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Abstract
Causal consistency is one of the most adopted consistency criteria
for distributed implementations of data structures. It ensures that
operations are executed at all sites according to their causal prece-
dence. We address the issue of verifying automatically whether the
executions of an implementation of a data structure are causally
consistent. We consider two problems: (1) checking whether one
single execution is causally consistent, which is relevant for devel-
oping testing and bug finding algorithms, and (2) verifying whether
all the executions of an implementation are causally consistent.

We show that the first problem is NP-complete. This holds even
for the read-write memory abstraction, which is a building block
of many modern distributed systems. Indeed, such systems often
store data in key-value stores, which are instances of the read-
write memory abstraction. Moreover, we prove that, surprisingly,
the second problem is undecidable, and again this holds even for
the read-write memory abstraction. However, we show that for
the read-write memory abstraction, these negative results can be
circumvented if the implementations are data independent, i.e.,
their behaviors do not depend on the data values that are written
or read at each moment, which is a realistic assumption.

We prove that for data independent implementations, the prob-
lem of checking the correctness of a single execution w.r.t. the
read-write memory abstraction is polynomial time. Furthermore,
we show that for such implementations the set of non-causally con-
sistent executions can be represented by means of a finite number
of register automata. Using these machines as observers (in parallel
with the implementation) allows to reduce polynomially the prob-
lem of checking causal consistency to a state reachability problem.
This reduction holds regardless of the class of programs used for
the implementation, of the number of read-write variables, and of
the used data domain. It allows leveraging existing techniques for
assertion/reachability checking to causal consistency verification.
Moreover, for a significant class of implementations, we derive
from this reduction the decidability of verifying causal consistency
w.r.t. the read-write memory abstraction.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: Model checking; F.3.1 [Specifying and Verifying
and Reasoning about Programs]: Mechanical verification; E.1
[Data structures]: Distributed data structures

Keywords distributed systems, causal consistency, model check-
ing, static program analysis

1. Introduction
Causal consistency [30] (CC for short) is one of the oldest and most
widely spread correctness criterion for distributed systems. For a
distributed system composed of several sites connected through a
network where each site executes some set of operations, if an op-
eration o1 affects another operation o2 (o2 causally depends on o1),
causal consistency ensures that all sites must execute these opera-
tions in that order. There exist many efficient implementations sat-
isfying this criterion, e.g., [5, 14, 15, 26, 33], contrary to strong
consistency (linearizability) which cannot be ensured in the pres-
ence of network partitions and while the system remains available
[18, 20] (the sites answer to clients’ requests without delay).

However, developing distributed implementations satisfying
causal consistency poses many challenges: Implementations may
involve a large number of sites communicating through unbounded1

communications channels. Roughly speaking, causal consistency
can be ensured if each operation (issued by some site) is broad-
cast to the other sites together with its whole “causal past” (the
other operations that affect the one being broadcast). But this is not
feasible in practice, and various optimizations have been proposed
that involve for instance the use of vector clocks [17, 34]. Defin-
ing and implementing such optimizations is generally very delicate
and error prone. Therefore, it is appealing to consider formal meth-
ods to help developers write correct implementations. At different
stages of the development, both testing and verification techniques
are needed either for detecting bugs or for establishing correctness
w.r.t abstract specifications. We study in this paper two fundamen-
tal problems in this context: (1) checking whether one given exe-
cution of an implementation is causally consistent, a problem that
is relevant for the design of testing algorithms, and (2) the problem
of verifying whether all the executions of an implementation are
causally consistent.

First, we prove that checking causal consistency for a single
execution is NP-hard in general. We prove in fact that this problem
is NP-complete for the read-write memory abstraction (RWM for

1 Throughout the paper, unbounded means finite but arbitrarily large.



short), which is at the basis of many distributed data structures used
in practice.

Moreover, we prove that the problem of verifying causal con-
sistency of an implementation is undecidable in general. We prove
this fact in two different ways. First, we prove that for regular spec-
ifications (i.e., definable using finite-state automata), this problem
is undecidable even for finite-state implementations with two sites
communicating through bounded-size channels. Furthermore, we
prove that even for the particular case of the RWM specification,
the problem is undecidable in general. (The proof in this case is
technically more complex and requires the use of implementations
with more than two sites.)

This undecidability result might be surprising, since it is known
that linearizability (stronger than CC) [24] and eventual consis-
tency (weaker than CC) [40] are decidable to verify in that same
setting [3, 8, 22]. This result reveals an interesting aspect in the
definition of causal consistency. Intuitively, two key properties of
causal consistency are that (1) it requires that the order between op-
erations issued by the same site to be preserved globally at all the
sites, and that (2) it allows an operation o1 which happened arbi-
trarily sooner than an operation o2 to be executed after o2 (if o1 and
o2 are not causally related). Those are the essential ingredients that
are used in the undecidability proofs (that are based on encodings
of the Post Correspondence Problem). In comparison, linearizabil-
ity does not satisfy (2) because for a fixed number of sites/threads,
the reordering between operations is bounded (since only opera-
tions which overlap in time can be reordered), while eventual con-
sistency does not satisfy (1).

Our NP-hardness and undecidability results show that reasoning
about causal consistency is intrinsically hard in general. However,
by focusing on the case of the RWM abstraction, and by consid-
ering commonly used objects that are instances of this abstraction,
e.g., key-value stores, one can observe that their implementations
are typically data independent [1, 43]. This means that the way
these implementations handle data with read and write instructions
is insensitive to the actual data values that are read or written. We
prove that reasoning about causal consistency w.r.t. the RWM ab-
straction becomes tractable under the natural assumption of data
independence. More precisely, we prove that checking causal con-
sistency for a single computation is polynomial in this case, and that
verifying causal consistency of an implementation is polynomially
reducible to a state reachability problem, the latter being decidable
for a significant class of implementations. Let us explain how we
achieve that.

In fact, data independence implies that it is sufficient to con-
sider executions where each value is written at most once; let us
call such executions differentiated (see, e.g., [1]). The key step to-
ward the results mentioned above is a characterization of the set
of all differentiated executions that violate causal consistency w.r.t.
the RWM. This characterization is based on the notion of a bad
pattern that can be seen as a set of operations occurring (within an
execution) in some particular order corresponding to a causal con-
sistency violation. We express our bad patterns using appropriately
defined conflict/dependency relations between operations along ex-
ecutions. We show that there is a finite number of bad patterns such
that an execution is consistent w.r.t. the RWM abstraction if and
only if the execution does not contain any of these patterns.

In this characterization, the fact that we consider only differ-
entiated executions is crucial. The reason is that all relations used
to express bad patterns include the read-from relation that asso-
ciates with each read operation the write operation that provides
its value. This relation is uniquely defined for differentiated execu-
tions, while for arbitrary executions where writes are not unique,
reads can take their values from an arbitrarily large number of

writes. This is actually the source of complexity and undecidability
in the non-data independent case.

Then, we exploit this characterization in two ways. First, we
show that for a given execution, checking that it contains a bad
pattern can be done in polynomial time, which constitutes an im-
portant gain in complexity w.r.t. to the general algorithm that does
not exploit data independence (precisely because the latter needs to
consider all possible read-from relations in the given execution.)

Furthermore, we show that for each bad pattern, it is possible
to construct effectively an observer (which is a state-machine of
some kind) that is able, when running in parallel with an imple-
mentation, to detect all the executions containing the bad pattern.
A crucial point is to show that these observers are in a class of
state-machines that has “good” decision properties. (Basically, it is
important that checking whether they detect a violation is decid-
able for a significant class of implementations.) We show that the
observers corresponding to the bad patterns we identified can be
defined as register automata [11], i.e., finite-state state machines
supplied with a finite number of registers that store data over a
potentially infinite domain (such as integers, strings, etc.) but on
which the only allowed operation is checking equality. An impor-
tant feature of these automata is that their state reachability prob-
lem can be reduced to the one for (plain) finite-state machines. The
construction of the observers is actually independent from the type
of programs used for the implementation, leading to a semantically
sound and complete reduction to a state reachability problem (re-
gardless of the decidability issue) even when the implementation
is deployed over an unbounded number of sites, has an unbounded
number of variables (keys) storing data over an unbounded domain.

Our reduction enables the use of any reachability analysis or
assertion checking tool for the verification of causal consistency.
Moreover, for an important class of implementations, this reduc-
tion leads to decidability and provides a verification algorithm for
causal consistency w.r.t. the RWM abstraction. We consider imple-
mentations consisting of a finite number of state machines commu-
nicating through a network (by message passing). Each machine
has a finite number of finite-domain (control) variables with unre-
stricted use, in addition to a finite number of data variables that
are used only to store and move data, and on which no conditional
tests can be applied. Moreover, we do not make any assumption
on the network: the machines communicate through unbounded
unordered channels, which is the usual setting in large-scale dis-
tributed networks. (Implementations can apply ordering protocols
on top of this most permissive model.)

Implementations in the class we consider have an infinite num-
ber of configurations (global states) due to (1) the unboundedness
of the data domain, and (2) the unboundedness of the communi-
cation channels. First, we show that due to data independence and
the special form of the observers detecting bad patterns, proving
causal consistency for any given implementation in this class (with
any data domain) reduces to proving its causal consistency for a
bounded data domain (with precisely 5 elements). This crucial fact
allows to get rid of the first source of unboundedness in the configu-
ration space. The second source of unboundedness is handled using
counters: we prove that checking causal consistency in this case
can be reduced to the state reachability problem in Vector Addi-
tion Systems with States (equivalent to unbounded Petri Nets), and
conversely. This implies that verifying causal consistency w.r.t. the
RWM (for this class of implementations) is EXPSPACE-complete.

It is important to notice that causal consistency has different
meanings depending on the context and the targeted applications.
Several efforts have been made recently for formalizing various no-
tions of causal consistency (e.g., [12, 13, 21, 36, 38]). In this pa-
per we consider three important variants. The variant called simply
causal consistency (abbreviated as CC) allows non-causally depen-



dent operations to be executed in different orders by different sites,
and decisions about these orders to be revised by each site. This
models mechanisms for solving the conflict between non-causally
dependent operations where each site speculates on an order be-
tween such operations and possibly roll-backs some of them if
needed later in the execution, e.g., [6, 28, 35, 40]. We also con-
sider two stronger notions, namely causal memory (CM) [2, 36],
and causal convergence (CCv) [12, 13, 36]. The latter assumes that
there is a total order between non-causally dependent operations
and each site can execute operations only in that order (when it
sees them). Therefore, a site is not allowed to revise its ordering
of non-causally dependent operations, and all sites execute in the
same order the operations that are visible to them. This notion is
used in a variety of systems [5, 15, 29, 39, 41, 44] because it also
implies a strong variant of convergence, i.e., that every two sites
that receive the same set of updates execute them in the same order.
As for CM, a site is allowed to diverge from another site on the or-
dering of non-causally dependent operations, but is not allowed to
revise its ordering later on. CM and CCv are actually incomparable
[36].

All the contributions we have described above in this section
hold for the CC criterion. In addition, concerning CM and CCv, we
prove that (1) the NP-hardness and undecidability results hold, (2)
a characterization by means of a finite number of bad patterns is
possible, and (3) checking consistency for a single execution is
polynomial time.

To summarize, this paper establishes the first complexity and
(un)decidability results concerning the verification of causal con-
sistency:

• NP-hardness of the problems of checking CC, CM, and CCv for
a single execution (Section 5).

• Undecidability of the problems of verifying CC, CM, and CCv for
regular specifications, and actually even for the RWM specifi-
cation (Section 6).

• A polynomial-time procedure for verifying that a single execu-
tion of a data independent implementation is CC, CM, and CCv
w.r.t. RWM (Section 8).

• Decidability and complexity for the verification of CC w.r.t. the
RWM for a significant class of data independent implementa-
tions (Section 10).
The complexity and decidability results obtained for the RWM

(under the assumption of data independence) are based on two key
contributions that provide a deep insight on the problem of veri-
fying causal consistency, and open the door to efficient automated
testing/verification techniques:

• A characterization as a finite set of “bad patterns” of the set
of violations to CC, CM, and CCv w.r.t. the RWM, under the
assumption of data independence (Section 7).

• A polynomial reduction of the problem of verifying that a
data independent implementation is CC w.r.t. to the RWM to
a state reachability (or dually to an invariant checking) problem
(Section 9).

Some proofs are deferred to the long version [10].

2. Notations
2.1 Sets, Multisets, Relations
Given a set O and a relation R ⊆ O ×O, we denote by o1 <R o2
the fact that (o1, o2) ∈ R. We denote by o1 ≤R o2 the fact that
o1 <R o2 or o1 = o2. We denote byR+ the transitive closure ofR,
which is the composition of one or more copies ofR.

Let O′ be a subset of O. Then R∣O′ is the relation R projected
on the setO′, that is {(o1, o2) ∈ R ∣ o1, o2 ∈ O

′
}. The setO′

⊆ O is
said to be downward-closed (with respect to relationR) if ∀o1, o2,
if o2 ∈ O′ and o1 <R o2, then o1 ∈ O′ as well.

CC

CCv

CM

Figure 1: Implication graph of causal consistency definitions.

2.2 Labeled Posets
A relation < ⊆ O ×O is a strict partial order if it is transitive and
irreflexive. A poset is a pair (O,<) where < is a strict partial order
over O. Note here that we use the strict version of posets, and not
the ones where the underlying partial order is weak, i.e. reflexive,
antisymmetric, and transitive.

Given a set Σ, a Σ labeled poset ρ is a tuple (O,<, `) where
(O,<) is a poset and ` ∶ O → Σ is the labeling function.

We say that ρ′ is a prefix of ρ if there exists a downward closed
set A ⊆ O (with respect to relation <) such that ρ′ = (A,<
, `). A (resp., labeled) sequential poset (sequence for short) is a
(resp., labeled) poset where the relation < is a strict total order. We
denote by e ⋅ e′ the concatenation of sequential posets.

3. Replicated Objects
We define an abstract model for the class of distributed objects
called replicated objects [7], where the object state is replicated
at different sites in a network, called also processes, and updates
or queries to the object can be submitted to any of these sites.
This model reflects the view that a client has on an execution of
this object, i.e., a set of operations with their inputs and outputs
where every two operations submitted to the same site are ordered.
It abstracts away the implementation internals like the messages
exchanged by the sites in order to coordinate about the object
state. Such a partially ordered set of operations is called a history.
The correctness (consistency) of a replicated object is defined with
respect to a specification that captures the behaviors of that object
in the context of sequential programs.

3.1 Histories
A replicated object implements a programming interface (API)
defined by a set of methods M with input or output values from
a domain D.

For instance, in the case of the read/write memory, the set
of methods M is {wr,rd} for writing or reading a variable. Also,
given a set of variables X, the domain D is defined as (X×N)⊎X⊎
N ⊎ {�}. Write operations take as input a variable in X and a value
in N and return � while read operations take as input a variable in
X and return a value in N. The return value � is often omitted for
better readability.

A history h = (O,PO, `) is a poset labeled by M×D×D, where:
• O is a set of operation identifiers, or simply operations,
• PO is a union of total orders between operations called program

order: for o1, o2 ∈ O, o1 <PO o2 means that o1 and o2 were
submitted to the same site, and o1 occurred before o2,

• for m ∈ M and arg , rv ∈ D, and o ∈ O, `(o) = (m,arg , rv)
means that operation o is an invocation of m with input
arg and returning rv . The label `(o) is sometimes denoted
m(arg)▷ rv .
Given an operation o from a read/write memory history, whose

label is either wr(x, v) or rd(x)▷ v, for some x ∈ X, v ∈ D, we
define var(o) = x and value(o) = v.

3.2 Specification
The consistency of a replicated object is defined with respect to
a particular specification, describing the correct behaviors of that



object in a sequential setting. A specification S is thus defined2 as
a set of sequences labeled by M ×D ×D.

In this paper, we focus on the read/write memory whose speci-
fication SRW is defined inductively as the smallest set of sequences
closed under the following rules (x ∈ X and v ∈ N):
1. ε ∈ SRW,
2. if ρ ∈ SRW, then ρ ⋅ wr(x, v) ∈ SRW,
3. if ρ ∈ SRW contains no write on x, then ρ ⋅ rd(x)▷0 ∈ SRW,
4. if ρ ∈ SRW and the last write in ρ on variable x is wr(x, v), then
ρ ⋅ rd(x)▷ v ∈ SRW.

4. Causal Consistency
Causal consistency is one of the most widely used consistency
criterion for replicated objects. Informally speaking, it ensures that,
if an operation o1 is causally related to an operation o2 (e.g., some
site knew about o1 when executing o2), then all sites must execute
operation o1 before operation o2. Operations which are not causally
related may be executed in different orders by different sites.

From a formal point of view, there are several variations of
causal consistency that apply to slightly different classes of im-
plementations. In this paper, we consider three such variations that
we call causal consistency (CC), causal memory (CM), and causal
convergence (CCv). We start by presenting CC followed by CM and
CCv, which are both strictly stronger than CC. CM and CCv are not
comparable (see Figure 1).

4.1 Causal Consistency: Informal Description
Causal consistency [21, 36] (CC for short) corresponds to the weak-
est notion of causal consistency that exists in the literature. We de-
scribe the intuition behind this notion of consistency using several
examples, and then give the formal definition.

Recall that a history h models the point of view of a client
using a replicated object, and it contains no information regarding
the internals of the implementation, in particular, the messages
exchanged between sites. This means that a history contains no
notion of causality order. Thus, from the point of view of the
client, a history is CC as long as there exists a causality order which
explains the return value of each operation. This is why, in the
formal definition of CC given in the next section, the causality order
co is existentially quantified.

Example 1. History (2e) is not CC. The reason is that there does not
exist a causality order which explains the return values of all opera-
tions in the history. Intuitively, in any causality order, wr(y,1) must
be causally related to rd(y)▷1 (so that the read can return value
1). By transitivity of the causality order and because any causality
order must contain the program order, wr(x,1) must be causally
related to wr(x,2). However, site pc first reads rd(x)▷2, and
then rd(x)▷1. This contradicts the informal constraint that ev-
ery site must see operations which are causally related in the same
order.

Example 2. History (2c) is CC. The reason is that we can define
a causality order where the writes wr(x,1) and wr(x,2) are not
causally related between them, but each write is causally related
to both reads. Since the writes are not causally related, site pb can
read them in any order.

There is a subtlety here. In History (2c), site pb first does
rd(x)▷1, which implicitly means that it executed wr(x,1) after
wr(x,2). Then pb does rd(x)▷2 which means that pb “changed
its mind”, and decided to order wr(x,2) after wr(x,1). This is

2 In general, specifications can be defined as sets of posets instead of
sequences. This is to model conflict-resolution policies which are more
general than choosing a total order between operations. In this paper, we
focus on the read/write memory whose specification is a set of sequences.

pa:
wr(x,1)
rd(x)▷2

pb:
wr(x,2)
rd(x)▷1

(a) CM but not CCv

pa:
wr(z,1)
wr(x,1)
wr(y,1)

pb:
wr(x,2)
rd(z)▷0
rd(y)▷1
rd(x)▷2

(b) CCv but not CM

pa:
wr(x,1)

pb:
wr(x,2)
rd(x)▷1
rd(x)▷2

(c) CC but not CM nor CCv

pa:
wr(x,1)
rd(y)▷0
wr(y,1)
rd(x)▷1

pb:
wr(x,2)
rd(y)▷0
wr(y,2)
rd(x)▷2

(d) CC, CM and CCv but not
sequentially consistent

pa:
wr(x,1)
wr(y,1)

pb:
rd(y)▷1
wr(x,2)

pc:
rd(x)▷2
rd(x)▷1

(e) not CC (nor CM, nor CCv)

Figure 2: Histories showing the differences between the consis-
tency criteria CC, CM, and CCv.

AxCausal PO ⊆ co
AxArb co ⊆ arb
AxCausalValue CausalHist(o){o} ⪯ ρo
AxCausalSeq CausalHist(o){POPast(o)} ⪯ ρo
AxCausalArb CausalArb(o){o} ⪯ ρo

where:
CausalHist(o) = (CausalPast(o), co, `)
CausalArb(o) = (CausalPast(o),arb, `)
CausalPast(o) = {o′ ∈ O ∣ o′ ≤co o}
POPast(o) = {o′ ∈ O ∣ o′ ≤PO o}

Table 1: Axioms used in the definitions of causal consistency.

allowed by CC, but as we will see later, not allowed by the stronger
criteria CM and CCv.

This feature of CC is useful for systems which do speculative
executions and rollbacks [6, 40]. It allows systems to execute oper-
ations by speculating on an order, and then possibly rollback, and
change the order of previously executed operations. This happens
in particular in systems where convergence is important, where a
consensus protocol is running in the background to make all sites
eventually agree on a total order of operations. The stronger def-
initions, CM and CCv, are not suited to represent such speculative
implementations.

4.2 Causal Consistency: Definition
We now give the formal definition of CC, which corresponds to the
description of the previous section. A history h = (O,PO, `) is CC
with respect to a specification S when there exists a strict partial
order co ⊆ O ×O, called causal order, such that, for all operations
o ∈ O, there exists a specification sequence ρo ∈ S such that axioms
AxCausal and AxCausalValue hold (see Table 1).

Axiom AxCausal states that the causal order must at least con-
tain the program order. Axiom AxCausalValue states that, for each
operation o ∈ O, the causal history of o (roughly, all the operations



ρa:
[o1] wr(x,1)

[o2] wr(y,2)

[o3] rd(x)

ρb:
[o1] wr(x,1)

[o2] wr(y,2)

[o3] rd(x)▷1

ρc:
[o1] wr(x,1)

[o2] wr(y,2)

[o3] rd(x)▷1

Figure 3: Illustration of the ⪯ relation. We have ρa ⪯ ρb, but not
ρa ⪯ ρc. The label of an operation o is written next to o. The
arrows represent the transitive reduction of the strict partial orders
underlying the labeled posets. (For instance, none of the operations
in ρc are ordered.)

which are before o in the causal order) can be sequentialized in or-
der to obtain a valid sequence of the specification S. This sequen-
tialization must also preserve the constraints given by the causal
order. Formally, we define the causal past of o, CausalPast(o), as
the set of operations before o in the causal order and the causal his-
tory of o, CausalHist(o) as the restriction of the causal order to the
operations in its causal past. Since a site is not required to be con-
sistent with the return values it has provided in the past or the return
values provided by the other sites, the axiom AxCausalValue uses
the causal history where only the return value of operation o has
been kept. This is denoted by CausalHist(o){o}. The fact that the
latter can be sequentialized to a sequence ρo in the specification is
denoted by CausalHist(o){o} ⪯ ρo. We defer the formal definition
of these two last notations to the next section.

4.3 Operations on Labeled Posets
First, we introduce an operator which projects away the return
values of a subset of operations. Let ρ = (O,<, `) be a M ×D ×D
labeled poset and O′

⊆ O. We denote by ρ{O′
} the labeled poset

where only the return values of the operations in O′ have been
kept. Formally, ρ{O′

} is the (M×D) ∪ (M×D×D) labeled poset
(O,<, `′) where for all o ∈ O′, `′(o) = `(o), and for all o ∈ O∖O′,
if `(o) = (m,arg , rv), then `′(o) = (m,arg). If O′

= {o}, we
denote ρ{O′

} by ρ{o}.
Second, we introduce a relation on labeled posets, denoted ⪯.

Let ρ = (O,<, `) and ρ′ = (O,<′, `′) be two posets labeled by
(M × D) ∪ (M × D × D) (the return values of some operations in
O might not be specified). We denote by ρ′ ⪯ ρ the fact that ρ′ has
less order and label constraints on the set O. Formally, ρ′ ⪯ ρ if
<
′
⊆< and for all operation o ∈ O, and for all m ∈M, arg , rv ∈ D,

• `(o) = `′(o), or
• `(o) = (m,arg , rv) implies `′(o) = (m,arg).

Example 3. For any set of operations O′
⊆ O, ρ{O′

} ⪯ ρ. The
reason is that ρ{O′

} has the same order constraints on O than ρ,
but some return values are hidden in ρ{O′

}.

Example 4. In Figure 3, we have ρa ⪯ ρb, as the only differences
between ρa and ρb is the label of o3, and the fact that o1 < o2 holds
in ρb but not in ρa.

We have ρa /⪯ ρc, as o1 < o3 holds in ρa, but not in ρc.

4.4 Causal Memory (CM)
Compared to causal consistency, causal memory [2, 36] (denoted
CM) does not allow a site to “change its mind” about the order of
operations. The original definition of causal memory of Ahamad
et al. [2] applies only to the read/write memory and it was ex-
tended by Perrin et al. [36] to arbitrary specifications. We use the
more general definition, since it was also shown that it coincides
with the original one for histories where for each variable x ∈ X,
the values written to x are unique.

For instance, History (2c) is CC but not CM. Intuitively, the reason
is that site pb first decides to order wr(x,1) after wr(x,2) (for
rd(x)▷1) and then decides to order wr(x,2) after wr(x,1) (for
rd(x)▷2).

On the other hand, History (2a) is CM. Sites pa and pb disagree
on the order of the two write operations, but this is allowed by CM,
as we can define a causality order where the two writes are not
causally related.

Formally, a history h = (O,PO, `) is CM with respect to a
specification S if there exists a strict partial order co ⊆ O ×O such
that, for each operation o ∈ O, there exists a specification sequence
ρo ∈ S such that axioms AxCausal and AxCausalSeq hold. With
respect to CC, causal memory requires that each site is consistent
with respect to the return values it has provided in the past. A site
is still not required to be consistent with the return values provided
by other sites. Therefore, AxCausalSeq states:

CausalHist(o){POPast(o)} ⪯ ρo

where CausalHist(o){POPast(o)} is the causal history where
only the return values of the operations which are before o in
the program order (in POPast(o)) are kept. For finite histories,
if we set o to be the last operation of a site p, this means that
we must explain all return values of operations in p by a single
sequence ρo ∈ S. In particular, this is not possible for for site pb in
History (2c).

The following lemma gives the relationship between CM and CC.

Lemma 1 ([36]). If a history h is CM with respect to a specification
S, then h is CC with respect to S.

Proof. We know by definition that there exists a strict partial order
co such that, for all operation o ∈ O, there exists ρo ∈ S such that
axioms AxCausal and AxCausalSeq. In particular, for any o ∈ O,
we have CausalHist(o){POPast(o)} ⪯ ρo.

Since CausalHist(o){o} ⪯ CausalHist(o){POPast(o)}, and
the relation ⪯ is transitive, we have CausalHist(o){o} ⪯ ρo, and
axiom AxCausalValue holds.

4.5 Causal Convergence (CCv)
Our formalization of causal convergence (denoted CCv) corre-
sponds to the definition of causal consistency given in Burckhardt
et al. [13] and Burckhardt [12] restricted to sequential specifica-
tions. CCv was introduced in the context of eventual consistency,
another consistency criterion guaranteeing that roughly, all sites
eventually converge towards the same state, when no new updates
are submitted.

Causal convergence uses a total order between all the operations
in a history, called the arbitration order, as an abstraction of the
conflict resolution policy applied by sites to agree on how to order
operations which are not causally related. As it was the case for the
causal order, the arbitration order, denoted by arb, is not encoded
explicitly in the notion of history and it is existentially quantified
in the definition of CCv.

Example 5. History (2a) is not CCv. The reason is that, for the first
site pa to read rd(x)▷2, the write wr(x,2) must be after wr(x,1)
in the arbitration order. Symmetrically, because of the rd(x)▷1,
wr(x,2) must be before wr(x,1) in the arbitration order, which is
not possible.

Example 6. History (2b) gives a history which is CCv but not CM.
To prove that it is CCv, a possible arbitration order is to have the
writes of pa all before the wr(x,2) operation, and the causality
order then relates wr(y,1) to rd(y)▷1.

On the other hand, History (2b) is not CM. If History (2b) were
CM, for site pb, wr(y,1) should go before rd(y)▷1. By transitivity,
this implies that wr(x,1) should go before rd(x)▷2. But for the



read rd(x)▷2 to return value 2, wr(x,1) should then also go
before wr(x,2). This implies that wr(z,1) goes before rd(z)▷0
preventing rd(z)▷0 from reading the initial value 0.

Example 7. History (2d) shows that all causal consistency defi-
nitions (CC, CM, and CCv) are strictly weaker than sequential con-
sistency. Sequential consistency [31] imposes a total order on all
(read and write) operations. In particular, no such total order can
exist for History (2d). Because of the initial writes wr(x,1) and
wr(x,2), and the final reads rd(x)▷1 and rd(x)▷2, all the op-
erations of pa must be completely ordered before the operations of
pb, or vice versa. This would make one of the rd(y)▷0 to be or-
dered after either wr(y,1) or wr(y,2), which is not allowed by the
read/write memory specification. On the other hand, History (2d)
satisfies all criteria CC, CM, CCv. The reason is that we can set the
causality order to not relate any operation from pa to pb nor from
pb to pa.

Formally, a history h is CCv with respect to S if there exist a
strict partial order co ⊆ O ×O and a strict total order arb ⊆ O ×O
such that, for each operation o ∈ O, there exists a specification
sequence ρo ∈ S such that the axioms AxCausal, AxArb, and
AxCausalArb hold. Axiom AxArb states that the arbitration order
arb must at least respect the causal order co. Axiom AxCausalArb
states that, to explain the return value of an operation o, we must
sequentialize the operations which are in the causal past of o, while
respecting the arbitration order arb.

Axioms AxCausalArb and AxArb imply axiom AxCausal-
Value, as the arbitration order arb contains the causality order
co. We therefore have the following lemma.

Lemma 2 ([36]). If a history h is CCv with respect to a specifica-
tion S, then h is CC with respect to S.

Proof. Similar to the proof of Lemma 1, but using the fact that
CausalHist(o){o} ⪯ CausalArb(o){o} (since by axiom AxArb,
co ⊆ arb).

5. Single History Consistency is NP-complete
We first focus on the problem of checking whether a given history is
consistent, which is relevant for instance in the context of testing a
given replicated object. We prove that this problem is NP-complete
for all the three variations of causal consistency (CC, CM, CCv) and
the read/write memory specification.

Lemma 3. Checking whether a history h is CC (resp., CM, resp., CCv)
with respect to SRW is NP-complete.

Proof. Membership in NP holds for all the variations of causal con-
sistency, and any specification S for which there is a polynomial-
time algorithm that can check whether a given sequence is in S.
This includes the read/write memory, and common objects such
as sets, multisets, stacks, or queues. It follows from the fact that
one can guess a causality order co (and an arbitration order arb for
CCv), and a sequence ρo for each operation o, and then check in
polynomial time whether the axioms of Table 1 hold, and whether
ρo ∈ S.

For NP-hardness, we reduce boolean satisfiability to checking
consistency of a single history reusing the encoding from Furbach
et al. [19]. Let φ be a boolean formula in CNF with variables
x1, . . . , xn, and clauses C1, . . . ,Ck. The goal is to define a history
h which is CC if and only if φ is satisfiable. All operations on h
are on a single variable y. For the encoding, we assume that each
clause corresponds to a unique integer strictly larger than n.

For i ∈ {1, . . . , n}, we define Pos(xi) as the set of clauses
where xi appears positively, and Neg(xi) as the set of clauses
where xi appears negatively.

For each i ∈ {1, . . . , n}, h contains two sites, pifalse and pitrue.
Site pifalse first writes each C ∈ Pos(xi) (in the order they appear
in C1, . . . ,Ck) to variable y, and then, it writes i. Similarly, Site
pitrue writes each C ∈ Neg(xi) (in the order they appear in
C1, . . . ,Ck) to variable y, and then, it writes i.

Finally, a site peval does rd(y)▷1⋯rd(y)▷n followed by
rd(y)▷C1⋯rd(y)▷Ck.

We then prove the following equivalence: (the equivalence for
CM and CCv can be proven similarly): h is CC iff φ is satisfiable.

(⇐) This direction follows from the proof of [19]. They show
that if φ is satisfiable, the history h is sequentially consistent.

(⇒) Assume h is CC. Then, there exists co, such that, for all o ∈
O, there exists ρo ∈ SRW, such that AxCausal and AxCausalValue
hold. In particular, each rd(y)▷ i of peval must have a wr(y, i) in
its causal past.

The wr(y, i) operation can either be from pifalse (corresponding
to setting variable xi to false in φ), or from pitrue (corresponding
to setting variable xi to true in φ). For instance, if it is from site
pifalse, then none of of the wr(y,C) for C ∈ Pos(xi) can be used
for the reads rd(y)▷Ci of peval.

Consequently, for any variable xi, only the writes of wr(y,C)

for C ∈ Pos(xi), or the ones with C ∈ Neg(xi) can be used for
the reads rd(y)▷Ci of peval.

Moreover, each read rd(y)▷Ci has a corresponding wr(y,Ci),
meaning that φ is satisfiable.

The reduction from boolean satisfiability used to prove NP-
hardness uses histories where the same value is written multiple
times on the same variable. We show in Section 8 that this is in fact
necessary to obtain the NP-hardness: when every value is written
only once per variable, the problem becomes polynomial time.

6. Undecidability of Verifying Causal Consistency
We now consider the problem of checking whether all histories
of an implementation are causally consistent. We consider this
problem for all variants of causal consistency (CC, CM, CCv).

We prove that this problem is undecidable. In order to formally
prove the undecidability, we describe an abstract model for repre-
senting implementations.

6.1 Executions and Implementations
Concretely, an implementation is represented by a set of executions.
Formally, an execution is a sequence of operations. Each operation
is labeled by an element (p,m,arg , rv) of PId×M×D×D, meaning
that m was called with argument value arg on site p, and returned
value rv . An implementation I is a set of executions which is
prefix-closed (if I contains an execution e ⋅ e′, I also contains e).

All definitions given for histories (and sets of histories) transfer
to executions (and sets of executions) as for each execution e, we
can define a corresponding history h. The history h = (O,PO, `)
contains the same operations as e, and orders o1 <PO o2 if o1 and
o2 are labeled by the same site, and o1 occurs before o2 in e.

For instance, an implementation is data independent if the cor-
responding set of histories is data independent.

6.2 Undecidability Proofs
We prove undecidability even when I and S are regular languages
(given by regular expressions or by finite automaton). We refer
to this as the first undecidability proof. Even stronger, we give
a second undecidability proof, which shows that this problem is
undecidable when the specification is set to SRW, with a fixed
number of variables, and with a fixed domain size (which is a
particular regular language).

These results imply that the undecidability does not come from
the expressiveness of the model used to describe implementations,



nor from the complexity of the specification, but specifically from
the fact that we are checking causal consistency.

For both undecidability proofs, our approach is to reduce the
Post Correspondence Problem (PCP, an undecidable problem in
formal languages), to the problem of checking whether I is not
causally consistent (resp., CC,CM,CCv).

Definition 1. Let ΣPCP be a finite alphabet. PCP asks, given
n pairs (u1, v1), . . . , (un, vn) ∈ (Σ∗

PCP × Σ∗

PCP), whether there
exist i1, . . . , ik ∈ {1, . . . , n} such that ui1⋯uik = vi1⋯vik , with
(k > 0).

From a high-level view, both proofs operate similarly. We build,
from a PCP instance P , an implementation I (which is here a
regular language) – and for the first proof, a specification S – such
that P has a positive answer if and only if I contains an execution
which is not causally consistent (resp., CC,CM,CCv) with respect to
S (with respect to a bounded version of SRW for the second proof).

The constructed implementations I produce, for each possible
pair of words (u, v), an execution whose history H(u,v) is not
causally consistent (resp., CC,CM,CCv) if and only if (u, v) form
a valid answer for P .

Definition 2. Two sequences (u, v) in Σ∗

PCP form a valid answer
if u = v and they can be decomposed into u = ui1 ⋅ ui2⋯uik and
v = vi1 ⋅ vi2⋯vik , with each (uij , vij ) corresponding to a pair of
problem P .

Therefore, I is not causally consistent, if and only if I contains
an execution whose historyH(u,v) is not causally consistent, if and
only if there exists (u, v) which form a valid answer for P , if and
only if P has a positive answer.

6.3 Undecidability For Regular Specifications
For the first proof, we first prove that the shuffling problem, a
problem on formal languages that we introduce, is not decidable.
This is done by reducing PCP to the shuffling problem.

We then reduce the shuffling problem to checking whether an
implementation is not causally consistent (resp., CC,CM,CCv), show-
ing that verification of causal consistency is undecidable as well.

Given two words u, v ∈ Σ∗, the shuffling operator returns the
set of words which can be obtained from u and v by interleaving
their letters. Formally, we define u∥v ⊆ Σ∗ inductively: ε∥v = {v},
u∥ε = {u} and (a ⋅ u)∥(b ⋅ v) = a ⋅(u∥(b ⋅ v))∪b ⋅((a ⋅ u)∥v), with
a, b ∈ Σ.

Definition 3. The shuffling problem asks, given a regular language
L over an alphabet (Σu ⊎ Σv)

∗, if there exist u ∈ Σ∗

u and v ∈ Σ∗

v

such that u∥v ∩L = ∅.

Lemma 4. The shuffling problem is undecidable.

We now give the undecidability theorem for causal consistency
(resp., CC,CM,CCv), by reducing the shuffling problem to the prob-
lem of verifying (non-)causal consistency. The idea is to let one site
simulate words from Σ∗

u, and the second site from Σ∗

v . We then set
the specification to be (roughly) the language L. We therefore ob-
tain that there exists an execution which is not causally consistent
with respect to L if and only if there exist u ∈ Σ∗

u, v ∈ Σ∗

v such that
no interleaving of u and v belongs to L, i.e. u∥v ∩L = ∅.

Theorem 1. Given an implementation I and a specification S
given as regular languages, checking whether all executions of I
are causally consistent (resp., CC, CM, CCv) with respect to S is
undecidable.

6.4 Undecidability for the Read/Write Memory Abstraction
Our approach for the second undecidability proof is to reduce di-
rectly PCP to the problem of checking whether a finite-state imple-

mentation is not CC (resp., CM, CCv) with respect to the read/write
memory, without going through the shuffling problem. The reduc-
tion here is much more technical, and requires 13 sites. This is due
to the fact that we cannot encode the constraints we want in the
specification (as the specification is set to be SRW), and we must
encode them using appropriately placed read and write operations.

Theorem 2. Given an implementation I as a regular language,
checking whether all executions of I are causally consistent
(resp., CC, CM, CCv) with respect to SRW is undecidable.

7. Causal Consistency under Data Independence
Implementations used in practice are typically data indepen-
dent [1], i.e. their behaviors do not depend on the particular data
values which are stored at a particular variable. Under this assump-
tion, we prove in Section 7.1 that it is enough to verify causal
consistency for histories which use distinct wr values, called differ-
entiated histories.

We then show in Section 7.2, for each definition of causal con-
sistency, how to characterize non-causally consistent (differenti-
ated) histories through the presence of certain sets of operations.

We call these sets of operations bad patterns, because any his-
tory containing one bad pattern is necessarily not consistent (for
the considered consistency criterion). The bad patterns are defined
through various relations derived from a differentiated history, and
are all computable in polynomial time (proven in Section 8). For
instance, for CC, we provide in Section 7.2 four bad patterns such
that, a differentiated history h is CC if and only if h contains none
of these bad patterns. We give similar lemmas for CM and CCv.

7.1 Differentiated Histories
Formally, a history (O,PO, `) is said to be differentiated if for all
o1 ≠ o2, if `(o1) = wr(x)▷d1 and `(o2) = wr(x)▷d2, then
d1 ≠ d2, and there are no operation wr(x,0) (which writes the
initial value). Let H be a set of labeled posets. We denote by H≠
the subset of differentiated histories of H .

A renaming f ∶ N × N is a function which modifies the data
values of operations. Given a read/write memory history h, we
define by h[f] the history where any number n ∈ N appearing in a
label of h is changed to f(n).

A set of histories H is data independent if, for every history h,
• there exists a differentiated history h′ ∈ H , and a renaming f ,

such that h = h′[f].
• for any renaming f , h[f] ∈H .

The following lemma shows that for the verification of a data
independent set of histories, it is enough to consider differentiated
histories.

Lemma 5. Let H be a data independent set of histories. Then, H
is causally consistent (resp., CC, CM, CCv) with respect to the read-
/write memory if and only if H≠ is causally consistent (resp., CC,
CM, CCv) with respect to the read/write memory.

7.2 Characterizing Causal Consistency (CC)
Let h = (O,PO, `) be a differentiated history. We now define and
explain the bad patterns of CC. They are defined using the read-from
relation. The read-from relation relates each write w to each read
that reads fromw. Since we are considering differentiated histories,
we can determine, only by looking at the operations of a history,
from which write each read is reading from. There is no ambiguity,
as each value can only be written once on each variable.

Definition 4. The read-from relation RF is defined as:

{(o1, o2) ∣ ∃x ∈ X, d ∈ D. `(o1) = wr(x, d) ∧ `(o2) = rd(x)▷d}.

The relation CO is defined as CO = (PO ∪ RF)+.



CyclicCO there is a cycle in PO ∪ RF (in CO)
WriteCOInitRead there is a rd(x)▷0 operation r, and an op-

eration w such that w <CO r and var(w) =

var(r)

ThinAirRead there is a rd(x)▷ v operation r such that
v ≠ 0, and there is no w operation with
w <RF r

WriteCORead there exist write operations w1,w2 and a
read operation r1 in O such that w1 <CO

w2 <CO r1, w1 <RF r1, and var(w1) =

var(w2)

WriteHBInitRead there is a rd(x)▷0 operation r, and an op-
eration w such that w <HBo r and var(w) =

var(r), for some o, with r ≤PO o

CyclicHB there is a cycle in HBo for some o ∈ O
CyclicCF there is a cycle in CF ∪ CO

Table 2: All bad patterns defined in the paper.

CC CM CCv

CyclicCO CyclicCO CyclicCO
WriteCOInitRead WriteCOInitRead WriteCOInitRead
ThinAirRead ThinAirRead ThinAirRead
WriteCORead WriteCORead WriteCORead

WriteHBInitRead CyclicCF
CyclicHB

Table 3: Bad patterns for each criteria.

Remark 1. Note that we use lower-case co for the existentially
quantified causality order which appears in the definition of causal
consistency, while we use upper-case CO for the relation fixed as
(PO ∪ RF)+. The relation CO represents the smallest causality
order possible. We in fact show in the lemmas 6, 7, and 8, that
when a history is CC (resp., CM, CCv), the causality order co can
always be set to CO.

There are four bad patterns for CC, defined in terms of the
RF and CO relations: CyclicCO, WriteCOInitRead, ThinAirRead,
WriteCORead (see Table 2).

Example 8. History (2e) contains bad pattern WriteCORead.
Indeed, wr(x,1) is causally related (through relation CO) to
wr(x,2), which is causally related to rd(x)▷1. Intuitively,
this means that the site executing rd(x)▷1 is aware of both
writes wr(x,1) and wr(x,2), but chose to order wr(x,2) be-
fore wr(x,1), while wr(x,1) is causally related to wr(x,2). As
a result, History (2e) is not CC (nor CM, nor CCv).

History (2d) contains none of the bad patterns defined in Ta-
ble 2, and satisfies all definitions of causal consistency. In particu-
lar, History (2d) is CC.

Lemma 6. A differentiated history h is CC with respect to SRW if
and only if h does not contain one of the following bad patterns:
CyclicCO, WriteCOInitRead, ThinAirRead, WriteCORead.

Proof. Let h = (O,PO, `) be a differentiated history.
(⇒) Assume that h is CC with respect to SRW. We prove by

contradiction that h cannot contain bad patterns CyclicCO, Write-
COInitRead, ThinAirRead, WriteCORead.

First, we show that CO ⊆ co. Given the specification of rd’s,
and given that h is differentiated, we must have RF ⊆ co. Moreover,

by axiom AxCausal, PO ⊆ co. Since co is a transitive order, we
thus have (PO ∪ RF)+ ⊆ co and CO ⊆ co.

(CyclicCO) Since co is acyclic, and CO ⊆ co, CO is acyclic as
well.

(WriteCOInitRead) If there is a rd(x)▷0 operation r, and
an operation w such that w <CO r with var(w) = x: we obtain
a contradiction, because CC ensures that there exists a sequence
ρr ∈ SRW that orders w before r. However, this is not allowed
by SRW, as h is differentiated, and does not contain operation that
write the initial value 0. A read rd(x)▷0 can thus happen only
when there are no previous write operation on x.

(ThinAirRead) Similarly, we cannot have a rd(x)▷ v opera-
tion r such that v ≠ 0, and such that there is no w operation with
w <RF r. Indeed, CC ensures that there exists a sequence ρr ∈ SRW

that contains r. Moreover, SRW allows rd(x)▷ v operations only
when there is a previous write wr(x, v). So there must exist a
wr(x, v) operation w (such that w <RF r).

(WriteCORead) If there exist w1,w2, r1 ∈ O such that
• w1 <RF r1 and
• w1 <CO w2 with var(w1) = var(w2) and
• w2 <CO r1.

Let x ∈ X and d1 ≠ d2 ∈ N such that:
• `(w1) = wr(x, d1),
• `(w2) = wr(x, d2),
• `(r1) = rd(x)▷d1.

By CC, and since CO ⊆ co , we know there exists ρr1 ∈ SRW that
contains w1 before w2, and ends with r1. The specification SRW

require the last write operation on x to be a wr(x, d1). However, as
h is differentiated, the only wr(x, d1) operation is w1. As a result,
the last write operation on variable x in ρr1 cannot be w1 (as w2 is
after w1), and we have a contradiction.

(⇐) Assume that h contains none of the bad patterns described
above. We show that h is CC. We use for this the strict partial order
CO = (PO∪RF)+ as the causal order co. The relation CO is a strict
partial order, as h does not contain bad pattern CyclicCO. Axiom
AxCausal holds by construction. We define for each operation
o ∈ O a sequence ρo ∈ SRW such that CausalHist(o){o} ⪯ ρo
(such that AxCausalValue holds).

Let o ∈ O. We have three cases to consider.
1) If o is a wr operation, then all the return values of the read

operations in CausalHist(o){o} are hidden. We can thus define
ρo as any sequentialization of CausalHist(o){o}, and where we
add the appropriate return values to the read operations (the value
written by the last preceding write on the same variable).

2) If o is a rd operation r, labeled by rd(x)▷0 for some x ∈ X.
We know by the fact that h does not contain WriteCOInitRead that
there is no w such that w <CO r. As a result, we can define ρo
as any sequentialization of CausalHist(o){o}, where we add the
appropriate return values to the read operations different from r.

3) If o is a rd operation r1, labeled by rd(x)▷d1 for some
x ∈ X and d1 ≠ 0, we know by assumption that there exists a wr op-
eration w1 such that w1 <RF r1 (h does not contain ThinAirRead).

We also know (h does not contain WriteCORead) there is no
w2 such that

• w1 <RF r1 and
• w1 <CO w2 with var(w1) = var(w2) and
• w2 <CO r1.

This ensures that w1 must be a maximal wr operation on vari-
able x in CausalHist(o). It is thus possible to sequentialize
CausalHist(o){o} into ρo, so that w1 is the last write on vari-
able x. We can then add appropriate return values to the read
operations different than r1, whose return values were hidden in
CausalHist(o){o} (the value written by the last preceding write in
ρo on the same variable).



7.3 Characterizing Causal Convergence (CCv)
CCv is stronger than CC. Therefore, CCv excludes all the bad pat-
terns of CC, given in Lemma 6. CCv also excludes one additional
bad pattern, defined in terms of a conflict relation.

The conflict relation is a relation on write operations (which
write to the same variable). It is used for the bad pattern CyclicCF
of CCv, defined in Table 2. Intuitively, for two write operations
w1 and w2, we have w1 <CF w2 if some site saw both writes,
and decided to order w1 before w2 (so decided to return the value
written by w2).

Example 9. History (2a) contains bad pattern CyclicCF. The
wr(x,1) operation w1 is causally related to the rd(x)▷2 opera-
tion, so we have w1 <CF w2, where w2 is the wr(x,2) operation.
Symmetrically, w2 <CF w1, and we obtain a cycle. On the other
hand, History (2a) does not contain any of the bad patterns of CM.

Example 10. History (2c) contains bad pattern CyclicCF. The
cycle is on the two writes operations wr(x,1) and wr(x,2).

The formal definition of the conflict relation is the following.

Definition 5. We define the conflict relation CF ⊆ O ×O to be the
smallest relation such that: for all x ∈ X, and d1 ≠ d2 ∈ N and
operations w1,w2, r2, if

• w1 <CO r2,
• `(w1) = wr(x, d1),
• `(w2) = wr(x, d2), and
• `(r2) = rd(x)▷d2,

then w1 <CF w2.

We obtain the following lemma for the bad patterns of CCv.

Lemma 7. A differentiated history h is CCv with respect to SRW if
and only if h is CC and does not contain the following bad pattern:
CyclicCF.

7.4 Characterizing Causal Memory (CM)
CM is stronger than CC. Therefore, CM excludes all the bad patterns
of CC, given in Lemma 6. CM also excludes two additional bad
patterns, defined in terms of a happened-before relation.

The happened-before relation for an operation o ∈ O intuitively
represents the minimal constraints that must hold in a sequence
containing all operations before o, on the site of o.

Example 11. History (2b) contains bad pattern WriteHBIni-
tRead. Indeed, we have wr(z,1) <PO wr(x,1) <HBr2

wr(x,2) <PO

rd(z)▷0, where r2 is the rd(x)▷2 operation. The edge wr(x,1) <HBr2

wr(x,2) is induced by the fact that wr(x,1) <co rd(x)▷2.

The formal definition of HBo is the following.

Definition 6. Given o ∈ O, we define the happened-before relation
for o, noted HBo ⊆ O ×O, to be the smallest relation such that:

• CO∣CausalPast(o) ⊆ HBo, and
• HBo is transitive, and
• for x ∈ X, and d1 ≠ d2 ∈ N, if

w1 <HBo r2,
r2 ≤PO o,
`(w1) = wr(x, d1),
`(w2) = wr(x, d2), and
`(r2) = rd(x)▷d2,

then w1 <HBo w2.

There are two main differences with the conflict relation CF.
First, CF is not defined inductively in terms of itself, but only in
terms of the relation CO. Second, in the happened-before relation
for o, in order to add an edge between write operations, there is
the constraint that r2 ≤PO o, while in the definition of the conflict

relation, r2 is an arbitrary read operation. These differences make
the conflict and happened-before relations not comparable (with
respect to set inclusion).

We obtain the following lemma for the bad patterns of CM (see
Table 2 for the bad patterns’ definitions).

Lemma 8. A differentiated history h is CM with respect to SRW if
and only if h is CC and does not contain the following bad patterns:
WriteHBInitRead, CyclicHB.

Table 3 gives, for each consistency criterion, the bad patterns
which are excluded by the criterion.

8. Single History Consistency under DI
The lemmas of the previous sections entail a polynomial-time algo-
rithm for checking whether a given differentiated history is causally
consistent (for any definition). This contrasts with the fact that
checking whether an arbitrary history is causally consistent is NP-
complete.

The algorithm first constructs the relations which are used in the
definitions of the bad patterns, and then checks for the presence of
the bad patterns in the given history.

Lemma 9. Let h = (O,PO, `) be a differentiated history. Com-
puting the relations RF,CO,CF, and HBo for o ∈ O can be done
in polynomial time (O(n5

) where n is the number of operations in
h).

Proof. We show this for the relation HBo (for some o ∈ O).
The same holds for the other relations. The relation HBo can be
computed inductively using its fixpoint definition. At each iteration
of the fixpoint computation, we add one edge between operations
in O. Thus, there are at most n2 iterations.

Each iteration takes O(n3
) time. For instance, an iteration of

computation of HBo can consist in adding an edge by transitivity,
which takes O(n3

) time.
Thus the whole computation of HBo takes O(n5

) time.

Once the relations are computed, we can check for the presence
of bad patterns in polynomial time.

Theorem 3. Let h = (O,PO, `) be a differentiated history. Check-
ing whether h is CC (resp., CM, resp., CCv) can be done in polyno-
mial time (O(n5

) where n is the number of operations in h).

Proof. First, we compute the relations RF,CO,CF,HBo (for all
o ∈ O), in timeO(n5

). The presence of bad patterns can be checked
in polynomial time. For instance, for bad pattern CyclicCF, we need
to find a cycle in the relation CF. Detecting the presence of a cycle
in a relation takes O(n2

).
The complexity of the algorithm thus comes from computing

the relations, which is O(n5
).

In the next two sections, we only consider criterion CC.

9. Reduction to Control-State Reachability under
Data Independence

The undecidability proof of Theorem 2 uses an implementation
which is not data independent. Therefore, it does not apply when
we consider only data independent implementations. In fact, we
show that for read/write memory implementations which are data
independent, there is an effective reduction from checking CC to a
non-reachability problem.

Using the characterization of Section 7.2, we define an observer
MCC that looks for the bad patterns leading to non-CC. More pre-
cisely, our goal is to defineMCC as a register automaton such that



(by an abuse of notation, the set of executions recognized byMCC

is also denotedMCC):

I is CC with respect to SRW ⇐⇒ I ∩MCC = ∅

where I is any data independent implementation.
Ultimately, we exploit in Section 10 this reduction to prove that

checking CC for (finite-state) data independent implementations,
with respect to the read/write memory specification, is decidable.

q0 qerr
p, rd(x)▷1

q1
CausalLink
[d0 ← 3]

CausalLink
[d0 ← 4]

q′err

p, wr(x,1)
p, rd(x)▷1

reg′x ∶= x
regx ∶= x
regp ∶= p

p, wr(x,2)

reg′x == x
regx ∶= x
regp == p

p, rd(x)▷1
reg′x == x
regp == p

q2
CausalLink
[d0 ← 2]

q′′err

p, wr(x,1)
p, rd(x)▷1

reg′x ∶= x
regx ∶= x
regp ∶= p

p, rd(x)▷0

reg′x == x
regx ∶= x
regp == p

Figure 4: The observer MCC, finding bad patterns for CC with
respect to SRW. The first branch looks for bad pattern ThinAirRead.
The second branch looks for bad pattern WriteCORead. The third
branch looks for bad pattern WriteCOInitRead.
Each state has a self-loop with any symbol containing value 5,
which we do not represent. Two labels p,m(arg)▷ rv above a
transition denote two different transitions.

qbqa

p,rd(x)▷d0
regp ∶= p
regx == x

p,wr(x, d0)
regx ∶= x
regp == p

Figure 5: The register automaton CausalLink, which recognizes
causality chains by following links in the PO ∪ RF relations. Both
states are final.
Each state has a self-loop with any symbol containing value 5,
which we do not represent.
9.1 Register Automata
Register automata [11] have a finite number of registers in which
they can store values (such as the site identifier, the name of a
variable in the read/write memory, or the data value stored at a
particular variable), and test equality on stored registers.

We describe the syntax of register automata that we use in the
figures. The label p,wr(x,1) above the transition going from q1
in Figure 4 is a form of pattern matching. If the automaton reads a
tuple (p0,wr(x0,1)), for some p0 ∈ PId, x0 ∈ X, then the variables
p, x are bound respectively to p0, x0.

If this transition, or another transition, gets executed afterwards,
the variables p, x can be bound to other values. These variables are
only local to a specific execution of the transition.

The instruction reg′x ∶= x, on this same transition, is used to
store the value x0 which was bound by x in register reg′x. This
ensures that the operations wr(x,2) and rd(x)▷1 that come later
use the same variable x0, thanks to the equality check reg′x == x.

Note that, in Figure 5, d0 is not a binding variable as p and x, but
is instead a constant which is fixed to different values in Figure 4.

9.2 Reduction
MCC (see Figure 4) is composed of three parts. The first part
recognizes executions which contain bad pattern ThinAirRead,
i.e. which have a rd operation with no corresponding wr. The sec-
ond part recognizes executions containing bad pattern WriteCORead,
composed of operations w1, w2, and r1, such that w1 <CO w2 <CO

r1, w1 <RF r1, and var(w1) = var(w2). The third part recognizes
executions containing bad pattern WriteCOInitRead, where a write
on some variable x, writing a non-initial value, is causally related
to a rd(x)▷0.

To track the relation CO,MCC uses another register automaton,
called CausalLink (see Figure 5), which recognizes unbounded
chains in the CO relation.

The registers ofMCC store site ids and the variables’ names of
the read/write memory (we use registers because the number of
sites and variables in the causality links can be arbitrary).

By data independence,MCC only needs to use a bounded num-
ber of values. For instance, for the second branch recognizing bad
pattern WriteCORead, it uses value 1 for operationsw1 and r1, and
value 2 for operationw2. It uses value 3 for the causal link between
w1 and w2, and value 4 for the causal link between w2 and r1. Fi-
nally, it uses the value 5 ∈ N for all actions of the execution which
are not part of the bad pattern. As a result, it can self-loop with any
symbol containing value 5. We do not represent these self-loops to
keep the figure simple.

We prove in Theorem 4 that any execution recognized byMCC

is not CC. Reciprocally, we prove that for any differentiated execu-
tion of an implementation I which is not CC, we can rename the
values to obtain an execution with 5 values recognized byMCC. By
data independence of I, the renamed execution is still an execution
of I.
Remark 2. Note here that the observerMCC does not look for bad
pattern CyclicCO. We show in Theorem 4 that, since the implemen-
tation is a prefix-closed set of executions, it suffices to look for bad
pattern ThinAirRead to recognize bad pattern CyclicCO.

Theorem 4. Let I be a data independent implementation. I is CC
with respect to SRW if and only if I ∩MCC = ∅.

This result allows to reuse any tool or technique that can solve
reachability (in the system composed of the implementation and
the observer MCC) for the verification of CC (with respect to the
read/write memory).

10. Decidability under Data Independence
In this section, we exploit this reduction to obtain decidability for
the verification of CC with respect to the read/write memory.

We consider a class of implementations C for which reachability
is decidable, making CC decidable (EXPSPACE-complete). We
consider implementations I which are distributed over a finite
number of sites. The sites run asynchronously, and communicate
by sending messages using peer-to-peer communication channels.

Moreover, we assume that the number of variables from the
read/write memory that the implementation I seeks to implement
is fixed and finite as well. However, we do not bound the domain
of values that the variables can store.

Each site is a finite-state machine with registers that can store
values in N for the contents of the variables in the read/write
memory. Registers can be assigned using instructions of the form



x ∶∶= y and x ∶∶= d where x, y are registers, and d ∈ N is a value (a
constant, or a value provided as an argument of a method). Values
can also be sent through the network to other sites, and returned by
a method. We make no assumption on the network: the peer-to-peer
channels are unbounded and unordered.

Any implementation in C is thus necessarily data independent
by construction, as the contents of the registers storing the values
which are written are never used in conditionals.

The observerMCC we constructed only needs 5 values to detect
all CC violations. For this reason, when modeling an implemen-
tation in C, there is no need to model the whole range of natural
numbers N, but only 5 values. With this in mind, any implementa-
tion in C can be modelled by a Vector Addition System with States
(VASS) [25, 27], or a Petri Net [16, 37]. The local state of each site
is encoded in the state of the VASS, and the content of the peer-to-
peer channels is encoded in the counters of the VASS. Each counter
counts how many messages there are of a particular kind in a par-
ticular peer-to-peer channel. There exist similar encodings in the
literature [8].

Then, since the number of sites and the number of variables is
bounded, we can get rid of the registers in the register automaton of
the observerMCC, and obtain a (normal) finite automaton. We then
need to solve control-state reachability in the system composed
of the VASS and the observer MCC to solve CC (according to
Theorem 4). Since VASS are closed under composition with finite
automata, and control-state reachability is EXPSPACE-complete
for VASS, we get the EXPSPACE upper bound for the verification
of CC (for the read/write memory).

The EXPSPACE lower bound follows from: (1) State reachabil-
ity in class C is EXPSPACE-complete, equivalent to control-state
reachability in VASS [4]. Intuitively, a VASS can be modelled by
an implementation in C, by using the unbounded unordered chan-
nels to simulate the counters of the VASS. (Similar to the reduction
from C to VASS outlined above, but in the opposite direction.) (2)
Checking reachability can be reduced to verifying CC. Given an im-
plementation I in C, and a state q, knowing whether q is reachable
can be reduced to checking whether a new implementation I′ is
not causally consistent. I′ is an implementation which simulates
I, and produces only causally consistent executions; if it reaches
state q, it artificially produces a non-causally consistent execution,
for instance by returning wrong values to read requests.

Theorem 5. Let I be a data independent implementation in
C. Verifying CC of I with respect to the read/write memory is
EXPSPACE-complete (in the size of the VASS of I).

11. Related Work
Wei et al. [42] studied the complexity of verifying PRAM consis-
tency (also called FIFO consistency) for one history. They proved
that the problem is NP-complete. For differentiated executions,
they provided a polynomial-time algorithm.

Independently, Furbach et al. [19] showed that checking causal
consistency (CM definition) of one history is an NP-complete prob-
lem. They proved that checking consistency for one history for any
criterion stronger than SLOW consistency and weaker than sequen-
tial consistency is NP-complete, where SLOW consistency ensures
that for each variable x, and for each site p, the reads of p on
variable x can be explained by ordering all the writes to x while
respecting the program order. This range covers CM, but does not
cover CC (see Figure 2c for a history which is CC but not SLOW). It
is not clear whether this range covers CCv. To prove NP-hardness,
they used a reduction from the NP-complete SAT problem. We
show that their encoding can be reused to show NP-hardness for
checking whether a history is CC (resp., CCv) with respect to the
read/write memory specification.

Concerning verification, we are not aware of any work study-
ing the decidability or complexity of checking whether all execu-
tions of an implementation are causally consistent. There have been
works on studying the problem for other criteria such as lineariz-
ability [24] or eventual consistency [40]. In particular, it was shown
that checking linearizability is an EXPSPACE-complete problem
when the number of sites is bounded [3, 22]. Eventual consistency
has been shown to be decidable [8]. Sequential consistency was
shown to be undecidable [3].

The approach we adopted to obtain decidability of causal con-
sistency by defining bad patterns for particular specifications has
been used recently in the context of linearizability [1, 9, 23]. How-
ever, the bad patterns for linearizability do not transfer to causal
consistency. Even from a technical point of view, the results intro-
duced for linearizability cannot be used in our case. One reason for
this is that, in causal consistency, there is the additional difficulty
that the causal order is existentially quantified, while the happens-
before relation in linearizability is fixed (by a global clock).

Lesani et al. [32] investigate mechanized proofs of causal con-
sistency using the theorem prover Coq. This approach does not lead
to full automation however, e.g., by reduction to assertion checking.

12. Conclusion
We have shown that verifying causal consistency is hard, even un-
decidable, in general: verifying whether one single execution sat-
isfies causal consistency is NP-hard, and verifying if all the execu-
tions of an implementation are causally consistent is undecidable.
These results are not due to the complexity of the implementations
nor of the specifications: they hold even for finite-state implemen-
tations and specifications. They hold already when the specifica-
tion corresponds to the simple read-write memory abstraction. The
undecidability result contrasts with known decidability results for
other correctness criteria such as linearizability [3] and eventual
consistency [8].

Fortunately, for the read-write memory abstraction, an impor-
tant and widely used abstraction in the setting of distributed sys-
tems, we show that, when implementations are data-independent,
which is the case in practice, the verification problems we consider
become tractable. This is based on the very fact that data indepen-
dence allows to restrict our attention to differentiated executions,
where the written values are unique, which allows to deterministi-
cally establish the read-from relation along executions. This is cru-
cial for characterizing by means of a finite number of bad patterns
the set of all violations to causal consistency, which is the key to
our complexity and decidability results for the read-write memory.

First, using this characterization we show that the problem of
verifying the correctness of a single execution is polynomial-time
in this case. This is important for building efficient and scalable
testing and bug detection algorithms. Moreover, we provide an
algorithmic approach for verifying causal consistency (w.r.t. the
read-write memory abstraction) based on an effective reduction of
this problem to a state reachability problem (or invariant checking
problem) in the class of programs used for the implementation.
Regardless from the decidability issue, this reduction holds for
an unbounded number of sites (in the implementation), and an
unbounded number of variables (in the read-write memory). In fact,
it establishes a fundamental link between these two problems and
allows to use all existing (and future) program verification methods
and tools for the verification of causal consistency. In addition,
when the number of sites is bounded, this reduction provides a
decidability result for verifying causal consistency concerning a
significant class of implementations: finite-control machines (one
per site) with data registers (over an unrestricted data domain, with
only assignment operations and equality testing), communicating
through unbounded unordered channels. As far as we know, this



is the first work that establishes complexity and (un)decidability
results for the verification of causal consistency.

All our results hold for the three existing variants of causal
consistency CC, CM, and CCv, except for the reduction to state
reachability and the derived decidability result that we give in this
paper for CC only. For the other two criteria, building observers
detecting their corresponding bad patterns is not trivial in general,
when there is no assumption on the number of sites and the number
of variables (in the read-write memory). We still do not know if
this can be done using the same class of state-machines we use
in this paper for the observers. However, this can be done if these
two parameters are bounded. In this case, we obtain a decidability
result that holds for the same class of implementations as for CC,
but this time for a fixed number of variables in the read-write
memory. This is still interesting since when data independence is
not assumed, verifying causal consistency is undecidable for the
read-write memory even when the number of sites is fixed, the
number of variables is fixed, and the data domain is finite. We omit
these results in this paper.

Finally, let us mention that in this paper we have considered cor-
rectness criteria that correspond basically to safety requirements.
Except for CCv, convergence, meaning eventual agreement between
the sites on their execution orders of non-causally dependent oper-
ations is not guaranteed. In fact, these criteria can be strengthened
with a liveness part requiring the convergence property. Then, it is
possible to extend our approach to handle the new criteria follow-
ing the approach adopted in [8] for eventual consistency. Verifying
correctness in this case can be reduced to a repeated reachability
problem, and model-checking algorithms can be used to solve it.

For future work, it would be very interesting to identify a class
of specifications for which our approach is systematically applica-
ble, i.e., for which there is a procedure producing the complete set
of bad patterns and their corresponding observers in a decidable
class of state machines.
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[11] P. Bouyer, A. Petit, and D. Thérien. An algebraic characterization
of data and timed languages. In K. G. Larsen and M. Nielsen, editors,
CONCUR 2001 - Concurrency Theory, 12th International Conference,
Aalborg, Denmark, August 20-25, 2001, Proceedings, volume 2154 of
Lecture Notes in Computer Science, pages 248–261. Springer, 2001.

[12] S. Burckhardt. Principles of Eventual Consistency. now publishers,
October 2014.

[13] S. Burckhardt, A. Gotsman, and H. Yang. Understanding eventual con-
sistency. Technical Report MSR-TR-2013-39, Microsoft Research.

[14] J. Du, S. Elnikety, A. Roy, and W. Zwaenepoel. Orbe: scalable causal
consistency using dependency matrices and physical clocks. In ACM
Symposium on Cloud Computing, SOCC ’13, Santa Clara, CA, USA,
October 1-3, 2013, pages 11:1–11:14, 2013.

[15] J. Du, C. Iorgulescu, A. Roy, and W. Zwaenepoel. Gentlerain: Cheap
and scalable causal consistency with physical clocks. In Proceed-
ings of the ACM Symposium on Cloud Computing, Seattle, WA, USA,
November 03 - 05, 2014, pages 4:1–4:13, 2014.

[16] J. Esparza. Decidability and complexity of petri net problems — an
introduction. In Lectures on Petri Nets I: Basic Models. Springer
Berlin Heidelberg, 1998.

[17] C. J. Fidge. Timestamps in message-passing systems that preserve
the partial ordering. Australian National University. Department of
Computer Science, 1987.

[18] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of
distributed consensus with one faulty process. J. ACM, 32(2):374–
382, Apr. 1985.

[19] F. Furbach, R. Meyer, K. Schneider, and M. Senftleben. Memory
model-aware testing - a unified complexity analysis. In Application of
Concurrency to System Design (ACSD), 2014 14th International Con-
ference on, pages 92–101, June 2014. doi: 10.1109/ACSD.2014.27.

[20] S. Gilbert and N. A. Lynch. Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services. SIGACT News,
33(2):51–59, 2002.

[21] J. Hamza. Algorithmic Verification of Concurrent and Distributed
Data Structures. PhD thesis, Université Paris Diderot, 2015.
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