
Verifying Eventual Consistency of
Optimistic Replication Systems

Ahmed Bouajjani Constantin Enea Jad Hamza
LIAFA, Univ Paris Diderot, Sorbonne Paris Cité, Paris, France.

{abou,cenea,jhamza}@liafa.univ-paris-diderot.fr

Abstract
We address the verification problem of eventual consistency of
optimistic replication systems. Such systems are typically used to
implement distributed data structures over large scale networks. We
introduce a formal definition of eventual consistency that applies
to a wide class of existing implementations, including the ones
using speculative executions. Then, we reduce the problem of
checking eventual consistency to reachability and model checking
problems. This reduction enables the use of existing verification
tools for message-passing programs in the context of verifying
optimistic replication systems. Furthermore, we derive from these
reductions decision procedures for checking eventual consistency
of systems implemented as finite-state programs communicating
through unbounded unordered channels.

Categories and Subject Descriptors Theory of Computation [Log-
ics and meanings of programs]: General

Keywords message passing concurrency, model checking, static
program analysis

1. Introduction
Optimistic data replication is a key technology for achieving high
availability and performance in distributed systems. It consists of a
set of techniques for maintaining multiple copies of the same data,
called replicas, on different sites in a large-scale network. Many
interactive collaborative applications, ranging from social networks
to collaborative spaces and online shops, use this technology, in
order to increase the quality of their services. In fact, they use this
technology even though the latter lets replicas temporarily diverge,
and thus users may see inconsistent data from time to time. This
is due to the fact that ensuring strong consistency (i.e., making all
replicas always consistent) – which can only be achieved by synchro-
nizing all replicas after each update – is practically infeasible, and
therefore users generally prefer high responsiveness and availability
to strong consistency. In fact, systems implementing optimistic data
replication, called optimistic replication systems (ORS), can only
ensure weak consistency notions, and one of the important issues in
this context is to determine what are precisely these notions. By the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
POPL ’14, January 22–24, 2014, San Diego, CA, USA.
Copyright c© 2014 ACM 978-1-4503-2544-8/14/01. . . $15.00.
http://dx.doi.org/10.1145/2535838.2535877

CAP theorem [10], ensuring sequential consistency or linearizability
together with availability and partition tolerance is not possible, and
thus, the correctness criteria adopted for ORS must in general be
weaker than these ones (that are more suitable for shared memory
systems). One of the most popular correctness criteria for ORS (and
which is in some sense the weakest that can be accepted) is eventual
consistency. Many ORS that are widely used in practical applica-
tions, e.g., Amazon Simple Storage Service and Google App Engine
Datastore, (are supposed to) satisfy eventual consistency.

Optimistic replication systems, such as those mentioned above,
are extremely complex and hard to get right, and therefore, there is
a real need in developing automated formal methods for reasoning
about their behaviors and verifying their correctness w.r.t. criteria
such as eventual consistency. However, the first issue to be addressed
to achieve that is defining precisely and formally these criteria
that are still not well understood in general. For instance, many
works adopt different variants of what is called eventual consistency.
Then, the second issue to address is (1) investigating the limits of
decidability and complexity bounds for checking these criteria, and
(2) designing effective algorithmic methods for their verification.
In this paper, we address both of these semantical and algorithmic
issues for eventual consistency. We introduce a formal definition
of eventual consistency that is applicable to a wide class of ORS,
including systems with speculative executions and roll-backs, and
we provide an approach for its automatic verification based on
effective reductions to reachability and model-checking queries.

In the following, we explain in more details the context and the
nature of our contributions.
Optimistic replication systems: Many variants of ORS have been
defined, e.g., [2, 7, 15–18, 20, 23]. In general, they are based on the
following scenario: (1) users submit operations (i.e., self-contained
updates or queries) to one of the sites, (2) operations are immediately
applied to the local replica to let users continue working based on the
effect of those operations, and (3) in the background, sites exchange
and apply remote operations. Actually, this is the scenario used by
operation transfer systems. There also exist state transfer systems,
where the sites exchange the contents of their replicas. Although they
may use different techniques, state transfer systems can be emulated
by operation transfer systems, where the allowed operations are only
to read and overwrite an entire object [20]. Therefore, we focus in
this paper on operation transfer systems.

The communication between sites is usually based on epidemic
propagation, which allows every operation to be communicated
to all sites independently of the communication topology. When
applying remote operations several critical components come into
play (see Saito and Shapiro [19] for a survey):
• scheduling policies, used to order operations in a way expected

by users, and to make sites eventually agree on some ordering,
(a generic scheduling policy is to label operations by timestamps
and execute them in the order of their timestamps),

• conflict detection, used to detect operations that are submitted
concurrently by users to different sites and touch the same data
(e.g., two requests to a room-booking system that concern the
same room and the same time slot),
• conflict resolution, used to define the effect of a set of conflicting

operations (e.g., in the room-booking system, the system might
require that each request comes with some alternative time slots,
and in the case of two conflicting requests, one will get an
alternative time slot),
• commitment protocols, used to make sites agree about the order

in which they execute the operations.
In particular, a large class of ORS, e.g., Bayou [23], C-

Praxis [18], IceCube [16], Telex [2], use speculative executions,
i.e., operations are tentatively applied as they are received from
the user or from the other sites. In such systems, the sites may
receive the operations in different orders and thus, they may have
to repeatedly roll-back some operations as they gradually converge
towards a final order (for example, in the case of Bayou, the final
order is decided by a designated primary site).
Eventual consistency: In its simplest formulation1, eventual con-
sistency requires that if the users stop submitting operations, then
all the sites will eventually reach a consistent state (i.e., they agree
on the way operations should be executed). However, as mentioned
in Burckhardt et al. [6], this formulation is too loose and the reason
is twofold. First, this definition does not impose some notion of
correctness for the operations executed by the system, i.e., the fact
that they should satisfy some well-defined specification. Second,
this property offers no guarantees when the system never stops,
i.e., when the users continuously submit new operations. For that,
eventual consistency should take into account infinite executions of
the system involving infinitely many operations.

In fact, works investigating the formal definition of eventual
consistency (and correctness criteria for distributed data structures
in general) are still very rare. To our knowledge, Burckhardt et al.
[6] is the first attempt to provide a formal framework for reasoning
about eventual consistency. However, the proposed formalization in
that paper does not allow to reason about ORS, that use speculative
executions and roll-backs (as the authors of that paper mention). So,
the first issue that we address in this paper is providing a general
formal definition of eventual consistency, that is applicable to a
wider class of ORS.

We define eventual consistency as a property over traces. A trace
models the view of an external observer of the system; it is a set
of sequences of operations, where one sequence consists of all the
operations submitted to one site. It abstracts away implementation
details such as the messages exchanged between sites.

Eventual consistency is defined as the composition of a safety
property that specifies the correct effects of the operations, and a
liveness property guaranteeing that sites will eventually agree on
the order in which the operations should be executed. Let us look
closer to each of these components.
Safety: Following the scenario described earlier, the return value
of an operation o submitted to some site N depends on (1) the
operations received and scheduled by N before o, and the order in
which these operations are executed, (2) the conflict detection and
conflict resolution policies applied by N , and (3) the behavior of
the executed operations2.

A trace is called safe iff the return values of all its operations
are correct in a sense described hereafter. First, the correctness
is defined with respect to a specification that, roughly, models

1Also called, quiescent consistency [12]
2In this paper, we make the simplifying assumption that replicas are copies of
the same object. In general, a replica may be composed of copies of multiple
objects but most replication systems manage each object independently.

the expected outcome of executing a poset of operations on a
single site. Concretely, a poset of operations models a schedule,
where incomparable elements are considered to be in conflict
(i.e., submitted concurrently to different sites) and executing a poset
of operations involves the actual implementations of the operations
together with the conflict resolution policy (that defines the effect
of concurrently submitted operations). A specification S associates
return values of operations with posets of operations. Intuitively, the
return value r of an operation o is associated with some poset ρ if o
returns r whenever it is executed after the poset of operations ρ.

More precisely, a trace τ is safe w.r.t a specification S iff for
each operation o, there exists a poset li[o] of operations in τ ,
which is associated by S with the return value of o. The poset
li[o] is called the local interpretation of o. Additionally, because of
physical constraints, we define an executed-before relation eb over
the operations in the trace such that (o′, o) ∈ eb iff o′ belongs to
the local interpretation of o, and we require that the union of eb
with the program order relation is an acyclic relation. Concretely,
(o′, o) ∈ eb iff o is an operation submitted to some site N and o′ is
scheduled by N before o while the local interpretation li[o] models
the result of applying the scheduling and conflict detection policies.

Note that, for ORS that use speculative executions and roll-
backs, the local interpretations associated with two operations are
arbitrarily different, even if the two operations are submitted to the
same site. (The issue of convergence is left to the liveness part.)
Liveness: The liveness part of eventual consistency requires that
there exists some partial order relation gi (for global interpretation)
over all the operations in an infinite trace, such that it is possible
to choose some local interpretations satisfying the safety property,
which converge towards gi. The convergence is formally stated as
follows: for any prefix P of gi (a prefix of a poset is a restriction
of the poset to a downward closed subset) there exists only finitely
many local interpretations for which P is not a prefix. This corre-
sponds to the informal definition given in Saito and Shapiro [19].
Verifying eventual consistency: After providing a formal and
general definition of eventual consistency, we address the problem
of checking whether a given ORS satisfies eventual consistency w.r.t
some given specification. Our aim is twofold. First, we investigate
the question of defining a generic algorithmic verification method
for eventual consistency which is independent from the class of
programs used for the implementation. This is actually a hard
problem since, regardless of the complexity of the implementation,
eventual consistency requires reasoning about nested quantifiers
over (infinite) partial orders. Then, our second goal is to derive from
the generic verification method decidability and complexity results
for particular, as large as possible, classes of implementations. Let
us then examine each of these points.
From eventual consistency to model-checking problems: We show
that the static verification of (the safety and liveness parts of)
eventual consistency can be reduced to reachability and model
checking problems. This reduction allows to use any existing tools
for exact/approximate verification of concurrent (message-passing)
programs in the context of verifying eventual consistency. The
reduction is done by defining a monitor which, when composed in
parallel with the system, reaches some specific error state or violates
some temporal logic formula (in LTL extended with Presburger
predicates) if and only if there exists an execution of the system that
violates eventual consistency. The monitor is a sequential program
that observes, in a centralized way, the operations submitted to all the
sites in the network. Therefore, its observations are interleavings of
operations performed by the ORS. Reasoning about such centralized
observations is possible since we are concerned with the static
(offline) verification of ORS. The monitor is the parallel composition
of two monitors, one for checking the safety part in eventual
consistency and one for checking the liveness part. These monitors

are abstractly defined as state transition systems that take a step each
time an operation is executed in the system. Actually, they can be
seen as a way of instrumenting every operation performed by the
system in order to obtain a program on which the reachability and
model-checking queries mentioned above are applied.

For these reductions, we assume that the operations are instances
of a finite set of methods with a finite set of possible input/return
values. However, system implementations can still be very complex:
users are allowed to submit unboundedly many operations, and
systems can use unbounded domains for timestamps or unbounded
channels for communication.

The constructions we provide are based on subtle arguments.
Indeed, one of the issues is that return values of operations depend
on arbitrarily large sets of prior operations, and unbounded number
of possible orders between these operations. The effect of each
operation depends on the local view of the site N to which it is
submitted. The local view consists of the set of operations known
by N and the order in which N believes they were executed by
other sites. In fact, when considering the safety part, we only need
to check that, for each operation, such a local view exists and it
is consistent with the return value of the operation. Unlike for the
liveness part, we do not need to check the convergence of the local
views toward a global view – which is a partial order over the
infinite set of operations in the trace. In order to know if such
local views exist, it is sufficient to count the number of methods
previously issued. A careful analysis of the definition allows to show
that it is possible to count only up to some finite bound, and thus
only consider the minimal posets in the specification. Therefore,
the problem of finding a violation for the safety property can be
reduced to some bounded counting argument where the monitor
counts the number of times the system executes each of the methods
and then compares the counter values to the number of methods in
the minimal posets of the specifications. This raises the problem
of computing the number of methods in the minimal posets of the
specification. In order to address this problem, we need to consider
some concrete formalism for describing the specifications.

Therefore, we introduce a class of automata for describing
specifications of ORS. Essentially, each poset of operations in
the specification is abstracted into a sequence of multisets of
methods (each method in these multisets corresponds to the method
instantiated by an operation in the poset) which is then recognized
by an automaton, called multiset automaton, where the transitions,
instead of being labeled by symbols as in the case of automata
over words, are labeled by Presburger formulas. The sequence of
multisets corresponds to a decomposition of the poset in levels, used
in algorithms for parallel tasks scheduling [22], where a level is a
set of elements for which the length of the longest path to a maximal
element is the same. These automata offer a good compromise
between tractability and expressive power. In particular, they allow
to define a wide-class of specifications, e.g., specifications of
replication systems that use the Last Writer Wins conflict resolution
policy [15] or commutative conflict resolution policies like in the
case of the CRDTs [7, 20]. We then prove that for specifications
recognized by multiset automata, it is possible to effectively compute
the number of methods in the minimal posets.

For the liveness part of eventual consistency, we consider again a
parallel composition between the system and a monitor that counts
the number of times the system executes each of the methods. We
show that the problem of finding a violation can be reduced to
the problem of checking that the monitor reaches a state where
its counters satisfy some specific property, and from there on, the
methods executed by the system return only some particular set
of values. The property that the counters should satisfy is quite
complex; it characterizes the number of methods occurring finitely-
often in the limit of an infinite sequence of posets belonging to the

specification. However, we show that for specifications recognized
by multiset automata, this property is definable by a Presburger
formula, which can be effectively computed.
Decidability and complexity: Based on these reductions, we define
decision procedures for checking eventual consistency of ORS,
which are defined as the parallel composition of a fixed set of
boolean programs communicating through unbounded unordered
channels. Indeed, we consider that it is natural in our context to
assume that channels are unordered since in general large-scale
networks offer no guarantees on the order in which messages
arrive even if they are sent by the same site. These decidability
results are based on the fact that (1) this class of systems can be
modeled by Vector Addition Systems with States (VASS, for short),
since unbounded channels can be encoded as counters, and (2) the
problems to which we reduce checking the safety, resp., the liveness,
part of eventual consistency are decidable for VASS.

2. Preliminaries
Sets, relations: For a set A, P(A) denotes the set of all subsets of
A. Let R ⊆ A×B be a relation. For any y ∈ B, R−1(y) denotes
the set of elements x ∈ A such that (x, y) ∈ R. The notation is
extended to subsets of B as usual.
Sequences: Let Σ be a finite alphabet. The set of all finite, resp., in-
finite, sequences over Σ is denoted by Σ∗, resp., Σω . Also, Σ∞ =
Σ∗ ∪ Σω . A set of sequences is called prefix-closed if the prefix of
any sequence in the set is also in the set.
Posets: Let (A,≤) be a possibly infinite partially-ordered set (poset,
for short). A path of length n in (A,≤) is a sequence of elements
x0,x1,. . .,xn such that for all 0 ≤ i ≤ n− 1, xi ≤ xi+1.

The downward closure of B ⊆ A w.r.t. ≤, denoted by ↓≤B, is
the set of all elements in A smaller than B, i.e., ↓≤B = ≤−1(B).
Similarly, the upward closure of B ⊆ A w.r.t. ≤, denoted by ↑≤B,
is the set of all elements in x ∈ A such that y ≤ x, for some y ∈ B.
The superscript may be omitted when the partial order ≤ is clear
from the context. We say that B is downward closed, resp., upward
closed, w.r.t. ≤ iff B = ↓B, resp., B = ↑B.

The poset (A1,≤1) is called a prefix of (A2,≤2), denoted by
(A1,≤1) � (A2,≤2), iff A1 ⊆ A2, ≤1 is the intersection of ≤2

and A1 ×A1, and A1 is downward closed w.r.t. ≤2.
We say that a poset (A,≤) is prefix-founded iff for all finite sets

B ⊆ A, ↓ B is finite.
Labeled posets: A Σ-labeled poset is a triple (A,≤, `), where
(A,≤) is a poset and ` : A → Σ is a function that labels each
element of A with a symbol in Σ. The set of all Σ-labeled posets is
denoted by PoSetΣ.

Given Σ′ ⊆ Σ, the projection of a Σ-labeled poset (A,≤, `)
over Σ′ is the Σ′-labeled poset (B,≤′, `′), where B is the subset of
A containing all the elements labeled by symbols in Σ′, i.e., B =
{a | `(a) ∈ Σ′}, and ≤′, resp., `′ are the projections of ≤, resp., `
over B ×B, resp., B.

The Parikh image of a possibly infinite Σ-labeled poset ρ =
(A,≤, `) is the multiset ΠΣ(ρ) : Σ → N ∪ {ω} mapping each
symbol a ∈ Σ to the number of elements x of A such that `(x) = a.
If some symbol a occurs infinitely often then ΠΣ(σ)(a) = ω. Note
that the Parikh image of a labeled poset ρ can be also interpreted
as the multiset of symbols in ρ. The notion is extended to sets of
labeled posets as usual.

A labeled poset ρ1 = (A1,≤1, `1) is called a prefix of ρ2 =
(A2,≤2, `2) iff the poset (A1,≤2) is a prefix of (A2,≤2) and
`1(y) = `2(y), for all y ∈ A1. We also say that ρ2 is a completion
of ρ1. This is denoted by ρ1 � ρ2. Moreoever, if `2(A2 \A1) ⊆ Σ′

where Σ′ ⊆ Σ, we say that ρ2 is a Σ′-completion of ρ1.
Two labeled posets (A1,≤1, `1) and (A2,≤2, `2) are isomor-

phic iff there exists a bijection h : A1 → A2 such that for all

x, y ∈ A1, x ≤1 y iff h(x) ≤2 h(y) and `1(x) = `2(h(x)). A set
of labeled posets A is called isomorphism-closed iff any labeled
poset isomorphic to some labeled poset in A belongs also to A.
Functions: Let A and B be two sets. We denote by A → B the
set of functions from A to B. For a function f ∈ A → B, and
a ∈ A, b ∈ B, f [a 7→ b] is the function which maps all elements
a′ 6= a to f(a′), and which maps a to b. If A = {a1, . . . , an},
and b1, . . . , bn are (possibly equal) elements of B, we denote by
(a1 7→ b1, . . . , an 7→ bn) the function f ∈ A → B which maps
ai to bi for all 1 ≤ i ≤ n. Likewise, for b ∈ B, we denote by
(a ∈ A 7→ b) the function which maps every a ∈ A to b.

For functions f : A → N, and g : A′ → N with A′ ⊆ A,
f + g : A→ N maps each a′ ∈ A′ to (f + g)(a′) = f(a′) + g(a′)
and each a ∈ A \A′ to (f + g)(a) = f(a).

3. Modeling optimistic replication systems
A concrete execution of an ORS is modeled as a trace, that abstracts
away many implementation details. A trace is a poset of operations,
where all the operations submitted to the same site are totally
ordered. We suppose that operations are instances of a fixed set
of methods. For static verification of eventual consistency, an ORS
is viewed as a prefix-closed set of sequential observations. These are
sequences of pairs of the form (N, o), where N is a site name and
o is an operation. Such a pair denotes an operation o submitted to
site N . The trace represented by a sequential observation η contains
all the operations in η such that any two operations submitted to
different sites are incomparable and the order between any two
operations submitted to the same site is consistent with the order in
which these two operations appear in the sequence η.

Let M be the set of method names and D the domain of return
values. For simplicity, we suppose that input parameters are encoded
in the method names. A method synopsis is a pair m.r, where
m ∈ M and r ∈ D. We denote by M . D the set of all method
synopses. An operation o is a pair (i, a) formed of an identity
i ∈ N and a method synopsis a ∈ M . D. We denote by O the
set of all operations. Given a method synopsis a = m.r, we let
meth(a) = m, rval(a) = r, and given an operation o = (i,m . r),
we let id(o) = i, meth(o) = m, rval(o) = r, and syn(o) = m.r.
An operation o = (i,m . r) may be called an m-operation or
an m.r-operation. Also, given a set of method names M ⊆ M
(resp., a set of method synopses Y ⊆ M . D) o is called an M -
operation (resp., Y -operation) iff m ∈M (resp., m.r ∈ Y).

A trace τ is a (possibly infinite) poset (O, po), where O ⊆ O
and po, called the program order, is a disjoint union of a set of
prefix-founded irreflexive total orders over O. We assume that a
trace does not contain two operations with the same identity. The
set of operations, resp., the program order, in a trace τ are denoted
by Oτ , resp., poτ .

Given a fixed set N of site names, a sequential observation
(observation, for short) of an ORS is a possibly infinite sequence
over ON = N × O (we assume that such a sequence does
not contain two operations with the same identity). A sequential
observation models the view of a centralized sequential observer
over the concrete executions of the replication system. Then, an
optimistic replication system I is a state machine that produces a
prefix-closed subset of (ON)∞. By an abuse of notation, the set of
sequences produced by I is denoted also by I.

Given an observation η, let Oη denote the set of operations that
occur in η, i.e., the set of operations o for which there existsN ∈ N
such that (N, o) occurs in η. Given an observation η ∈ (ON)∞, the
trace of η is defined by trace(η) = (O, po), where
• O = Oη and

• po = {(o, o′) | ∃N ∈ N s.t. (N, o) occurs before (N, o′) in η}

Next, we give examples of ORS that we use throughout the paper.
Example 1 (One-value Register). The One-Value Register (Regis-
ter) maintains an integer register and supports the set of methods
MR = {wr(i) | i ∈ N} ∪ {rd}, where wr(i) assigns value i to the
register and rd reads the current value of the register. A method rd
can return any value from N while the methods wr(i) return some
special value >, i.e., the domain of return values is DR = N ∪ {>}.
We thus haveM . DR = {wr(i) .>, rd . i | i ∈ N}.
Example 2 (Multi-Value Register). The Multi-Value Register [7,
14] (MV-Register) maintains an integer register and supports the
same set of methods as the Register. A method rd can return any
set of values from N. Thus, the domain of return values of the MV-
Register is DMV-R = P(N) ∪ {>} and its set of method synopses
isM . DMV-R = {wr(i) .>, rd . I | i ∈ N and I ⊆ N}.
Example 3 (Observed-Remove Set). The Observed-Remove
Set [20] (OR-Set) maintains a set of integers over which one can
apply the set of methods MOR-S = {add(i), rem(i), lookup(i) |
i ∈ N}, where add(i) adds the integer i to the set, rem(i) re-
moves i from the set, and lookup(i) tests if the integer i is in
the set. We assume that the methods add and rem return some
fixed value >, while lookup(i) can return 1 or 0. Thus, the
set of return values is DOR-S = {1, 0,>} and M . DOR-S =
{add(i) .>, rem(i) .>, lookup(i) . 1, lookup(i) . 0 | i ∈ N}.

4. Eventual consistency
In this section, we introduce a formal definition for eventual consis-
tency, whose main artifacts are presented hereafter.
Specification: In the context of shared-memory, resp., ORS, the
correctness of the operations associated to some object usually
involves some mechanism of conflict resolution in order to define
the effect of a set of operations executed by different threads,
resp., submitted concurrently at different sites. In the case of shared-
memory systems, the conflict resolution mechanism is usually
specified by the notion of linearizability [13], which requires that
the effect of a set of concurrent operations (that overlap in time)
is the same as the one of a sequential execution of the same set of
operations. In the context of ORS, where each site maintains its
own copy of the object, some more general mechanisms of conflict
resolution are required.

To specify both the sequential semantics of the operations and
the conflict resolution mechanisms we use posets of operations
instead of sequences of operations, as in the case of linearizable
objects. We don’t use a total order because, in general, it is unfeasible
that all sites agree on a total order of operations, and sometimes
even unnecessary, in case of commutative operations for instance.
Moreover, the mechanisms used to detect conflicting (causally
unrelated) operations are not always precise.

We assume that the specification can’t distinguish between
two posets that are identical (i.e., isomorphic) when ignoring the
identities and the return values of the operations. The insensitivity to
return values is motivated by the fact that, in real implementations,
the sites exchange operations without their return values (in such
systems, it is not expected that an operation returns the same value
when executed at different sites).

A specification associates to each method synopsis m.r an
isomorphism-closed set of M-labeled posets. The closure under
isomorphism and the fact that we use labeled posets model the fact
that the specification doesn’t observe identities and return values.
The fact that a poset ρ is associated to m.r means that any site that
sees the set of operations in ρ in that order reaches a state where the
call to m produces the value r.
Definition 1 (Specification). A specification is a function S :
M . D→ P(PoSetM), where for each method synopsis a ∈ M . D,
S(a) is an isomorphism-closed set ofM-labeled posets.

SR(rd . 0) : wr(0)

wr(1)

wr(0)

wr(2)

rd

rd

wr(1)

wr(0)

(a)

SMV-R(rd . {0, 1, 2}) :

wr(2)

wr(4)

wr(0)

wr(0)

wr(3)

rd

rd

wr(2) wr(1)

(b)

SOR-S(lookup(1) . 1), SOR-S(lookup(0) . 0) :

add(1)

add(1)

add(1)

rem(1) rem(1)

rem(1)

rem(0)

add(0)

rem(0) rem(0)

(c)

Figure 1: Examples of labeled posets belonging to (a) the specifica-
tion of the Register (b) the specification of the MV-Register, and (c)
the specification of the OR-Set. The order relations are defined by
arrows: an arrow from an element x to some element y means that
x is ordered before y. We omit arrows implied by transitivity.

We give several examples of specifications for the replication
systems mentioned in the previous section.
Example 4 (Register specification). The specification SR of the
Register is given by: (1) for every a = wr(i) .>, SR(a) is the set
of allMR-labeled totally-ordered sets, and (2) for every a = rd . i,
SR(a) is the set of all MR-labeled totally-ordered sets where the
maximal element labeled by a write is labeled by wr(i). Figure 1a
contains two examples of totally-ordered sets in SR(rd . 0).
Example 5. [MV-Register specification] The specification SMV-R of
the MV-Register is defined by: (1) for any a = wr(i) .>, SMV-R(a)
is the set of all MR-labeled posets and (2) for any a = rd . I ,
SMV-R(a) is the set of all MR-labeled posets ρ such that i ∈ I iff
there exists a maximal element labeled by wr(i) in the projection
of ρ over the elements labeled by write methods {wr(i) | i ∈ N}.
Figure 1b contains anMR-labeled poset in SR(rd . {0, 1, 2}).
Example 6. [OR-Set specification] The specification SOR-S is given
by: (1) for any a = add(i) .> or a = rem(i) .>, SOR-S(a) is the
set of allMOR-S-labeled posets, and (2) for any a = lookup(i) . 1,
resp., a = lookup(i) . 0, SOR-S(a) is the set of allMOR-S-labeled
posets ρ such that the projection of ρ over the elements labeled by
add(i) or rem(i) contains a maximal element labeled by add(i),
resp., contains no maximal element labeled by add(i). Figure 1c
contains an example of a labeled poset that belongs to both
SOR-S(lookup(1) . 1) and SOR-S(lookup(0) . 0).

Local interpretation: The return value of some operation o sub-
mitted to some site N depends on the set of operations applied at
N before o and on the the effect of applying the scheduling and
conflict detection policies over this set of operations. Taken together
they can be represented by a poset of operations, called the local
interpretation of o and denoted by li[o]. Because of speculative exe-
cutions, one has to consider a local interpretation for each operation
o in the trace (the order in which known operations are executed can
change at any time).

The local interpretations define another relation over the oper-
ations in the trace, called executed-before and denoted by eb. We
say that some operation o′ is executed before another operation

wr(0)

rd . 1

wr(2)

wr(1)

rd . 0

rd . 0

(a)

rd . 1 rd . 2

wr(2) wr(1)

(b)

Figure 2: Traces of the Register. For simplicity, the return values
of the wr operations and the ids of each operation are omitted. The
program order is defined by the vertical lines, from top to bottom.

o, i.e., (o′, o) ∈ eb, iff o′ belongs to the local interpretation of o.
For example, Figure 2a pictures a trace of the Register, where the
arrows define a possible eb relation. Note that the wr(1)-operation
is executed before the first occurrence of rd . 0 but not before the
second occurrence of rd . 0.

We say that the return value of some operation o is correct iff the
labeled poset defined by li[o], where every operation o′ is labeled
by meth(o′), belongs to S(syn(o)). Then, a trace τ is safe iff the
return values of all operations in τ are correct.

For example, in the case of the first rd . 0-operation in Figure 2a,
one can choose to order the wr(1)-operation before the wr(0)-
operation. This local interpretation defines an MR-labeled poset,
which belongs to the specification of the Register, SR(rd . 0).
Similarly, one can show that all return values in Figure 2a are correct.

Because of physical constraints, eb must not create cycles
together with the program order. For example, the trace in Figure 2b
could be one of the Register if the relation eb is defined by the
arrows in the figure (we assume that the initial value of the register
is 0). However, this means that the site executing the operations in
the left received a message from the other site containing the wr(1)
operation and this message was created after rd . 2 has finished.
Thus, in real time, rd . 2 has happened before the wr(2)-operation,
which contradicts the eb relation.
Global interpretation: The fact that the sites will eventually agree
on the way operations should be executed is defined as a liveness
property over infinite traces of the system. Given an infinite trace
τ , we consider a partial-order over all the operations in τ , called
the global interpretation and denoted by gi. The liveness property
requires that the local interpretations defined for the operations in τ
converge towards gi. More precisely, for any finite prefixP of gi, the
number of local interpretations for which P is not a prefix is finite.
Note that this implies that any operation o in the trace is executed
before all operations in τ , except some finite set. A system that
satisfies only this property will be called weak eventually consistent.

We will require that gi satisfies some sanity condition, i.e., that
it is prefix-founded, which basically, means that every operation can
be executed after only finitely many other operations.

For example, let us consider the infinite trace in Figure 3. We
consider a global interpretation gi, which in this case is a total
order, that arranges the write operations in a sequence of the form
(wr(0) wr(1))ω , and keeps the same order as in the trace for the
wr(0) operations (resp., the wr(1) operations). In the following, we
ignore the order between the rd-operations because they are not
important for justifying the correctness of the return values. We
show that it is possible to choose local interpretations for the rd . 0
operations such that the return values are correct, and such that the
orders converge towards gi. In a similar way, this can be shown for
all the other operations in the trace.

For each rd . 0-operation o, the local interpretation li[o] is the
poset that consists of all the write operations that occur before o
(i.e., if o is the ith occurrence of rd . 0 then the poset li[o] contains

wr(0)

rd . 0wr(1), wr(0)

wr(0)

rd . 0wr(0), wr(1), wr(1), wr(0)

wr(0), wr(1), wr(0), wr(1), wr(1), wr(0)

. . .

(wr(0) wr(1))∗ wr(1) wr(0)

wr(1)

rd . 1

wr(1)

rd . 1

Figure 3: An infinite trace of Register, where one site executes
(wr(0) rd . 0)ω and another site executes (wr(1) rd . 1)ω .

the jth occurrence of wr(1) and wr(0), for all j < i), totally ordered
in a sequence of the form (wr(0) wr(1))∗ wr(1) wr(0) consistent
with the program order. The relation eb is pictured by arrows in
Figure 3. Defined as such, the local interpretations converge towards
the global interpretation gi.

We now give the definition of eventual consistency. For any
poset li[o] = (A,≤) as above, liM[o] denotes the labeled poset li[o]
where every operation is labeled by the corresponding method name
inM, i.e., liM[o] = (A,≤,meth).

Definition 2. [Safety, (Weak) Eventual consistency] A trace τ =
(O, po) is called eventually consistent w.r.t. a specification S iff:

∃ gi an irreflexive partial order over O
∀ o ∈ O ∃ li[o] an irreflexive poset.

GIPF ∧ THINAIR ∧ RVAL ∧ EVENTUAL

It is said to be weak eventually consistent w.r.t S iff EVENTUAL
is replaced by WEAKEVENTUAL in the condition above (thus, gi
and GIPF can be removed). Finally, it is said to be safe w.r.t S iff
only the axioms THINAIR and RVAL are satisfied, i.e.,

∀ o ∈ O ∃ li[o] an irreflexive poset.
THINAIR ∧ RVAL

The relation eb is defined by: (o′, o) ∈ eb iff o′ ∈ li[o]
THINAIR eb ∪ po is acyclic
RVAL for all o = (i, a) ∈ O, liM[o] ∈ S(a)

GIPF gi is prefix-founded
WEAKEVENTUAL for all o ∈ O, {o′ | (o, o′) 6∈ eb} is finite
EVENTUAL for any finite prefix P of the poset (O, gi),

{o | P 6� li[o]} is finite

Table 1: The list of axioms used in Definition 2.

Axioms THINAIR and RVAL are thus safety conditions, and
ensure that the operations respect the specification S. Axiom
WEAKEVENTUAL is a liveness condition, which ensures that eventu-
ally, every operation will be executed before all the other operations
in the system. Axiom EVENTUAL is a stronger liveness condition
which ensures that all nodes eventually agree on a (possibly partial)
order in which to execute all the operations.

An ORS I is said to be (weak) eventually consistent, resp., safe,
iff for every observation η of I, trace(η) is (weak) eventually
consistent, resp., safe.

In the next sections, we consider the problem of verifying
eventual consistency and we assume thatM . D is finite.

rd . 1

rd . 2

wr(2) wr(3)

wr(1)

(a) A safe trace, with one possible total
order e depicted with arrows

rd . 1

rd . 2

rd . 3

wr(2) wr(3)

wr(1)

(b) An unsafe trace

Figure 4: Examples of traces of the Register

5. Safety
We consider the problem of checking that an ORS is safe and we
prove that it can be reduced to a reachability problem. First, we show
that in any total ordering over the operations of an unsafe trace τ ,
consistent with the program order, one can find an operation o such
that there are not sufficiently many operations before o (in this total
ordering) to construct a labeled poset belonging to its specification
(i.e., S(syn(o))). For example, for an unsafe trace of the Register,
e.g., the trace in Figure 4b, with read and write operations, this
means that, no matter in which order – consistent with the program
order – it is read, there will always exist a read that returns a value
not written by a previous write.

This allows us to define a monitor for checking the safety of
a replication system I, that records all the operations executed by
I, and stops with a negative answer at any time that it detects an
operation o for which, with the recorded set of operations, it cann’t
build a labeled poset belonging to the specification of o. Actually,
we prove that it is sufficient that the monitor only counts the number
of times the system executes each of the methods inM (until some
bound) and then, compare the counter values with the minimal
vectors in the Parikh image of the specification.

The next lemma states the characterization of (un)safe traces.

Lemma 1. A trace τ is safe w.r.t S iff there exists a prefix-founded
total order e – called the issue order – on Oτ , consistent with po,
such that for every operation o of τ , there exists a poset (Vo,≤o),
where Vo is a subset of e−1(o) and (Vo,≤o,meth) ∈ S(syn(o)).
Proof. (⇐) For each o, define li[o] = (Vo,≤o). This ensures that
axiom RVAL holds. Moreover, the relations eb and po are both
consistent with e, which implies that axiom THINAIR holds.

(⇒) Conversely, assume that for each operation o, there exists
li[o] such that THINAIR and RVAL hold. Let e be any total order
compatible with eb and po, which exists since eb ∪ po has no cycle.
Figure 4a illustrates one such total order on a safe trace. Then, for
each operation o, define (Vo,≤o) as the poset li[o].

Lemma 1 implies that if τ is the trace of an observation η and it
is unsafe, then there exists a prefix of η which ends in an operation
whose return value is not correct, i.e., it is not possible to define a
labeled poset that contains only operations in this prefix that belongs
to the specification of o. This is stated in the following lemma.

Lemma 2. Given an ORS I, the following are equivalent:
1. there exists an observation η ∈ I such that trace(η) is not safe
2. there exists an observation η = η′(N, (id, a)) ∈ I such that

there exists no poset (Vo,≤o) whose elements are a subset of
Oη′ , such that (Vo,≤o,meth) ∈ S(a).

Proof. Assume that (2) holds for η = η′(N, (id, a)). Let o = (id, a)
be the last operation of η. If η was safe, we would have a local
interpretation li[o] such that liM[o] ∈ S(a). Note that the operations
in li[o] belong to Oη′ , which contradicts (2). Thus, η is not safe and
(2) implies (1).

Conversely, if we have an observation η such that trace(η) is
not safe, then by Lemma 1, there exists a prefix ηp of η such that
ηp satisfies (2). Indeed, if there were no such prefix, the total order

on Oη induced by η would satisfy the condition of Lemma 1, which
would contradict the fact that trace(η) is not safe.

The following corollary is a reformulation of Lemma 2 in terms
of Parikh images. For any finite observation η, theM-Parikh image
of η is a function ΠM(η) : M → N, that maps each m ∈ M to
the number of operations o in η with m = meth(o). TheM-Parikh
image of a finite trace τ , denoted by ΠM(τ), is defined similarly.
Corollary 1. An optimistic replication system I is not safe iff there
exists η′(N, (id, a)) ∈ I such that ΠM(η′) /∈ ↑ ΠM(S(a)).

Given an observation η and an integer i, Πi
M(η) is the Parikh

image of η, where all the components larger than i are set to i, that
is Πi

M(η) = (m ∈ M 7→ min(i,ΠM(η)(m))).
For each a ∈ M . D, let Va be the set of minimal elements of

ΠM(S(a)) (w.r.t. the ordering relation over vectors of natural num-
bers), so that ↑ ΠM(S(a)) = ↑ Va, and let ia be the maximum value
appearing in the vectors of Va. Let i = max {ia | a ∈ M . D}.

We remark that ΠM(η′) /∈ ↑ ΠM(S(a)) is equivalent to the
fact that ΠM(η′) is not greater than one of the minimal elements
va ∈ Va. Moreover, since all the components of the vectors of
Va are smaller than i, ΠM(η′) /∈ ↑ ΠM(S(a)) is equivalent to∧
va∈Va

Πi
M(η′) � va.

In general, the sets Va cannot be computed, but in Section 7, we
give a class of specifications for which they can. We define a monitor
Msafe, which counts all the methods it sees up to the bound i, and
every time it reads a symbol (N, (id, a)), it goes to an error state
qerr iff the vector of methods seen is not larger than some va ∈ Va.

Formally,Msafe is a deterministic finite-state transition system
(Q,Q0, δ), where
• Q = (M→ {0, . . . , i}) ∪ {qerr} is the finite set of states

• Q0, the set of initial states, only contains q0 = (m ∈ M 7→ 0)

• δ ⊆ Q×ON ×Q with

(q, (N, (id, a)), qerr) ∈ δ iff
∧
va∈Va

q � va

(q1, (N, (id, a)), q2) ∈ δ iff
∨
va∈Va

q ≥ va and
q2 = q1[meth(a) 7→ min(q1(meth(a)) + 1, i)]

Theorem 1 (Safety Monitoring). An optimistic replication system
I is not safe if and only if the parallel composition I‖Msafe can
reach the error state qerr.

6. Liveness
In this section, we give properties which characterize (weak) even-
tually consistent traces that will be used to define reductions of
deciding (weak) eventual consistency to LTL model checking.

6.1 Weak Eventual Consistency
We first consider the case of weak eventual consistency because it
is simpler while already showing some of the difficulties we have
to solve. Moreover, for some systems, weak eventual consistency
implies eventual consistency, for instance, when all the operations
are commutative.

For an infinite trace τ to be weak eventually consistent there
must exist some local interpretations which show that τ is safe but
also, which ensure that each operation o ∈ Oτ is executed-before
all the other operations, except for some finite set. The latter implies
that any finite set of operations is executed-before every operation
after some finite prefix. Thus, for any a ∈ M . D, if there are
infinitely many a-operations in τ , then S(a), the specification of a,
must contain arbitrarily large posets. This property of S(a) can be
stated as a property of the Parikh image of S(a) and this allows us
to define a reduction of checking if some replication system I is
weak eventually consistent to checking if I is safe and if the parallel
composition of I with a monitor that counts the methods executed

by I satisfies some LTL formula. Mainly, the temporal operators
in this formula are used to identify the infinitely occurring method
synopses in some execution.

In the following lemma, we characterize weak eventually consis-
tent traces. To identify the infinitely occurring method synopses in
some trace τ we use the following notation. Given B ⊆ M . D and
a finite trace τp, let τpBω be the set of all traces τ which extend τp
(i.e., τp is a prefix of τ) by an infinite set of B-operations such that
there are infinitely many a-operations in τ , for each a ∈ B.

Lemma 3. [Characterization of Weak Eventual Consistency] Given
B ⊆ M . D such that meth(B) = {m1, . . . ,mk}, a trace τ ∈
τpB

ω is weak eventually consistent w.r.t. S if and only if
• τ is safe and
• ∀a ∈ B.∀n ∈ N.∃n1, . . . , nk ≥ n.

ΠM(τp) + (m1 → n1, . . . ,mk → nk) ∈ ΠM(S(a))

Proof. (⇒) If τ is eventually consistent, then for each operation
o ∈ Oτ , there exists a local interpretation li[o] such that the axioms
THINAIR, RVAL, and WEAKEVENTUAL hold.

Let a ∈ B, and n ∈ N. Since there are infinitely many a-
operations in τ , we deduce from axiom WEAKEVENTUAL that
there exists one, noted o, such that li[o] (or equivalently, eb−1(o))
contains the operations of τp and at least n additional m-operations
for each m ∈ meth(B). From axiom RVAL, we know that liM[o] ∈
S(a), which shows that there exists n1, . . . , nk ≥ n such that
ΠM(τp) + (m1 → n1, . . . ,mk → nk) ∈ ΠM(S(a)).

(⇐) Since τ is safe, there exists an issue order e over Oτ that
satisfies the conditions in Lemma 1. In the following, we consider
that the operations in τ are totally ordered according to e.

For each n ∈ N∗, let on be the last operation in τ , which occurs
after at most n mi-operations for each mi ∈ meth(B). For each
a ∈ B and n ∈ N∗, let na1 , . . . , nak ≥ n such that

ΠM(τp) + (m1 → na1 , . . . ,mk → nak) ∈ ΠM(S(a))

and let oan be the first operation in τ such that the prefix τ ′ of τ that
ends in oan, satisfies

ΠM(τ ′) ≥ ΠM(τp) + (m1 → na1 , . . . ,mk → nak). (1)

The existence of oan is ensured by the fact that τ contains infinitely
many a-operations, for each a ∈ B.

For all n ∈ N∗ and a-operation o in τ between oan and oan+1, the
local interpretation li[o] = (Vo,≤o) is defined as follows. The set
Vo consists of all the operations of τp, all the mi-operations before
on, and some mi-operations before o s.t.

ΠM(Vo) = ΠM(τp) + (m1 → na1 , . . . ,mk → nak).

This is possible because, for each mi ∈ meth(B), there are at most
n mi-operations before on, and o occurs after oan, that satisfies (1).

Now, since ΠM(Vo) ∈ ΠM(S(a)), there exists a partial order
≤o over the set Vo such that (Vo,≤o,meth) ∈ S(a). For the finite
number of a-operations o that occur in τ before oa1 , we use the local
interpretations whose existence is ensured by the safety of τ .

Since both eb and po are consistent with the total order e, axiom
THINAIR holds. For each operation, we have chosen li[o] so that
axiom RVAL holds. Moreover, for all n ∈ N∗, each operation o that
occurs before on is executed-before all operations, except for a finite
set – those that precede some oan with a ∈ B. Thus, eb satisfies
axiom WEAKEVENTUAL, which concludes the proof.

By Lemma 3, an ORS I violates weak eventual consistency iff
it violates safety or if it produces a trace in τpBω , for some τp
and B ⊆ M . D with {m1, . . . ,mk} = meth(B), such that there
exists a method synopsis a ∈ B satisfying:

∃n ∈ N.∀n1, . . . , nk ≥ n.
ΠM(τp) + (m1 → n1, . . . ,mk → nk) /∈ ΠM(S(a)) (2)

Given B ⊆ M . D and a ∈ B, let

ΠnotWEC(S,B, a) ={v | ∃n ∈ N.∀n1, . . . , nk ≥ n.
v + (m1 → n1, . . . ,mk → nk) /∈ ΠM(S(a))}.

Then, (2) can be rewritten as ΠM(τp) ∈ ΠnotWEC(S,B, a).
Like for safety, we construct a monitor Mlive, which counts

the methods executed by the ORS, but this time without any bound.
Finding a violation of weak eventual consistency reduces to finding
a B ⊆ M . D and a finite execution ηp in the monitored system
I‖Mlive, such that

∨
a∈B ΠM(ηp) ∈ ΠnotWEC(S,B, a) and ηp can

be extended by only using B-operations as well as infinitely many
a-operations, for each a ∈ B. The latter can be checked using LTL
model checking by adding to each state of the monitor, a register
recording the method synopsis of the last transition.

Formally,Mlive is a transition system (Q,Q0, δ), where

• Q = (M→ N)×M . D,

• I is the set of initial states: (q0, a) ∈ I iff q0 = (m ∈ M 7→ 0)
and a ∈ M . D,

• δ ⊆ Q×ON ×Q where ((q1, b), (N, (id, a)), (q2, a)) ∈ δ iff
q2 = q1[meth(a) 7→ q1(meth(a)) + 1] and a, b ∈ M . D.

Now, given a replication system I, we consider the monitored
system I‖Mlive defined as the parallel composition of I and
Mlive. Define the following LTL formula:

ϕnotWEC =
∨

B⊆M.D

∨
a∈B

3(ΠnotWEC(S,B, a)∧©2B∧
∧
b∈B

23b).

By an abuse of notation, ΠnotWEC(S,B, a) denotes also an
atomic proposition, which holds in a state of the monitored system iff
the vector formed by the counters ofMlive is in ΠnotWEC(S,B, a).
As for the minimal elements used in monitoring safety, the sets
ΠnotWEC(S,B, a) cannot be computed in general. In Section 7,
we give a class of specifications for which they can. For each
B ⊆ M . D (resp., b ∈ M . D),B (resp., b) is an atomic proposition
which holds in a state iff the second part of the state ofMlive is in
B (resp., is b). Also, 3,©, and 2 denote the temporal operators of
LTL eventually, next, and always, respectively.

Theorem 2 (Weak Eventual Consistency Monitoring). An opti-
mistic replication system I is weak eventually consistent if and only
if I‖Msafe cannot reach qerr and I‖Mlive |= ¬ϕnotWEC.

6.2 Eventual Consistency
By following the same line of reasoning as the one used for weak
eventual consistency, we first derive a necessary and sufficient
condition for a trace to be eventually consistent.

In the case of an eventually consistent infinite trace τ , axiom
EVENTUAL ensures that, for every finite prefix P of the global
interpretation order gi, after some finite prefix of τ , all the operations
have P as a prefix of their local interpretations.

If B ⊆ M . D is the set of all a such that τ contains infinitely
many a-operations, then the specification of each a ∈ B must
contain an infinite sequence ofM-labeled posets such that any prefix
P of gi is a prefix of all these posets, except for some finite set. Thus,
any prefix P of gi can be extended in order to belong to each of the
S(a) with a ∈ B. Moreover, if P contains all the finitely occurring
operations in τ , then the extension can only add elements labeled
by methods in meth(B). The set of labeled posets which can be
extended in such a way is denoted by Quot(S,B). This implies
that an infinite sequence of increasing prefixes of gi must belong
to Quot(S,B), which, by extending a classical definition of limit
from words to labeled posets, can be stated as the poset defined
by gi is in the limit of Quot(S,B). Now, since gi is a reordering
of τ , this is equivalent to the fact that the multiset of methods that

occur in τ is the same as the multiset of methods that occur in some
infinite labeled poset belonging to the limit of Quot(S,B). Thus,
the eventual consistency of a trace τ can also be characterized in
terms of Parikh images. We show in the following that the same
monitorMlive defined previously can be used to reduce the problem
of checking eventual consistency to LTL model checking.

Next, we formally define Quot(S,B) and the notion of limit.
Definition 3 (Quotient). Given a specification S, B ⊆ M . D, and
a ∈ B, let S(a)meth(B)−1 – the quotient of S by meth(B) –
be the set of labeled posets for which there exists an meth(B)-
completion in S(a). Then, let

Quot(S,B) =
⋂
a∈B

S(a)meth(B)−1.

Definition 4 (Limit). Given a set A of finite labeled posets, we
denote by lim(A) the set of infinite labeled posets (A,≤, `) which
have an infinite sequence of increasing prefixes inA such that every
element in A is in a prefix (and all greater ones).
Remark 1. In the context of totally-ordered sets, the condition
that every element in A is in a prefix is already implied by the
rest of the definition. However, this is not true in the general
case. For instance, let (A,≤, `) be an infinite labeled poset, where
A = {ai | i ∈ N} ∪ {bi | i ∈ N}, `(ai) = a, `(bi) = b for all
i ≥ 0, a0 ≤ a1 ≤ . . . , and b0 ≤ b1 ≤ This poset is not in the
limit ofA, the set of all finite totally-ordered sets where all elements
are labeled by a, even though it has an infinite increasing sequence
of prefixes which are in A. This is due to the fact that the prefixes
don’t contain all the elements of (A,≤, `).

This leads us to the following necessary and sufficient condition
for eventual consistency.

Lemma 4 (Characterization of Eventual Consistency). Let τ =
(Oτ , po) be an infinite in τpBω . The trace τ is eventually consistent
iff it is safe and ΠM(τ) ∈ ΠM(lim(Quot(S,B))).

Proof. (⇒) If τ is eventually consistent, then there exist gi ⊆
Oτ × Oτ , and for each operation o ∈ Oτ , li[o] ⊆ Oτ × Oτ
satisfying the axioms GIPF, THINAIR, RVAL, EVENTUAL.

It is enough to show that (Oτ , gi,meth) ∈ lim(Quot(S,B)).
Let P be a finite prefix of (Oτ , gi,meth) containing at least the
operations of τp. For any a ∈ B, by axiom EVENTUAL, since there
are infinitely many a-operations, there exists at least one, o, such
that P is a prefix of liM[o]. By RVAL, liM[o] belongs to S(a), and
by the fact that P contains all operations in τp, liM[o] is a meth(B)-
completion of P . Thus, P ∈ Quot(S,B). Since we can find an
infinite increasing sequence of such prefixes P containing every
operation of Oτ , we have (Oτ , gi,meth) ∈ lim(Quot(S,B)).

(⇐) This part of the proof is illustrated on Figure 5. Let (A,≤, `)
be an M-labeled poset in ΠM(lim(Quot(S,B))) with ΠM(τ) =
ΠM(A). Define gi such that (Oτ , gi,meth) is isomorphic to (A,≤
, `) and let f be an isomorphism from A to Oτ .

There exists an infinite sequence of increasing prefixesA1, A2, . . .
of A such that every f(Ai) contains the operations of τp and such
that, for all a ∈ B, and for all n ∈ N∗, An ∈ S(a)meth(B)−1.
Moreover, each operation of Oτ appears in at least one f(Ai), for
some i (and in every f(Aj) with j ≥ i).

Since τ is safe, there exists an issue order e overOτ that satisfies
the conditions in Lemma 1. In the following, we consider that the
operations in τ are totally ordered according to e.

The properties on A1, A2, . . . imply that, for every a ∈ B and
every n ∈ N∗, there exists an meth(B)-completion Aan of f(An)
such that Aan ∈ S(a). We assume that the elements added to f(An)
to obtain Aan come from Oτ and that they occur after the operations
in f(An). This is possible because τ contains infinitely many a-

τ ordered by e A

f

f−1

prefix containing the
operations of f−1(τp)

A1 ∈ Quot(S,B)

P

A2 ∈ Quot(S,B)

A3 ∈ Quot(S,B)

τp

ob1 occurs after
all operations in Ab1

ob1

oc1 occurs after
all operations in Ac1

oc1

every o after ob2 has A2

(and P) as a prefix of their
local interpretations

ob2

Figure 5: Illustration of the proof of the second part of Lemma 4 for
B = {b, c}
operations, for each a ∈ B. For every a ∈ B and n ∈ N∗, let oan be
the first operation that occurs in τ after all the operations in Aan.

In the following, we define li[o], for every o, such that all the
axioms of eventual consistency hold:
• for every a ∈ B, for the finite number of a-operations o, that

occur in τ before oa1 , we use the local interpretations whose
existence is ensured by the fact that τ is safe. Similarly, for every
a′ ∈ M . D such that τ contains finitely many a′-operations.
• for every n ∈ N∗, a ∈ B, and for every a-operation o between
oan and oan+1, we define li[o] = Aan. Note that this implies that
f(An) � liM[o] and that liM[o] ∈ S(a).
Axioms THINAIR and RVAL hold for the same reasons given in

the proof of Lemma 3. Axiom GIPF holds because of the way we
have defined the limit of a set of labeled posets. It remains to show
that axiom EVENTUAL holds. Let P be a prefix of (Oτ , gi). Let
An be one of the previously defined prefixes such that P � f(An).
For every a ∈ B and for every a-operation o that occurs after oan,
P is a prefix of li[o]. Thus, there are only finitely many operations
which do not have P as a prefix of their local interpretations, which
concludes the proof.

Monitoring for eventual consistency is similar to the monitoring
used for weak eventual consistency. Let ΠnotEC(S,B) be the set

ΠnotEC(S,B) = {v ∈ M→ N |
v + (m ∈ meth(B) 7→ ω) /∈ ΠM(lim(Quot(S,B)))}

According to Lemma 4, in order to find a trace which is not
eventually consistent, it is enough to look for a trace in τpBω for
some τp and some B ⊆ M . D such that ΠM(τp) ∈ ΠnotEC(S,B).
This problem can be again reduced to LTL model checking over the
parallel composition of I and the same monitorMlive. In this case,
the LTL formula to be checked is:

ϕnotEC =
∨

B⊆M.D

3(ΠnotEC(S,B) ∧©2B ∧
∧
b∈B

23b)

As previously, for any B ⊆ M . D, ΠnotEC(S,B) holds in a
state of the monitored system if and only if the vector formed by the
counters ofMlive is in ΠnotEC(S,B).

Theorem 3 (Eventual Consistency Monitoring). An optimistic
replication system I is eventually consistent if and only if I‖Msafe

cannot reach qerr and I‖Mlive |= ¬ϕnotEC.

7. Specifications of finite-state optimistic
replication systems

The reductions of eventual consistency to reachability and LTL
model checking are effective if one can compute the set of min-
imal elements in the Parikh image of the specification and effec-
tive representations for the sets of vectors ΠnotWEC(S,B, a) and

ΠnotEC(S,B) defined in Section 6.1 and 6.2. In the following, we
introduce automata-based representations for specifications of finite-
state optimistic replication systems, for which this is possible.

Essentially, each Σ-labeled poset is abstracted as a sequence of
multisets of symbols in Σ which is then recognized by a finite-state
automaton where the transitions, instead of being labeled by symbols
as in the case of automata over words, are labeled by Presburger
constraints. By viewing multisets of symbols as vectors of integers,
a sequence of multisets is recognized by an automaton if there exists
a run such that the sequence satisfies the constraints imposed by
the transitions of this run at each step. The abstraction of a poset
as a sequence of multisets is defined based on its decomposition in
levels, used in algorithms for parallel tasks scheduling [22].

These automata offer a good compromise between simplicity and
expressiveness. Since they can recognize words over an alphabet Σ,
they can represent specifications, that contain only totally-ordered
sets, required by ORS based on the Last Writer Wins conflict
resolution policy [15]. They are also able to represent specifications
of ORS with commutative conflict resolution policies (i.e., the effect
of a set of conflicting operations does not depend on the order in
which they are read) such as the CRDTs [7, 20] (see Example 8). For
the latter case, the specifications represented by multiset automata
are not exactly the ones introduced by the designers of these
systems. However, we can prove that eventual consistency w.r.t the
original specification is equivalent to eventual consistency w.r.t. the
specification recognized by the multiset automaton. In the following,
we give a precise statement of this result.

Let S : M . D → P(PoSetM) be a specification and ∼ a
symmetric binary relation over M, called commutativity relation.
We say that an M-labeled poset (A,≤, `) is canonical w.r.t. ∼ iff
any two elements labeled by symbols, that are in the relation ∼,
are incomparable, i.e., for any x, y ∈ A, `(x) ∼ `(y) implies that
x 6≤ y and y 6≤ x. Then, the specification S is called ∼-closed iff,
for every a ∈ M . D, if S(a) contains a labeled poset ρ = (A,≤, `),
then S(a) also contains a labeled poset ρ′ = (A,≤′, `), which is
canonical w.r.t. ∼ and such that ≤′⊆≤. Furthermore, let S∼ be a
specification s.t. for every a ∈ M . D, S∼(a) is the set of posets in
S(a), that are canonical w.r.t. ∼.

For example, the labeled poset in Figure 1c, belonging to the
OR-Set specification, is canonical w.r.t the relation ∼O that consists
of any pair of methods having different arguments (e.g., add(i) and
rem(j) with i 6= j), and any pair formed of an add or a remove and
respectively, a lookup (e.g., add(i) and lookup(i)). The OR-Set
specification in Example 6 is ∼O-closed. Also, the MV-Register
specification in Example 5 is ∼M -closed, where ∼M contains any
pair of a wr(i) method and a rd method.

The following result follows from the fact that eventual consis-
tency imposes rather weak constraints on the local interpretations
associated to the operations in a trace.

Proposition 1. Let I be an ORS, ∼ a symmetric binary relation
over M, and S a ∼-closed specification. Then, I is eventually
consistent w.r.t S iff I is eventually consistent w.r.t S∼.

A specification S is called canonical w.r.t. ∼ iff for every
a ∈ M . D, S(a) contains only posets, that are canonical w.r.t.
∼. Proposition 1 shows that, for ORS like the MV-Register and the
OR-Set, it is enough to consider canonical specifications. In the
following, we define multiset automata and show how they can be
used to represent canonical specifications.

Let ρ = (A,≤, `) be a Σ-labeled poset. The ith level of ρ is
the set of elements x in A such that the length of the longest path
starting in x is i. A decomposition of ρ is a sequenceAn−1, . . . , A0,
where n − 1 is the length of the longest path in ρ and, for all
0 ≤ i ≤ n− 1, Ai is the ith level of ρ. Note that the decomposition
of a labeled poset is unique. The Σ-decomposition of ρ is the

∅

{0}

{1}

{0, 1}

#add(0) ≥ 1∧
#add(1) = 0

#add(0) = 0∧
#add(1) = 0∧
#rem(0) ≥ 1

(#rem(0) = 0∨
#add(0) ≥ 1)∧
#add(1) ≥ 1

#add(1) = 0∧
#rem(1) ≥ 1∧
(#rem(0) = 0∨
#add(0) ≥ 1)

#add(1) ≥ 1
#add(0) ≥ 0

#add(0) = 0∧
#add(1) = 0∧
#rem(1) ≥ 1

(#rem(1) = 0∨
#add(1) ≥ 1)∧
#add(0) ≥ 1

#add(0) = 0∧
#rem(0) ≥ 1∧
(#rem(1) = 0∨
#add(1) ≥ 1)

Figure 6: Some transitions of a multiset automaton that recognizes a
specification of an OR-Set with at most two elements. The method
synopsis lookup(0) . 0 labels the states ∅ and {1}, lookup(0) . 1
labels the states {0} and {0, 1}, and so on.

sequence Γn−1, . . . ,Γ0, where for all 0 ≤ i ≤ n − 1, Γi is the
Parikh image of Ai. By definition, the length of Γn−1, . . . ,Γ0 is n.

Example 7. [Σ-decomposition] Consider theMOR-S-labeled poset
in Figure 1c. TheMOR-S-decomposition of this labeled poset is:

Γ2 = {add(1), rem(1)},
Γ1 = {add(1), rem(1), rem(1), add(0)},
Γ0 = {add(1), rem(1), rem(0), rem(0)}.

We define an effective representation for isomorphism-closed
sets ofM-labeled posets by finite automata that recognize theirM-
decompositions, i.e., sequences of non-empty multisets of symbols
from M. In order to represent multisets of symbols from M, we
consider Presburger formulas ϕ over a set of free variables {#m |
m ∈ M}, where #m denotes the number of occurrences of the
symbol m. Let FM denote the set of all such formulas. Also, for any
Presburger formula ϕ, let [ϕ] denote the set of models of ϕ.

Definition 5 (Multiset Automata). A multiset automaton over M
andM . D is a tuple

A = (Q, δ,Q0, (Qa | a ∈ M . D)),

where Q is a finite set of states, δ ⊆ Q×FM ×Q is the transition
relation, Q0 ⊆ Q is the set of initial states, and, for any a ∈ M . D,
Qa ⊆ Q (we say that the states in Qa are labeled by a).

Intuitively, anM-labeled poset is recognized byA iff there exists
a run in A starting in the initial state such that the transitions are
labeled by formulas that are satisfied successively by the Parikh
images of the n− 1th level, n− 2th level, etc. (where n− 1 is the
length of the longest path). For example, the multiset automaton in
Figure 6 recognizes the labeled poset in Figure 1c because there
exists a run starting in the initial state that goes through the states
labeled by ∅, {1}, {0, 1}, {1} such that the associated sequence of
formulas describe theMOR-S-decomposition in Example 7.

A run of a multiset automaton A is a sequence q0
ϕ0→ q1

ϕ1→
. . .

ϕn−1→ qn, s.t. for every 0 ≤ i ≤ n− 1, (qi, ϕi, qi+1) ∈ δ. Such
a run recognizes anM-labeled poset ρ iff theM-decomposition of ρ
is Γn−1Γn−2 . . .Γ0 and for every 0 ≤ i ≤ n− 1, Γn−1−i ∈ [ϕi].
We say that the length of this run is n.

Given q ∈ Q, the set of allM-labeled posets recognized by a run
of a A, that ends in q, is denoted by L(A, q). The labeled posets in
L(A, q) are said to be interpreted to q. Given a set of states F ⊆ Q,
L(A, F) denotes the union of L(A, q) with q ∈ F .

Definition 6 (Canonical specifications and multiset automata). A
specification S canonical w.r.t ∼ is recognized by a multiset au-
tomaton A iff for every a ∈ M . D, S(a) is the set of posets in
L(A, Qa), that are canonical w.r.t. ∼.

Example 8. [A multiset automaton for the OR-Set] Let S2
OR-S be

a finite-state restriction of the OR-Set specification in Example 6
s.t. (1) the set object contains at most two elements 0 and 1 and (2)
S2
OR-S contains only posets canonical w.r.t ∼O . This specification

is defined over the set of methods add, rem, and lookup with
arguments 0 and 1, denoted byM2

OR-S. The automaton in Figure 6
recognizes S2

OR-S.
The following theorem is a direct consequence of the fact that,

for any multiset automaton A, one can construct a finite-automaton
over sequences whose language has exactly the same Parikh image
as the set of labeled posets recognized by A.
Theorem 4. Let S be a specification recognized by a multiset
automatonA. Then, for every a ∈ M . D, there exists an effectively
computable Presburger formula ψa s.t. Π(S(a)) = [ψa].

Theorem 4 implies that, for every a ∈ M . D, the set of minimal
elements in Π(S(a)) is effectively computable and that there exists
a computable Presburger formula describing ΠnotWEC(S,B, a).

Given B ⊆ M . D, we show that ΠnotEC(S,B) defined in
Section 6.2 is definable as an effectively computable Presburger
formula provided that the specification S is recognized by a multiset
automaton A satisfying some conditions.

First, A must recognize a prefix-closed set of labeled posets,
i.e.,

⋃
q L(A, q) is prefix-closed. This is quite natural since the

set of all posets in some specification, i.e.,
⋃
a S(a), is usually

prefix-closed. Another condition that A must satisfy can be roughly
stated as follows: given a set of methods M and a labeled poset
ρ interpreted to some state q, the fact that there exists an M -
completion of ρ interpreted to q′ depends only on the states q, q′,
and the set of methods M . Formally, for all q, q′ ∈ Q, M ⊆ M,
and ρ1, ρ2 ∈ L(A, q), ρ1 ∈ L(A, q′)M−1 iff ρ2 ∈ L(A, q′)M−1.
For example, if we consider the automaton in Figure 6, for any
labeled poset interpreted to the state labeled by {1} there exists an
{add(0)}-completion interpreted to the state labeled by {0, 1}. In
the case of the poset in Figure 1c this completion contains one
more element labeled by add(0), which is greater than all the
elements labeled by rem(0). Finally, we require that either A is
a word automaton, i.e., the transitions are labeled by Presburger
formulas that describe singleton multisets, or that for all q, if the
limit of L(A, q) contains an infinite poset ρ, then it also contains
an infinite poset ρ′ with the same Parikh image as ρ and such
that the decomposition of ρ′ has at most |Q| levels. This last
condition is satisfied by the automaton in Figure 6 (and an automaton
representing an MV-Register specification). Actually, the bound |Q|
can be replaced by the constant 2. It is satisfied also by an automaton
that describes a specification for the MV-Register. An automaton A
satisfying all these conditions is called completion-bounded.
Theorem 5. Let S be a specification recognized by a completion-
bounded multiset automaton A. Then, for every B ⊆ Σ, there
exists an effectively computable Presburger formula ϕB such that
[ϕB] = ΠnotEC(S,B).
Proof sketch. Given a ∈ M . D and M ⊆ M, we can prove that
there exists a maximal set of states FM,a such that S(a)M−1 =
L(A, FM,a). To decide if a state q belongs to FM,a, one has to
consider a minimal labeled poset interpreted to q and search for an
M -completion interpreted to a state in Qa. It can be proved that if
there exists such a completion there also exists one of bounded size.

Let B ⊆ M . D, MB = meth(B) and FB =
⋂
a∈B FMB ,a. If

FB = ∅ then ϕB = true. Otherwise, we compute a Presburger
formula ϕ that describes the complement of ΠnotEC(S,B), i.e., the

set of vectors v ∈ M→ N such that v + (m ∈ meth(B) 7→ ω) ∈
ΠM(lim(Quot(S,B))). By definition, Quot(S,B) = L(A, FB).

First, we prove that lim(L(A, FB)) is the union of lim(L(A, q))
with q ∈ FB . Let ρ be an infinite labeled poset, which has an infinite
set of increasing prefixes ρ0, ρ1, . . . in L(A, FB). Also, let θ0, θ1,
. . . be an infinite sequence of runs in A such that, for all i, θi is a
run that recognizes ρi. By Ramsey’s theorem, there exist infinitely
many runs θj1 , θj2 ,. . ., that end in the same state q ∈ FB . Thus,
the infinitely many posets ρj1 , ρj2 ,. . . belong to L(A, q), which
shows that ρ ∈ lim(L(A, q)). Next, we compute for each q ∈ FB ,
a formula ϕq that describes the set of vectors v ∈ M→ N such that
v + (m ∈ meth(B) 7→ ω) ∈ ΠM(lim(L(A, q))). If A is a word
automaton, then ϕq describes the Parikh image of all the sequences
accepted by a run of A that ends in a cycle on q with at least one
transition for each symbol in MB and only transitions labeled by
symbols inMB . Thus, ϕq is effectively computable. Otherwise, we
enumerate all the runs q0

ϕ0→ q1
ϕ1→ . . .

ϕn−1→ qn = q of A of length
at most |Q|. For every such run θ, every index 0 ≤ i ≤ n− 1, and
every surjective mapping f : MB → {i, . . . , n− 1}, we define a
run θf as follows. For each i ≤ j ≤ n − 1, let ϕ′j be a formula
describing the set of all multisets v of symbols fromM\MB s.t. for
every integer L, there exists a multiset modeled by ϕj , that consists
of v, at least L symbols m, for all m ∈ f−1(j), and possibly other
symbols fromMB . The run θf is obtained from θ by replacing ϕj
with ϕj ∧ ϕ′j , for all i ≤ j ≤ n − 1. The models of ϕq are the
Parikh images of all the posets, which are recognized by a run θf as
above. To prove that the formula ϕq is effectively computable, one
can use the same reasoning as in the proof of Theorem 4. Finally, ϕ
is the disjunction of ϕq with q ∈ FB and ϕB = ¬ϕ.

8. Decidability Results
We give decidability results for the case where the specifications
are given by multiset automata, and where the optimistic replication
system is composed of a fixed number of boolean programs com-
municating through uni-directional unbounded unordered channels.
Each boolean program has instructions send(msg, j) that can be
used to send a message msg, which belongs to a finite set of mes-
sages, to the site identified by j. When a message is sent from a
site i to a site j, it is put in an unbounded unordered channel chi,j
from which site j can read by using an instruction receive(msg, i).
Such systems are called finite-state optimistic replication systems.

In order to define an operational model for finite-state optimistic
replication systems, we use Vector Addition Systems with States
(VASSs for short). Formally, a VASS V is a tuple (Q, d, δ) where
Q is a finite set of states, d ∈ N is the number of counter variables
in the VASS, and δ ⊆ Q × Nd × Q is the transition relation.
The transition system induced by V is defined in the usual way.
A configuration of V is a pair (q,v) where q ∈ Q and v ∈ Nd.
There is a transition from a configuration (q,v) to a configuration
(q′,v′) iff there exists a transition (q,u, q′) such that v′ = v + u.

We briefly describe how to model a finite-state optimistic repli-
cation system I using a VASS V . A configuration of I is composed
of two parts: the first part is a tuple where each component describes
the state of a boolean program; the second part is a function, describ-
ing the content of each channel. In V , the first part can be encoded
in the finite set of states Q. Moreover, if Msg denotes the set of mes-
sages exchanged by the sites, the content of an unbounded unordered
channel ch of an optimistic replication system can be modeled by
|Msg| counters ch1, . . . , ch|Msg| used to count how many of each
kind of messages there are in ch.

We are given a finite-state optimistic replication system I
and a specification S described by a multiset automaton A. As
a direct consequence of Theorem 4, given a ∈ M . D, the set
of minimal elements in Π(S(a)) is effectively computable. This

implies that also the safety monitor Msafe can be effectively
constructed. Moreover, if V is a VASS modeling I, we can construct
the parallel composition V‖Msafe of V with Msafe. We get a
VASS Vsafe, on which we can solve the problem of control state
reachability, in order to know if it is possible to reach the error
state qerr of the monitor. The bound i for the minimal vectors Va
used to constructMsafe is exponential in |A| and thus, the number
of states in Msafe (and in V‖Msafe) is also exponential in |A|.
Moreover solving control-state reachability in VASS is known to be
EXPSPACE-complete, which leads to the following theorem.

Theorem 6 (Decidability of Safety). For a finite-state optimistic
replication system I (given as a VASS), and a specification S
described by a multiset automaton, the problem of checking the
safety of I w.r.t. S is decidable, and in 2-EXPSPACE.

The following lemma is used for proving the decidability of both
weak eventual consistency and eventual consistency.

Lemma 5. Let V = (Q, d, δ) be a VASS where the states are
labeled with atomic propositions coming from a finite set AP . Let ϕ
be a Presburger formula with d free variables, and P ⊆ AP . The
problem of checking the LTL formula

V |= ¬3(ϕ ∧©2P ∧
∧
p∈P

23p)

is decidable, and can be reduced to reachability in VASS.

Proof. For the formula to be satisfied, there must exist an infinite
execution in V of the form (q0,v0) . . . (qi,vi) . . . where (1) the
valuation of the counters in vi satisfies ϕ, (2) for all j > i, qj is
labeled by a proposition in P , and (3) for each p ∈ P , there are
infinitely many qj labeled by p.

First, Th. 2.14 in Valk and Jantzen [24] shows that it is possible
to compute the minimal elements of the upward-closed set of
configurations UP from which there exists an infinite execution
visiting only states labeled by a proposition in P and infinitely many
states labeled by p, for each p ∈ P . Then, we construct a Presburger
formula ϕ′ representing the intersection of [ϕ] andUP . The problem
of checking if there exists a reachable configuration in V satisfying
ϕ′ can be reduced to (configuration) reachability in VASS [4].

Theorem 7 (Decidability of (Weak) Eventual Consistency). Given
a finite-state optimistic replication system I, and a specification
S described by a multiset automaton, the problem of checking the
(weak) eventual consistency of I w.r.t. S is decidable.

9. Related Work
Our definition of eventual consistency is inspired by the one given
in Burckhardt et al. [6] but it differs from it on several points. In
that paper, eventual consistency is defined over traces that are also
posets of operations, but the partial order, called session order,
is defined such that all the operations performed by an user in a
session are totally ordered and operations from different sessions
are incomparable. Then, a trace is eventually consistent iff there
exist two relations over the operations in the trace, called arbitration
and resp., visibility relation (denoted by ar and resp., vis), such that
(1) the union of vis with the session order is acyclic, (2) for every
operation o, the return value of o is associated by the specification
to the pair formed of theM-labeled poset (vis−1(o), vis,meth) and
the projection of ar over the operations in vis−1(o), (3) ar is a total
order, and (4) every operation o is not visible only to some finite set
of operations, i.e., for every o, {o′ | (o, o′) 6∈ vis} is finite.

First, the partial orders over operations that define a trace have
different meanings. The operations in a session can be submitted
to multiple sites and thus, an infinite extension of the execution in
Fig. 2b, where each operation appearing in the figure is executed in a
different session, is declared to be eventually consistent although the

union of vis with the session order is acyclic. Then, the definition
of a specification in Burckhardt et al. [6] is different because it
contains labeled posets augmented with a total order. With our
understanding of ORS we think that it is not necessary to add such
total orders. A specification should model only the semantics of the
operations and some abstraction of the conflict resolution policy. The
formalization of the fact that sites will eventually see a consistent
state is also different. In fact, the formalization in Burckhardt et al.
[6] does not apply to systems that perform speculative executions
(this is remarked also by the authors). Intuitively, the order in which
two operations are executed cann’t change once they are visible.
For example, two operations o1, o2 with vis−1(o1) = vis−1(o2),
which are instances of the same method, must return the same value.
But, for this class of systems, it is possible that the order in which
the operations in vis−1(o1) are executed changes in between the
execution of o1 and the execution of o2 and thus, it is possible that
the two operations return different values. Another difference is that
in our case the local interpretations may converge toward a partial
order over the operations in the trace, while in Burckhardt et al.
[6] they can converge only toward a total order. For instance, this
allows that the sites don’t have to agree on the order between two
conflicting operations, which are commutative.

There are other works that provide formal definitions for eventual
consistency, e.g., [3, 9, 20, 21], but they either consider its weaker
form, i.e., quiescent consistency, or they use a particular model for
the ORS. In general, there exist ORS that guarantee stronger criteria
than eventual consistency, e.g., strong eventual consistency [20] or
causal+ consistency [17]. Stronger notions for the safety part of
eventual consistency, e.g., causal consistency or session guarantees,
are formalized in Burckhardt et al. [6] by adding more requirements
on the session order and the relation vis. With slight modifications,
such requirements can be also added to our definition.

There are works that define decision procedures for the veri-
fication of correctness criteria like sequential consistency or lin-
earizability, e.g., [1, 5, 8, 11]. The techniques used in these cases
are different from the ones introduced in this paper for eventual
consistency, in particular because they are defined over finite traces.

10. Conclusion
We provide an algorithmic approach for verifying eventual consis-
tency of ORS. Our approach is based on reducing the problem of
checking eventual consistency to reachability and model-checking
problems. This connection is a fundamental result which opens the
doors to using existing – exact or approximate – verification tools
for message-passing programs (depending on the considered class
of systems for the implementation) in the context of verifying ORS.

Our reduction is defined for a general, formally defined, notion
of eventual consistency, allowing to reason about a wide class of
systems, including those using speculative executions and roll-backs
such as Bayou [23] or Telex [2]. In fact, one of the contributions of
our paper is to provide such a definition of eventual consistency, as
well as a new class of automata that is expressive enough to capture
usual specifications of distributed data structures, and which has the
needed properties for use in algorithmic verification.

We have in addition shown that when implementations are
defined as communicating boolean programs through unbounded
unordered channels, the problem of verifying eventual consistency is
decidable. As for complexity, our algorithm for checking the safety
part of eventual consistency is in 2EXPSPACE, but the problem
is EXPSPACE-hard (it is at least as hard as state reachability in
VASS). Therefore, an interesting question is whether it is possible
to match the two bounds in this case. For the general case of
eventual consistency (with liveness), we know that the problem is
also EXPSPACE-hard, and that it can be solved using configuration
reachability in VASS, which is decidable but with an unknown

upper-bound. Then, an interesting question is whether configuration
reachability in VASS is needed. We believe that this is the case.

References
[1] R. Alur, K. L. McMillan, and D. Peled. Model-checking of correctness

conditions for concurrent objects. Inf. Comput., 160(1-2):167–188,
2000.

[2] L. Benmouffok, J.-M. Busca, J. M. Marquès, M. Shapiro, P. Sutra, and
G. Tsoukalas. Telex: A semantic platform for cooperative application
development. In CFSE, Toulouse, France, 2009.

[3] A.-M. Bosneag and M. Brockmeyer. A formal model for eventual
consistency semantics. In IASTED PDCS, pages 204–209, 2002.

[4] A. Bouajjani and P. Habermehl. Constrained properties, semilinear
systems, and petri nets. In CONCUR, pages 481–497, 1996.

[5] A. Bouajjani, M. Emmi, C. Enea, and J. Hamza. Verifying concurrent
programs against sequential specifications. In ESOP, 2013.

[6] S. Burckhardt, A. Gotsman, and H. Yang. Understanding eventual
consistency. Technical Report MSR-TR-2013-39, Microsoft Research.

[7] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
amazon’s highly available key-value store. In SOSP, 2007.

[8] A. Farzan and P. Madhusudan. Monitoring atomicity in concurrent
programs. In CAV 2008, pages 52–65. Springer.

[9] A. Fekete, D. Gupta, V. Luchangco, N. A. Lynch, and A. A. Shvartsman.
Eventually-serializable data services. In PODC, pages 300–309, 1996.

[10] S. Gilbert and N. A. Lynch. Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services. SIGACT News,
33(2):51–59, 2002.

[11] T. A. Henzinger, S. Qadeer, and S. K. Rajamani. Verifying sequential
consistency on shared-memory multiprocessor systems. In CAV,
volume 1633 of LNCS, pages 301–315, 1999.

[12] M. Herlihy and N. Shavit. The art of multiprocessor programming.
[13] M. Herlihy and J. M. Wing. Linearizability: A correctness condition for

concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492,
1990.

[14] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M. Satya-
narayanan, R. N. Sidebotham, and M. J. West. Scale and performance
in a distributed file system. ACM Trans. Comput. Syst., 6(1):51–81,
1988.

[15] P. R. Johnson and R. H. Thomas. The maintenance of duplicate
databases. Technical Report Internet Request for Comments RFC
677, Information Sciences Institute, January 1976.

[16] A.-M. Kermarrec, A. I. T. Rowstron, M. Shapiro, and P. Druschel. The
icecube approach to the reconciliation of divergent replicas. In PODC,
pages 210–218, 2001.

[17] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Don’t
settle for eventual: scalable causal consistency for wide-area storage
with COPS. In SOSP, pages 401–416, 2011.

[18] J. Michaux, X. Blanc, M. Shapiro, and P. Sutra. A semantically rich
approach for collaborative model edition. In SAC, pages 1470–1475,
2011.

[19] Y. Saito and M. Shapiro. Optimistic replication. ACM Comput. Surv.,
37(1):42–81, 2005.

[20] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. A compre-
hensive study of Convergent and Commutative Replicated Data Types.
Rapport de recherche RR-7506, INRIA, Jan. 2011.

[21] M. Shapiro, N. M. Preguiça, C. Baquero, and M. Zawirski. Conflict-free
replicated data types. In SSS, pages 386–400, 2011.

[22] O. Sinnen. Task Scheduling for Parallel Systems. 2007.
[23] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer,

and C. H. Hauser. Managing update conflicts in bayou, a weakly
connected replicated storage system. SIGOPS Oper. Syst. Rev., 29(5):
172–182, Dec. 1995.

[24] R. Valk and M. Jantzen. The residue of vector sets with applications to
decidability problems in petri nets. Acta Inf., 21:643–674, 1985.

	Introduction
	Preliminaries
	Modeling optimistic replication systems
	Eventual consistency
	Safety
	Liveness
	Weak Eventual Consistency
	Eventual Consistency

	Specifications of finite-state optimistic replication systems
	Decidability Results
	Related Work
	Conclusion

