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Abstract
Efficient implementations of concurrent objects such as semaphores,
locks, and atomic collections are essential to modern computing.
Yet programming such objects is error prone: in minimizing the
synchronization overhead between concurrent object invocations,
one risks the conformance to reference implementations — or in
formal terms, one risks violating observational refinement. Testing
this refinement even within a single execution is intractable, limiting
existing approaches to executions with very few object invocations.

We develop a polynomial-time (per execution) approximation
to refinement checking. The approximation is parameterized by
an accuracy k ∈ N representing the degree to which refinement
violations are visible. In principle, more violations are detectable
as k increases, and in the limit, all are detectable. Our insight for
this approximation arises from foundational properties on the partial
orders characterizing the happens-before relations between object
invocations: they are interval orders, with a well defined measure
of complexity, i.e., their length. Approximating the happens-before
relation with a possibly-weaker interval order of bounded length
can be efficiently implemented by maintaining a bounded number
of integer counters. In practice, we find that refinement violations
can be detected with very small values of k, and that our approach
scales far beyond existing refinement-checking approaches.

Categories and Subject Descriptors F.3.1 [Specifying and Verify-
ing and Reasoning about Programs]: Mechanical verification

General Terms Reliability, Verification

Keywords Concurrency; Refinement; Linearizability

1. Introduction
Efficient implementations of concurrent objects such as semaphores,
locks, and atomic collections including stacks and queues are vital
to modern computer systems. Programming them is however error
prone. To minimize synchronization overhead between concurrent
object-method invocations, implementors avoid blocking operations
like lock acquisition, allowing methods to execute concurrently.
However, concurrency risks unintended inter-operation interference,
and risks conformance to reference implementations. Conformance
is formally captured by observational refinement: given two libraries
L1 and L2 implementing the methods of some concurrent object, we
say L1 refines L2 if and only if every computation of every program
using L1 would also be possible were L2 used instead.

Verifying observational refinement is intrinsically hard, and
generally undecidable [4]. Here we develop a tractable algorithmic
approach to detecting refinement violations, in two parts.

The first part, outlined in Section 1.1, establishes a foundational
characterization of refinement in terms of sets of so-called histories.
Histories abstract executions into the happens-before (partial) or-
der between object-method invocations. We show that refinement
between libraries is equivalent to a history-set inclusion problem.
Consequently, violations correspond to excluded histories.

Since refinement-violation detection for even a single execution
is NP-hard [8], the second part, outlined in Section 1.2, develops a
novel approximation for refinement checking. We demonstrate that
our approach is feasible, leading to scalable refinement-violation-
detection algorithms. The insight behind our approximation exploits
fundamental properties of the histories arising from shared-memory
concurrent executions: they are a special class of partial orders called
interval orders. Such orders admit convenient representations lead-
ing to efficient automation, and reveal a useful parameter for refining
our approximation. In practice we find that even coarse approxima-
tions uncover refinement violations, and can be implemented much
more efficiently than existing approaches.

1.1 Characterizing Observational Refinement
Naturally, automating observational refinement verification is chal-
lenging. The most immediate obstacle arises from the quantification
over the infinitely-many possible library-client programs: a library
L1 refines another library L2 if every observation of every client
program using L1 is also admitted using L2. Our first contribution is
to provide a precise characterization of refinement as a set-inclusion
problem, defined independently from libraries’ execution contexts,
between the partial orders of operations admitted by each library.
More precisely, we associate to each execution e a partial order
H(e) on its object-method invocations, called a history. An opera-
tion o1 is considered to happen before an operation o2 in H(e) if
o1 completes before o2 is invoked in e. We prove that a library L1

refines another L2 if and only if the set H(L1) of L1’s histories
(i.e., associated with L1’s executions) is included in H(L2).

This characterization is a fundamental result that offers a fresh
view for reasoning about refinement. Thus far, the principal approach
for checking observational refinement in the literature is based on lin-
earizability [11], requiring that operations of every execution of L1

can be permuted into a serial execution of L2 while preserving the
return-call order between operations. While linearizability implies
observational refinement [6], we demonstrate that the converse does
not generally hold. To shed light on the subtle relationship between
these concepts, we investigate the link between history inclusion
and linearizability. We prove that when L2 is atomic, which is often
the case for reference implementations, history inclusion between
L1 and L2, and therefore observational refinement, is equivalent to
linearizability.

1.2 Approximating Observational Refinement
Besides offering a fresh perspective on observational refinement,
our characterization leads to an efficient approximation-based ap-
proach for detecting refinement violations, exploiting fundamental
properties of library executions and their histories. We consider a
weakening preorder � on histories as a means for approximation:
a history h1 is weaker than another history h2, written h1 � h2,
essentially if h1 is obtained from h2 by relaxing order constraints.
We show that if a library L admits a history h, then L also admits
every weaker history h′ � h. Our approximation principle considers



weakenings A(h) � h of histories h ∈ H(L1), such that checking
A(h) ∈ H(L2) is tractable. If A(h) 6∈ H(L2) then h 6∈ H(L2),
and thus a violation is found.

The challenge is to design a parameterized approximation Ak,
for k ∈ N, such that Ak(h) ∈ H(L2) is decidable in polynomial
time in the size of h. The approximation should also be complete,
in the sense that for any history h, there exists k ∈ N such that
h � Ak(h), ensuring that any violation can be captured with a large
enough parameter value. Finally, the approximation should be easy
to implement, and catch violations with small parameter values.

Our approximation scheme exploits a fundamental property
of shared-memory library executions: their histories are interval
orders, a special case of partial orders which admit canonical
representations in which each operation o is mapped to a positive-
integer-bounded interval I(o). An operation o1 happens before
another operation o2 if and only if the interval I(o1) ends before
I(o2) begins [9]. Interval orders are equipped with a natural notion
of length, which corresponds to the smallest integer constant for
which an interval mapping exists. Our approximation Ak maps each
history h to a weaker history Ak(h) of interval length at most k.

Bounded-interval-length orders admit a convenient representa-
tion of histories using counting: each interval is represented by a
counter whose value reflects the number of operations spanning that
interval. Such a representation conveniently opens the door to sym-
bolic manipulation of history sets using arithmetic constraints, which
we describe using a simple operation counting logic (OCL). We
demonstrate that this logic has a polynomial-time model-checking
problem, and is suitable for reasoning about commonly-used con-
current object libraries including atomic collections like stacks and
queues. We also demonstrate that OCL formulæ can be systemati-
cally constructed for a broad class of concurrent objects.

Moreover, counting-based representations can be efficiently
monitored in polynomial-time and space using simple counter
increments and decrements at the precise moments when operations
begin and end. By maintaining a k-interval-length approximation
Ak(H(e)) of an execution e, we effectively reduce our approximate
refinement-checking problem to a safety verification problem by
periodically checking whetherAk(H(e)) |= Ψ, where Ψ is an OCL
formula characterizing the k-interval-length histories of H(L2).

Empirically, we demonstrate that our approach is effective in
both dynamic-checking and static-checking contexts. Used in the
dynamic setting, we maintain relatively-low runtime overhead which
does not increase in the length of executions. Our approach scales
far beyond the existing approaches based on linearizability, in
which enumerating linearizations explodes exponentially in the
length of executions. Furthermore, our approximation Ak is well-
suited for catching refinement violations with small parameter
values: violations are most often detected with k ≤ 2, and almost
always with k ≤ 4. In fact, we even prove that many violations to
atomic collection objects including stacks and queues can always
be caught with k ≤ 3. In the static-checking context, our counting-
based representation allows us to leverage off-the-shelf SAT/SMT-
based symbolic program exploration tools including CSeq [7] (with
backend CBMC [13]) and SMACK [24] (with backend Corral [15])
to discover refinement violations.

1.3 Summary of Contributions
This work makes the following contributions:

• A characterization of observational refinement as a history-
set-inclusion problem (§4), and a proof of equivalence with
linearizability for atomic reference implementations (§5).
• An under-approximation for detecting observational refinement

violations based on a weakening preorder on histories, exploiting
the fact that library histories are interval orders (§6).

struct node *Top;

void push(int v):
struct node *n,*t;
n = malloc(sizeof( *n));
n->data = v;
do {
struct node *t = Top;
n->next = t;

} while (! CAS (&Top, t, n));

int pop():
struct node *n,*t;
do {
*t = Top;
if (t==NULL) return EMPTY;
n = t->next;

} while (! CAS (&Top, t, n))
int result = t->data;
free(t);
return result;

struct node {
int data;
struct node *next;

}

void Thread1():
push(1);
int x = pop();

void Thread2():
int y = pop();
push(2);
push(3);
int z = pop();

Figure 1. An implementation of Treiber’s stack. The pop operation
returns the value EMPTY when the stack is empty.

• An efficient implementation of our approximation using counters.
Specifically, we reduce refinement checking to safety-property
checking (§6.2) using symbolic arithmetic representations of
bounded-interval-length history sets (§6.1), demonstrate cut-
off bounds for atomic-collection objects (§7), and develop an
automatic construction of counting representations (§8).
• Experimental validation of our approximation-based approach

in both dynamic-checking and static-checking settings (§9).

2. Motivating Example
Figure 1 lists a non-blocking Treiber’s stack [26] implementation
providing push and pop methods. This implementation stores
pushed elements into a singly-linked list rooted at Top, and avoids
blocking lock acquisitions in favor of non-blocking compare-and-
swap (CAS) operations in order to maximize parallelism, allowing
methods to interleave their internal actions. In one atomic step, the
CAS operation assigns Top = n only if Top == t.

Unfortunately this implementation suffers from a subtle concur-
rency bug, now commonly known as an “ABA” bug [17]. The bug
manifests in the two-thread program of Figure 1, via the execution
depicted in Figure 2(a). Essentially, Thread 1 wrongfully assumes
the absence of interference from other threads on the successful CAS
operation. Thread 1 is preempted right before executing its CAS in
the pop method; at that moment, its t variable points to the first
element in the list at address 0xFF added by push(1), and n ==
NULL. While Thread 2 updates the list with two additional elements,
added by push(2) and push(3), the t variable of Thread 1 still
points to the list’s first element at address 0xFF, which was freed
by Thread 2’s call to pop, and reallocated in the call to push(3).
When Thread 1 resumes, its CAS succeeds, effectively removing two
elements from the list instead of one. The final pop of Thread 2
thus erroneously returns EMPTY. Intuitively, this is a problem be-
cause the EMPTY value should not have been returned since more
elements have been pushed than popped prior to Thread 2’s final
pop operation.

This bug exposes the fact that our CAS-based implementation
does not conform to programmers’ expectations of a stack object
whose operations execute atomically, e.g., by holding a lock for the
duration of each operation. In particular, the assignment z = EMPTY
should never have occurred.

This idea of conformance is rigorously captured by the formal
notion of observational refinement. Essentially, an implementation
L1 of a concurrent object refines another implementation L2 if
every observable behavior of a program using L1 is also observable
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(a) An execution e of the program; it depicts calls, returns,
and assignments, and time progresses from left to right.

push(1)

pop⇒ 3

pop⇒ 1
push(2)

push(3)

pop⇒ EMPTY

(b) The history H(e) of execution e.

push(1)

push(2)

pop⇒ 1

push(3)

pop⇒ EMPTY

pop⇒ ⊥

pop⇒ ⊥

(c) A history weaker than H(e).

0 1 2 3 4 5 6 7 8 9 10 11 12 13

push(1) pop⇒ 3

pop⇒ 1 push(2) push(3) pop⇒ EMPTY

(d) The history H(e) as an interval order.

0 1 2 3 4

push(1) pop⇒ 3

pop⇒ 1 push(2) push(3) pop⇒ EMPTY

(e) The canonical representation of H(e).

Figure 2. An execution and its history.

using L2. This property clearly does not hold between the CAS-
based implementation of Figure 1 and a correct atomic lock-based
implementation, since y = 1; x = 3; z = EMPTY is observable
using the CAS-based implementation, yet not using the atomic one.

3. Observational Refinement
We formalize the criterion of observational refinement using a sim-
ple yet universal model of computation, namely labeled transition
systems (LTS). This model captures shared-memory programs with
an arbitrary number of threads, abstracting away the details of any
particular programming system irrelevant to our development.

A labeled transition system A = (Q,Σ, q0, δ) over the possibly-
infinite alphabet Σ is a possibly-infinite set Q of states with initial
state q0 ∈ Q, and a transition relation δ ⊆ Q × Σ × Q. The ith
symbol of a sequence e ∈ Σ∗ is denoted ei. An execution of A is a
sequence e ∈ Σ∗ such that for some q1, q2, . . . , q|e| ∈ Q, we have
δ(qi, ei, qi+1) for each i such that 0 ≤ i < |e|. The projection e|Γ
is the maximum subsequence of e over alphabet Γ. E(A) denotes
the set ofA’s executions, andE(A)|Γ their projections over Γ (note
that E(A) is prefix closed). The synchronous product A1 ×A2 of
two LTSs is defined as usual, respecting E(A1×A2)|(Σ1 ∩Σ2) =
E(A1)|Σ2 ∩ E(A2)|Σ1.

3.1 Libraries
Programs interact with libraries by calling named library methods,
which receive parameter values and yield return values upon
completion. We fix arbitrary sets M and V of method names and
parameter/return values.

Example 3.1. The method and value sets for the stack implementa-
tion in Figure 1 are M = {push, pop} and V = N ∪ {EMPTY}.
We fix an arbitrary set O of operation identifiers, and for given sets
M and V of methods and values, we fix the sets

C = {m(v)o : m ∈ M, v ∈ V, o ∈ O}, and
R = {ret(v)o : v ∈ V, o ∈ O}

of call actions and return actions; each call action m(v)o combines
a method m ∈ M and value v ∈ V with an operation identifier
o ∈ O. Operation identifiers are used to pair call and return actions.
We denote the operation identifier of a call/return action a by op(a).
Call and return actions c ∈ C and r ∈ R are matching, written
c 7−[ r, when op(c) = op(r). A word e ∈ Σ∗ over alphabet Σ, such
that (C ∪R) ⊆ Σ, is well formed when:

• Each return is preceded by a matching call:
ej ∈ R implies ei 7− [ ej for some i < j.
• Each operation identifier is used in at most one call/return:
op(ei) = op(ej) and i < j implies ei 7−[ ej .

We say that the well-formed word e ∈ Σ∗ is sequential when

• Operations do not overlap:
ei, ek ∈ C and i < k implies ei 7− [ ej for some i < j < k.

Well-formed words represent executions. We assume every set
of well-formed words is closed under isomorphic renaming of
operation identifiers. For notational convenience, we often associate
O with N, e.g., writing m(u)1 and ret(v)2 in place of m(u)o1 and
ret(v)o2 . An operation o of an execution e is completed when both
call and return actions m(u)o and ret(v)o of o occur in e, and is
otherwise pending.

Example 3.2. The well-formed words
push(0)1 pop2 pop3 ret1 ret(0)3 ret(0)2, and push(0)1 pop2 pop3 ret1 ret(0)2

represent executions in which one call to the push(0) method
overlaps with two calls to pop. In the first execution both calls
to pop have matching return actions ret(0), i.e., the operations 2
and 3 are completed, while operation 3 is pending in the second, it
has no matching return.

Libraries dictate the execution of methods between their call
and return points. Accordingly, a library cannot prevent a method
from being called, though it can decide not to return. Furthermore,
any library action performed in the interval between call and return
points can also be performed should the call have been made earlier,
and/or the return made later. Our technical results rely on these
properties. A library thus allows any sequence of invocations to its
methods made by some program.

Definition 3.1. A library L is an LTS over alphabet C ∪ R such
that each execution e ∈ E(L) is well formed, and

• Call actions c ∈ C cannot be disabled:
e · e′ ∈ E(L) implies e · c · e′ ∈ E(L) if e · c · e′ is well formed.
• Call actions c ∈ C cannot disable other actions:
e · a · c · e′ ∈ E(L) implies e · c · a · e′ ∈ E(L).
• Return actions r ∈ R cannot enable other actions:
e · r · a · e′ ∈ E(L) implies e · a · r · e′ ∈ E(L).

We write e1 ; e2 when e2 can be derived from e1 by applying zero
or more of the above rules. The closure of a set E of executions
under ; is denoted E.

Note that even a library that implements atomic methods, e.g., by
guarding method bodies with a global-lock acquisition, admits
executions in which method calls and returns overlap. A library
which accesses the client’s thread identifiers can be modeled by
taking thread identifiers as method parameters.



Example 3.3. Any library which admits the execution
push(0)1 ret1 pop2 ret(0)2

with sequential calls to push and pop must also admit
push(0)1 pop2 ret1 ret(0)2 and push(0)1 pop2 pop3 ret1 ret(0)2,

among others, yet need not admit an execution
push(0)1 pop2 pop3 ret1 ret(0)3 ret(0)2

with two completed pop operations returning 0.

A library L is called atomic if it is defined by the closure of
some set E of sequential executions, i.e., E(L) = E. When such
a set E exists, it is unique, and we call it the kernel of L, denoted
by kerL. Note that kerL contains only completed operations since
e1 · e2 ; e1 · c · e2, for any unmatched call c. Atomic libraries are
often considered as specifications for concurrent objects.

Example 3.4. The atomic stack is the library whose kernel is the
set of sequential executions for which the return value of each pop
operation is either

• the argument value v to the last unmatched push operation, or
• EMPTY if there are no unmatched push operations.

In practice, the atomic stack can be implemented by guarding the
methods of a “sequential” stack object by global-lock acquisition.

3.2 Refinement between Libraries
Refinement between libraries is defined with respect to the observ-
able actions of programs which invoke library methods. Complemen-
tary to libraries, programs control their execution outside of method
call and return points. Accordingly, any program action performed
in the interval between call and return points can also be performed
should the call have been made later, and/or the return made earlier.
A program thus allows any sequence of matching returns generated
by some implementation of the methods it invokes.

Definition 3.2. A programP over actions Σ is an LTS over alphabet
(Σ ] C ]R) where each execution e ∈ E(P ) is well formed, and

• Call actions c ∈ C cannot enable other actions:
e · c · a · e′ ∈ E(P ) implies c 7− [ a or e · a · c · e′ ∈ E(P ).
• Return actions r ∈ R cannot disable other actions:
e · a · r · e′ ∈ E(P ) implies a 7− [ r or e · r · a · e ∈ E(P ).
• Return actions r ∈ R cannot be disabled:
e · e′ ∈ E(P ) implies e · r · e′ ∈ E(L) if e · r · e′ is well formed.

Example 3.5. Any program which admits the execution
push(0)1 pop2 ret(0)2 pop3 ret1,

with two sequential pop calls concurrent with push, must also admit
push(0)1 ret1 pop2 ret(0)2 pop3 and
push(0)1 ret1 pop2 ret(0)2 pop3 ret(EMPTY)3,

among others, in which all three calls are sequential and the second
pop may return (with any value), yet need not admit an execution

push(0)1 ret1 pop3 pop2 ret(0)2,

in which the two calls to pop are concurrent. The set of executions
admitted by a program allows any possible implementation of
the methods. While programs cannot force methods to execute
concurrently, they can force methods to execute sequentially, e.g.,
by waiting for one to return before calling the next.

Refinement between libraries L1 and L2 means that any program
execution possible with L1 is also possible with L2.

Definition 3.3. The library L1 refines L2, written L1 ≤ L2, iff

E(P × L1)|Σ ⊆ E(P × L2)|Σ
for all programs P over actions Σ.

Note that ≤ is a preorder over libraries. As library and program
alphabets only intersect on call and return actions C ∪ R, our
formalization supposes that programs and libraries communicate
only through method calls and returns, and not, e.g., through shared
random-access memory.

Example 3.6. The incorrect Treiber’s stack implementation of Fig-
ure 1 does not refine an atomic lock-based reference implementation,
since the execution of Figure 2 is admitted by its composition with
the two-thread program of Figure 1.

4. History Inclusion
Though we seek to develop automated techniques to check obser-
vational refinement between libraries, the definition of Section 3
does not suggest any practical means; it only suggests enumerating
every possible execution of every possible program. In this section
we introduce an equivalent notion based on concise abstractions of
program executions called histories. Besides being independent of
programs, this equivalent notion helps expose the structure of the
refinement problem, and suggests practical means of automation
which we develop in Section 6.

4.1 Histories
For given sets M and V of methods and values, we fix a set
L = M×V× (V ∪ {⊥}) of operation labels, and denote the label
〈m,u, v〉 by m(u)⇒ v. A history h = 〈O,<, f〉 is a partial order
< on a set O ⊆ O of operation identifiers labeled by f : O→L for
which f(o) = m(u)⇒⊥ implies o is maximal in <. The history
H(e) of a well-formed execution e ∈ Σ∗ labels each operation with
a method-call summary, and orders non-overlapping operations:

• O = {op(ei) : 0 ≤ i < |e| and ei ∈ C},
• op(ei) < op(ej) iff i < j, ei ∈ R, and ej ∈ C.

• f(o) =

{
m(u)⇒ v if m(u)o ∈ e and ret(v)o ∈ e
m(u)⇒⊥ if m(u)o ∈ e and ret( )o 6∈ e

An operation of h labeled by ` ∈ L is called an ` operation. The
histories admitted by L are H(L) = {H(e) : e ∈ E(L)}.
Example 4.1. Figure 2(b) depicts the history of the execution in
Figure 2(a). Arrows depict the order relation modulo transitivity.
Operations o1 and o2 are ordered in h if o1’s return precedes o2’s
call. For example, push(1) precedes pop⇒ 3. However, pop⇒ 1
is incomparable to pop⇒ 3 because pop⇒ 1’s return comes after
pop⇒ 3’s call, and pop⇒ 3’s return comes after pop⇒ 1’s call.
The order among operations’ call actions is irrelevant, as is the
order among their return actions.

While the general concept of histories allows arbitrary partial
orders of operations, any history H(e) arising from an LTS execu-
tion e falls into a restricted class called interval orders. Intuitively,
this is because our execution model assumes that operations share
a common notion of global time: the actions in an execution are
linearly ordered.

Definition 4.1. An interval order is a partial order 〈O,<〉 such that
o1 < o3 and o2 < o4 implies o1 < o4 or o2 < o3.

Lemma 4.1. The history H(e) = 〈O, f,<〉 of a well-formed
execution e forms an interval order 〈O,<〉.

Proof. Suppose o1 < o3 and o2 < o4 in H(e), and fix i1, i2, i3, i4
such that ei1 and ei2 are the return actions of o1 and o2, and ei3
and ei4 are the call actions of o3 and o4; note that i1 < i3 and
i2 < i4. Since < linearly orders {i1, i2, i3, i4}, either i1 < i4, in
which case o1 < o4, or i4 < i1, in which case i2 < i4 < i1 < i3,
so o2 < o3.



Example 4.2. Figure 2(d) pictures the history in Figure 2(b) as an
interval order. Each operation is represented by an integer-bounded
interval on the real number line such that o1 < o2 iff the interval
associated to o1 finishes before the interval associated to o2.

In this work we consider only histories of well-formed executions,
i.e., those forming interval orders, without explicit qualification.

This notion of histories gives rise to a natural order relating his-
tories by their operation ordering. Basically, a history h1 is weaker
than another history h2 if h2 contains all completed operations of
h1, and preserves the order between h1’s operations. The pending
operations of h1 can be either omitted or completed in h2.

Definition 4.2. Let h1 = 〈O1, <1, f1〉 and h2 = 〈O2, <2, f2〉. We
say h1 is weaker than h2, written h1 � h2, when there exists an
injection g : O2→O1 such that

• o ∈ range(g) when f1(o) = m(u)⇒ v and v 6= ⊥,
• g(o1) <1 g(o2) implies o1 <2 o2 for each o1, o2 ∈ O2,
• f1(g(o))� f2(o) for each o ∈ O2.

where (m1(u1)⇒ v1)� (m2(u2)⇒ v2) iff m1 = m2, u1 = u2,
and v1 ∈ {v2,⊥}. We say h1 and h2 are equivalent when h1 � h2

and h2 � h1.

Example 4.3. Figure 2(c) pictures a history h′ weaker than the
history h in Figure 2(b). Note that h′ contains two pending pop⇒⊥
operations, one of them is completed in h (it corresponds to the
pop⇒ 3 operation) and one of them is omitted in h.

Throughout this work we do not distinguish between equivalent
histories, and we assume every set H of histories is closed under
inclusion of equivalent histories, i.e., if h1 and h2 are equivalent
and h1 ∈ H , then h2 ∈ H as well.

4.2 History Inclusion is Equivalent to Refinement
Our notion of histories has two important properties which makes
refinement between libraries equivalent to inclusion between their
history sets. The first property is that libraries are closed under the
weakening relation �. Essentially when L admits the history H(e)
of an execution e, then it also admits the history H(e′) of any e′

which is ;-derivable from e. Our definitions of ; and � coincide
to imply H(e′) � H(e).

Lemma 4.2. If h1 ∈ H(L) and h2 � h1 then h2 ∈ H(L).

A history h is essentially an abstraction of the set {e : H(e) = h}
of executions which preserve an order between returns preceding
calls. The closure properties of Definition 3.1 ensure that a library
L admits all executions e with H(e) ∈ H(L).

Lemma 4.3. E(L) = {e ∈ (C ∪R)∗ : H(e) ∈ H(L)}.
Lemmas 4.2 and 4.3 ultimately imply the equivalence between

refinement and history inclusion. Essentially, any given history h of
a library L1 can be captured by a program Ph whose observations
witness the ordering among h’s operations. However, its observa-
tions cannot forbid additional orderings between h’s operations (this
is due to the closure properties in Definition 3.2). The refinement
L1 ≤ L2 implies that L2 also admits those observations, through
one or more possibly-stronger histories h′. It then follows from
Lemma 4.2 that L2 also admits h � h′. For the reverse direction, it
follows from Lemma 4.3 that history inclusion implies inclusion of
executions, and ultimately observations.

Theorem 1. L1 ≤ L2 iff H(L1) ⊆ H(L2).

Proof. (⇒) Let h = 〈O,<, f〉 ∈ H(L1); we show h ∈ H(L2)
by constructing a program Ph over actions Σ which only admits
executions with histories stronger than h:

∀e ∈ E(Ph). |(e|Σ)| = n =⇒ h � H(e),

where n = |{o ∈ O : f(o) = m(u)⇒ v 6= ⊥}| is the number of
completed operations in h. Given such a program Ph, taking any
execution e1 ∈ E(Ph × L1) with |(e1|Σ)| = n, we must also have
an execution e2 ∈ E(Ph × L2) such that (e2|Σ) = (e1|Σ) by
definition of L1 ≤ L2. Since |(e2|Σ)| = n and e2 ∈ E(Ph), we
also know that h � H(e2), and since (e2|C ∪ R) ∈ E(L2), we
have H(e2) ∈ H(L2), along with any history weaker than H(e2)
by Lemma 4.2, namely h.

We constructPh = 〈Q,Σ, q0, δ〉 over alphabet Σ = C∪R∪{a}
whose states Q : O→ B2 track operations called/completed status.
The initial state is q0 = {o 7→ 〈⊥,⊥〉 : o ∈ O}. Transitions are
given by,

for each q ∈ Q, o ∈ O,m ∈ M, v ∈ V
if f(o) = m(v)⇒ and q(o′) for all o′ < o then

q[o 7→ ⊥,⊥]
m(v)o−−−−→ q[o 7→ >,⊥]

if f(o) = m( )⇒ v then

q[o 7→ >,⊥]
ret(v)o−−−−→ · a−→ q[o 7→ >,>]

if f(o) = m( )⇒⊥ then

q[o 7→ >,⊥]
ret(v)o−−−−→ q[o 7→ >,>]

It is routine to verify that Ph is a program according to Definition 3.2.
Moreover, in any execution e ∈ E(Ph), the call m(u)o of any
operation o must come after the return ret(v)o′ of each o′ < o.
Furthermore, all completed operations of h are completed in e if and
only if (e|Σ) = an. Note that e may contain more completed
operations than h (because of the last transition rule) but less
pending operations (because the transition rule corresponding to
the call of a pending operation may not have been applied in e). It
follows that |(e|Σ)| = n =⇒ h � H(e).

(⇐) Let P be a program over actions Σ, and e ∈ E(P × L1);
we show that e ∈ E(P ×L2). Since (e|C ∪R) ∈ E(L1), we know
H(e) ∈ H(L1) by definition of H(L1), and then H(e) ∈ H(L2)
by hypothesis. By Lemma 4.3 we deduce (e|C ∪R) ∈ E(L2), and
thus by definition of LTS composition, e ∈ E(P × L2).

5. Comparison with Linearizability
The linearizability criterion [11] provides an alternative charac-
terization of library conformance which implies observational re-
finement [6]. In this section we demonstrate that linearizability is
generally stricter than observational refinement, yet the two criteria
coincide when the reference implementation is atomic.

Linearizability [11] is defined by an execution order: e1 v e2
iff there exists a well-formed execution e′1 obtained from e1 by
appending return actions, and deleting call actions, such that:

e2 is a permutation of e′1 that preserves the order between
return and call actions, i.e., a given return action occurs
before a given call action in e′1 iff the same holds in e2.

For example, the second and the third executions in Example 3.3
are v-smaller than the first (with sequential calls to push and pop).
An execution e1 is linearizable w.r.t. a library L2

1 iff there exists a
sequential execution e2 ∈ E(L2), with only completed operations,
such that e1 v e2. A library L1 is linearizable w.r.t. L2, written
L1 v L2, iff each execution e1 ∈ E(L1) is linearizable w.r.t. L2.

Since linearizability compares executions of L1, which may
contain pending operations, with executions of L2, in which every
operation is completed, observational refinement need not imply lin-

1 The original definition of Herlihy and Wing [11] assumes that L2 is a set
of sequential executions. Here we consider a slight extension adapted to
concurrent executions, faithful to the original intention, where kerL2 may
be a set of sequential executions.



earizability when L2 contains non-terminating methods, i.e., where
the calls to these methods are pending in all executions.

Example 5.1. Let L be the library whose kernel contains the single
execution e = m(u)1 m

′(u)2 ret(v)1, in which the call to m′ is
pending. Although L refines itself, since refinement is reflexive, L is
not linearizable w.r.t. itself, since e could only be linearizable w.r.t.
L if E(L) were to contain one of the following executions:

m(u)1 ret(v)1 m(u)1 m
′(u)2 ret(v)1 ret( )2

m(u)1 ret(v)1 m
′(u)2 ret( )2 m′(u)2 ret( )2m(u)1 ret(v)1.

Yet E(L) = {e} clearly contains none of them.

A typical correctness criterion for concurrent objects is lineariz-
ability with respect to atomic versions of themselves. Despite the
negative general result of Example 5.1, when restricted to atomic
libraries, linearizability and history inclusion, and thus observational
refinement, coincide. This relationship essentially follows from the
relationship between the order relations v and �.

Lemma 5.1. e1 v e2 iff H(e1) � H(e2).

Proof. By definition e1 v e2 means that there exists e′1 such that
e2 is a permutation of e′1 preserving the order between return and
call actions, thus e2 ; e′1, and thus H(e′1) � H(e2). Furthermore,
since e′1 is obtained from e1 by appending returns and deleting
calls, H(e1) � H(e′1). By transitivity, H(e1) � H(e2). The other
direction is equally straightforward.

Theorem 2. L1 v L2 iff H(L1) ⊆ H(L2), if L2 is atomic.

Proof. (⇒) Let h ∈ H(L1). By hypothesis, any execution e1 with
H(e1) = h is linearizable w.r.t. L2, i.e., there exists an execution
e2 ∈ L2 with only completed operations such that e1 v e2. By
Lemma 5.1, this implies H(e1) � H(e2). By the closure property
in Lemma 4.2, if H(e2) ∈ H(L2) then h = H(e1) ∈ H(L2).

(⇐) Let e1 be an execution of L1. By hypothesis, H(e1) ∈
H(L2), which by Lemma 4.3, implies e1 ∈ E(L2). Since L2 is an
atomic library, there exists a sequential execution e2 ∈ kerE(L2)
with only completed operations such that e1 v e2. Thus, e1 is
linearizable w.r.t. L2.

6. Approximating History Inclusion
By the equivalences of Section 5, checking whether a given history
H(e) is included in a set H(L) of library histories is equivalent
to checking whether H(e) is linearizable with respect to L, for a
atomic library L. It follows that deciding H(e) ∈ H(L) is NP-hard
for an arbitrary library L, since it is NP-hard for the atomic register
object [8]. Generally speaking, the only known algorithms to decide
H(e) ∈ H(L) must check whether each possible linearization of
the partially-ordered history H(e) is equivalent to some sequential
execution of operations according to L, backtracking to try alternate
linearizations on each failed attempt. Recent work implies that the
more general problem of checking whether all histories H(L1) of
a given library L1 are included in the set of histories H(L2) of a
fixed library L2 is undecidable, since it is equivalent to checking
whether L1 is linearizable w.r.t. L2 when L2 is atomic [4].

These complexity obstacles suggest investigating approximations
to the history inclusion problems — i.e., both h ∈ H(L) and its
more general variation H(L1) ⊆ H(L2) — in order to devise
tractable algorithms.

In this work, we focus on parameterized under approximations
for detecting violations to observational refinement, achieving
increasing accuracy with decreasing efficiency. For this, we design a
notion of parameterized history-weakening approximation functions

Ak which map any history h to a weaker history Ak(h) � h, and
which have the following properties:

Strength-increasing: A0(h) � A1(h) � . . . � Ak(h) � h.

Completeness: there exists k ∈ N such that h � Ak(h).

Tractable inclusion: Ak(h) ∈ H(L) is decidable in polynomial
time when k is fixed.

This weakening-based approximation is convenient since whenever
Ak(h) is not included in H(L), then neither is h, since H(L) is
closed under weakening; if h were to belong to H(L), then any
weakening, and in particular Ak(h), would also belong to H(L).
While completeness means that increasing k increases the ability
to detect observational refinement violations, this must incur a
decrease in efficiency since the inclusion problem Ak(h) ∈ H(L)
is NP-hard when k is not fixed. By design, the approximation
function Ak allows us to solve the approximate history inclusion
problem Ak(h) ∈ H(L) in polynomial time for fixed k. For
the more general problem of refinement between libraries L1

and L2, our approximation asks whether Ak(h) ∈ H(L1) \
H(L2), and becomes decidable for fixed k, so long as the set
{Ak(h) : h ∈ H(L1)} is computable. Completeness ofAk ensures
overall completeness, i.e., that for any h ∈ H(L1) \H(L2) there
is some k ∈ N such that Ak(h) ∈ H(L1) \H(L2).

Our key challenge is to develop approximation functions Ak for
which history inclusion can be computed in polynomial time for
fixed k, and for which observational refinement violations surface
with small k. We demonstrate the latter in Section 7–9.

In this section we develop a schema of approximation functions
for which the approximate history inclusion problem is polynomial-
time computable. Our development exploits structural aspects of
the history inclusion problem; in particular, we exploit the fact that
histories are interval orders, with a natural measure of complexity,
i.e., the interval order length [9]. Leveraging this notion of length,
we abstract each history h to a weaker history Ak(h) whose length
is bounded by k, and represent the set H(L) of histories, restricted
to interval length k, by a formula against which Ak(h) can be
evaluated in polynomial time (§6.1). Finally, we exhibit a program
monitoring scheme which can be used to decide our approximate
observational refinement problem ∃h. Ak(h) ∈ H(L1) \H(L2),
or as a general-purpose runtime-execution monitor (§6.2).

6.1 Bounded-Interval-Length History Inclusion
The past of an element o ∈ O of a poset 〈O,<〉 is the set

past(o) = {o′ ∈ O : o′ < o}

of elements ordered before o.

Example 6.1. In the history h from Figure 2(b), the pop⇒ 3 and
pop ⇒ 1 operations have the same past, namely the operation
push(1), while the past of the push(3) operation consists of the
push(1), pop⇒ 1, and push(2) operations.

This notion of operations’ pasts induces a linear notion of time
into execution histories due to the following fact.

Lemma 6.1 (Rabinovitch [23]). The set {past(o) : o ∈ O} of pasts
of an interval order 〈O,<〉 is linearly ordered by set inclusion.

Furthermore, this linear notion of time has an associated notion
of length, which corresponds to the length of the linear order on
operation’s pasts.

Definition 6.1 (Greenough [9]). The length of an interval order
〈O,<〉 is one less than the number of its distinct pasts.

We denote the length of the interval order 〈O,<〉 underlying a
history h = 〈O, f,<〉 as lenh.



i, j ∈ N integer constants
` ∈ L operation-label constants
x : L operation-label variables
X ::= ` | x
T ::= i | #(X, i, j) | T + T

F ::= T ≤ T | P (X, . . . ,X) | ¬F | F ∧ F | ∃x. F

Figure 3. The syntax of Operation Counting Logic.

Our history-weakening approximation functions Ak map histo-
ries to weaker histories whose corresponding interval orders have
length at most k. While there are various ways to define such a
function Ak, any such function enables the polynomial-time inclu-
sion check Ak(h) ∈ H(L) which we demonstrate in the following;
Section 6.2 describes a polynomial-time computable instantiation
of Ak which we have found useful in practice.

Interval orders have canonical representations which associate
to operations integer-bounded intervals on the real number line;
their canonical representations minimize the interval bounds to the
interval-order length.

Lemma 6.2 (Greenough [9]). An interval order 〈O,<〉 of length
n ∈ N has a canonical representation I : O→ [n]2 mapping each
o ∈ O to the interval I(o) = [i, j] ⊆ [0, n], with

i = |{past(o′) : o′ < o}| and j = |{past(o′) : ¬o < o′}| − 1

such that o1 < o2 iff sup I(o1) < inf I(o2).

The canonical representation thus associates the interval [i, j] to an
operation o which succeeds the ith past, and precedes the (j+1)st
past. Note that the interval of an operation can be determined in
polynomial time by counting the distinct pasts among operations.

Example 6.2. Figure 2(e) pictures the canonical representation of
the history in Figure 2(b). Note that lenH(e) = 4.

We define the counting representation Π(h) of a history h =
〈O, f,<〉, whose underlying interval order 〈O,<〉 has the canonical
representation I : O→ [n]2, as the multiset

Π(h) = {{〈f(o), I(o)〉 : o ∈ O}}

of label-and-interval pairs; defining Π(L) = {Π(h) : h ∈ H(L)}
yields a criterion equivalent to history inclusion based on counting
representations (which follows from Lemmas 4.1 and 6.2).

Lemma 6.3. H(e) ∈ H(L) iff Π(H(e)) ∈ Π(L).

Example 6.3. The counting representation of the history h in
Figure 2(b) is the multiset

{{ 〈push(1), [0, 0]〉 , 〈pop⇒ 1, [1, 1]〉 , 〈pop⇒ 3, [1, 3]〉 ,
〈push(2), [2, 2]〉 , 〈push(3), [3, 3]〉 , 〈pop⇒ Empty, [4, 4]〉}}.

This counting representation leads to an effective logical charac-
terization of history sets using arithmetic operations, inequalities,
and a counting function #. Formally, operation counting logic is the
first-order logic whose syntax is listed in Figure 3. The # function
is interpreted over a history h = 〈O, f,<〉 as

J#(`, i, j)Kh = |{o ∈ O : f(o) = ` and I(o) = [i, j]}|

where I is the canonical representation of 〈O,<〉.
We allow predicates P of arbitrary arity over operation labels,

so long as they are evaluated in polynomial time. Furthermore,
operation-label variables are quantified only over the operation
labels which occur in the history over which a formula is evaluated.

The satisfaction relation |= for quantified formulæ is defined by:

h |= ∃x. F iff ∃o ∈ O. h |= F [x← f(o)].

where h = 〈O, f,<〉. The quantifier count of an operation counting
formula Ψ is the number of quantified variables in Ψ. An operation
counting formula Ψ represents a library L up to k when h ∈ H(L)
iff h |= Ψ for every history h of length at most k.

Lemma 6.4. Checking if a history h satisfies an operation counting
formula Ψ of fixed quantifier count is decidable in polynomial time.

Proof. This follows from the facts that: (1) the canonical repre-
sentation of h is polynomial-time computable (see Lemma 6.2),
(2) functions and predicates are polynomial-time computable, and
(3) quantifiers are only instantiated over labels occurring in h. The
latter implies that quantifiers can be replaced by a disjunction over
the labels occurring in h = 〈O, f,<〉:

h |= ∃x. F iff h |=
∨
o∈O

F [x← f(o)].

6.2 Monitoring Bounded-Interval-Length Histories
Though there are numerous ways to define a function Ak which
approximates histories to weaker k-interval-length histories, the
natural solution we consider here is an Ak which maintains the last
k interval bounds precisely, abstracting all previous interval bounds
with equality. Formally, given a history h = 〈O,<, f〉 such that
lenh = n, and k ∈ N, we define Ak(h) = 〈O,<′, f〉 by

o1 <
′ o2 iff o1 < o2 and n− k < inf I(o2)

where I is the interval map of h. Intuitively, Ak remembers only
the ordering between “recent” operations which have started after
interval n − k. It follows by definition that Ak(h) � h, since
ordering constraints are only removed from<. Note thatAk(h) = h
if lenh ≤ k.

Lemma 6.5. Let I and Ik be the interval maps of h and Ak(h).
For each o ∈ O with I(o) = [i, j]:

Ik(o) = [max(i− n+ k, 0),max(j − n+ k, 0)].

We reduce the online maintenance of k-interval-length histories
to the maintenance of integer counters. As the first step in establish-
ing the link between history and counter maintenance, we define the
⊕ operator: For a given history h = 〈O, f,<〉 let

h⊕m(u)o =
〈
O ∪ {o}, f [o 7→ m(u)⇒⊥], <′

〉
h⊕ ret(v)o = 〈O, f [o 7→ m(u)⇒ v], <〉 s.t. f(o) = m(u)⇒⊥

where <′ is the transitive closure of < ∪ {〈o′, o〉 : f(o′) =
( ) ⇒ v 6= ⊥} relating all completed operations to o. As the

following lemma shows, the ⊕ operator allows us to manipulate our
k-approximations Ak(H(e)) directly, without having to maintain
the precise history H(e) of an execution e. Note that besides
maintaining Ak(H(e)), this formulation requires us to compute
Ak−1(H(e)) periodically as well.

Lemma 6.6. Let e′ = e ·m(u)o.

• Ak(H(e′)) = Ak(H(e))⊕m(u)o if lenH(e′) = lenH(e).
• Ak(H(e′)) = Ak−1(H(e))⊕m(u)o if lenH(e′) > lenH(e).

Additionally,

• Ak(H(e · ret(v)o)) = Ak(H(e))⊕ ret(v)o.

The second step in establishing the link between history and
counter maintenance is given by the following lemma, which implies
that history extension, i.e., execution step, corresponds to either
a single counter increment, or a single decrement and a single
increment.



Data: Interval length k ∈ N
Data: Stream e ∈ (C ∪R)ω of call/return actions
Result: counting representation Π(Ak(H(e)))
initially n = 0, s = ∅, π = ∅
switch input action do

if call action m(u)o then
if previous action was return then

incr n
if n > k then π ←←−π

end
s(o)← n
incr π(m(u)⇒⊥, [min(n, k), k])

end
case return action ret(v)o

i = s(o)−max(n− k, 0)
decr π(m(u)⇒⊥, [i, k])
incr π(m(u)⇒ v, [i,min(n, k)])

end
endsw
yield π

Algorithm 1: An online operation algorithm for computing the
approximation Π(Ak(H(e))) of a given history H(e).

Lemma 6.7. Let lenh′ = k. If h′ = h⊕m(u)o then

• Π(h′) = Π(h) ∪ {〈m(u)⇒⊥, [k, k]〉}.
If h′ = h⊕ ret(v)0 then

• Π(h′) = Π(h)∪{〈m(u)⇒ v, [i, k]〉} \ {〈m(u)⇒⊥, [i, k]〉},
where I is the interval map of h′ and I(o) = [i, k].

As noted before Lemma 6.6, besides incrementing/decrement-
ing counters as operations begin and complete, we must occasion-
ally compute Ak−1(H(e)) as well, thus merging the least-recent
interval bounds, in order to maintain a bounded-length history ap-
proximation. We achieve this with an interval shifting operation←−π
applied to a counting representation π. Formally, for all ` ∈ L, and
0 ≤ i ≤ j ≤ k, if ` is completed then

←−π (`, [i, j]) = η(π(`, [i+ 1, j + 1]), i < k ∧ j < k)

+ η(π(`, [i, j + 1]), i = 0 ∧ j < k)

+ η(π(`, [i, j]), i = 0 ∧ j = 0),

and if ` is pending then
←−π (`, [i, j]) = η(π(`, [i+ 1, k]), i < k) + η(π(`, [i, k]), i = 0),

where the conditional function η : N× B→ N is defined by

η(n, ϕ) =

{
n if ϕ is valid
0 otherwise.

The following lemma establishes the intended effect of←−π .

Lemma 6.8. If lenh = k and π = Π(h), then←−π = Π(Ak−1(h)).

Algorithm 1 computes the counting representation of a given
history incrementally, according to the increment/decrement and
shift operations of Lemmas 6.7 and 6.8. The variable n maintains
the interval length of the execution history H(e), while the variable
s maintains the infimum s(o) of the interval of each operation o in
H(e); s(o) can be discarded once o completes. The corresponding
infimum in Ak(H(e)) when o is invoked is given by min(n, k), as
the interval bounds used in Ak(H(e)) may not exceed k. When o
completes, it is possible that some number of shift operations have
translated its interval in Ak(H(e)). As the number of performed
shift operations is equal to min(n−k, 0), o’s infimum inAk(H(e))

when completing is given by s(o)−min(n− k, 0). It follows by
Lemmas 6.7 and 6.8 that Algorithm 1 computes Ak(H(e)).

Theorem 3. Algorithm 1 computes the history approximation
Π(Ak(H(e))) of an execution e in O(|L| · k2 + width(e)) space2

and O(|e|) time, where width(e) is the maximum number of
concurrent operations in e.

In the worst case width(e) = |e|. In practice however one
expects the number of threads, and thus concurrent operations, to be
bounded, nullifying the effect of |e| on asymptotic space complexity.

Corollary 1. The approximate inclusion problem Ak(h) ∈ H(L)
is decidable in polynomial time, for fixed k, given an operation
counting formula Ψ for L up to k, of fixed quantifier count.

As an online monitor program Pk for history approximation, Al-
gorithm 1 effectively reduces the approximate refinement checking
problem between L1 and L2 to a safety verification problem on
the composition Pk × L1: as Pk tracks the counting representation
π = Π(Ak(H(e))) of the current execution e’s approximation, we
must only verify whether π satisfies the operation-counting formula
Ψ for L2 up to k.

Corollary 2. Given Ψ an operation counting formula for L2 up
to k, the approximate inclusion ∃h. Ak(h) ∈ H(L1) \H(L2) is
equivalent to the safety verification problem

(Pk × L1) |= 2Ψ

where Ψ is interpreted over Pk’s counting representation.

7. Atomic Collections
Atomic collection objects including stacks and queues are among
the most heavily investigated concurrent objects [19]. We demon-
strate that our approximation is effective in uncovering refinement
violations for these objects, in the sense that most violations can be
uncovered with coarse approximations, i.e., k ≤ 3, depending on
the data structure. We achieve this by exhibiting families of opera-
tion counting formulæ characterizing these structures with “cutoff”
(or “small-model”) properties: informally, if n ∈ N is a cutoff for
Ψ, then for any history h violating Ψ, there exists a weaker history
h′ � h violating Ψ with lenh′ ≤ n. While this h′ may not cor-
respond directly to Ak(h), for k ≤ n, we can deduce there exists
some h′ whose k-approximation Ak(h′) violates Ψ.

Our results build off of previous characterizations of concurrent
data structures [1, 10] into a small set of constituent properties. For
ease of presentation, in the following we consider only completed
histories, i.e., in which no operation is pending. This restriction
comes without loss of generality for library implementations which
ensure that each operation can complete when uninterrupted by
others [10]. In any case, our formulæ can be extended to handle
pending operations as well.

7.1 Small-Model Formulæ for Stacks and Queues
A formula family Ψ is an indexed set {Ψi : i ∈ N}. We say a history
h satisfies Ψ, written h |= Ψ, when h |= Ψi for i = lenh. We say
that a family Ψ has a cutoff n ∈ N when for each history h |= Ψ
there exists some h′ � h such that An(h′) |= Ψ. Figure 4 defines
four families of operation-counting formulæ:

• Ψrv characterizes remove violations in which a pop operation
returns a value for which there is no corresponding push.

2 The space complexity of Algorithm 1 is constant in the number of
operations when the size of integers is fixed, as in the case of modern
computer architectures; otherwise, the space complexity is logarithmic in
the number of operations, i.e., in execution length.



total(x, i, j) =
∑

i≤i′≤j′≤j
#(x, i′, j′)

beforek(x, y) =
∨

0≤i<k

(
total(x, 0, i) > 0 ∧
total(y, 0, i) = 0 ∧ total(x, i+1, k) = 0

)
match(x, y) = Push(x) ∧ Pop(y) ∧ SameVal(x, y)

Ψrv = ∃x, y. match(x, y) ∧ beforek(y, x)

Ψev = ∃x, y, z. match(x, z) ∧ EmptyVal(y)

∧ beforek(x, y) ∧ beforek(y, z)

Ψfv = ∃x1, x2, y1, y2. match(x1, y1) ∧match(x2, y2)

∧ beforek(x1, x2) ∧ beforek(y2, y1)

Ψlv = ∃x1, x2, y1, y2. match(x1, y1) ∧match(x2, y2)

∧ beforek(x1, x2) ∧ beforek(y1, y2) ∧ beforek(x2, y1)

Figure 4. Four families of operation-counting formulæ characteriz-
ing atomic data structure violations, parameterized by the interval
length k ∈ N. The predicates Push(x), Pop(x), EmptyVal(x) hold
when x is the label of a push, pop, or empty-pop operation, respec-
tively, and SameVal(x, y) holds when x and y are labels with the
same value, either in the argument or return position. All formulæ
are of size polynomial in k, and have fixed quantifier counts.

• Ψev characterizes empty violations in which some pop operation
returns EMPTY, yet whose span is covered by the presence of
some pushed element which has not (yet) been popped.
• Ψfv characterizes FIFO violations in which some pair of pops

occur in the opposite order of their corresponding pushes.
• Ψlv characterizes LIFO violations in which some pair of pops

occur in the same order as their corresponding pushes, and the
second push occurs before the first pop.

As in previous work [1, 10], our arguments for the (partial) complete-
ness of these properties rely on data independence [28], i.e., that
library executions are closed under consistent renaming V→ V of
method call/return values, and assume that each value is pushed
at most once. In practice, collection-based data structures are data
independent, and the second condition can always be met by tagging
each value with a unique identifier. However, in order to achieve
bounded counting representations, we may only distinguish be-
tween these values up to equivalence relations with finite quotients.
Formally, we say a history 〈O, f,<〉 uses unique values when
f(o1) = m1(u)⇒ v1 and f(o2) = m2(u)⇒ v2 implies o1 = o2.

Theorem 4. The families Ψrv, Ψev, Ψfv, and Ψlv, of operation-
counting formulæ have cutoffs 0, 2, 2, and 3, respectively.

Proof. Here we prove the theorem for Ψrv and Ψfv; the others
follow similarly. Since Ψrv does not discriminate between intervals,
h = 〈O,<, f〉 |= Ψrv iff A0(h) = 〈O, ∅, f〉 |= Ψrv.

Next, let h = 〈O,<, f〉 |= Ψfv and let `1, `2, `′1, and `′2 be
the instances of the variables x1, x2, y1, and y2, respectively. Let
Ψfv,k denote the formula parametrized by k in the family Ψfv. By
definition h |= Ψfv,k, where k = lenh. We consider only the case
when total(y1) > 0 holds (the other case is similar). Besides the
constraints on operation labels, the formula Ψfv,k states that all `1
operations end before an `′1 operation starts and all `2 operations
end before an `′2 operation starts. Let I : O→ [n]2 be the canonical
representation of h. Also, let j1 (resp., j2) be the maximum upper
bound of an interval associated to an `1 (resp., `3) operation, i.e.,

j1 = max {j : ∃o ∈ O. I(o) = [i, j] ∧ f(o) = `1},
j2 = max {j : ∃o ∈ O. I(o) = [i, j] ∧ f(o) = `2}.

push(1) pop⇒ 1

push(2) pop⇒ 2

push(3) pop⇒ 3

push(n−1) pop⇒ n−1

push(n) pop⇒ n

pop⇒ EMPTY

Figure 5. A family of empty violations, parameterized by n ∈ N.

We define a weaker history h′ � h, that contains exactly the
same set of operations as h but it preserves only the ordering
constraints o1 < o2 s.t. I(o1) ⊆ [0, j1] and I(o2) ⊆ [j1,∞],
or I(o1) ⊆ [0, j2] and I(o2) ⊆ [j2,∞]. The length of h′ is at most
2 and h′ |= Ψfv,2. Since A2(h′) = h′, Ψrv has cutoff 2.

Corollary 3. The families of operation-counting formulæ,

Ψstack = Ψrv ∨Ψev ∨Ψlv, and

Ψqueue = Ψrv ∨Ψev ∨Ψfv

have cutoffs 3 and 2, respectively.

While Ψrv and Ψfv are complete, in the sense that they charac-
terize every possible remove and FIFO violation, the Ψlv and Ψev

families are incomplete: Example 7.1 demonstrates this for Ψev

by exhibiting a parameterized history h(n) for n ≥ 1 such that
h(n) 6∈ H(Lqueue),3 yet h(n) |= ¬Ψev for all n > 1. While it
is theoretically possible to define a family Ψ′ev,k which catches all
empty violations in histories with interval length at most k — a fact
that we demonstrate in Section 7.2 — we do not currently know
whether it is possible to construct a formula which catches all empty
violations in histories with arbitrarily-large interval length.

Example 7.1. In the history of Figure 5, n pairs of push and pop
operations ensure that throughout the span of the pop(EMPTY),
some element is always present; i.e., at every time between the
call and return of pop(EMPTY), there exists some element v ∈ V
such that push(v) has completed, yet pop⇒ v has not yet begun. It
follows that any such history would not be included in the histories
H(Lqueue) of an atomic queue library. The empty-violation family
Ψev however only captures such violations for n = 1, i.e., with a
single push-pop pair spanning pop(EMPTY).

Despite the theoretical possibility for empty violations which
only surface for large n, our practical experience suggests small n
tends to suffice. The bug B5 of our static analysis experiment in
Section 9.3 surfaced as an empty violation, and was detected with
approximation A1, implying n ≤ 1, i.e., where some unmatched
push operation precedes pop(EMPTY). Similarly, although the his-
tory of Figure 2(b) satisfies the empty-violation formula Ψev, so
does the weaker length-1 history of Figure 2(c). Furthermore, we
have found that the same bugs which manifest as empty violations
often manifest as order violations as well. The ABA bug of Fig-
ure 2(a) is such a case: had the first thread executed another push(4)
before push(1), then the final pop of Thread 2 would have returned
4, yielding the order violation push(4); push(2); pop⇒ 4.

7.2 Completeness for Bounded Interval Length
While Section 7.1 demonstrates complete families Ψqueue and
Ψstack of operation counting formulæ for the Lqueue and Lstack

objects for histories of interval length up to 2 and 3, respectively,
this section exhibits complete formulæ for histories of any bounded
interval length k ∈ N.

For the rest of this section, we fix an interval length k ∈ N
and demonstrate that a bounded enumeration of histories suffices to
characterize every possible violation.

3 Lqueue denotes an atomic FIFO queue library with push and pop methods.



Given a history h = 〈O,<, f〉, an element 〈o1, o2〉 ∈ O2 is a
pair of operations such that f(o1) = push(v) and f(o2) = pop⇒v
for some v ∈ V. We say that two distinct elements 〈o1, o2〉 and
〈o3, o4〉 are redundant with h when their operations have the same
pasts and futures,4

past(o1) = past(o3) future(o1) = future(o3)

past(o2) = past(o4) future(o2) = future(o4)

(and thus will share the same canonical intervals). We say the
element 〈o1, o2〉 is redundant with h when there exists an element
of h with which it is redundant. We say that h′ = 〈O ∪O′, <′, f ′〉
extends h = 〈O,<, f〉 with O′ when o1 < o2 iff o1 <′ o2 for all
o1, o2 ∈ O, and f(o) = f ′(o) for all o ∈ O.

Lemma 7.1. Let x ∈ {stack, queue}. If h′ extends h with {o1, o2}
and 〈o1, o2〉 is redundant with h, then h ∈ H(Lx) iff h′ ∈ H(Lx).

To enumerate the non-redundant k-length histories, let Ik =
{[i, j] : i, j ∈ N, 0 ≤ i ≤ j ≤ k} be the set of integral intervals up
to k ∈ N, and fix an arbitrary total order� over I2k. We define the
function H1 mapping any subset {〈I1,1, I1,2〉 , . . . , 〈In,1, In,2〉} ⊆
I2k to the history 〈O,<, f〉 where

O = {〈i, 1〉 , 〈i, 2〉 : 1 ≤ i ≤ n}
〈i1, j1〉 < 〈i2, j2〉 iff Ii1,j1 < Ii2,j2

f(〈i, j〉) =

{
push(i) if j = 1
pop⇒ i if j = 2

such that 〈I1,1, I1,2〉 � 〈I2,1, I2,2〉 � . . . � 〈In,1, In,2〉. Then
we define the finite set H1

k = {H1(X) : X ⊆ I2k}. Notice that
the histories of H1

k do not contain redundant elements. Finally, we
define the finite subset H1

x,k = H1
k \H(Lx) of histories which are

not admitted by Lx, for x ∈ {stack, queue}, and enumerate them
to write the formula characterizing length k violations to Lx:

Ψx,k =
∨
{Ψh : h ∈ H1

x,k}

where Ψh characterizes the history h = 〈O,<, f〉 with operations
{o1, . . . , on} and elements ξ, and its extensions:

Ψh = ∃x1, . . . , xn.
∧
oi<oj

beforek(xi, xj) ∧
∧

〈oi,oj〉∈ξ

match(xi, xj)

Note that Ψx,k is polynomial in size, and has fixed quantifier count,
for fixed k ∈ N.

Theorem 5. Let x ∈ {stack, queue}. If lenh ≤ k and h uses
unique values, then h ∈ H(Lx) iff h |= ¬Ψx,k.

8. Atomic Libraries with Context-Free Kernels
While the previous section provides operation-counting formulae for
particular classes of atomic objects, here we provide a systematic
technique to derive operation-counting formulae for any atomic
library that can be written as a context-free language, including
objects such as (reader-writer) locks and semaphores, or context-
free approximations of arbitrary libraries. For this construction we
require finite sets M and V of methods and values. Given an atomic
library L such that kerE(L) is context free, and an interval bound
k ∈ N, we generate a formula ΨL,k representing L up to k.

Our construction relies on Parikh’s Theorem [22]. We recall
that the Parikh image of w ∈ Σ∗ is the multiset Π(w) : Σ→ N
mapping each symbol a ∈ Σ to its number of occurrences in w,
and the Parikh image of a language E ⊆ Σ∗ is the set Π(E) =
{Π(w) : w ∈ L} of its words’ images. If kerE(L) is context

4 Similarly to the definition of past from Section 6.1, we define the future of
an operation o in an history 〈O,<, f〉 by future(o) = {o′ ∈ O : o < o′}.

free, then the language Ek = {e ∈ E(L) : lenH(e) ≤ k} of L’s
executions with bounded-length histories has the same Parikh image
as a context-free language, and by Parikh’s Theorem, Π(Ek) can be
represented as a Presburger formula, from which we derive ΨL,k.

Theorem 6. Let L be an atomic library over finite sets M and V of
methods and values such that kerE(L) is a context-free language,
and let k ∈ N. Then there exists an effectively-computable operation-
counting formula ΨL,k representing L up to k.

This construction is useful in practice, allowing us to derive the
formulæ used in our static-checking experiments of Section 9.3.

9. Experimental Evaluation
To demonstrate the practical value of our approach to refinement
checking, we argue that our k-approximation:

• uncovers violations with small values of k,
• can be efficiently implemented for use in systematic concurrency

testing and long-term runtime monitoring, and
• can be efficiently implemented for use in static analysis.

To argue these points, we have studied actual concurrent data
structure implementations in C/C++, including the Scal5 High-
Performance Multicore-Scalable Computing suite. Some of these
implementations, such as the Michael-Scott Queue [18], are meant
to preserve observational refinement6, while others, such as Kirsch
et al.’s k-FIFO [12], are meant to preserve weaker properties.
Unless otherwise noted, we use these implementations without
modification, except to annotate methods with a fixed set of possible
preemption points, e.g., preceding shared-memory accesses. While
space prohibits including the entirety of our study, the sample and
analysis which we do include is representative.

For our first two experiments (§9.1, §9.2) we have developed
a tool for systematically enumerating a large number of alternate
executions involving a limited number of object method invocations.
We run each operation on a separate thread, and execute all thread
schedules up to a given number n ∈ N of thread preemptions, at
specified preemption points, similarly to Microsoft’s Chess tool [20].
With n = 0 preemptions, there is only one schedule to execute,
though the number of schedules grows exponentially as n increases.
For instance, with our annotation of preemptions in Scal’s Michael-
Scott Queue, we execute f(n) schedules of a program with 8 method
invocations at a rate of roughly one million schedules per minute,
where f is given by
f(1) = 33, f(2) = 612, f(3) = 8343, f(4) = 95434, f(5) = 930141

While similar in spirit to the second, our third experiment (§9.3)
executes all round-robin thread schedules up to a given number
n ∈ N of rounds symbolically: we use CSeq [7] to sequentialize a
simple program which invokes a limited number of library methods,
and then CBMC [13] (version 4.5) to perform bounded model
checking up to a given loop-unroll bound. All measurements were
made on similar MacBook Pro 2.XGHz Intel Core i5/i7 machines.

9.1 Coverage of Refinement Violations
To show that our approximation Ak uncovers observational refine-
ment violations with small values of k, we measure the number of
history violations detected by a traditional linearizability checker7

versus those caught by Ak. The linearizability checker serves as an
exact measure due to the equivalence of Section 5. While the approx-
imation Ak(H(e)) of a violation H(e) may not itself be a violation,

5 http://scal.cs.uni-salzburg.at
6 More precisely, they have been designed to be linearizable.
7 We implement a linearization-enumerating monitor, as in Line-Up [5].

http://scal.cs.uni-salzburg.at
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Figure 6. Comparison of violations covered with k ≤ 4. Each data
point counts histories on a logarithmic scale over all executions up
to 5 preemptions on Scal’s nonblocking bounded-reordering queue
with i ≤ 4 enqueue operations and j ≤ 4 dequeue operations.
The x-axis is ordered by increasing number of executions (1023–
2359292) over i+j; we show only points with over 1000 executions.
The largest data points measure the total number of unique histories
encountered over a given set of executions. Second are the number
of those histories violating refinement. Following are the numbers
of those violations covered by Ak, for varying values of k. In this
experiment A0 exposed no violations.

one hopes to encounter some execution e′ for which the violation
Ak(H(e′)) covers H(e), i.e., for which Ak(H(e′)) � H(e).

Figure 6 demonstrates that Ak covers most or all violations with
small values of k. While A4 suffices to cover all violations at nearly
all data points — besides the first point, where the sample size of
1023 executions is small relative to the 8 operations — all values
k > 0 capture a nontrivial and increasing number of violations. Note
that our cutoff results of Section 7 are not undermined by the fact
that A3 and A4 have missed violations; violations were missed due
to not having encountered a diverse enough sample of executions.
In fact, as the execution-sample size increases (the x-axis is ordered
by number of executions over operations) the value of k required to
capture a violation appears to decrease, all violations being captured
by A3 after a certain point.

9.2 Operation Counting for Testing & Runtime Monitoring
Figure 7 compares the runtime overhead of our A2 approxima-
tion versus a traditional linearizability checker8 sampling execu-
tions with up to 20 operations on Scal’s nonblocking Michael-Scott
queue. Since computing the set kerH(Lqueue) of sequential queue
histories over n operations becomes prohibitively expensive as n
increases, surpassing a timeout of 5m for n = 7, we bypass the
computation of kerH(Lqueue) entirely, simply enumerating the lin-
earizations of a given execution history without checking inclusion.
Despite our best-effort implementation, one observes the cost in-
curred by linearization: as the number of operations increases, the
number of linearizations increases exponentially, and performance
plummets. With only 20 operations, instrumentation overhead is
nearly 1000x. Our counting-based implementation ofA2 avoids this
dramatic overhead: though not seriously optimized, we observe a
2.01x geometric-mean runtime overhead. This scalability suggests
that our approximation can be used not only for systematic con-
currency testing with few method invocations, but also for runtime
monitoring, where the number of operations grows without limit.

8 See footnote 7.

 1

 10

 100

 1000
Linearization

Operation Counting

Figure 7. Comparison of runtime overhead between linearization-
based monitoring and operation counting (for A2) for up to 20
operations. Each data point measures runtime on a logarithmic
scale, normalized to unmonitored execution time, over all executions
up to 3 preemptions on Scal’s nonblocking Michael-Scott queue
with i≤10 enqueue operations and j≤10 dequeue operations. The
x-axis is ordered by increasing i+j, and each data point is sampled
from up to 126600 executions. Times do not include pre-calculation
of sequential histories for linearization-based monitoring. While
our Ak monitor scales well, usually maintaining under 3x overhead,
the linearization monitor scales exponentially, running with nearly
1000x overhead with 20 operations.

9.3 Operation Counting for Static Analysis
Our approximation Ak also leads to an effective static means of
refinement checking, due to the simplicity of operation-counting. By
using only simple increment and decrement operations on integer
counters, and program assertions9 on those counters, we are able
to leverage static verification tools capable of integer reasoning.
We have found that the major obstacle in applying static tools is
concurrency: even though the required counter reasoning is simple,
reasoning precisely about thread interleavings is challenging, with
or without our operation-counting instrumentation.

Despite the difficultly of precise static reasoning about thread
interleavings, we have successfully applied our approach using two
different static-verification backends: one based on SMACK [24]
and Corral [15], and the other based on CSeq [7] and CBMC [13].
Both toolchains are based on sequentialization [14] and SAT/SMT-
based bounded model checking. Our results in Table 1 report on
the latter. Among 5 data structure implementations, we manually
injected 9 realistic concurrency bugs. All bugs were uncovered as
refinement violations with approximation A0 or A1, in round-robin
executions of up to 4 rounds, of a program with at most 4 push and 4
pop operations, and with loops unrolled up to 2 times. Although the
time complexity of concurrent exploration is high independently of
our operation-counting instrumentation, particularly as the number
of rounds increases, one clearly observes that our approximation is
effective in detecting violations statically.

10. Related Work
Previous work on automated verification for concurrent objects
focuses on the linearizability criterion [11]. While folklore has long
held that linearizability implies observational refinement, Filipovic
et al. [6] recently proved this fact; they also proved that the two
criteria coincide when considering only library executions in which
all operations have completed. Our results in Section 5 expound

9 We constructed program assertions automatically via Theorem 6.



Library Bug P k m n Time
Michael-Scott Queue B1 (head) 2× 2 1 2 2 24.76s
Michael-Scott Queue B1 (tail) 3× 1 1 2 3 45.44s
Treiber Stack B2 3× 4 1 1 2 52.59s
Treiber Stack B3 (push) 2× 2 1 1 2 24.46s
Treiber Stack B3 (pop) 2× 2 1 1 2 15.16s
Elimination Stack B4 4× 1 0 1 4 317.79s
Elimination Stack B5 3× 1 1 1 4 222.04s
Elimination Stack B2 3× 4 0 1 2 434.84s
Lock-coupling Set B6 1× 2 0 2 2 11.27s
LFDS Queue B7 2× 2 1 1 2 77.00s

Table 1. Runtimes for the static detection of injected refinement
violations with CSeq & CBMC. For a given programPi×j with i and
j invocations to the push and pop methods, we explore the n-round
round-robin schedules of Pi×j withm loop iterations unrolled, with
a monitor for our Ak approximation. Bugs are (B1) non-atomic lock
operation, (B2) ABA bug [17], (B3) non-atomic CAS operation,
(B4) misplaced brace, (B5) forgotten assignment, (B6) misplaced
lock, (B7) predetermined capacity exceeded.

further: we show that the two criteria coincide for atomic object
specifications, and that in general, observational refinement can hold
for non-linearizable objects.

The theoretical limits of linearizability are well studied. Gibbons
and Korach [8] show NP-completeness for checking a single exe-
cution. Alur et al. [2] show EXPSPACE membership for checking
finite-state implementations against atomic specifications, but only
when the number of program threads is bounded. Bouajjani et al. [4]
show the same problem is undecidable with unbounded threads, and
introduce a decidable variant for a restricted class of executions.

Several semi-automated approaches for proving linearizability,
and thus observational refinement, have relied on annotating method
bodies with linearization points [3, 16, 21, 27, 29], to reduce the
otherwise-exponential space of possible history linearizations to
one single linearization. These methods often rely on programmer
annotation, and do not admit conclusive evidence of a violation in
the case of a failed proof.

Automated approaches for detecting linearizability violations
such as Line-Up [5] enumerate the exponentially-many possible his-
tory linearizations. This exponential cost effectively limits such ap-
proaches to executions with few operations, as noted in Section 9.2.
Colt [25]’s approach mitigates this cost with programmer-annotated
linearization points, as in the previously-mentioned approaches,
and ultimately suffers from the same problem: a failed proof only
indicates incorrect annotation.
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