit
event of the same transaction that don’t occur one after the other even after
reordering of “independent” events. Thus, there must exist an event that occur
between the two which is related to both events via the happens-before relation,
forbidding the issue and commit to be adjacent. Otherwise, we can build an-
other trace with the same happens-before where events are reordered such that
the issue is immediately followed by the corresponding commit. The latter is a
serializable trace which contradicts the initial assumption. We define a program
instrumentation which mimics the delay of transactions by doing the writes on
auxiliary variables which are not visible to other transactions. After the delay of
a transaction, we track happens-before dependencies until we execute a trans-
action that does a “read” on one of the variables that the delayed transaction
writes to (this would expose a read-write dependency to the commit event of
the delayed transaction). While tracking happens-before dependencies we can-
not execute a transaction that writes to a variable that the delayed transaction
writes to since SI forbids write-write conflicts between concurrent transactions.

Concretely, given a program 𝒫, we define an instrumentation of 𝒫 such that
𝒫 is not robust against SI iff the instrumentation reaches an error state under
serializability. The instrumentation uses auxiliary variables in order to simu-
late a single delayed transaction which we prove that it is enough for deciding
robustness. Let isu(𝑝, 𝑡) be the issue event of the only delayed transaction. The
process 𝑝 that delayed 𝑡 is called the Attacker. When the attacker finishes execut-
ing the delayed transaction it stops. Other processes that execute transactions
afterwards are called Happens-Before Helpers.

The instrumentation uses two copies of the set of shared variables in the
original program to simulate the delayed transaction. We use primed variables

Checking Robustness Against Snapshot Isolation 9

𝑥′ to denote the second copy. Thus, when a process becomes the attacker, it will
only write to the second copy that is not visible to other processes including the
happens-before helpers. The writes made by the other processes including the
happens-before helpers are made visible to all processes.

When the attacker delays the transaction 𝑡, it keeps track of the variables
it accessed, in particular, it stores the name of one of the variables it writes
to, 𝑥, it tracks every variable 𝑦 that it reads from and every variable 𝑧 that it
writes to. When the attacker finishes executing 𝑡, and some other process wants
to execute some other transaction, the underlying transaction must contain a
write to a variable 𝑦 that the attacker reads from. Also, the underlying trans-
action must not write to a variable that 𝑡 writes to. We say that this process
has joined happens-before helpers through the underlying transaction. While
executing this transaction, we keep track of each variable that was accessed and
the type of operation, wheather it is a read or write. Afterward, in order for
some other transaction to “join” the happens-before path, it must not write to
a variable that 𝑡 writes to so it does not violate the fact that SI forbids write-
write conflicts, and it has to satisfy one of the following conditions in order to
ensure the continuity of the happens-before dependencies: (1) the transaction is
issued by a process that has already another transaction in the happens-before
dependency (program order dependency), (2) the transaction is reading from a
shared variable that was updated by a previous transaction in the happens-before
dependency (write-read dependency), (3) the transaction writes to a shared vari-
able that was read by a previous transaction in the happens-before dependency
(read-write dependency), or (4) the transaction writes to a shared variable that
was updated by a previous transaction in the happens-before dependency (write-
write dependency). We introduce a flag for each shared variable to mark the fact
that the variable was read or written by a previous transaction.

Processes continue executing transactions as part of the chain of happens-
before dependencies, until a transaction does a read on the variable 𝑥 that 𝑡
wrote to. In this case, we reached an error state which signals that we found a
cycle in the transactional happens-before relation.

The instrumentation uses four varieties of flags: a) global flags (i.e., HB, 𝑎trA ,
𝑎stA), b) flags local to a process (i.e., 𝑝.𝑎 and 𝑝.ℎ𝑏ℎ), and c) flags per shared
variable (i.e., 𝑥.𝑒𝑣𝑒𝑛𝑡, 𝑥.𝑒𝑣𝑒𝑛𝑡′, and 𝑥.𝑒𝑣𝑒𝑛𝑡𝐼). We will explain the meaning of
these flags along with the instrumentation. At the start of the execution, all flags
are initialized to null (⊥).

Whether a process is an attacker or happens-before helper is not enforced
syntactically by the instrumentation. It is set non-deterministically during the
execution using some additional process-local flags. Each process chooses to set
to true at most one of the flags 𝑝.𝑎 and 𝑝.ℎ𝑏ℎ, implying that the process becomes
an attacker or happens-before helper, respectively. At most one process can be
an attacker, i.e., set 𝑝.𝑎 to true. In the following, we detail the instrumentation
for read and write instructions of the attacker and happens-before helpers.

10 S.M. Beillahi, A. Bouajjani, and C. Enea.

[[l1: 𝑟 := 𝑥; goto l2;]]A =

// Read before the delayed transaction

l1: assume 𝑎trA
=⊥ ; goto l𝑥1;

l𝑥1: 𝑟 := 𝑥; goto l2;

// Read in the delayed transaction

l1: assume 𝑎trA
̸=⊥ ∧𝑝.𝑎 ̸=⊥ ; goto l𝑥2;

l𝑥2: 𝑟 := 𝑥
′
; goto l𝑥3;

l𝑥3: 𝑥.𝑒𝑣𝑒𝑛𝑡 := ld; goto l𝑥4; (1)

l𝑥4: assume HB =⊥ ; goto l𝑥5;

l𝑥5: HB := true; goto l2; (2)

l𝑥4: assume HB ̸=⊥ ; goto l2;

[[l1: 𝑥 := 𝑒; goto l2;]]A =

// Write before the delayed transaction

l1: assume 𝑎trA
=⊥ ; goto l𝑥1;

l𝑥1: 𝑥 := 𝑒; goto l2;

// Write in the delayed transaction

l1: assume 𝑎trA
̸=⊥ ∧𝑝.𝑎 ̸=⊥ ; goto l𝑥2;

l𝑥2: 𝑥
′
:= 𝑒; goto l𝑥3; (3)

l𝑥3: 𝑥.𝑒𝑣𝑒𝑛𝑡
′
:= 1; goto l2; (4)

// Special write in the delayed transaction

l1: assume 𝑎stA
=⊥ ∧ 𝑎trA

̸=⊥ ∧𝑥.𝑒𝑣𝑒𝑛𝑡 =⊥ ; goto l𝑥4;

l𝑥4: 𝑥
′
:= 𝑒; goto l𝑥5;

l𝑥5: 𝑎stA
:= ‘𝑥‘; goto l𝑥6; (5)

l𝑥8: 𝑥.𝑒𝑣𝑒𝑛𝑡
′
:= 1; goto l2;

Fig. 3: Instrumentation of the Attacker. We use ‘𝑥‘ to denote the name of the
shared variable 𝑥.

5.1 Instrumentation of the Attacker

Figure 3 lists the instrumentation of the write and read instructions of the at-
tacker. Each process passes through an initial phase where it executes transac-
tions that are visible immediately to all the other processes (i.e., they are not
delayed), and then non-deterministically it can choose to delay a transaction at
which point it sets the flag 𝑎trA to true. During the delayed transaction it chooses
non-deterministically a write instruction to a variable 𝑥 and stores the name of
this variable in the flag 𝑎stA (line (5)). The values written during the delayed
transaction are stored in the primed variables and are visible only to the current
transaction, in case the transaction reads its own writes. For example, given a
variable 𝑧, all writes to 𝑧 from the original program are transformed into writes
to the primed version 𝑧′ (line (3)). Each time, the attacker writes to 𝑧, it sets
the flag 𝑧.𝑒𝑣𝑒𝑛𝑡′ = 1. This flag is used later by transactions from happens-before
helpers to avoid writing to variables that the delayed transaction writes to.

A read on a variable, 𝑦, in the delayed transaction takes her value from
the primed version, 𝑦′. In every read in the delayed transaction, we set the flag
𝑦.𝑒𝑣𝑒𝑛𝑡 to ld (line (1)) to be used latter in order for a process to join the happens-
before helpers. Afterward, the attacker starts the happens-before path, and it
sets the variable HB to true (line (2)) to mark the start of the happens. When
the flag HB is set to true the attacker stops executing new transactions.

5.2 Instrumentation of the Happens-Before Helpers

The remaining processes, which are not the attacker, can become a happens-
before helper. Figure 4 lists the instrumentation of write and read instructions of
a happens-before helper. In a first phase, each process executes the original code
until the flag 𝑎trA is set to true by the attacker. This flag signals the “creation”
of the secondary copy of the shared-variables, which can be observed only by
the attacker. At this point, the flag HB is set to true, and the happens-before

Checking Robustness Against Snapshot Isolation 11

helper process chooses non-deterministically a first transaction through which it
wants to join the set of happens-before helpers, i.e., continue the happens-before
dependency created by the existing happens-before helpers. When a process
chooses a transaction, it makes a pledge (while executing the begin instruction)
that during this transaction it will either read from a variable that was written to
by another happens-before helper, write to a variable that was accessed (read or
written) by another happens-before helper, or write to a variable that was read
from in the delayed transaction. When the pledge is met, the process sets the
flag 𝑝.ℎ𝑏ℎ to true (lines (7) and (11)). The execution is blocked if a process does
not keep its pledge (i.e., the flag 𝑝.ℎ𝑏ℎ is null) at the end of the transaction.
Note that the first process to join the happens-before helper has to execute
a transaction 𝑡 which writes to a variable that was read from in the delayed
transaction since this is the only way to build a happens-before between 𝑡, and
the delayed transaction (PO is not possible since 𝑡 is not from the attacker, WR
is not possible since 𝑡 does not see the writes of the delayed transaction, and WW
is not possible since 𝑡 cannot write to a variable that the delayed transaction
writes to). We use a flag 𝑥.𝑒𝑣𝑒𝑛𝑡 for each variable 𝑥 to record the type (read ld
or write st) of the last access made by a happens-before helper (lines (8) and
(10)). During the execution of a transaction that is part of the happens-before
dependency, we must ensure that the transaction does not write to variable 𝑦
where 𝑦.𝑒𝑣𝑒𝑛′ is set to 1. Otherwise, the execution is blocked (line 9).

The happens-before helpers continue executing their instructions, until one
of them reads from the shared variable 𝑥 whose name was stored in 𝑎stA . This
establishes a happens-before dependency between the delayed transaction and
a “fictitious” store event corresponding to the delayed transaction that could
be executed just after this read of 𝑥. The execution doesn’t have to contain
this store event explicitly since it is always enabled. Therefore, at the end of
every transaction, the instrumentation checks whether the transaction read 𝑥.
If it is the case, then the execution stops and goes to an error state to indicate
that this is a robustness violation. Notice that after the attacker stops, the only
processes that are executing transactions are happens-before helpers, which is
justified since when a process is not from a happens-before helper it implies
that we cannot construct a happens-before dependency between a transaction of
this process and the delayed transaction which means that the two transactions
commute which in turn implies that this process’s transactions can be executed
before executing the delayed transaction of the attacker.

5.3 Correctness

The role of a process in an execution is chosen non-deterministically at runtime.
Therefore, the final instrumentation of a given program 𝒫, denoted by [[𝒫]], is
obtained by replacing each labeled instruction ⟨𝑙𝑖𝑛𝑠𝑡⟩ with the concatenation
of the instrumentations corresponding to the attacker and the happens-before
helpers, i.e., [[⟨𝑙𝑖𝑛𝑠𝑡⟩]] ::= [[⟨𝑙𝑖𝑛𝑠𝑡⟩]]A [[⟨𝑙𝑖𝑛𝑠𝑡⟩]]HbH

The following theorem states the correctness of the instrumentation.

12 S.M. Beillahi, A. Bouajjani, and C. Enea.

[[l1: 𝑟 := 𝑥; goto l2;]]HbH =

// Read before the delayed transaction

l1: assume HB =⊥ ∧𝑝.𝑎 =⊥ ; goto l𝑥1;

l𝑥1: 𝑟 := 𝑥; goto l2; (6)

// Read after the delayed transaction

l1: assume HB ̸=⊥ ; goto l𝑥2;

l𝑥2: 𝑟 := 𝑥; goto l𝑥3;

l𝑥3: assume 𝑥.𝑒𝑣𝑒𝑛𝑡𝐼 = st ∧ 𝑝.ℎ𝑏ℎ =⊥ ; goto l𝑥4;

l𝑥4: 𝑝.ℎ𝑏ℎ := true; goto l2; (7)

l𝑥3: assume 𝑥.𝑒𝑣𝑒𝑛𝑡 =⊥ ; goto l𝑥5;

l𝑥5: 𝑥.𝑒𝑣𝑒𝑛𝑡 := ld; goto l2; (8)

l𝑥3: assume 𝑥.𝑒𝑣𝑒𝑛𝑡 ̸=⊥ ∨ 𝑝.ℎ𝑏ℎ ̸=⊥ ; goto l2;

[[l1: 𝑥 := 𝑒; goto l2;]]HbH =

// Write before the delayed transaction

l1: assume HB =⊥ ∧ 𝑎trA
=⊥ ; goto l𝑥1;

l𝑥1: 𝑥 := 𝑒; goto l2;

// Write after the delayed transaction

l1: assume HB ̸=⊥ ∧𝑝.𝑎 =⊥ ; goto l𝑥2;

l𝑥2: assume 𝑥.𝑒𝑣𝑒𝑛𝑡
′ ̸=⊥ ; assume false; (9)

l𝑥2: assume 𝑥.𝑒𝑣𝑒𝑛𝑡
′
=⊥ ; goto l𝑥3;

l𝑥3: 𝑥 := 𝑒; goto l𝑥4;

l𝑥4: 𝑥.𝑒𝑣𝑒𝑛𝑡 := st; goto l𝑥5; (10)

l𝑥5: assume 𝑥.𝑒𝑣𝑒𝑛𝑡𝐼 ̸=⊥ ∧ 𝑝.ℎ𝑏ℎ =⊥ ; goto l𝑥6;

l𝑥6: 𝑝.ℎ𝑏ℎ := true; goto l2; (11)

l𝑥5: assume 𝑥.𝑒𝑣𝑒𝑛𝑡𝐼 =⊥ ∨ 𝑝.ℎ𝑏ℎ ̸=⊥ ; goto l2;

Fig. 4: Instrumentation of Happens-Before Helpers.

Theorem 2. 𝒫 is not robust against SI iff [[𝒫]] reaches the error state.

If a program is not robust, this implies that the execution of the program
under SI results in a trace where the happens-before is cyclic. Which is possible
only if the program contains at least one delayed transaction. In the proof of
this theorem, we show that is sufficient to search for executions that contain a
single delayed transaction. The proofs are discussed in the Appendix.

Notice that in the instrumentation of the attacker, the delayed transaction
must contain a read and write instructions on different variables. Also, the trans-
actions of the happens-before helpers must not contain a write to a variable that
the delayed transaction writes to. The following corollary states the complexity
of checking robustness for finite-state programs 1 against snapshot isolation. It is
a direct consequence of Theorem 2 and of previous results concerning the reach-
ability problem in concurrent programs running over a sequentially-consistent
memory, with a fixed [16] or parametric number of processes [21].

Corollary 1. Checking robustness of finite-state programs against snapshot iso-
lation is PSPACE-complete when the number of processes is fixed and EXPSPACE-
complete, otherwise.

The instrumentation can be extended to SQL (select/update) queries where
a statement may include expressions over a finite/infinite set of variables, e.g.,
by manipulating a set of flags x.event for each statement instead of only one.

6 Proving Program Robustness

As a more pragmatic alternative to the reduction in the previous section, we
define an approximated method for proving robustness which is inspired by Lip-
ton’s reduction theory [17].

1 Programs with a bounded number of variables taking values from a bounded domain.

Checking Robustness Against Snapshot Isolation 13

Movers. Given an execution 𝜏 = ev1·. . .·ev𝑛 of a program 𝒫 under serializability
(where each event ev 𝑖 corresponds to executing an entire transaction), we say
that the event ev 𝑖 moves right (resp., left) in 𝜏 if ev1 ·. . .·ev 𝑖−1 ·ev 𝑖+1 ·ev 𝑖 ·ev 𝑖+2 ·
. . .·ev𝑛 (resp., ev1 ·. . .·ev 𝑖−2 ·ev 𝑖 ·ev 𝑖−1 ·ev 𝑖+1 ·. . .·ev𝑛) is also a valid execution of
𝒫, the process of ev 𝑖 is different from the process of ev 𝑖+1 (resp., ev 𝑖−1), and both
executions reach to the same end state 𝜎𝑛. For an execution 𝜏 , let instOf𝜏 (ev 𝑖)
denote the transaction that generated the event ev 𝑖. A transaction 𝑡 of a program
𝒫 is a right (resp., left) mover if for all executions 𝜏 of 𝒫 under serializability,
the event ev 𝑖 with instOf(ev 𝑖) = 𝑡 moves right (resp., left) in 𝜏 .

If a transaction 𝑡 is not a right mover, then there must exist an execution 𝜏 of
𝒫 under serializability and an event ev 𝑖 of 𝜏 with instOf(ev 𝑖) = 𝑡 that does not
move right. This implies that there must exist another ev 𝑖+1 of 𝜏 which caused
ev 𝑖 to not be a right mover. Since ev 𝑖 and ev 𝑖+1 do not commute, then this
must be because of either a write-read, write-write, or a read-write dependency.
If 𝑡′ = instOf(ev 𝑖+1), we say that 𝑡 is not a right mover because of 𝑡′ and some
dependency that is either write-read, write-write, or read-write. Notice that when
𝑡 is not a right mover because of 𝑡′ then 𝑡′ is not a left mover because of 𝑡.

We define MWR as a binary relation between transactions such that (𝑡, 𝑡′) ∈
MWR when 𝑡 is not a right mover because of 𝑡′ and a write-read dependency. We
define the relations MWW and MRW corresponding to write-write and read-write
dependencies in a similar way.

Read/Write-free transactions. Given a transaction 𝑡, we define 𝑡 ∖ {𝑟} as a
variation of 𝑡 where all the reads from shared variables are replaced with non-
deterministic reads, i.e., ⟨𝑟𝑒𝑔⟩ := ⟨𝑣𝑎𝑟⟩ statements are replaced with ⟨𝑟𝑒𝑔⟩ := ⋆
where ⋆ denotes non-deterministic choice. We also define 𝑡∖{𝑤} as a variation of
𝑡 where all the writes to shared variables in 𝑡 are disabled. Intuitively, recalling
the reduction to SC reachability in Section 5, 𝑡 ∖ {𝑤} simulates the delay of
a transaction by the Attacker, i.e., the writes are not made visible to other
processes, and 𝑡∖{𝑟} approximates the commit of the delayed transaction which
only applies a set of writes.

Commutativity dependency graph. Given a program 𝒫, we define the com-
mutativity dependency graph as a graph where vertices represent transactions
and their read/write-free variations. Two vertices which correspond to the orig-
inal transactions in 𝒫 are related by a program order edge, if they belong to the
same process. The other edges in this graph represent the “non-mover” relations
MWR, MWW, and MRW.

Given a program 𝒫, we say that the commutativity dependency graph of 𝒫
contains a non-mover cycle if there exist a set of transactions 𝑡0, 𝑡1, . . . , 𝑡𝑛 of 𝒫
such that the following hold:

(a) (𝑡′′0 , 𝑡1) ∈ MRW where 𝑡′′0 is the write-free variation of 𝑡0 and 𝑡1 does not write
to a variable that 𝑡0 writes to;

(b) for all 𝑖 ∈ [1, 𝑛], (𝑡𝑖, 𝑡𝑖+1) ∈ (PO ∪MWR ∪MWW ∪MRW), 𝑡𝑖 and 𝑡𝑖+1 do not
write to a shared variable that 𝑡0 writes to;

(c) (𝑡𝑛, 𝑡
′
0) ∈ MRW where 𝑡′0 is the read-free variation of 𝑡0 and 𝑡𝑛 does not write

to a variable that 𝑡0 writes to.

14 S.M. Beillahi, A. Bouajjani, and C. Enea.

A non-mover cycle approximates an execution of the instrumentation defined
in Section 5 in between the moment that the Attacker delays a transaction 𝑡0
(which here corresponds to the write-free variation 𝑡′′0) and the moment where
𝑡0 gets committed (the read-free variation 𝑡′0).

The following theorem shows that the acyclicity of the commutativity de-
pendency graph of a program implies the robustness of the program. Actually,
the notion of robustness in this theorem relies on a slightly different notion of
trace where store-order and write-order dependencies take into account values,
i.e., store-order relates only writes writing different values and the write-order
relates a read to the oldest write (w.r.t. execution order) writing its value. This
relaxation helps in avoiding some harmless robustness violations due to for in-
stance, two transactions writing the same value to some variable.

Theorem 3. For a program 𝒫, if the commutativity dependency graph of 𝒫 does
not contain non-mover cycles, then 𝒫 is robust.

7 Experiments

To test the applicability of our robustness checking algorithms, we have con-
sidered a benchmark of 10 applications extracted from the literature related
to weakly consistent databases in general. A first set of applications are open
source projects that were implemented to be run over the Cassandra database,
extracted from [10]. The second set of applications is composed of: TPC-C [23],
an on-line transaction processing benchmark widely used in the database com-
munity, SmallBank, a simplified representation of a banking application [2], Fu-
sionTicket, a movie ticketing application [15], Auction, an online auction appli-
cation [5], and Courseware, a course registration service extracted from [13, 18].

A first experiment concerns the reduction of robustness checking to SC reach-
ability. For each application, we have constructed a client (i.e., a program com-
posed of transactions defined within that application) with a fixed number of
processes (at most 3) and a fixed number of transactions (between 3 and 7
transactions per process). We have encoded the instrumentation of this client,
defined in Section 5, in the Boogie programming language [3] and used the Civl
verifier [14] in order to check whether the assertions introduced by the instru-
mentation are violated (which would represent a robustness violation). Note
that since clients are of fixed size, this requires no additional assertions/invari-
ants (it is an instance of bounded model checking). The results are reported in
Table 1. We have found two of the applications, Courseware and SmallBank, to
not be robust against snapshot isolation. The violation in Courseware is caused
by transactions RemoveCourse and EnrollStudent that execute concurrently,
RemoveCourse removing a course that has no registered student and EnrollStu-
dent registering a new student to the same course. We get an invalid state where
a student is registered for a course that was removed. SmallBank’s violation
contains transactions Balance, TransactSaving, and WriteCheck. One process
executes WriteCheck where it withdraws an amount from the checking account
after checking that the sum of the checking and savings accounts is bigger than
this amount. Concurrently, a second process executes TransactSaving where it

Checking Robustness Against Snapshot Isolation 15

Table 1: An overview of the analysis results. CDG stands for commutativity de-
pendency graph. The columns PO and PT show the number of proof obligations
and proof time in second, respectively. T stands for trivial when the application
has only read-only transactions.

Application #Transactions Robustness Reachability Analysis CDG Analysis
PO PT PO PT

Auction 4 3 70 0.3 20 0.5

Courseware 5 7 59 0.37 na na

FusionTicket 4 3 72 0.3 34 0.5

SmallBank 5 7 48 0.28 na na

TPC-C 5 3 54 0.7 82 3.7

Cassieq-Core 8 3 173 0.55 104 2.9

Currency-Exchange 6 3 88 0.35 26 3.5

PlayList 14 3 99 4.63 236 7.3

RoomStore 5 3 85 0.3 22 0.5

Shopping-Cart 4 3 58 0.25 T T

withdraws an amount from the saving account after checking that it is smaller
than the amount in the savings account. Afterwards, the second process checks
the contents of both the checking and saving accounts. We get an invalid state
where the sum of the checking and savings accounts is negative.

Since in the first experiment we consider fixed clients, the lack of asser-
tion violations doesn’t imply that the application is robust (this instantiation
of our reduction can only be used to reveal robustness violations). Thus, a sec-
ond experiment concerns the robustness proof method based on commutativity
dependency graphs (Section 6). For the applications that were not identified as
non-robust by the previous method, we have used Civl to construct their com-
mutativity dependency graphs, i.e., identify the “non-mover” relations MWR,
MWW, and MRW (Civl allows to check whether some code fragment is a left-
/right mover). In all cases, the graph didn’t contain non-mover cycles, which
allows to conclude that the applications are robust.

The experiments show that our results can be used for finding violations and
proving robustness, and that they apply to a large set of interesting examples.
Note that the reduction to SC and the proof method based on commutativity
dependency graphs are valid for programs with SQL (select/update) queries.

8 Related Work

Decidability and complexity of robustness has been investigated in the context
of relaxed memory models such as TSO and Power [6, 8, 12]. Our work borrows
some high-level principles from [6] which addresses the robustness against TSO.
We reuse the high-level methodology of characterizing minimal violations accord-
ing to some measure and defining reductions to SC reachability using a program
instrumentation. Instantiating this methodology in our context is however very
different, several fundamental differences being:

16 S.M. Beillahi, A. Bouajjani, and C. Enea.

– SI and TSO admit different sets of relaxations and SI is a model of trans-
actional databases.

– We use a different notion of measure: the measure in [6] counts the number of
events between a write issue and a write commit while our notion of measure
counts the number of delayed transactions. This is a first reason for which
the proof techniques in [6] don’t extend to our context.

– Transactions induce more complex traces: two transactions might be related
by several dependency relations since each transaction may contain multiple
reads and writes to different locations. In TSO, each action is a read or a write
to some location, and two events are related by a single dependency relation.
Also, the number of dependencies between two transactions depends on the
execution since the set of reads/writes in a transaction evolves dynamically.

Other works [8, 12] define decision procedures which are based on the theory of
regular languages and do not extend to infinite-state programs like in our case.

p1:
t1: [if (x > y)

r1 = x - y
x = y]

||
p2:

t2: [if (y > x)
r2 = y - x
y = x]

Fig. 5: A robust program.

As far as we know, our work provides
the first results concerning the decidability
and the complexity of robustness checking
in the context of transactions. The existing
work on the verification of robustness for
transactional programs provide either over-
or under-approximate analyses. Our com-
mutativity dependency graphs are similar to the static dependency graphs used
in [5, 9, 10, 11], but they are more precise, i.e., reducing the number of false
alarms. The static dependency graphs record happens-before dependencies be-
tween transactions based on a syntactic approximation of the variables accessed
by a transaction. For example, our techniques are able to prove that the program
in Figure 5 is robust, while this is not possible using static dependency graphs.
The latter would contain a dependency from transaction 𝑡1 to 𝑡2 and one from 𝑡2
to 𝑡1 just because syntactically, each of the two transactions reads both variables
and may write to one of them. Our dependency graphs take into account the
semantics of these transactions and do not include this happens-before cycle.
Other over- and under-approximate analyses have been proposed in [19]. They
are based on encoding executions into first order logic, bounded-model check-
ing for the under-approximate analysis, and a sound check for proving a cut-off
bound on the size of the happens-before cycles possible in the executions of a pro-
gram, for the over-approximate analysis. The latter is strictly less precise than
our method based on commutativity dependency graphs. For instance, extending
the TPC-C application with additional transactions will make the method in [19]
fail while our method will succeed in proving robustness (the three transactions
are for adding a new product, adding a new warehouse based on the number of
customers and warehouses, and adding a new customer, respectively).

Finally, the idea of using Lipton’s reduction theory for checking robustness
has been also used in the context of the TSO memory model [7], but the tech-
niques are completely different, e.g., the TSO technique considers each update
in isolation and doesn’t consider non-mover cycles like in our commutativity
dependency graphs.

Bibliography

[1] Adya, A.: Weak consistency: A generalized theory and optimistic imple-
mentations for distributed transactions. Ph.D. thesis (1999)

[2] Alomari, M., Cahill, M.J., Fekete, A., Röhm, U.: The cost of serializability
on platforms that use snapshot isolation. In: Alonso, G., Blakeley, J.A.,
Chen, A.L.P. (eds.) Proceedings of the 24th International Conference on
Data Engineering, ICDE 2008, April 7-12, 2008, Cancún, Mexico. pp. 576–
585. IEEE Computer Society (2008)

[3] Barnett, M., Chang, B.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie:
A modular reusable verifier for object-oriented programs. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.P. (eds.) Formal Methods for
Components and Objects, 4th International Symposium, FMCO 2005, Am-
sterdam, The Netherlands, November 1-4, 2005, Revised Lectures. Lecture
Notes in Computer Science, vol. 4111, pp. 364–387. Springer (2005)

[4] Berenson, H., Bernstein, P.A., Gray, J., Melton, J., O’Neil, E.J., O’Neil,
P.E.: A critique of ANSI SQL isolation levels. In: Carey, M.J., Schneider,
D.A. (eds.) Proceedings of the 1995 ACM SIGMOD International Confer-
ence on Management of Data, San Jose, California, USA, May 22-25, 1995.
pp. 1–10. ACM Press (1995)

[5] Bernardi, G., Gotsman, A.: Robustness against consistency models with
atomic visibility. In: Desharnais, J., Jagadeesan, R. (eds.) 27th Interna-
tional Conference on Concurrency Theory, CONCUR 2016, August 23-26,
2016, Québec City, Canada. LIPIcs, vol. 59, pp. 7:1–7:15. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik (2016)

[6] Bouajjani, A., Derevenetc, E., Meyer, R.: Checking and enforcing robustness
against TSO. In: Felleisen, M., Gardner, P. (eds.) Programming Languages
and Systems - 22nd European Symposium on Programming, ESOP 2013,
Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings.
Lecture Notes in Computer Science, vol. 7792, pp. 533–553. Springer (2013)

[7] Bouajjani, A., Enea, C., Mutluergil, S.O., Tasiran, S.: Reasoning about TSO
programs using reduction and abstraction. In: Chockler, H., Weissenbacher,
G. (eds.) Computer Aided Verification - 30th International Conference, CAV
2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford,
UK, July 14-17, 2018, Proceedings, Part II. Lecture Notes in Computer
Science, vol. 10982, pp. 336–353. Springer (2018)

[8] Bouajjani, A., Meyer, R., Möhlmann, E.: Deciding robustness against to-
tal store ordering. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) Automata,
Languages and Programming - 38th International Colloquium, ICALP 2011,
Zurich, Switzerland, July 4-8, 2011, Proceedings, Part II. Lecture Notes in
Computer Science, vol. 6756, pp. 428–440. Springer (2011)

[9] Brutschy, L., Dimitrov, D., Müller, P., Vechev, M.T.: Serializability for even-
tual consistency: criterion, analysis, and applications. In: Castagna, G., Gor-

18 S.M. Beillahi, A. Bouajjani, and C. Enea.

don, A.D. (eds.) Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages, POPL 2017, Paris, France, January
18-20, 2017. pp. 458–472. ACM (2017)

[10] Brutschy, L., Dimitrov, D., Müller, P., Vechev, M.T.: Static serializability
analysis for causal consistency. In: Foster, J.S., Grossman, D. (eds.) Pro-
ceedings of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2018, Philadelphia, PA, USA, June 18-
22, 2018. pp. 90–104. ACM (2018)

[11] Cerone, A., Gotsman, A.: Analysing snapshot isolation. J. ACM 65(2),
11:1–11:41 (2018)

[12] Derevenetc, E., Meyer, R.: Robustness against power is pspace-complete.
In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) Au-
tomata, Languages, and Programming - 41st International Colloquium,
ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part
II. Lecture Notes in Computer Science, vol. 8573, pp. 158–170. Springer
(2014)

[13] Gotsman, A., Yang, H., Ferreira, C., Najafzadeh, M., Shapiro, M.: ’cause i’m
strong enough: reasoning about consistency choices in distributed systems.
In: Bod́ık, R., Majumdar, R. (eds.) Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016. pp. 371–384.
ACM (2016)

[14] Hawblitzel, C., Petrank, E., Qadeer, S., Tasiran, S.: Automated and modu-
lar refinement reasoning for concurrent programs. In: Kroening, D., Pasare-
anu, C.S. (eds.) Computer Aided Verification - 27th International Confer-
ence, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings,
Part II. Lecture Notes in Computer Science, vol. 9207, pp. 449–465. Springer
(2015)

[15] Holt, B., Bornholt, J., Zhang, I., Ports, D.R.K., Oskin, M., Ceze, L.: Dis-
ciplined inconsistency with consistency types. In: Aguilera, M.K., Cooper,
B., Diao, Y. (eds.) Proceedings of the Seventh ACM Symposium on Cloud
Computing, Santa Clara, CA, USA, October 5-7, 2016. pp. 279–293. ACM
(2016)

[16] Kozen, D.: Lower bounds for natural proof systems. In: 18th Annual Sym-
posium on Foundations of Computer Science, Providence, Rhode Island,
USA, 31 October - 1 November 1977. pp. 254–266. IEEE Computer Society
(1977)

[17] Lipton, R.J.: Reduction: A method of proving properties of parallel pro-
grams. Commun. ACM 18(12), 717–721 (1975)

[18] Nagar, K., Jagannathan, S.: Automated detection of serializability viola-
tions under weak consistency. In: Schewe, S., Zhang, L. (eds.) 29th Interna-
tional Conference on Concurrency Theory, CONCUR 2018, September 4-7,
2018, Beijing, China. LIPIcs, vol. 118, pp. 41:1–41:18. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2018)

Checking Robustness Against Snapshot Isolation 19

[19] Nagar, K., Jagannathan, S.: Automatic detection of serializability viola-
tions under weak consistency. In: 29th Intern. Conf. on Concurrency Theory
(CONCUR’18) (September 2018), to appear

[20] Papadimitriou, C.H.: The serializability of concurrent database updates. J.
ACM 26(4), 631–653 (1979)

[21] Rackoff, C.: The covering and boundedness problems for vector addition
systems. Theor. Comput. Sci. 6, 223–231 (1978)

[22] Shasha, D.E., Snir, M.: Efficient and correct execution of parallel programs
that share memory. ACM Trans. Program. Lang. Syst. 10(2), 282–312
(1988)

[23] TPC: Tech. rep., Transaction Processing Performance Council (February
2010), http://www.tpc.org/tpc_documents_current_versions/pdf/

tpc-c_v5.11.0.pdf

