
Local Shape Analysis for Overlaid Data Structures?

Cezara Drăgoi1, Constantin Enea2, and Mihaela Sighireanu2

1 IST Austria, cezarad@ist.ac.at
2 Univ Paris Diderot, Sorbonne Paris Cite, LIAFA CNRS UMR 7089, Paris,

{cenea,sighirea}@liafa.univ-paris-diderot.fr

Abstract. We present a shape analysis for programs that manipulate overlaid
data structures which share sets of objects. The abstract domain contains Sepa-
ration Logic formulas that (1) combine a per-object separating conjunction with
a per-field separating conjunction and (2) constrain a set of variables interpreted
as sets of objects. The definition of the abstract domain operators is based on a
notion of homomorphism between formulas, viewed as graphs, used recently to
define optimal decision procedures for fragments of the Separation Logic. Based
on a Frame Rule that supports the two versions of the separating conjunction, the
analysis is able to reason in a modular manner about non-overlaid data structures
and then, compose information only at a few program points, e.g., procedure re-
turns. We have implemented this analysis in a prototype tool and applied it on
several interesting case studies that manipulate overlaid and nested linked lists.

1 Introduction

Automatic synthesis of valid assertions about heap-manipulating programs, such as
loop invariants or procedure summaries, is an important and highly challenging prob-
lem. In this paper, we address this problem for sequential programs manipulating over-
laid and nested linked lists. The term overlaid refers to the fact that the lists share some
set of objets. Such data structures are often used in low-level code in order to organize
a set of objects with respect to different criteria. For example, the network monitoring
software Nagios (www.nagios.com) groups sets of tasks in nested lists, according to
the user that spawned them, but also in two lists of pending and, respectively, executed
tasks. These structures are overlaid because they share the objects that represent tasks.

We propose an analysis based on abstract interpretation [10], where the elements
of the abstract domain are formulas in NOLL [13], a fragment of Separation Logic
(SL) [17]. The main features of NOLL are (1) two separating conjunction operators, the
per-object separation ∗ and the per-field separation ∗w, (2) recursive predicates indexed
by set variables, which are interpreted as the set of all heap objects in the data structure
described by the predicate, and (3) constraints over set variables, which relate sets of
objects that form different data structures. The analysis has as parameter the set of
recursive predicates used in the NOLL formulas. Although per-object separation can be
expressed using per-field separation and constraints on set variables, we prefer to keep
both versions for two reasons: (i) the formulas are more concise and (ii) as a design
principle, the analysis should introduce per-field separation only when it is necessary,
i.e., when it detects overlaid data structures.
? This work was supported in part by the Austrian Science Fund NFN RiSE, by the ERC Ad-

vanced Grant QUAREM, and by the French ANR Project Veridyc.

2 Cezara Drăgoi, Constantin Enea, and Mihaela Sighireanu

The main characteristics of the analysis are (1) compositionality: we define a frame
rule for NOLL, which allows to reason locally, on a subset of allocated objects and con-
sidering only a subset of their fields and (2) abstract domain operators based on graph
homomorphism, used recently in optimal decision procedures for SL fragments [9, 13].

The frame rule for SL with only per-object separation [17] states that, in order to
compute the effect of a program P on the input specified by a formula φ, one has to split
φ into φi ∗σ, where φi describes all the heap objects reachable from program variables
read in P without being written before, compute the post-condition φo of P on φi and
then, infer that the effect of P on φ is φo ∗σ. Programs with overlaid data structures can
be usually partitioned in blocks, e.g. procedures, that manipulate just one non-overlaid
data structure at a time. Thus, for the sake of compositionality, only the description
of this data structure should be considered when computing the effect of some block.
Having both the per-field and the per-object separation, the frame rule we define refines
the decomposition of φ into (φi ∗w σ1) ∗σ2, where φi describes the list segments in the
heap built with fields accessed in P, which start in variables read in P. As before, if φo
represents the effect of P on φi then the post-condition of P on φ is (φo ∗w σ1)∗σ2.

The constraints on set variables are important to define a precise local analysis. They
are used to relate heap regions accessed in different blocks of the program. For example,
consider a program that traverses a list segment L1 and then, another list segment L2,
these list segments being overlaid. In a local analysis that considers only one list seg-
ment at a time, the constraints on set variables are used to preserve the fact that some
heap objects, materialized on the list segment L1, belong also to L2. This information
may be used when fields of these heap objects are accessed.

The elements of the abstract domain are existentially-quantified disjunctions of
NOLL formulas that use only (separating) conjunctions. To obtain efficient abstract
domain operators, we use a graph representation for NOLL formulas. Each disjunction-
free formula ϕ is represented by a graph where nodes correspond to variables of ϕ and
edges correspond to atoms of ϕ that describe (nested) list segments.

The definition of the order relation � between the abstract domain values uses the
entailment relation |= between NOLL formulas. One can prove [9, 13] that ϕ1 |= ϕ2
whenever there exists an homomorphism from the graph representations of ϕ2 to the one
of ϕ1. Assuming that atoms describe only singly-linked lists, an homomorphism from a
graph G1 to a graph G2 maps edges of G1 to (possibly empty) paths of G2 such that the
paths of G2 associated to two distinct edges of G1 do not share edges. If atoms include
recursive predicates that describe nested list segments, the homomorphism maps edges
of G1 to more general sub-graphs of G2 that represent unfoldings of these predicates.
Comparing to the previous approaches for proving entailments of SL formulas, which
are based on inference rules, the homomorphism approach has the same precision but it
is more efficient because, intuitively, it defines also a strategy for applying the inference
rules. We introduce an effective procedure for checking graph homomorphism, which
is based on testing membership in languages described by tree automata.

The widening operator O is based on two operations: (1) a fold operator that “rec-
ognizes” data structures used in the program, if they are describable by one of the pred-
icates parametrizing the analysis and (2) a procedure that uses graph homomorphism
in order to identify the constraints which are true in both of its arguments (implicitly, it

Local Shape Analysis for Overlaid Data Structures 3

tries to preserve the predicates discovered by fold). More precisely, given two graphs G1
and G2, the widening operator searches for a maximal sub-graph of G1 which is homo-
morphic to a sub-graph of G2 (and thus weaker) and a maximal sub-graph of G2 which
is homomorphic to a sub-graph of G1. All these graphs should be disjoint. If all edges
of G1 and G2 are included in these sub-graphs then the widening returns the union of
the two weaker sub-graphs. Otherwise, it returns a disjunction of two graphs or, if the
number of nodes which correspond to existential variables is greater than some fixed
bound, it applies the operator fold which replaces unfoldings of recursive predicates by
instantiations of these predicates. Folding the same set of nodes in two different list
segments introduces the per-field separation although the initial formula may use only
the per-object separation.

The analysis is implemented in a prototype tool that has been successfully applied
on some interesting set of benchmarks that includes fragments from Nagios.
Related work: There are many works that develop static analyses based on SL, e.g., [2,
7, 6, 8, 11, 12, 14, 16, 19, 20]. Most of them, except the work in [16], are not precise
enough in order to deal with overlaid data structures. The abstract domain operators de-
fined in [7, 20] can be seen as instantiations of the operators based on graph homomor-
phism introduced in this paper (provided that the definition of the graph homomorphism
is adapted to the respective logics). In [16], overlaid data structures are described using
the classical conjunction, instead of the per-field separation as in our work. The anal-
ysis is defined as a reduced product of several sub-analyses, where each sub-analysis
“observes” a different set of fields. The reduction operator, used to exchange informa-
tion between the sub-analyses, is called at control points, which are determined using
a preliminary data-flow analysis. The same data-flow analysis is used to anticipate the
updates on the set variables. In our work, compositionality is achieved using the frame
rule and thus, it avoids the overhead of duplicate domain operations and calls to the re-
duction operator. Moreover, the updates on the set variables are determined during the
analysis and thus, they can produce more precise results. Static analyses for reasoning
about the size of memory regions are introduced in [15]. They are based on combining
a set domain, that partitions the memory into (not necessarily) disjoint regions, and a
numerical domain, that is used to relate the cardinalities of the memory regions. The
abstract domain defined in this paper can be seen as an instance of a set domain.

2 Overview

Our running example is extracted from the network monitoring software Nagios which
uses a task manager to store pending and executed tasks, grouped or linked according to
different criteria. The implementation given in Fig. 1 wraps tasks in objects of type Task
composed of a field op, which stores a description of the task, a field succ, which links
the tasks spawned by the same user, and fields next and prev, which link pending or
executed tasks. A task manager is implemented by an object of type Manager containing
a field tab, which stores the tasks of each user using a NestedList object, a field todo
which is used to access the pending tasks, and a field log, which points to the list of
executed tasks. Each element of type NestedList has an integer field encoding the user
id and a field tasks pointing to the list of tasks spawned by the user. To specify the lists

4 Cezara Drăgoi, Constantin Enea, and Mihaela Sighireanu

typedef struct Task {
char* op;
struct Task* succ;
struct Task* prev, *next;

} Task;

typedef struct NestedList {
int user;
struct NestedList* nextu;
Task* tasks;

} NestedList;

typedef struct Manager {
NestedList* tab;
Task* todo;
Task* log;

} Manager;

Task* lookup(int user,char* str,
NestedList* tab)

{ ... return ret; }

Task* add(Task* x,Task* log)
{ x->prev = NULL;

x->next = log;
return x;

}
Task* cut(Task* x,Task* todo)
{

Task* tmp = x->next;
if (tmp != NULL) tmp->prev = x->prev;
if (x->prev == NULL) return tmp;
else
{ x->prev->next = tmp;

return todo; }
}
void execute(int user,char* str,Manager* man)
{

Task* x = lookup(user,str,man->tab);
if (x != NULL && (x->prev != NULL || x==man->todo))
{ man->todo = cut(x,man->todo);

man->log = add(x,man->log); }
}

Fig. 1: Task manager

pointed to by the fields of an object of type Manager, we use the following SL formula:

ϕ , nllα(tab,NULL,NULL)∗w
(
dllβ(todo,NULL)∗sllγ(log,NULL,NULL)

)
∧ α(Task) = β∪ γ,

(1)

where nllα(tab,NULL,NULL) describes a list of lists pointed to by tab and ending in
NULL, where all the inner lists end also in NULL, dllβ(todo,NULL) describes3 a doubly-
linked list from todo to NULL, and sllγ(log,NULL,NULL) describes a list of objects with
two fields next and prev such that prev points always to NULL (this is a common way to
factorize one type declaration in order to represent both doubly-linked and singly-linked
lists). In general, the list segments described by these predicates can be empty. (For a
formal definition of these predicates, we defer the reader to Sec. 4.) The set variables
α, β, and γ are interpreted as the set of heap objects in the list segments described by
the corresponding predicates. Also, α(Task) is interpreted as the set of heap objects of
type Task in the interpretation of α. To simplify the notation, we represent an object of
type Manager by three pointer variables tab, todo, and log. The per-field separation
∗w allows the list of lists to share objects with the other two lists.

Such formulas have an equivalent graph representation, which is more intuitive
and easier to work with. For example, Fig. 2 shows the graph representation of ϕ. In
nllα(tab,NULL,NULL), the first two arguments represent the start and, resp., the end of
the list of NestedList objects. Therefore, this atom is represented by an edge from tab
to NULL labeled by nllα (actually, the edge label contains also the third argument NULL
but we have omit it for simplicity). Any two edges labeled by the same integer (resp.,
different integers) represent per-object (resp., per-field) separated atoms.

We define an abstract domain, denoted ASL, which is parametrized by a set of
(recursive) predicates as above and contains disjunctions of formulas as in (1).

3 This predicate is actually a shorthand for the formula todo 7→ {(prev,NULL)} ∗w
dllβ(todo,u′)∗w u′ 7→ {(next,NULL)}, where dllβ is the recursive predicate defined in Ex. 1,
page 9, and u′ an existential variable.

Local Shape Analysis for Overlaid Data Structures 5

Pre-condition ϕ of execute: Pre-condition ϕpre
of lookup: Post-condition ϕpost of lookup:

todo NULL

tab

log

α(Task) = β∪ γ

dllβ

sllγ

nllα2

1

1

tab

NULL

α(Task) = β∪ γ

2 nllα

tab u′ v′

w′

ret

NULL

α1(Task)∪α2(Task)
∪{u′}∪α3 ∪α4 = β∪ γ

nllα1 nextu

nllα2

tasks

lsα3

lsα4

2

2

2

2

2

2

Formula ϕret after returning from lookup: An unfolding of
dllβ(todo,NULL)

: A disjunct ψ from the postcondition of execute:

tab u′ v′

w′

x

NULL

todo

log

NULL

α1(Task)∪α2(Task)
∪{u′}∪α3 ∪α4 = β∪ γ

nllα1

dllβ

sllγ

nextu nllα2

tasks

lsα3

lsα4

2

1

1

2 2

2

2

2

todo

t ′

x

NULL

2
dllβ1

2 next2
prev

2
dllβ2

tab u′ v′

w′

log

NULLtodo

NULL

α1(Task)∪α2(Task)
∪{u′}∪α3 ∪α4 = β′ ∪{log}∪ γ

nllα1

dllβ′ sllγ

nextu nllα2

tasks

lsα3

lsα4 prev

next

2

1

1

1 1

2 2

2

2

2

Fig. 2: Graph representations of formulas in the analysis of execute (the square nodes
have type NestedList and the circle nodes have type Task)

Next, we focus on the analysis of the procedure execute, which moves a task from
the list of pending tasks, pointed to by todo, to the list of executed tasks, pointed to by
log. To check that the task pointed to by x belongs to the todo list, it tests if x equals
the head of this list or if the prev field is not NULL. Given the precondition ϕ in (1), the
analysis proves that, at the end of the procedure, the property ϕ remains true, i.e., all
the data structures are preserved.

The procedure starts by calling lookup in order to search for an object of type Task.
The analysis we define is compositional in two ways. First, each procedure is analyzed
on its “local heap”, i.e., the heap region reachable from the actual parameters of the
call. Second, we restrict the local heap to paths that use only fields accessed by the
procedure. For example, the procedure lookup accesses only the fields nextu, tasks,
and succ and consequently, it is analyzed on a sub-formula ϕpre of ϕ that contains only
nllα(tab,NULL,NULL)∧α(Task) = β∪ γ. The constraint on set variables is included
because it constrains a set of objects in the local heap of lookup. The graph represen-
tation of ϕpre is given in Fig. 2.

The post-condition of lookup computed by the analysis contains several disjuncts;
one of them, denoted ϕpost , is given in Fig. 2. This graph represents an unfolding of the

6 Cezara Drăgoi, Constantin Enea, and Mihaela Sighireanu

list segment described by nllα(tab,NULL,NULL), where u′, v′, and w′ are existentially
quantified variables (by convention, all the existential variables are primed). Edges la-
beled by fields, e.g., the edge from u′ to v′ labeled by nextu, represent values of fields.
The term {u′} in the constraint on set variables is interpreted as the singleton contain-
ing the object u′. The output parameter ret points to an object in some inner list of the
nested list segment pointed to by tab. The inner lists are described by the predicate ls.

The abstract value reached when returning from the call to lookup, ϕret , is given in
Fig. 2. It is obtained from ϕ by replacing the sub-formula ϕpre with ϕpost (we consider
two copies of the node labeled by NULL for readability).

We now consider the if statement in execute. The abstract element where we as-
sume that x!=NULL is true is obtained from ϕpost by adding the constraint x 6= NULL∧x∈
α4 (the object pointed to by x belongs to α4 only if x 6= NULL; otherwise, the interpre-
tation of α4 is /0). To compute the abstract element where we assume that x->prev !=
NULL, we need to materialize the prev field of x. For this, we use the fact that the set
constraints imply that x ∈ β∪ γ and we compute a disjunction of three graphs where
we unfold either the predicate dllβ(todo,NULL) (with x as the first element or as some
element different from the first one) or sllγ(log,NULL,NULL) (with x as some arbitrary
element). Only one graph satisfies x->prev != NULL and this graph contains the un-
folding of dllβ(todo,NULL) given in the second row of Fig. 2. With this unfolding, the
set variable β is replaced by β1 ∪{t ′}∪β2. Note that the node labeled by x in this un-
folding is the same as the node labeled by x in the unfolding of nllα(tab,NULL,NULL).

If we continue on the branch of the if statement where x!=NULL and
x->prev!=NULL are true then, we analyze the call to cut starting from a precondi-
tion that contains only the sub-formula describing the unfolding of dllβ(todo,NULL)
and the constraint on the set variables. This is because cut accesses only the fields prev
and next, and the list sllγ(log,NULL,NULL) is per-object separated from the doubly-
linked list. A similar analysis is done for the call to add. One of the disjuncts from the
post-condition of execute, denoted by ψ, is given in Fig. 2 (local variables have been
projected out and, for simplicity, we abstract the unfolding of dllβ′).

The analysis proves that the data structures are preserved by a call to execute, i.e.,
its postcondition implies ϕ in (1). This is because there exists an homomorphism from
ϕ to every disjunct in the post-condition. Intuitively, the homomorphism maps nodes of
ϕ to nodes of the disjunct, labeled by at least the same set of program variables, and
edges e of ϕ to sub-graphs of the disjunct, that represent unfoldings of the predicate
labeling e. For example, this is the case for the disjunct ψ in Fig. 2. Concerning the
constraints on set variables, the edge mapping defines a substitution Γ for set variables
of ϕ to terms over variables of ψ, e.g., α is substituted by the union of all set variables
in the unfolding of nllα(tab,NULL,NULL), i.e., α1 ∪α2 ∪{u′}∪α3 ∪α4 ({u′} is also
considered because some field of u′ is explicit in this unfolding). If Λ1 and Λ2 are the
constraints over set variables in ψ, resp., ϕ, then Λ1 implies Λ2[Γ].

3 Programs

We consider strongly typed imperative programs. The types used in the program are
references to record types belonging to some set T . A record type contains a set of

Local Shape Analysis for Overlaid Data Structures 7

fields, each field being a reference to a record type. We suppose that each field has a
unique name and we denote by Flds the set of field names. Let τ be a typing function,
that maps each variable into a type in T and each field into a function type over T .
Program configurations: We use a classical storage model, where a program config-
uration is a pair C = (S,H), where S represents the stack of program variables and H
represents the heap of dynamically allocated objects. To give a formal definition, we
consider three additional countable sets which are pairwise disjoint and disjoint from
Flds: a set Loc of addresses (called also locations), a set Vars of program variables
x,y,z, and a set Vars′ of “primed” variables x′,y′,z′ that do not appear in the program
but only in assertions where they are implicitly existentially quantified. We assume that
all these elements are typed by τ to records in T . For simplicity, we also assume that
NULL is an element of Vars mapped always to a distinguished location] ∈ Loc. Then,

S ∈ Stacks= [(Vars∪Vars′)→ Loc] H ∈ Heaps= [Loc×Flds ⇀ Loc]
C ∈ Configs= Stacks×Heaps

We consider that S and H are well typed, e.g., if S(x)= ` then τ(x)= τ(`). For simplicity,
the constant NULL and the location] are typed by τ in any record in T .

The set of locations l for which H(l, f) is defined, for some f , is called the set of
locations in C, and it is denoted by Loc(C). The component S (resp. H) of a heap C is
denoted by SC (resp. HC).
Programs: Aside the definition of record types, programs are collections of proce-
dures. The procedures are written in a classical imperative programming language that
contains memory allocation/deallocation statements (new/free), field updates (x-> f :=
. . .), variable assignments (x := y/x := y-> f), call statements (call Proc(~x)), and com-
posed statements like sequential composition ;, if-then-else, and while loops. The
formal meanings of the basic statements (not containing ;, conditionals, loops, and pro-
cedure calls) are given in terms of functions from 2Configs to 2Configs, where Configs
contains a special value C⊥ that corresponds to a memory fault.

4 Assertion Language

The language we consider for writing program assertions, that describe sets of program
configurations, is the logic NOLL [13] enriched with existential quantifiers and disjunc-
tion (to simplify the notation, we use primed variables instead of existential quantifiers).
Syntax: The logic NOLL is a multi-sorted fragment of Separation Logic [17]. It is de-
fined over two sets of variables LVars = Vars∪Vars′ and SetVars, called location vari-
ables and set variables, respectively. We assume that the typing function τ associates a
sort, resp., a set of sorts, to every variable in LVars, resp., SetVars. A variable in LVars
is interpreted as a location in Loc while a variable in SetVars is interpreted as a set of
locations in Loc. The syntax of NOLL is given in Fig. 3.

The atoms of NOLL are either (1) pure, i.e., (dis)equalities between location vari-
ables, (2) spatial, i.e., the predicate emp denoting the empty heap, points-to constraints
E 7→ {(f1,E1); . . . ;(fk,Ek)}, saying that the value stored by the field fi of E equals Ei,
for any 1≤ i≤ k, or predicate applications Pα(~E), or (3) sharing, i.e., membership and

8 Cezara Drăgoi, Constantin Enea, and Mihaela Sighireanu

E,F,Ei ∈ LVars location variables ~E ∈ LVars+ tuple of location variables
f , fi ∈ Flds field names α ∈ SetVars set variable

R ∈ T sort P ∈ P list segment predicate

Φ ::= Π∧Σ∧Λ |Φ∨Φ NOLL formulas

Π ::= E = F | E 6= F |Π∧Π pure formula
Σ ::= true | emp | E 7→ {(f1,E1), . . . ,(fk,Ek)} | Pα(~E) | Σ∗Σ | Σ∗w Σ spatial formula

Λ ::= E ∈ t | E 6∈ t | t = t ′ | t ∩ t ′ = /0 | Λ∧Λ sharing formula

t ::= {E} | α | α(R) | t ∪ t ′ set terms

Fig. 3: Syntax of NOLL formulas

inclusion constraints over set terms. The predicates P in Pα(~E) are used to describe re-
cursive data structures starting or ending in locations denoted by variables in ~E. The set
variable α is interpreted as the set of all locations in the data structure defined by P.

NOLL includes two versions of the separating conjunction: the per-object separat-
ing conjunction ∗ expresses the disjointness between two sets of heap objects (of record
type) while the per-field separating conjunction ∗w expresses the disjointness between
two sets of heap cells, that correspond to fields of heap objects.

The values of the set variables can be constrained in a logic that uses the classical
set operators ∈, ⊆, and ∪.
Semantics: The formal semantics of NOLL formulas is given by a satisfaction relation
|= between pairs (C,J), where C = (S,H) is a program configuration and J : SetVars→
2Loc interprets variables in SetVars to finite subsets of Loc, and NOLL formulas. Sample
clauses of the definition of |= appear in Fig. 4. Given Φ1 and Φ2, Φ1 |= Φ2 iff for any
(C,J), if (C,J) |= Φ1 then (C,J) |= Φ2.

Two spatial atoms are object separated, resp. field separated, if their least common
ancestor in the syntactic tree of the formula is ∗, resp. ∗w.
Recursive predicates for describing (nested) list segments: In the following, we con-
sider a set of predicates P that describe nested list segments and have recursive defini-
tions of the following form:

Pα(in,out, ~nhb) , (in = out) ∨
(∃u′,~v′,α′,~β. Σ(in,u′,~v′, ~nhb,~β)∗w Pα′(u′,out, ~nhb)∧TΣ∩α′ = /0)

(2)

where in,out,u′ ∈ LVars, ~nhb,~v′ ∈ LVars∗, α′ ∈ SetVars, ~β ∈ SetVars∗, Σ is a spatial
formula, and TΣ is a set term, defined as the union of (1) the location variables appearing
in the left of a points-to constraint, except u′, and (2) the set variables in~β.

A predicate Pα(in,out, ~nhb) defines possibly empty list segments starting from in
and ending in out. The fields of each element in this list segment and the nested lists to
which it points to are defined by Σ. The parameters ~nhb are used to define the “bound-
aries” of the nested list segment described by P, in the sense that every location de-
scribed by P belongs to a path between in and some location in out∪ ~nhb (this path may
be defined by more than one field). The constraint TΣ∩α = /0 expresses the fact that the
inner list segments are disjoint. We assume several restrictions on the definition of Pα:
(1) τ(in) = τ(out) = τ(u′), and τ(in) 6= τ(v′), for every v′ ∈~v′; this is to ensure that the
nesting of different predicates is bounded, and (2) the predicate P does not occur in Σ.

Local Shape Analysis for Overlaid Data Structures 9

(C,J) |= emp iff Loc(C) = /0

(C,J) |= E = F iff SC(E) = SC(F)

(C,J) |= E 7→ ∪i∈I{(fi,Ei)} iff dom(HC) = {(SC(E), fi) | i ∈ I}, ∀i ∈ I.HC(SC(E), fi) = SC(Ei)

(C,J) |= Pα(~E) iff (C,J) ∈ [[Pα(~E)]] and J(α) = Loc(C).
(C,J) |= E ∈ t iff SC(E) ∈ [t]SC ,J
(C,J) |= t ⊆ t ′ iff [t]SC ,J ⊆ [t ′]SC ,J
(C,J) |= ϕ1 ∗ϕ2 iff there exist program heaps C1 and C2 s.t. C =C1 ∗C2,

(C1,J) |= ϕ1, and (C2,J) |= ϕ2

(C,J) |= ϕ1 ∗w ϕ2 iff there exist program heaps C1 and C2 s.t. C =C1 ∗w C2,
(C1,J) |= ϕ1, and (C2,J) |= ϕ2

Separation operators over program configurations:

C =C1 ∗C2 iff Loc(C) = Loc(C1)∪Loc(C2) and Loc(C1)∩Loc(C2) =∅,
HC1 = HC |Loc(C1),H

C2 = HC |Loc(C2), and SC = SC1 = SC2

C =C1 ∗w C2 iff dom(HC) = dom(HC1)∪dom(HC2) and dom(HC1)∩dom(HC2) =∅,
HC1 = HC |dom(HC1),H

C2 = HC |dom(HC2), and SC = SC1 = SC2

Interpretation of a set term t, [t]S,J :

[{E}]S,J = {S(E)}, [α]S,J = J(α), [α(R)]S,J = J(α)∩LocR, [t ∪ t ′]S,J = [t]S,J ∪ [t ′]S,J .

Fig. 4: Semantics of NOLL formulas (the set of program configurations satisfying P(~E)
is denoted by [[P(~E)]], dom(F) denotes the domain of the function F , and LocR denotes
the set of elements in Loc of type R)

(C,J) ∈ [[Pα(in,out, ~nhb)]] iff there exists k ∈ N s.t. (C,J) ∈ [[Pk
α(in,out, ~nhb)]]

(C,J) ∈ [[P0
α(in,out, ~nhb)]] iff S(in) = S(out) and J(α) = /0

(C,J) ∈ [[Pk+1
α (in,out, ~nhb)]] iff S(in) 6= S(out) and

there exists ρ : {u′}∪~v′→ Loc and ν : {α′}∪~β→ 2Loc s.t.

(C[S 7→ S∪ρ],J∪ν) |= Σ(in,u′,~v′, ~nhb,~β)∗w Pk
α′(u

′,out, ~nhb)∧TΣ∩α′ = /0

and J(α) = ν(α′)∪ [TΣ]ρ,ν.

Fig. 5: Semantics of list segments predicates (S∪ρ denotes a new mapping K : dom(S)∪
dom(ρ)→ Loc s.t. K(in) = ρ(x), ∀x ∈ dom(ρ) and K(y) = S(y), ∀y ∈ dom(S))

For any predicate Pα, Flds0(Pα) is the set of all fields used in points-to constraints of
Σ. Also, Flds(Pα) = Flds0(Pα)∪

⋃
Qβ in Σ Flds(Qβ). If Σ has only points-to constraints

then Pα is a 1-level predicate. For any n≥ 2, if Σ contains only m-level predicates with
m≤ n−1 and at least one (n−1)-level predicate then Pα is a n-level predicate.

To simplify the presentation of some constructions, we may use less expressive
predicates of the form (Σ contains no points-to constraints having u′ on the left side):

Pα(in,out, ~nhb) , (in = out)∨ (∃u′,~v′,α′,~β.Σ(in,u′,~v′, ~nhb,~β)∗Pα′(u′,out, ~nhb)) (3)

Example 1. The predicates used in the analysis from Sec. 2 are defined as follows:
nllα(x,y,z) , (x = y)∨

(
∃u′,v′,α′,β.x 7→ {(nexth,u′),(tasks,v′)}∗lsβ(v′,z)∗nllα′(u′,y,z)

)
,

where lsα(x,y), (x = y)∨
(
∃u′,α′.x 7→ {(succ,u′)}∗lsα′(u′,y)

)
dllα(x,y) , (x = y)∨

(
∃u′,α′.(x 7→ {(next,u′)}∗u′ 7→ {(prev,x)})∗w dllα′(u′,y)∧ x 6∈ α′

)
sllα(x,y,z) , (x = y)∨

(
∃u′,α′.x 7→ {(next,u′),(prev,z)}∗sllα′(u′,y,z)

)

10 Cezara Drăgoi, Constantin Enea, and Mihaela Sighireanu

5 Abstract domain

We define an abstract domain parametrized by a set of predicates P , denoted by
ASL(P), whose elements are NOLL formulas over P represented as sets of graphs.
We define the order relation � between two sets of graphs and a widening operator O .
We assume that the definitions in P are not mutually recursive.

5.1 Abstract domain elements

Each disjunct ϕ of an ASL(P) element is represented by a labeled directed multi-graph
G[ϕ], called heap graph [13].

Given ϕ = Π∧Σ∧Λ, every node of G[ϕ] represents a maximal set of equal location
variables (according to Π) and it is labeled by the location variables in this set. If Π

contains both E 6= F and E = F then G[ϕ] is the bottom element ⊥. We also assume
that nodes are typed according to the variables they represent.

The set of edges in G[ϕ] represent spatial or disequality atoms different from true
and emp. An atom E 6= F is represented by an unlabeled edge from the node labeled
by E to the node labeled by F , called a disequality edge. An atom E 7→ {(f ,F)} is
represented by an edge labeled by f from the node of E to the node of F , called a
points-to edge. An atom Pα(E,F,~B), where E,F ∈ LVars and ~B∈ LVars∗, is represented
by an edge from the node of E to the node of F labeled by (Pα, ~NB), where ~NB is the
sequence of nodes labeled by ~B; such an edge is called a predicate edge. A spatial edge
is a points-to or a predicate edge. The spatial formula true is represented by a special
node labeled by true. A heap graph that does not contain this node is called precise. The
object separated spatial constraints are represented in G[ϕ] by a binary relation Ω∗ over
edges. The sharing constraints of ϕ are kept unchanged in G[ϕ].

Formally, G[ϕ] = (V,E,π, `,Ω∗,Λ), where V is the set of nodes, E is the set of edges,
π is the node typing function, ` is the node labeling function, and Ω∗ is a symmetric
relation over edges in E. The set of all heap graphs is denoted by H G .

In the following, V (G), denotes the set of nodes in the heap graph G; we use a
similar notation for all the other components of G. For any node n ∈V (G), PVarsG(n)
denotes the set of all program variables labeling the node n in G, i.e., PVarsG(n) =
`(n)∩Vars. A node n is called anonymous iff PVarsG(n) = /0.

The concretization of an ASL(P) element Φ is defined as the set of models of Φ.

Remark 1. In the elements of ASL(P), the disjunction is used only at the top most level.
In practice, this may be a source of redundancy and inefficiency and some specialized
techniques have been proposed in order to deal with disjunctive predicates, e.g., [8] and
inner-level disjunction, e.g., [1, 16]. For example, [16] allows disjunctions under the
level of the field separated formulas instead of the top-most level. These techniques can
be embedded in our framework, by adapting the graph homomorphism approach for
defining the order relation between ASL(P) elements.

5.2 Order relation

The order relation between abstract elements, denoted by �, over-approximates the
entailment (i.e., if Φ1 �Φ2 then Φ1 |= Φ2) and it is defined using the graph homomor-
phism approach [9, 13], extended to disjunctions of existentially quantified formulas.

Local Shape Analysis for Overlaid Data Structures 11

Given two elements ϕ1 = Π1∧Σ1∧Λ1 and ϕ2 = Π2∧Σ2∧Λ2 of ASL, ϕ1 � ϕ2 iff
G[ϕ1] =⊥ or there exists an homomorphism from G[ϕ2] to G[ϕ1] defined as follows.

Let G1 and G2 be two heap graphs such that G1 is not precise. An homomorphism
from G1 to G2 is a mapping h : V (G1)→V (G2) such that the following five conditions
hold. The constraints imposed by ∗ and ∗w are expressed using the function used :
E(G1)→ 2E(G2)×2Flds

, defined meanwhile edges of G1 are mapped to sub-graphs of G2.

node labeling preservation: For any n ∈V (G1), PVarsG1(n)⊆ PVarsG2(h(n)).
disequality edge mapping: For any disequality edge (n,n′) ∈ E(G1), there exists a

disequality edge (h(n),h(n′)) in E(G2).
points-to edge mapping: For any points-to edge e = (n,n′) ∈ E(G1) labeled by f ,

there exists a points-to edge e′ = (h(n),h(n′)) labeled by f in E(G2). We define
used(e) = (e′, f).

predicate edge mapping: Let e = (n,n′) be an edge in G1 representing a predicate
Pα(in,out, ~nhb) as in (3) (the extension to predicate definitions as in (2) is straight-
forward). We assume that � is a partial order on the predicates in P which is an
(over-approximation of) the semantic entailment |= 4.
It is required that either h(n) = h(n′) or there exists an homomorphism he from the
graph representation of a formula that describes an unfolding of Pα to a sub-graph
G2(e) of G2. Formulas that describe unfoldings of P are of the form:

ψ := φ[E0,E1]∗φ[E1,E2]∗ . . .∗φ[En−1,En], (4)

where E0 = E, En = F , n≥ 1, and for any 0≤ i < n, φ[Ei,Ei+1] is the formula

Σ(Ei,Ei+1,u′,~v′, ~nhb,~β) or P′αi
(Ei,Ei+1, ~nhb) with P′α � Pα.

If φ[Ei,Ei+1] is of the form P′αi
(Ei,Ei+1,~B′), then he must match the edge corre-

sponding to φ[Ei,Ei+1] with exactly one edge of G2(e). That is, if m and m′ are
the nodes labeled by Ei, resp., Ei+1, then G2(e) contains an edge (he(m),he(m′))
labeled by (P′αi

, ~NB′), where ~NB′ are the nodes labeled by the variables in ~B′.
Above, we have reduced the definition of the homomorphism for n-level predicate
edges to the definition of the homomorphism for (n− 1)-level predicate edges.
For 1-level predicates, the sub-formula Σ contains only points-to constraints and
the definition above reduces to matching points-to edges and checking the order
relation between predicates in P .
We define used(e) as the union of used(e′) for any edge e′ in the graph represen-
tation of ψ. If e′ is a points-to edge then used(e′) is defined as above. If e′ is the
edge representing some formula φ[Ei,Ei+1] of the form P′αi

(Ei,Ei+1, ~nhb) and e′′

the edge associated to e′ by he then used(e′) = {(e′′, f) | f ∈ Flds0(Pα)}, where
Flds0(Pα) denotes the set of fields used in points-to constraints of Σ.

separating conjunctions semantics: The semantics of ∗w requires that, for any two
spatial edges e1 and e2 in G1, used(e1)∩used(e2) = /0. The semantics of ∗ requires
that for any two edges e1 and e2 s.t. (e1,e2) ∈ Ω∗(G1), we have that (e′1,e

′
2) ∈

Ω∗(G2), for any edge e′1 in used(e1) and any edge e′2 in used(e2).

4 For the set of predicates we have used in our experiments, |= can be checked syntactically.

12 Cezara Drăgoi, Constantin Enea, and Mihaela Sighireanu

entailment of sharing constraints: Based on the mapping of edges in E(G1) to sub-
graphs of G2, we define a substitution Γ for set variables in Λ(G1) to terms over
variables in Λ(G2). Let α be a variable in Λ(G1). If α is not bound to a spatial atom
then Γ(α) = α. Otherwise, let α be bound to a spatial atom represented by some
edge e ∈ E(G1). Then, Γ(α) is the union of (1) the set variables bound to spatial
atoms denoted by predicate edges in used(e) and (2) the terms {x}, where x labels
the left-end of a points-to edge in used(e). It is required that Λ(G1)[Γ]⇒ Λ(G2).

If both G1 and G2 are precise then we add the following constraints: (1) predicate
ordering � is the equality relation, (2) every edge of G2 belongs to the image of used,
and (3) the paths of G2 associated by h to predicate edges of G1 can not be interpreted
into lasso-shaped or cyclic paths in some model of G2. Also, by convention, there exists
no homomorphism from a precise heap graph to one which is not precise.

The order relation is extended to general ASL elements as usual: Φ1 � Φ2 iff for
each disjunct ϕ1 of Φ1 there exists a disjunct ϕ2 in Φ2 such that ϕ1 � ϕ2.

The complexity of our procedure for finding a homomorphism is NP time. It extends
the unique mapping induced by program variables in a non-deterministic way to the
anonymous nodes.

5.3 An effective homomorphism check for predicate edges

In order to check that some predicate edge of G1 is homomorphic to a sub-graph of
G2, we define an effective procedure based on tree automata. For the simplicity of the
presentation, we consider that predicates in P have the following form:

P(in,out, ~nhb) , (in = out) ∨ (∃u′,v′.
in 7→ {(f ,u′),(g,b1),(h,v′)}∗R(v′,b2,~b) ∗ P(u′,out, ~nhb)),

(5)

where b1,b2,~b⊆ ~nhb, f ,h,g ∈ Flds, and R ∈ P .

Such predicates describe nested list segments where every two consecutive elements
are linked by f , the g field of every element points to some fixed location b, and the h
field of every element points to a list segment described by R. Note that the results
below can be extended to predicates describing doubly-linked list segments like in (2)
or cyclic nested list segments.

Essentially, we model heap graphs by (unranked) labeled trees and then, for each
recursive predicate P, we define a (non-deterministic) top-down tree automaton that
recognizes exactly all the heap graphs that describe unfoldings of P. The fact that some
predicate edge e of G1 is homomorphic to a sub-graph of G2 reduces to the fact that the
tree-modeling of the sub-graph of G2 is accepted by the tree automaton corresponding
to the predicate labeling e.
Tree automata: A tree over an alphabet Σ is a partial mapping t : N∗ → Σ such that
dom(t) is a finite, prefix-closed subset of N∗. Let ε denote the empty sequence. Each
sequence p∈ dom(t) is called a vertex and a vertex p with no children (i.e., for all i∈N,
pi 6∈ dom(t)) is called a leaf.

A (top-down) tree automaton is a tuple A = (Q,Σ, I,δ), where Q is a finite set of
states, I ⊆ Q is a set of initial states, Σ is a finite alphabet, and δ is a set of transition

rules of the form q
f−→ (q1, . . . ,qn), where n≥ 0, q,q1, . . . ,qn ∈ Q, and f ∈ Σ.

Local Shape Analysis for Overlaid Data Structures 13

A run of A on a tree t over Σ is a mapping π : dom(t)→ Q such that π(ε) ∈ I and

for each non-leaf vertex p ∈ dom(t), δ contains a rule of the form q
t(p)−→ (q1, . . . ,qn),

where q = π(p) and qi = π(pi), for all i such that pi ∈ dom(t). The language of A is
the set of all trees t for which there exists a run of A on t.
Tree-modeling of heap graphs: Note that the minimal heap graphs that are homomor-
phic to a predicate edge have a special form: nodes with more than one incoming edge
have no successors. Such heap graphs are transformed into tree-shaped graphs with la-
beled nodes by (1) moving edge labels to the source node and (2) introducing copies
of nodes with more than one incoming edge (i.e., for every set of edges E ′ having the
same destination n, introduce |E ′| copies of n and replace every edge (m,n) by (m,nm),
where nm is a copy of n). We also replace labels of predicate edges of the form (Pα, ~NB)
with (P,~B), where ~B is a tuple of variables labeling the nodes in NB.

Given a finite set of variables V , let ΣV = 2Flds∪V ∪{(P,~B) | P ∈ P ,~B ∈ V +}. The
tree-modeling of a heap graph G is the tree t[G] over ΣV isomorphic to the tree-shaped
graph described above; V is the set of variables labeling nodes of the graph.
Tree automata recognizing unfoldings of recursive predicates: The definition of the
tree-automata associated to a predicate P as in (5), denoted AP, follows its recursive
definition. I(AP) = {qP

0} and the transition rules in δ(AP) are defined as follows:

qP
0
{in, f ,g,h}−−−−−−→(qP

rec,q
P
g ,q

P
h) qP

rec
{ f ,g,h}−−−−−→(qP

rec,q
P
g ,q

P
h) qP

h
h−→qR

0

qP
0
{in,out}−−−−−→ε qP

rec
(P′,~B)−−−−→qP

rec, with P′(E,F,~B)� P(E,F,~B) qP
g

b−→ε

qP
rec

out−−→ε Rules(R)[ϒ]

where qR
0 is the initial state of AR, the tree automaton for R, and Rules(R)[ϒ] denotes

the set δ(AR) where variables are substituted by the actual parameters v′, b2, and~b.

6 Widening

We describe the widening operator O , which satisfies the following properties: (1) it
defines an upper bound for any two elements of ASL, i.e., given Φ1,Φ2 ∈ ASL, Φ1 �
Φ1O Φ2 and Φ2 � Φ1O Φ2, and (2) for any infinite ascending chain Φ1 � Φ2 � . . . �
Φn � . . . in ASL, there exists a finite chain ΦO

1 � . . .�ΦO
k in ASL such that ΦO

1 =Φ1,
ΦO

i = ΦO
i−1O Φi+1, for every 2≤ i≤ k, and ΦO

k = ΦO
k O Φk+1. The widening operator

is used to ensure the termination of fixed point computations over elements of ASL.
We define ϕ1O ϕ2, for any ϕ1 and ϕ2 two disjunction-free formulas in ASL. The

extension to disjunctions is straightforward. The widening operator is parametrized
by a natural number K such that ϕ1O ϕ2 returns a set of heap graphs with at most
max(annon(ϕ1),K) anonymous nodes, where annon(ϕ1) is the number of anonymous
nodes in G[ϕ1]. Therefore, an infinite ascending chain is over-approximated by a finite
one, whose elements have at most as many anonymous nodes as either the first element
of the infinite ascending chain or the parameter K, depending on which one is bigger.
Widening operator description: Intuitively, the result of ϕ1O ϕ2 should preserve the
properties which are present in both ϕ1 and ϕ2. To this, each graph Gi = G[ϕi], i ∈
{1,2}, is split into three sub-graphs G+

i , G−i , and G�
i such that:

14 Cezara Drăgoi, Constantin Enea, and Mihaela Sighireanu

– the sets of spatial edges in these sub-graphs form a partition of the set of spatial
edges in Gi;

– there exists an homomorphism h→ from the sub-graph G+
1 to G−2 and an homomor-

phism h← from G+
2 to G−1 ;

– G+
1 and G+

2 are maximal.
Here, a heap graph G′ is called a sub-graph of a heap graph G if it contains only a subset
of the nodes and edges in G, for each node n, the labeling of n in G′ is a subset of the
labeling of n in G such that PVarsG(n) 6= /0 implies PVarsG′(n) 6= /0, and the Ω∗ and Λ

components of G′ are also subsets of the corresponding components of G.
The two tuples of sub-graphs are called an homomorphism induced partition.

Example 2. Let G1 and G2 be the graphs pictured in the first row of Fig. 7. The tuples
of sub-graphs (G+

1 ,G
−
1 ,G

�
1) and (G+

2 ,G
−
2 ,G

�
2) given in the second row of Fig. 7 define

homomorphism induced partitions for G1 and, resp., G2. These partitions correspond to
the homomorphisms hi j : G+

i → G−j , which map the node labeled by y (resp., z) in G+
i

to the node labeled by y (resp., z) in G−j , for all 1≤ i 6= j ≤ 2.
If G�

1 = /0 and G�
2 = /0 then each spatial edge of G1 is homomorphic to a sub-graph

of G2 or vice-versa. In this case, the result of the widening is the graph defined as the
union of G+

1 and G+
2 , i.e., the weakest among the comparable sub-graphs. The union

operator
⊎

is parametrized by the two homomorphisms h→ and h← in order to (1)
merge nodes which are matched according to these homomorphisms, (2) identify the
object separated spatial constraints in the union of the two sub-graphs, and (3) compute
the union of the sharing constraints. In this case, the number of anonymous nodes in
ϕ1O ϕ2 is bounded by the number of anonymous nodes in ϕ1.

Otherwise, the widening operator tries to return two graphs G′1 and G′2, each of
them being obtained from G1 resp. G2, by replacing the sub-graph G−i with its weaker
version G+

j , where i, j ∈ {1,2} and i 6= j. However, to preserve the bound on the number
of anonymous nodes, this operation is possible only if the number of anonymous nodes
in G′1 and G′2 is smaller than max(annon(ϕ1),K).
Example 3. In Fig. 7, if K = 3 then G1O G2 has two disjuncts. The first one, G′1, is
obtained from G1 using the homomorphism h21: (1) the graph G−1 is replaced by G+

2 ,
and (2) the sharing constraints β=α1∪α2 become α= β, where β is the set of locations
in the doubly-linked list defined by dllβ. The second disjunct, G′2, is obtained similarly
from G2 using h12.
Operator fold: If the above condition on the number of anonymous nodes is not sat-
isfied then, we apply an operator called fold on each of the two graphs. Given a heap
graph G and some b ∈ N, fold builds a graph F with at most b anonymous nodes, ob-
tained from G by replacing edges used by non-empty unfoldings of recursive predicates
with predicate edges (labeled with fresh set variables). Moreover, nodes in F without
incident edges are removed. The graph F is homomorphic to G and fold also returns
the homomorphism h from F to G. The operator fold may fail to obtain a graph with at
most b anonymous nodes in which case it returns >.

The object/field separation between predicate edges copied from G to F is pre-
served. Two predicate edges in F are object separated if (1) they replace two unfoldings
in G that contain disjoint sets of nodes and any two predicate edges from the two unfold-
ings are object separated in G or (2) one of them, denoted by e1, replaces an unfolding in

Local Shape Analysis for Overlaid Data Structures 15

G, the other one, denoted by e2, is copied from G, and all the edges from the unfolding
are object separated from e2 in G. Otherwise, the predicate edges are field separated.

G1O G2 ::=

let (G+
1 ,G

−
1 ,G

�
1) and (G+

2 ,G
−
2 ,G

�
2)

be an homomorphism induced partition
of G1 and G2

let π = (h→,h←)

if (G�
1 = /0 ∧ G�

2 = /0) then
return G+

1
⊎

π G+
2 ;

else
G′1 =

(
G+

1
⋃

G�
1
) ⊎h← G+

2 ;
G′2 =

(
G+

2
⋃

G�
2
) ⊎h→ G+

1 ;
bound= max(annon(ϕ1),K);
if (annon(G′1)≤ bound

∧annon(G′2)≤ bound) then
return G′1∨G′2;

else
for each 1≤ i≤ 2 do

bi = bound−annon(G+
i

⋃
G−i);

(Fi,hi) = fold(G�
i ,bi);

G′i =
(
G+

i
⋃

G−i
) ⊎hi Fi;

return G′1O G′2;

Fig. 6: The definition of O

Another important property of fold is to
maintain relations between sets of locations
that correspond to unfoldings of recursive
predicates, replaced by predicate edges. For
any sub-graph G′ of G representing the un-
folding of a recursive predicate, let TG′ be the
set term defined as the union of all set vari-
ables labeling edges in G′ and all location
variables, which are the source of at least one
points-to edge in G′. Based on the equalities
between location variables in G, the sharing
constraints Λ(G), and the inference rule “if
t1 = t ′1 and t2 = t ′2 then t1 ∪ t2 = t ′1 ∪ t ′2”, for
any set terms t1, t ′1, t2, and t ′2, fold generates
new equalities between (unions of) set terms
TG′ or between (unions of) set terms TG′ and
set variables labeling edges copied from G to
F . Once a predicate edge e in F replaces the
unfolding of a recursive predicate G′, the set
term TG′ is substituted by the set variable la-
beling e. Similarly, fold generates constraints
of the form t ∩ t ′ = /0 with t and t ′ set terms,
and constraints of the form x ∈ t or x 6∈ t.

In the definition of O , the argument of fold is the graph G�
i where anonymous

nodes that are incident to edges in G+
i or G−i are labeled by ghost program variables so

they are preserved in the output of fold. Then, the graph G′i is defined by replacing the
sub-graph G�

i of Gi with the one returned by fold, i.e., Fi. This replacement is written
as the union of the sub-graph G+

i
⋃

G−i with Fi, where the homomorphism hi is used to
merge nodes which are associated by hi and to identify the object separated constraints.
Finally, the widening operator is called recursively on the new graphs. Notice that, the
widening operator contains at most one recursive call. The first execution of O recog-
nizes unfoldings of recursive predicates and, if needed, eliminates enough anonymous
nodes in order to make the recursive call succeed.

Example 4. In Fig. 7, if K = 0 then bound = 1 because G1 contains one anonymous
node. The computation of O based only on

⊎
doesn’t satisfy the bound on the number

of anonymous nodes because G�
2 contains two anonymous nodes labeled by v′ and u′.

Therefore, we apply fold(G�
2 ,1) and the result is the graph F2 given on the third row of

Fig. 7. The graph F2 is obtained from G�
2 by replacing the sub-graph of G�

2 that consists
of all edges labeled by succ with a predicate edge labeled by lsδ and the sub-graph of
G�

2 that consists of all edges labeled by next and prev with a predicate edge labeled by
dllγ. The set terms which correspond to these two unfoldings are {x}∪{u′}∪{v′} and
respectively, {x}∪{u′}∪{v′}. Since they contain exactly the same location variables
the equality γ = δ is added to the sharing constraints of the output graph. Also, because

16 Cezara Drăgoi, Constantin Enea, and Mihaela Sighireanu

First input of widening G1 = G[ϕ1]: Second input of widening G2 = G[ϕ2]:

x y z

w′

β = α1 ∪α2

prev
1,2

next
1,2

succ
1,2

ls
α1

1 ls
α21

dllβ

2

x u′ v′

y z

w′

α = β1 ∪β2

prev
1-3

prev
1-3

prev
1-3

next
1-3

next
1-3

next
1-3

succ
1-3

succ
1-3

succ
1-3

dll
β1

2 dll
β23

lsα

1

G�
1 :

x y

prev
1,2

next
1,2

succ
1,2

G+
1 :

y zdllβ

2

G−1 :
y z

w′

ls
α1

1
ls

α2

1

G�
2 :

x u′ v′ y

prev
1-3

prev
1-3

prev
1-3

next
1-3

next
1-3

next
1-3

succ
1-3

succ
1-3

succ
1-3

G+
2 :

y zlsα

1

G−2 :

y z

w′

dll
β1

2
dll

β2
3

F2 = fold(G�
2) : G′2 = (G+

2 ∪G−2)
⊎

F2 : G1O G2 :

x y

γ = δ

dllγ

lsδ

x

y z

w′

γ = δ∧α = β1 ∪β2

dll
β2

2 dll
β13

lsα

1

dllγ

4

lsδ

1

x y

z

γ = δ∧α = β

dllβ

2

lsα

1

dllγ

4

lsδ

1

Fig. 7: Steps in the computation of O (the object separated edges are defined by Ω∗ =
{(e,e′) | the integers labeling e are included in the integers labeling e′ or vice-versa}).

all the edges incident to u′ and v′ are included in the two unfoldings, these two nodes are
removed. The two edges of F2 are field separated because the corresponding unfoldings
share some node. Since G�

1 has no anonymous nodes, fold(G�
1 ,1) = G�

1 and G′1 =(
G+

1
⋃

G−1
) ⊎hi F1 = G1.

The second column in the last row of Fig. 7 shows the graph G′2 obtained by replac-
ing in G2, G�

2 with F2. Finally, G1O G2 equals G1O G′2, which is given in the bottom
right corner of Fig 7. Notice that the computation of G1O G′2 requires only the union.

Operator
⊎h: Formally,

⊎h replaces in a given graph G, a sub-graph G′ by another
graph G′′ s.t. h is an homomorphism from G′′ to G′. For example,

(
G+

1
⋃

G�
1
) ⊎h← G+

2
replaces the sub-graph G−1 of G1 with the graph G+

2 (h← is an homomorphism from G+
2

to G−1). The result of
⊎h on G, G′, G′′, and h is the heap graph (V,E,π, `,Ω∗,Λ), where:

– V is obtained from V (G \G′)∪V (G′′), where V (G \G′) is the set of nodes in G,
which have at least an incident edge not included in G′, by merging every m∈V (G)
with one of the nodes in h−1(m), provided that h−1(m) 6= /0;

– for any n ∈V , the set of variables `(n) is the union of the label of n in G, `(G)(n),
and the label of n in G′′, `(G′′)(n);

– E = (E(G)\E(G′))∪E(G′′);
– Ω∗ is defined from Ω∗(G) and Ω∗(G′′) as follows: (e,e′) ∈Ω∗ iff either (i) (e,e′) ∈

Ω∗(G), (ii) (e,e′) ∈ Ω∗(G′′), or (iii) e ∈ E(G), e′′ ∈ E(G′′), and for any edge e′ in
the sub-graph of G to which e′′ is mapped by the homomorphism h, (e,e′)∈Ω∗(G);

Local Shape Analysis for Overlaid Data Structures 17

– Λ is the union of (1) the constraints Λ(G′′) in G′′ and (2) the constraints Λ(G) in
G where every set term t, denoting all the locations in some heap region described
by a sub-graph of G′ associated by the homomorphism h to an edge e′′ of G′′, is
replaced by the set variable α in the label of e′′. Note that Λ contains only set
variables which appear in labels of E.

Operator
⊎

π: Given (G+
1 ,G

−
1 ,G

�
1) and (G+

2 ,G
−
2 ,G

�
2) two homomorphism induced

partitions of G1 and resp., G2, and π = (h→,h←), G+
1

⊎
π G+

2 is defined similarly to
G+

1
⊎h← G+

2
5 except for the fact that the constraint on set variables is defined as the

conjunction of all the constraints which appear in both G+
1

⊎h← G+
2 and G+

2
⊎h→ G+

1 .
Complexity: The search for homomorphism induced partitions is done in linear time in
the size of the input graphs. The correspondence between anonymous nodes in h← and
h→ is chosen arbitrarily (in practice, they are chosen according to some heuristics). In
order to obtain a more precise result, one should enumerate an exponential number of
such mappings. Given an arbitrary but fixed order relation on the recursive predicates,
the complexity of the operator fold which replaces predicate unfoldings with predicate
edges according to this order is PTIME. In our implementation, the operator fold is
parametrized by a set of order relations among recursive predicates (in practice, we
have used a small number of such order relations) and it enumerates all of them until it
succeeds to eliminate the required number of anonymous nodes.

7 Abstract Transformers

In this section, we describe the abstract transformers associated with intra-procedural
statements (in Sec. 7.1) and procedure calls and returns (in Sec. 7.2).

7.1 Intra-procedural Analysis

For any basic statement C, which does not contain a procedure call, the analysis uses
an abstract transformer [[C]]] : H G → 2H G that, given a heap graph G ∈ H G , it re-
turns either > meaning that a possible memory error has been encountered, or a set of
heap graphs representing the effect of the statement C on G. The transformers [[C]]] are
defined as the composition of three (families of) functions:

materialization→x, f : transforms a heap graph, via case analysis, into a set of heap
graphs where the value of the field f stored at the address pointed to by the program
variable x is concretized. It returns > if it can not prove that x is allocated in the
input.

symbolic execution : expresses the concrete semantics of the statements in terms of
heap graphs, e.g., for an assignment x := y, it merges the nodes labeled by x and y.

consistency check→#: takes the graphs from the output of the symbolic execution and
checks if their concretization is empty or if they contain garbage. All graphs with
empty concretization are removed and if garbage is detected then the result is >.

5 In G+
1

⊎h← G+
2 , G−1 is replaced by G+

2 .

18 Cezara Drăgoi, Constantin Enea, and Mihaela Sighireanu

Materialization →x, f : The relation →x, f for dereferencing the field f of the object
pointed to by x is defined by a set of rewriting rules over ASL elements. When the value
of f is characterized by a predicate edge that starts or ends in a node labeled by x then
the rules are straightforward. If the sharing constraints imply that x belongs to the list
segment described by some predicate edge (which is not incident to a node labeled by
x) and this list segment uses the field f then, we use the following rules:

G →x, f unfoldMiddle(G,e,x)
if e is a predicate edge in G labeled by Pα such that Λ(G)⇒ x ∈ α

and f ∈ Flds0(Pα)

G →x, f unfoldMiddle(G,e,)
if e is a predicate edge in G labeled by Pα such that Λ(G)⇒ x ∈ α

and f ∈ Flds(Pα)\Flds0(Pα)

The function unfoldMiddle(G,e,ξ) concretizes the fields of an arbitrary object
in the list segment described by e, that has the same type as the nodes incident to e.
Suppose that e starts in the node n, labeled by y1, and ends in the node n′, labeled by
y2. For simplicity, suppose that e is labeled by a predicate Pα defined as in (3). Then,
unfoldMiddle replaces the edge e with the graph representation of Pα′(y1,u′1, ~nhb)∗w

Σ(u′1,u
′
2,
~v′, ~nhb,~β) ∗w Pα′′(u′2,y2, ~nhb). If ξ is a program variable and the formula Σ in

the definition of Pα contains a points-to constraint of the form in 7→ {(f ,w)}, for some
w ∈ LVars, i.e., the direction of f is from x to y then, the node labeled by ξ is merged
with the node labeled by u′1. Otherwise, the node labeled by ξ is merged with the node
labeled by u′2. Finally, the constraints TΣ ∩α′ = /0, TΣ ∩α′′ = /0, α′ ∩α′′ = /0 are added
to Λ(G) and all occurrences of α in Λ(G) are substituted with α′∪TΣ∪α′′.

In general, the output of →x, f depends on the (dis)equalities which are explicit in
the input heap graph (e.g., an equality x1 = x2 is explicit if there exists a node labeled
by both x1 and x2). In order to make explicit all the (dis)equalities which are implied
by the input graph, (e.g., ls(x,y)∗ ls(x,z)∗ y 7→ {(f , t)} implies x = z), one can use the
normalization procedure introduced in [13], based on SAT solvers.

7.2 Inter-procedural analysis

We consider an inter-procedural analysis based on the local heap semantics [18]. The
analysis explores the call graph of the program starting from the main procedure and
proceeds downward, computing for each procedure Proc, a set of summaries of the
form (ϕi,Φo), where ϕi and Φo are ASL elements, ϕi disjunction-free. Essentially, ϕi
is an abstract element built at the entry point of the procedure Proc by the transformer
associated to call Proc(~x), which describes the part of the heap reachable from the
actual parameters~x. Then, Φo is the abstract element obtained by analyzing the effect of
Proc on the input described by ϕi. The transformer associated to the return statement
takes a summary (ϕi,Φo) of Proc and returns a set of heap graphs obtained from the
ones associated to the control point of the caller that precedes the procedure call by
replacing the graph ϕi with each of the graphs in Φo. The important operations for the
inter-procedural analysis are the computation of the local heap at the procedure call and
the substitution of the local heap with the output heap at the procedure return.

Local Shape Analysis for Overlaid Data Structures 19

These operations are more difficult in the presence of cutpoints, i.e., locations in the
local heap of the callee which are reachable from local variables of other procedures in
the call stack without passing through the actual parameters. For simplicity, we define
the call transformer such that it returns > whenever it detects cutpoints. This is still
relevant, because in practice most of the procedure calls are cutpoint-free.
Frame rules: We follow the approach in Gotsman et al. [14] and define these trans-
formers based on a frame rule for procedure calls. The fragment of NOLL without ∗w
and sharing constraints satisfies the following frame rule [14]:

φ |= φcallσ∗φ1 φretσ∗φ1 |= φ′ {φcall}Proc(~x){φret}
{φ}Proc(~xσ){φ′}

where σ is the substitution from formal to actual parameters. Intuitively, this means that
it is possible to analyze the effect of Proc(~x) on a part of the heap, φcall , while holding
the rest of the heap φ1 aside, to be added to the heap φret that results from executing
Proc. In general, φcallσ and φ1 can be chosen arbitrarily but, in order to be precise,
φcallσ should contain all the heap locations reachable from the actual parameters.

In the following, we extend this frame rule to work for both per-object and per-field
separating conjunction. Given a disjunction-free NOLL formula ϕ, T [ϕ] denotes the set
term which is the union of all set variables in ϕ and all location variables which are on
the left side of a points-to constraint. Then, the following holds:

φ |= (φcallσ∗w φ1)∗φ2 (φretσ∗w φ1)∗φ2∧Λ |= φ′ {φcall}Proc(~x){φret}
{φ}Proc(~xσ){φ′}

where σ is the substitution from formal to actual parameters and

Λ, T [φret]∩T1 = /0 with T1 a set term over variables in φ1 s.t. φ |= T [φcallσ]∩T1 = /0.

The formula Λ expresses the fact that if all heap locations in the interpretation of T1 are
disjoint from the ones included in the local heap of Proc then, they will remain disjoint
from all the locations in the output of Proc.
Computing the local heap: To compute φcall , we proceed as follows (as before, this
is important only for precision). For any procedure Proc, Flds(Proc) denotes the set
of fields accessed by Proc, which consists of (1) the fields f such that x-> f appears in
some expression and (2) all the fields of the type RT such that Proc contains a free
statement over a variable of type RT . This set of fields can be computed easily from
the syntactic tree of Proc. Given an ASL element φ, a spatial edge in φ is called a
Proc-edge iff it is a points-to edge labeled by some f ∈ Flds(Proc) or a predicate edge
labeled by Pα with Flds(Pα)∩Flds(Proc) 6= /0.

The set of spatial edges in φcall is the union of (1) the subgraph Gr of φ that contains
all the Proc-edges which are reachable from the actual parameters using only Proc-
edges and (2) all the Proc-edges e such that the set of locations characterized by e is
not disjoint from the set of locations characterized by Gr, according to φ (e.g., if e is a
predicate edge labeled by Pα then φ 6⇒ α∩T [Gr] = /0). The pure and sharing constraints
in φcall are all the pure and the sharing constraints in φ that contain variables from the
spatial constraints in φcall .

20 Cezara Drăgoi, Constantin Enea, and Mihaela Sighireanu

Table 1: Experimental results on an Intel Core i3 2.4 GHz with 2GB of memory (3×dll
means 3 instances of the predicate dll over 3 disjoint sets of pointer fields)

program size spec NOLL analysis – max time (sec)
#fun #lines P #iter #graphs #anon (K)

list-dio 5 134 2×dll 5 16 3 <3

many-keys 4 87 3×dll 3 8 2 <1

cache 4 88 dll 3 5 2 <1

nagios-event 4 90 nll, 2×ls 3 5 2 <2

nagios-task 4 112 nll,dll,sll,ls 5 8 3 <2

nagios-queue 4 101 nll,dll,ls 3 5 2 <2

8 Experiments

We have implemented our inter-procedural analysis in the plugin CELIA [3, 5] of the
FRAMA-C platform [4] for C program analysis. The domain ASL has been imple-
mented as a C library which takes as input a set of predicates defined in the logic ACSL
of FRAMA-C. To reduce the number of disjuncts in a formula, we define an heuristic
for choosing when to replace pairs of disjuncts G1, G2 by their widening G1O G2.

We have considered two classes of programs. The first class contains the examples
from [16] which manipulate (i.e., create, find, add, delete) doubly linked lists (DLL):
(list-dio) manipulates two overlaid, circular DLL per-object separated from a third
circular DLL; (many-keys) manipulates three overlaid and circular DLL; (cache) ma-
nipulates one circular DLL with a pointer to the last added cell. The second class of
examples is extracted from the Nagios data structures and work on nested linked lists
(NLL) combined with singly (SLL) or doubly linked lists: (nagios-event) manipu-
lates an NLL where all the nested cells are shared with a SLL, (nagios-task) is the
example considered in the overview, and (nagios-queue) manipulates an NLL where
some of the nested list cells are shared with a DLL.

Table 1 presents the results of our analysis on the above benchmark. Column P indi-
cates the set of predicates used by the analysis for each example. The last five columns
gives collected informations about the analysis, e.g., the number of widening points,
the maximal number of graphs in the abstract values and the maximal size of these
graphs, and the maximal time for the analysis of included functions. For the first three
examples, the comparison with the execution times reported in [16] raises the follow-
ing comments. The experiments have been done on different hardware configurations
and the set of recursive predicates supported in [16] does not include predicates for
describing nested lists, but predicates for describing tree data structures.

The precision and the efficiency of our analysis depends on several factors. One
factor is the choice of an adequate set P of recursive predicates. The set P should be
expressive enough to describe all the data structures manipulated by the program and,

Local Shape Analysis for Overlaid Data Structures 21

for efficiency, it should be minimal and not contain unused predicates (such predicates
may slow down the fold procedure used in the widening operator). The scalability of our
analysis also depends on the modularity of the input program: if the code is structured
in functions that deal with one non-overlapped list at a time then the analysis is more
efficient. However, this does not have an influence on the precision of the analysis.

References
1. T. Ball, A. Podelski, and S. K. Rajamani. Boolean and cartesian abstraction for model check-

ing c programs. In TACAS, volume 2031 of LNCS, pages 268–283. Springer, 2001.
2. J. Berdine, C. Calcagno, B. Cook, D. Distefano, P.W. O’Hearn, T. Wies, and H. Yang. Shape

analysis for composite data structures. In CAV, volume 4590 of LNCS, pages 178–192.
Springer, 2007.

3. A. Bouajjani, C. Dragoi, C. Enea, and M. Sighireanu. On inter-procedural analysis of pro-
grams with lists and data. In PLDI, pages 578–589. ACM, 2011.

4. CEA. Frama-C Platform. htp://frama-c.com.
5. Celia plugin. http://www.liafa.univ-paris-diderot.fr/celia.
6. B.-Y.E. Chang and X. Rival. Relational inductive shape analysis. In POPL, pages 247–260.

ACM, 2008.
7. B.-Y.E. Chang, X. Rival, and G. C. Necula. Shape analysis with structural invariant checkers.

In SAS, volume 4634 of LNCS, pages 384–401. Springer, 2007.
8. W.N. Chin, C. Gherghina, R. Voicu, Q. Loc Le, F. Craciun, and S. Qin. A specialization

calculus for pruning disjunctive predicates to support verification. In CAV, volume 6806 of
LNCS, pages 293–309. Springer, 2011.

9. B. Cook, C. Haase, J. Ouaknine, M. J. Parkinson, and J. Worrell. Tractable reasoning in a
fragment of separation logic. In CONCUR, volume 6901 of LNCS, pages 235–249, 2011.

10. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In POPL. ACM, 1977.

11. D. Distefano, P.W. O’Hearn, and H. Yang. A local shape analysis based on separation logic.
In TACAS, volume 3920 of LNCS, pages 287–302. Springer, 2006.

12. K. Dudka, P. Müller, P. Peringer, and T. Vojnar. Predator: A verification tool for programs
with dynamic linked data structures - (competition contribution). In TACAS, volume 7214 of
LNCS, pages 545–548. Springer, 2012.

13. C. Enea, V. Saveluc, and M. Sighireanu. Compositional invariant checking for overlaid and
nested linked lists. In ESOP, volume 7792 of LNCS, pages 178–195. Springer, 2013.

14. A. Gotsman, J. Berdine, and B. Cook. Interprocedural shape analysis with separated heap
abstractions. In SAS, volume 4134 of LNCS, pages 240–260. Springer, 2006.

15. S. Gulwani, T. Lev-Ami, and M. Sagiv. A combination framework for tracking partition
sizes. In POPL, pages 239–251. ACM, 2009.

16. O. Lee, H. Yang, and R. Petersen. Program analysis for overlaid data structures. In CAV,
volume 6806 of LNCS, pages 592–608. Springer, 2011.

17. J.C. Reynolds. Separation logic: A logic for shared mutable data structures. In LICS, pages
55–74. IEEE Computer Society, 2002.

18. N. Rinetzky, J. Bauer, T.W. Reps, S. Sagiv, and R. Wilhelm. A semantics for procedure local
heaps and its abstractions. In POPL, pages 296–309. ACM, 2005.

19. A. Toubhans, B.-Y.E. Chang, and X. Rival. Reduced product combination of abstract do-
mains for shapes. In VMCAI, volume 7737 of LNCS, pages 375–395. Springer, 2013.

20. H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and P.W. O’Hearn. Scalable
shape analysis for systems code. In CAV, volume 6901 of LNCS, pages 385–398. Springer,
2008.

