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Abstract
Efficient implementations of concurrent objects such as semaphores,
locks, and atomic collections are essential to modern computing.
Programming such objects is error prone: in minimizing the syn-
chronization overhead between concurrent object invocations, one
risks the conformance to reference implementations — or in formal
terms, one risks violating observational refinement. Precisely testing
this refinement even within a single execution is intractable, limiting
existing approaches to executions with very few object invocations.

We develop scalable and effective algorithms for detecting re-
finement violations. Our algorithms are founded on incremental,
symbolic reasoning, and exploit foundational insights into the
refinement-checking problem. Our approach is sound, in that we de-
tect only actual violations, and scales far beyond existing violation-
detection algorithms. Empirically, we find that our approach is prac-
tically complete, in that we detect the violations arising in actual
executions.

Categories and Subject Descriptors F.3.1 [Specifying and Verify-
ing and Reasoning about Programs]: Mechanical verification

General Terms Reliability, Verification

Keywords Concurrency; Refinement; Linearizability

1. Introduction
Efficient implementations of concurrent objects such as semaphores,
locks, and atomic collections including stacks and queues are vital
to modern computer systems. Programming them is however error
prone. To minimize synchronization overhead between concurrent
object-method invocations, implementors avoid blocking operations
like lock acquisition, allowing methods to execute concurrently.
However, concurrency risks unintended inter-operation interference,
and risks conformance to reference implementations. Conformance
is formally captured by observational refinement: given two libraries
L1 and L2 implementing the methods of some concurrent object, we
say L1 refines L2 if and only if every computation of every program
using L1 would also be possible were L2 used instead.

Verifying observational refinement is intrinsically hard: it is
undecidable even for finite-state implementations whose methods
can be called concurrently by arbitrarily-many threads [4]. In fact,
even checking the conformance of a single program execution using
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one library with respect to another is intractable [10]. In practice,
fully-automated techniques for checking observational refinement
have been limited to detecting violations in executions with very
few library-method invocations.

In this work we develop a fully-automated and highly-scalable
means of detecting violations to observational refinement by moni-
toring program executions. The key challenge we address is how to
achieve scalability while maintaining precision/completeness. De-
tecting refinement violations may require observing large executions,
with many operations, i.e., object-method invocations. However, the
complexity of precise violation-checking is exponential in the num-
ber of operations. Essentially, this check amounts to considering
every possible linearization of an execution’s operations, which
are only partially-ordered by their happens-before relation. Only
if none of the linearizations represent a valid sequence of method
invocations does the execution witness a violation.

Our approach is based on sound yet possibly-incomplete means
for avoiding the practical scalability pitfalls, the most immediate pit-
fall being the explicit enumeration of possible linearizations. We dis-
cover that naturally-occurring concurrent objects, including atomic
collections, locks, and semaphores, can be expressed symbolically,
in a first-order language over their method names, argument/return
values, and invocation-ordering constraints. Ultimately this allows
us to reduce violation detection for single executions to satisfiabil-
ity in propositional logic. Practically speaking, this allows us to
exploit the highly-developed algorithms of modern symbolic rea-
soning engines in place of the explicit enumeration of linearizations.
Furthermore, symbolic reasoning lends itself to incrementality: as
the symbolic representation of each successive execution step differs
monotonically, only by the addition of a new operation or return
value, we can reuse all logical implications of previous steps. Con-
ceptually, this avoids recomputing the set of possible linearizations
from scratch after each execution step.

While exploiting symbolic reasoning engines makes sense prac-
tically, and is likely to be more efficient, the link to symbolic reason-
ing also reveals insights leading to more-drastic optimizations. In
particular, we notice that in proving satisfiability, the solver must es-
sentially build a model of some linearization of the given execution
which represents a valid object method-invocation sequence. In do-
ing so, the solver may need to make branching decisions in addition
to logical deductions, or unit propagation, possibly backtracking
later, about

• how pending operations should be completed/dropped, and
• which operations should be linearized before others.

However, from the perspective of detecting violations, it is always
sound to forgo such costly branching/backtracking and, for instance,
wait until the given pending operations are actually completed
later in the execution to determine their return values. Though it
is unclear whether such strategies might actually be complete in
theory, we hypothesize that they are effective in practice, uncovering
the violations which surface in the logs of actual executions.



struct node *Top;

void push(int v):
struct node *n,*t;
n = malloc(sizeof( *n));
n->data = v;
do {

struct node *t = Top;
n->next = t;

} while (! CAS (&Top, t, n));

int pop():
struct node *n,*t;
do {

*t = Top;
if (t==NULL) return EMPTY;
n = t->next;

} while (! CAS (&Top, t, n))
int result = t->data;
free(t);
return result;

struct node {
int data;
struct node *next;

}

void Thread1():
push(1);
int x = pop();

void Thread2():
int y = pop();
push(2);
push(3);
int z = pop();

Figure 1. An implementation of Treiber’s stack. The pop operation
returns the value EMPTY when the stack is empty.

Though limiting symbolic reasoning to saturation, or unit propa-
gation, does avoid the exponential cost in the number of operations,
a truly useful runtime monitor for observational refinement ought
to be linear in the number of operations, and incur only a constant
space overhead; otherwise it will progressively retard program exe-
cution and/or eventually exhaust program memory. Achieving this
complexity goal implies that the monitor cannot store all previously-
executed operations. However, simply forgetting arbitrary operations
is unsound, in the sense that we may conclude a violation when none
actually occurred. For instance, if a monitor for an atomic queue
object observes ordered enqueue(a) and enqueue(b) operations, and
dequeue(b), having dropped dequeue(a), the monitor may detect a
violation, thinking dequeue(b) should not precede dequeue(a). To
resolve this issue, we develop a sound theory for the removal of
matched operations, e.g., the enqueue operations together with the
dequeue operations removing the same added elements. We hypoth-
esize that such strategies are, too, effective in practice, in that they
continue to catch practically-occurring violations.

Empirically we demonstrate that our violation-detection strate-
gies are profoundly-more scalable than existing techniques. We also
validate our aforementioned completeness hypotheses: that in prac-
tice, violations are caught despite the possibility for incompleteness.

To summarize, we make the following contributions:

• First-order logical characterizations of naturally-occurring con-
current objects, allowing for symbolic reasoning about observa-
tional refinement (§3).
• A reduction from refinement-violation detection for single exe-

cutions to propositional logic satisfiability (§4).
• A sound theory of matched-operation removal, allowing the

scalability required for runtime monitoring (§5).
• Empirical validation that our violation-detection optimizations

are scalable and effectively-complete (§6).

We begin by formalizing observational refinement (§2), and con-
clude with a discussion (§7) and mention of related work (§8).

2. Observational Refinement
Figure 1 lists a non-blocking stack [19] which stores its elements
in a singly-linked list rooted at Top, and avoids blocking lock
acquisitions in favor of non-blocking compare-and-swap (CAS)
instructions in order to maximize parallelism. In one atomic step,
the CAS instruction assigns Top = n only if Top == t.

Unfortunately this implementation suffers from a subtle concur-
rency bug [15] exposed by the two-thread program of Figure 1 via
the execution depicted in Figure 2(a). Essentially, Thread 1 wrong-
fully assumes the absence of interference from other threads on
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(a) An execution e of the program; it depicts calls, returns,
and assignments, and time progresses from left to right.
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(b) The history of the above execution.
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(c) A weaker history.

Figure 2. An execution and its history.

the successful CAS operation. Thread 1 is preempted right before
executing its CAS in the pop method; at that moment, its t vari-
able points to the first element in the list at address 0xFF added by
push(1), and n == NULL. While Thread 2 updates the list with
two additional elements, added by push(2) and push(3), the t
variable of Thread 1 still points to the list’s first element at address
0xFF, which was freed by Thread 2’s call to pop, and reallocated
in the call to push(3). When Thread 1 resumes, its CAS succeeds,
effectively removing two elements from the list instead of one. The
final pop of Thread 2 thus erroneously returns EMPTY. Intuitively,
this is a problem because the EMPTY value should not have been
returned since more elements have been pushed than popped prior
to Thread 2’s final pop operation. This bug exposes the fact that our
CAS-based implementation does not conform to programmers’ ex-
pectations of a stack object whose operations execute atomically. In
particular, the assignment z = EMPTY should never have occurred.

Formally this conformance is observational refinement. Essen-
tially, a library implementation L1 refines L2 if every observable
behavior of programs using L1 is also observable using L2. This is
not the case between the CAS-based implementation L1 of Figure 1
and an atomic implementation L2, since z = EMPTY is observable
with L1 yet not with L2.

We capture the interaction between programs and libraries
by their histories, representing the partial happens-before orders
of library method invocations. Fixing arbitrary sets O, M, and
V of operation identifiers, method names, and parameter/return
values, respectively, we define the set of operation labels as L =
(M × V × (V ∪ {⊥})). We write m(u) ⇒ v to denote the label
` = 〈m,u, v〉. When v = ⊥ we say ` is pending, and otherwise
completed. A history h = 〈O,<, f〉 is a partial order < on a set
O ⊆ O of operations labeled by f : O → L such that operations
with pending labels are maximal. An operation o with label ` is
an `-operation, and o is pending/completed when ` is. We say h is
sequential when < is a total order on O, and (in)complete when
(not) all operations are complete. A history set is sequential when it
contains only sequential histories.

Example 2.1. The history of Figure 2(b) captures the execution of
Figure 2(a), where arrows depict the transitive reduction of the order
relation. Essentially, operations o1 and o2 are ordered if o1 happens
before o2. For example, although the push(1)-operation precedes
pop⇒ 3, since the push(1)-operation returns before the (pop⇒ 3)-
operation is called, the (pop ⇒ 1)-operation is incomparable to
pop⇒ 3, since it returns after the (pop⇒ 3)-operation is called.



This notion of histories gives rise to a natural weaker-than
relation� relating any two histories h1 and h2 such that h2 includes
all completed operations of h1, and preserves the order between the
operations common with h1. Pending operations in h1 can be either
omitted or completed in h2. Formally, 〈O1, <1, f1〉 � 〈O2, <2, f2〉
iff there exists an injection g : O2 → O1 such that

• o ∈ ran(g) when f1(o) = m(u)⇒ v and v 6= ⊥,
• g(o1) <1 g(o2) implies o1 <2 o2 for each o1, o2 ∈ O2,
• f1(g(o))� f2(o) for each o ∈ O2.

where (m1(u1) ⇒ v1) � (m2(u2) ⇒ v2) iff m1 = m2,
u1 = u2, and v1 ∈ {v2,⊥}. When the injection g need be
fixed, we write h1 �g h2. We say h1 and h2 are equivalent when
h1 � h2 and h2 � h1. We do not distinguish between equivalent
histories, and we assume every set H of histories is closed under
inclusion of equivalent histories, i.e., if h1 and h2 are equivalent
and h1 ∈ H , then h2 ∈ H as well. Finally, H denotes the closure
{h : ∃h′ ∈ H. h � h′} of a history set H under weakening.

Example 2.2. The history of Figure 2(c) is weaker than that of
Figure 2(b). While one of the two pending pop-operations is mapped
to the completed (pop⇒ 3)-operation, the other is dropped.

We model libraries as sets of histories. Since libraries only dictate
methods’ executions between their respective calls and returns, for
any execution they admit, they must also admit executions with
weaker inter-operation ordering, in which calls may happen earlier,
and/or returns later. Thus any weakening of a history admitted by
a library must also be admitted. Formally, a library L is a set of
histories closed under weakening, i.e. L = L, and a kernel of L
is any set H such that H = L. A library L is called atomic if it
has a sequential kernel. Atomic libraries are often considered as
specifications for concurrent objects. In practice, libraries can be
made atomic by guarding their methods bodies with global lock
acquisitions.

Example 2.3. The atomic stack is the library whose unique kernel
is the set of all sequential histories for which the return value of each
pop operation is either the argument value v to the last unmatched
push operation, or EMPTY if there are no unmatched push operations.

We define observational refinement between two libraries as
history-set inclusion, saying L1 refines L2 iff L1 ⊆ L2. Although
this refinement is typically defined with respect to the admissibility
of program executions, recent work shows these definitions are
equivalent [5].

3. Refinement via Symbolic Reasoning
In this section we represent the kernels of typical concurrent objects,
including atomic collections and locks, in a simple first-order
language. Besides function and predicate symbols describing the
operation labels and the order relation of a history, this language
includes a predicate match describing a matching function M that
maps operations o which remove or test the presence of values to
the operations M(o) which added them. For instance, a matching
function M for a history of the atomic stack object is injective, and
maps each (pop⇒ v1)-operation o to a push(v2)-operation M(o)
such that v1 = v2 when M(o) is defined. Similarly, the matching
functionM for an atomic lock object is also injective, and maps each
unlock operation o to a lock operation M(o) if M(o) is defined.

Figures 3–7 list the properties characterizing typical concur-
rent objects in a first-order language whose variables range over
operation identifiers, and whose functions and predicates are inter-
preted over the operation labels and order relation of a history, and
a given matching function. We use the function symbols meth-od,
arg-ument, and ret-urn, as well as the predicate symbols match

ATOMIC

∀x. ¬b(x, x) ∧ ∀x1, x2, x3. (b(x1, x2) ∧ b(x2, x3))⇒ b(x1, x3)

∀x1, x2. b(x1, x2)⊕ b(x2, x1) ∧ ∀x. ret(x) 6= ⊥
COMPLETED

∀x. ¬b(x, x) ∧ ∀x1, x2, x3. (b(x1, x2) ∧ b(x2, x3))⇒ b(x1, x3)

∀x. ret(x) 6= ⊥
INJECTIVE

∀x, y1, y2. match(x, y1) ∧match(x, y2)⇒ y1 = y2

INJECTIVE(X)

∀x, y1, y2. match(x, y1) ∧match(x, y2) ∧meth(y1) = meth(y2) = X

⇒ y1 = y2

SYMMETRIC

∀x1, x2.match(x1, x2)⇔ match(x2, x1)

TOTAL(Y )

∀y.meth(y) = Y ⇒ ∃x.match(x, y) ∧ b(x, y)

MATCH1(X,Y )

∀x, y. match(x, y)⇒ meth(x) = X ∧meth(y) = Y ∧ arg(x) = ret(y)

MATCH2(X,Y1, Y2)

∀x, y. match(x, y)⇒ meth(x) = X ∧ (meth(y) = Y1 ∨meth(y) = Y2)

∧ arg(x) = arg(y)

MATCH3(X,Y )

∀x, y. match(x, y)⇒ meth(x) = X ∧meth(y) = Y

Figure 3. Generic formulas used across many objects (⊕ denotes
exclusive or).

and b-efore for this purpose. Note that we interpret the predicate
match(x1, x2) by o1 =M(o2) when each xi binds to oi. We rep-
resent the kernel H of each of the following objects by a first-order
formula THEORY(H) such that h ∈ H iff h,M |= THEORY(H),
for some M , where the satisfaction relation , |= is defined as
usual, using the aforementioned interpretations.

Example 3.1 (Atomic collections). The kernel of atomic queue
objects is represented by the conjunction of properties stating:

• values are added before they are removed (ADDREM),
• values are removed in the order they are added (FIFO), and
• remove operations returning empty are not surrounded by match-

ing adds and removes (EMPTY).

We thus represent the kernel Hq of atomic queues by

ATOMIC ∧ ADDREM ∧ FIFO ∧ EMPTY

Similarly, we represent the kernel Hpq of priority queues by

ATOMIC ∧ ADDREM ∧MAX ∧ EMPTY

and the kernel Hst of atomic stacks by

ATOMIC ∧ ADDREM ∧ LIFO ∧ EMPTY

Additionally, we enforce the sanity of the underlying matching func-
tion by adding the formulas MATCH1(add, rem) and INJECTIVE,
ensuring removes are matched to adds adding the removed value
and that every two removes are matched to different adds.

Example 3.2 (Atomic sets). Unlike the atomic queues and stacks
which behave as multisets and return removed values, the atomic
set’s remove method takes as an argument a value to be removed,
and succeeds whether or not the value is present. The formulas



ADDREM

∀r. meth(r) = rem ∧ ret(r) 6= empty⇒ ∃a. match(a, r) ∧ b(a, r)

EMPTY

∀e, a. meth(e) = rem ∧ ret(e) = empty ∧meth(a) = add

∧ b(a, e)⇒ ∃r. match(a, r) ∧ b(r, e)

FIFO

∀a1, a2, r2. meth(a1) = add ∧match(a2, r2)

∧ b(a1, a2)⇒ ∃r1. match(a1, r1) ∧ b(r1, r2)

LIFO

∀a1, a2, r1. meth(a2) = add ∧match(a1, r1)

∧ b(a1, a2) ∧ b(a2, r1)⇒ ∃r2. match(a2, r2) ∧ b(r2, r1)

MAX

∀a1, a2, r1. meth(a2) = add ∧match(a1, r1) ∧ b(a2, r1)

∧ arg(a1) < arg(a2)⇒ ∃r2.match(a2, r2) ∧ b(r2, r1)

Figure 4. Formulas for collection objects.

INCLUDE and EXCLUDE specify when a contains-operation may
return true. We represent the kernel Hs of atomic sets by

ATOMIC ∧ INCLUDE ∧ EXCLUDE

Additionally, we enforce the sanity of the underlying matching
function by adding the formulas: MATCH2(add, remove, contains)
ensuring removes and contains returning true are matched to
adds of the same value, INJECTIVE(remove) ensuring that every
two removes are matched to different adds, ADDREM ensuring
that the matching function maps removes to preceding adds, and
MATCHINGADD (resp., MATCHINGREM) ensuring that every add
matched to a remove (resp., remove matched to an add) is the first
in a sequence of adds adding (resp., removes removing) the same
value.

Example 3.3 (Atomic register). Atomic registers with read and
write methods essentially ensure that each value read is written by
the most recent WRITE-operation. We represent the kernel Hr of
atomic registers by

ATOMIC ∧ READWRITE ∧ READFROM

and enforce the sanity of the underlying matching function by adding
the formulas INJECTIVE and MATCH1(write, read), ensuring reads
are matched to writes writing the read value.

Example 3.4 (Synchronization objects). Atomic lock objects with
lock and unlock methods ensure that at most one thread holds a lock
at any moment. We represent the kernel of atomic locks by

ATOMIC ∧ TOTAL(unlock) ∧MUTEX

and enforce coherent matching by adding MATCH3(lock, unlock)
and INJECTIVE formulas. Atomic semaphore objects with acquire
and release methods generalize atomic locks, ensuring that at most
n copies of a resource are held at any moment, for some fixed n ∈ N.
We represent the kernel of atomic semaphores by

ATOMIC ∧ TOTAL(release) ∧ LIMIT

and enforce coherent matching by adding MATCH3(acquire, release)
and INJECTIVE formulas.

Exchanger objects are used to pair up threads so they can
atomically swap values. The only method of this object is exchange,
which receives as input a value v that a thread it offers to swap and
returns a value v′ 6= null if it has paired up with an exchange(v′)

INCLUDE

∀c. meth(c) = contains ∧ ret(c) = true

⇒ ∃a. match(a, c) ∧ b(a, c)

∀c, a, r.meth(c) = contains ∧ ret(c) = true

∧meth(r) = remove ∧meth(a) = add ∧match(a, c) ∧match(a, r)

⇒ b(a, c) ∧ b(c, r)

EXCLUDE

∀c, a. meth(c) = contains ∧ ret(c) = false

∧meth(a) = add ∧ arg(c) = arg(a) ∧ b(a, c)

⇒ ∃r. meth(r) = remove ∧match(a, r) ∧ b(r, c)

ADDREM

∀a, r.match(a, r) ∧meth(r) = remove⇒ meth(a) = add ∧ b(a, r)

MATCHINGADD

∀a, x, p. match(a, x) ∧ arg(p) = arg(a)

∧ ∀q. b(q, p) ∨ b(a, q) ∨ arg(q) 6= arg(a)

⇒ meth(p) = remove ∨ (meth(p) = contains ∧ ret(p) = false)

MATCHINGREM

∀a, r, p.match(a, r) ∧ arg(p) = arg(r)

∧ ∀q. b(q, p) ∨ b(r, q) ∨ arg(q) 6= arg(r)

⇒ meth(p) = add ∨ (meth(p) = contains ∧ ret(p) = true)

Figure 5. Formulas for set objects.

READWRITE

∀r. meth(r) = read⇒ ∃w.match(w, r) ∧ b(w, r)

READFROM

∀w1, r.meth(w1) = write ∧meth(r) = read ∧ ¬match(w1, r)

∧ b(w1, r)⇒ ∃w2. match(w2, r) ∧ b(w1, w2) ∧ b(w2, r)

Figure 6. Formulas for register objects.

operation. The latter operation will return the value v. We represent
the kernel of exchanger objects by

COMPLETED ∧ EXCHANGE

The kernel of this object contains non-sequential histories because
the time spans of exchange operations that pair up overlap. Addition-
ally, we enforce the sanity of the underlying matching function by
adding the formulas: MATCH1(exchange, exchange), INJECTIVE,
and SYMMETRIC ensuring that the matching function is injective
and symmetric and that it associates operations returning a value v
to operations that receive v as input, and MATCHOVERLAP ensur-
ing that matched operations overlap in time.

4. Refinement via Propositional Reasoning
In this section we demonstrate that the history membership prob-
lem h ∈ H reduces to propositional satisfiability, given a for-
mula THEORY(H) characterizing the histories of the library ker-
nel H . Note that h ∈ H iff h is weaker than some history
h′ ∈ H , or equivalently weaker than some history h′ such that
h′,M |= THEORY(H), for some matching function M . When
h is complete, the fact that any stronger history contains exactly
the same set of operations enables the construction of a formula
STRONGER(h) characterizing the histories stronger than h. Together



MUTEX

∀`1, `2. meth(`1) = meth(`2) = lock ∧ b(`1, `2)

⇒ ∃u. meth(u) = unlock ∧ b(`1, u) ∧ b(u, `2)

LIMIT

∀x0, . . . , xn.
∧

0≤i<n

b(xi, xn) ∧
∧

0≤i≤n

meth(xi) = acquire

⇒ ∃r. b(r, xn) ∧
∨

0≤i≤n

match(r, xi)

EXCHANGE

∀x. ret(x) 6= null⇒ ∃y.match(x, y)

MATCHOVERLAP

∀x1, x2. match(x1, x2)⇒ ¬b(x1, x2) ∧ ¬b(x2, x1)

Figure 7. Formulas for synchronization objects.

with THEORY(H), this formula describes all stronger histories satis-
fying THEORY(H), and is therefore equivalent to h ∈ H . We show
how to construct these formulas in Section 4.1.

When h contains pending operations, stronger histories h′ may
contain fewer operations, since some pending operations of h may
be omitted in h′, and others completed. In this case the joint
satisfiability of THEORY(H) and STRONGER(h) must be enhanced
with additional constraints to ensure that the operations of h′ include
at least the completed operations of h, and possibly some pending
operations of h. We tackle this problem in Section 4.2.

4.1 Complete Histories
The following lemma characterizes the weaker than relation between
histories. It states that a history h′ stronger than a complete history
h can only differ in having more order constraints between the
operations, the operation labels being the same in h and h′.

Lemma 4.1. A complete history h = 〈O,<, f〉 is weaker than
another history h′ = 〈O′, <′, f ′〉 iff there exists a bijection g :
O′ → O such that:

• operations related by g have the same label, i.e., for each o ∈ O,
f(o) = f ′(g−1(o)), and
• order constraints are preserved from h to h′, i.e., for each
o, o′ ∈ O, o < o′ implies g−1(o) <′ g−1(o′).

We characterize histories stronger than h by the formula
STRONGER(h), defined as the conjunction

DOMAIN(h) ∧ LABELS(h) ∧ ORDER(h)

using the formulas of Figure 8 characterizing the identifiers, labels,
and order constraints of h. Note that the DOMAIN(h) formula
restricts the interpretation domain of each variable to the operations
of h. As a consequence of Lemma 4.1, the formula STRONGER(h)
does indeed characterize all histories at least as strong as h.

Lemma 4.2. Let h and h′ be histories. Then h � h′ iff h′ |=
STRONGER(h).

It follows that the library membership test h ∈ H for complete
histories h reduces to first-order satisfiability.

Theorem 1. Let h be a complete history, and H a history set. Then
h ∈ H iff STRONGER(h) ∧ THEORY(H) is satisfiable.

As long as the formula THEORY(H) contains only a fixed set
of predicates e.g., = and ≤, as is the case for all formulas of Fig-
ures 3–7, satisfiability of STRONGER(h) ∧ THEORY(H) reduces
to propositional satisfiability. Intuitively this holds since the do-

DOMAIN(h)
∧

o1,o2∈O
o1 6= o2 ∧ ∀x.

∨
o∈O

x = o

LABELS(h)
∧

f(o)=(m(u)⇒v)

meth(o) = m ∧ arg(o) = u ∧ [ret(o) = v]v 6=⊥

ORDER(h)
∧

o1<o2

b(o1, o2)

USED ∀x. ret(x) 6= ⊥ ⇒ used(x)

Figure 8. Formulas characterizing histories h = 〈O,<, f〉
(ret(o) = v is present in LABELS(h) only if v 6= ⊥).

main of (quantified) variables is restricted to operations appear-
ing in h. Thus for a given h and H , we construct the proposi-
tional formula [[STRONGER(h) ∧ THEORY(H)]] by replacing each
universally-quantified subformula ∀x.ϕ by

∧
o∈O ϕ[x 7→ o], and

each existentially-quantified subformula ∃x.ϕ by
∨

o∈O ϕ[x 7→ o].
It follows that this propositional formula is equisatisfiable to the
original first-order formula, and is constructed in polynomial time.

Corollary 1. Let h be a complete history, andH a history set. Then
h ∈ H iff the propositional formula

[[STRONGER(h) ∧ THEORY(H)]]

is satisfiable.

4.2 Incomplete Histories
The pending operations of a history h may be omitted in a stronger
history or they may be completed with arbitrary return values.
Therefore, the set of histories stronger than a history h can be
characterized by a formula obtained from STRONGER(h) by adding
a domain predicate used that is constrained to contain all the
completed operations of h and by omitting the constraints on the
return values of pending operations. Moreover, every operation of h
whose return value is different from ⊥ in a model of this formula
(this may be an operation which is pending in h) should satisfy used.
It can be proved that every history stronger than h corresponds to a
model of this formula, projected on the set of operations satisfying
used.

Thus, we override the STRONGER(h) formula for incomplete
histories h as the conjunction

DOMAIN(h) ∧ LABELS(h) ∧ ORDER(h) ∧ USED,

where USED is defined in Figure 8.
For arbitrary, not necessarily complete, histories h, the models of

STRONGER(h) are histories paired with an interpretation U : O →
B for the domain predicate used, mapping the operations O of h to
{true, false} . Given such a model 〈h, U〉, let U(h) be the history
obtained from h by deleting operations o such that ¬U(o).

Lemma 4.3. Let h and h′ be histories, and U : O′ → B. Then
h′, U |= STRONGER(h) iff h � U(h′).

We leverage the predicate used to guard the domain of quantifiers
in THEORY(H). For simplicity, we assume that THEORY(H) is
given in prenex normal form, whose quantifier prefix is of the form
∀∗∃∗. All of the formulas of Figures 3–7 can be written in this
form. We thus define the guarded formula G(ϕ) of the formula
ϕ = ∀~x.∃~y.ψ as

G(ϕ) = ∀~x.∃~y.
∧
xi

used(xi)⇒
∧
yi

used(yi) ∧ ψ

As usual, universal quantifiers are guarded using implication and
existential quantifiers using conjunction. It follows from Lemma 4.3
that history membership reduces to first-order satisfiability.



Theorem 2. Let h be a history, and H a history set. Then h ∈ H
iff the first-order formula

STRONGER(h) ∧G(THEORY(H))

is satisfiable.

We again reduce this first-order satisfiability problem to propo-
sitional satisfiability by limiting the domain of quantifiers to the
operations of h via the function [[·]].

Corollary 2. Let h be a history, and H a history set. Then h ∈ H
iff the propositional formula

[[STRONGER(h) ∧G(THEORY(H))]]

is satisfiable.

5. Removing Matched Operations
While the reduction to symbolic reasoning enabled by the previous
sections already offers practical advantages over the explicit enu-
meration of history linearizations, this reduction does nothing to
avoid the increasing cost of refinement checking as execution-length
increases. A truly useful runtime monitor must be linear in the num-
ber of operations in order to avoid a progressive slowdown of the
monitored implementation. Achieving this complexity goal implies
forgetting increasingly-many previously-executed operations. How-
ever, forgetting arbitrary operations from valid histories can result
in falsely-reported violations. For example, removing the write(1)
operation from the valid atomic register history of Figure 10 re-
sults in an invalid history. We leverage the same notion of operation
matching used to characterize library kernels in order to identify
groups of operations whose removal preserves history membership.

5.1 Unique matching functions
Recall that a history h ∈ H iff there exists a history h′ stronger
than h and a matching function M : O ⇀ O such that h′,M |=
THEORY(H). We assume in the following that the matching func-
tion M : O ⇀ O of every history h is uniquely determined by
the operation labels in h, i.e., there exists a function M : L ⇀ L
such that M(o) = o′ iff M(f(o)) = f(o′). The matching function
associated to some history h is denoted byMh. We give some exam-
ples of how to construct histories of standard libraries with unique
matching functions.

Example 5.1 (Collections). For usual implementations of collec-
tions such as stacks, queues, and sets, each operation adding a
value to the collection is going to receive as input a value which is
uniquely identified by a tag. When a method removing an element
from the collection succeeds it is also going to return the unique tag
associated with that element, thus defining a unique matching func-
tion from remove operations to add operations. The same strategy
can be adapted to implementations of a register: the inputs to write
operations are tagged and the read operations return tagged values.

Example 5.2 (Locks). The implementations of a lock object usually
have two abstract states, one where the object is unlocked, and one
where it is locked. The lock operations can be modified to receive
as input a value which is unique for every lock operation in an
execution and every successful execution of a lock operation results
in an object state that stores that input value. When an unlock
operation succeeds, it returns the value stored in the object state.
Therefore, the matching function maps (unlock⇒ v) operations to
lock(v) operations.

Example 5.3 (Semaphores). Semaphore objects are usually im-
plemented using a counter, which counts the number of acquire
operations which successfully entered the semaphore and which are
not yet released. We can instrument the implementation by keeping a

map which maps each slot (from 1 to the capacity c) to a unique tag
which was received as input by the acquire operation which has that
slot, if any. When a release succeeds in decrementing the counter, it
returns the unique tag of the acquire which had the slot.

5.2 Closure under removing matched operations
A match of a history h is an operation o together with the maximal
set of operations mapped by Mh to o. Moreover, a match consists
only of completed operations and at least one operation mapped
to o. Formally, a match of a history h = 〈O,<, f〉 is a set of
operations m = o ∪M−1

h (o) such that o ∈ O, M−1
h (o) 6= ∅, and

all the operations in m are completed. The operation o of a match
m = o ∪M−1

h (o) is denoted by +(m).

Example 5.4. Let h be the history in Figure 9 such that the
matching function Mh maps every (rem ⇒ i) operation to the
add(i) operation. The matches of h are m1 = {add(1), rem⇒ 1},
m2 = {add(2), rem⇒ 2}, and m3 = {add(3), rem⇒ 3}. Since
every operation has a different label, we abuse the notation and
write matches as sets of operation labels. Then, +(mi) = add(i),
for each i.

A set of histories H is match-removal closed iff for every history
h ∈ H and every match m of h, H contains the history obtained
from h by deleting the operations in m. The history obtained from
another history h by deleting a set of operations O is denoted by
h \O.

The kernels of all the reference implementations described
in Section 3 are match-removal closed. For instance, consider a
sequential history h in the basis of an atomic queue and a match
m = {add(1), rem⇒ 1}. The history obtained from h by removing
the match m is also a valid sequential queue history because
essentially, the remaining values are still removed in the order in
which they are added. Match-removal closure follows from the fact
that for every such kernel H , the formula THEORY(H) holds for
h \m whenever it holds for h, for any history h and m an arbitrary
match of h.

Theorem 3. The kernels of the atomic queue, stack, set, register,
lock, semaphore, and exchanger are match-removal closed.

The match-removal closure property extends from a kernel H
to the entire library H . Therefore, if by deleting matches from a
history we get a history which is not admitted by a library H then
the initial history is also not admitted by H .

Theorem 4. H is match-removal closed if H is.

Proof. Let h ∈ H and m a match of h. By definition, there exists a
history h′ ∈ H such that h � h′. Since the matching functions are
uniquely determined by the operation labels, m is also a match of
h′. By hypothesis, H is match-removal closed which implies that
the history h′′ obtained from h′ by deleting the operations in m is
also in H . From the definition of � it follows that the history h \m
is weaker than h′′ which implies h \m ∈ H .

While the statement of Theorem 4 implies that a history h \m,
where m is a match of h, belongs to H whenever h ∈ H ,
Example 5.5 shows that the reverse is not true.

Example 5.5. Figure 9 pictures a history h which is not admitted
by the atomic stack: since the element 3 was pushed after 2, (rem
⇒ 3) should not have started after (rem ⇒ 2) has finished. The
matching functionMh maps every (rem⇒ i) operation to the add(i)
operation.

The history obtained by removing the match {add(2), rem⇒ 2}
is however admitted by the atomic stack.



add(1) rem⇒ 1 rem⇒⊥

add(2) rem⇒ 2

add(3)

add(4)

rem⇒ 3

Figure 9. A history that is not admitted by the atomic stack. Each
operation is represented by an horizontal line segment. The line
segment of an operation ending before the line segment of another
operation means that the two operations are ordered (reading from
left to right).

write(0) write(1)

read⇒ 0

read⇒ 0

read⇒ 1

h1

read⇒ 1

h2

Figure 10. Two histories h1 and h2 of the atomic register, where
h2 is an extension of h1.

5.3 Forgetting matched operations
A runtime monitor continuously checking history membership can
soundly forget matches provided that Theorem 4 holds and that
every match of a history h is also a match of every extension of h
with new operations (a match of h could be strictly included in a
match of an extension and therefore, not a match of the extension).
If the latter doesn’t hold, then removing an arbitrary match before
extending a history may be the same as removing a set of operations
which is not a match from the extended history (and Theorem 4
wouldn’t apply). When the matching function of all the histories in
the library is injective, every match has exactly two operations and
this property trivially holds. All the reference implementations in
Section 3 have injective matching functions except for the atomic
sets and registers. Nevertheless, we prove in the following that the
atomic sets and registers also satisfy this property (that every match
of a history h is also a match of every extension of h).

A history h2 extends h1 iff h2 is the history of an execution
that extends the execution represented by h1. Formally, h2 =
〈O2, <2, f2〉 extends h1 = 〈O1, <1, f1〉, written h1 B h2, iff

• O1 ⊆ O2,
• f1(o)� f2(o) for each o ∈ O1,
• o1 <1 o2 iff o1 <2 o2 for each o1, o2 ∈ O1, and
• o1 <2 o2 for each o1 ∈ O1 and o2 ∈ O2 \O1.

Lemma 5.1. Let H be a library such that Mh is injective for all
h ∈ H . For every two histories h1, h2 ∈ H such that h1 B h2, if
m is a match of h1 then m is also a match of h2.

Example 5.6 shows that this result doesn’t hold when the
matching function is not injective.

Example 5.6. Figure 10 pictures two histories h1 and h2 of the
atomic register, the latter being an extension of the former. We
assume that the matching function maps every (read⇒ i) operation
to the write(i) operation. The match {write(1), read⇒ 1} of h1 is
strictly included in the match {write(1), read⇒ 1, read⇒ 1} of
h2, and therefore not a match of h2. Removing the match of h1 and
extending it with the (read ⇒ 1) operation results in a spurious
violation.

For libraries with non-injective matching functions, we identify
conditions on their kernels which imply that a match m of a history
h is a match of every extension of h.

Let R be a relation on operation labels. We say that a history
h is R-ordered iff for any two matches m1 and m2 of h such that
R(+(m1),+(m2)), each operation of m1 is ordered before each
operation of m2.

Consider the atomic register and the relation Rreg which holds
for every two labels of two write operations. Then, any history from
its kernel (which by definition is sequential) is R-ordered because
every read operation is mapped by the matching function to the
closest preceding write operation. Similarly, one can show that any
history from the kernel of the atomic set is Rset-ordered, where
Rset holds for every two labels add(x) and add(y) with x = y.

A set of histories H is R-ordered iff every history in H is R-
ordered. Let H be a library such that H is R-ordered. A match m
of a history h ∈ H is overwritten by another match m′ of h iff the
labels of +(m) and +(m′) are related by R, +(m) finishes before
+(m′), and every operation overlapping with +(m′) is completed.

Example 5.7. Given the histories h1 and h2 in Figure 10, the
match {write(0), read⇒ 0, read⇒ 0} is overwritten by the match
{write(1), read⇒ 1, read⇒ 1} in h2 but not in h1 since a (read
⇒ 0) operation is pending in h1.

Given a match m overwritten by another match m′ in h ∈ H ,
every new completed operation o from an extension h′ of h cannot
be matched to +(m), therefore m is also a match of h′. Otherwise,
since all the operations overlapping with +(m′) are completed in
h, o starts after +(m′) and H would contain a history where the
operations +(m), +(m′), o occur in this order. Therefore, H is not
R-ordered.

Lemma 5.2. Let H be a R-ordered, and h1, h2 ∈ H . If h1 B h2

andm is a match of h1 overwritten by another matchm′ of h1, then
m is also a match of h2.

A match m of a history h ∈ H is called obsolete if (1) it is
simply a match when the matching function of every history h ∈ H
is injective or (2) it is overwritten by another match of h, when
H is R-ordered. Lemmas 5.1 and 5.2, and Theorem 4 imply the
following.

Corollary 3. Let H be a match-removal closed history set such
that Mh is injective for all h ∈ H or H is R-ordered, for some R.
For every two histories h1, h2 ∈ H such that h1 B h2 and m an
obsolete match of h1, h2 \m is a history of H .

The following illustrates a possible source of incompleteness for
monitoring algorithms which remove operations.

Example 5.8. Figure 11 pictures two histories h1 and h2, the
latter being an extension of the former. The (rem⇒ 2)-operation
is pending in h1 and only completes in h2. However, removing
the match {add(1), rem⇒ 1} from h1 before the pending rem
completes results in a history admitted by the atomic stack. This
highlights a risk of incompleteness which we must account for in
our development of refinement-monitoring algorithms. Should we
simply forget about the match {add(1), rem⇒ 1} while monitoring,
we may not detect the violation obviated when the pending rem
completes. In order to avoid such incompleteness, at the very least,
our monitoring algorithm must remember that the add(2) operation
should be ordered before rem ⇒ empty (since add(2) must be
ordered before rem⇒ 1, which is ordered before rem⇒ empty),
even after removing the match. Then when (rem⇒ 2) completes,
we could deduce that (rem⇒ empty) must be ordered after add(2)
and before (rem⇒ 2), a contradiction with the atomic stack theory
THEORY(Hst) of Section 3.



rem⇒ empty

add(1) rem⇒ 1

add(2) rem⇒ 2

h1

add(3) rem⇒ 3

h2

Figure 11. Two histories which are not admitted by the atomic
stack, h2 being an extension of h1.

6. Empirical Validation
To demonstrate the practical value of the theory developed in the
previous sections, we argue that our techniques

• scale far beyond existing algorithms, and
• are complete in practice.

To argue these points we have implemented three basic refinement-
checking algorithms.

ENUMERATE is our implementation of the classical linearizability-
checking algorithm [21] implemented by Line-up [6], checking
each history h by enumerating the linearizations h′ of h’s
completions. We check whether each h′ is included in the kernel
H by asking1 whether h′ |= THEORY(H). As soon as this check
succeeds, we conclude that h ∈ H . Otherwise if this check fails
for all linearizations, we conclude h 6∈ H .

SYMBOLIC checks each history h by reduction to the satisfiability
of STRONGER(h)∧THEORY(H), as described in Section 4, del-
egating the enumeration of both completions and linearizations
to an underlying solver. If the satisfiability check succeeds, or is
inconclusive, we conclude that h ∈ H . Otherwise if unsatisfia-
bility is found, we conclude that h 6∈ H .

SATURATE avoids the expensive propositional backtracking inher-
ent to the aforementioned SYMBOLIC checker by limiting the
satisfiability check to Boolean constraint propagation. Essen-
tially, we implement a customized incremental solver which
only saturates with unit propagation, avoiding any propositional
branching. If a contradiction is found, we conclude that h 6∈ H .
Otherwise if saturation fails to reveal a contradiction, we con-
clude h ∈ H .

Additionally, we have implemented the removal of obsolete matches
as outlined in Section 5, which can be enabled for the SYMBOLIC
and SATURATE algorithms.

We have studied ten concurrent data structure implementa-
tions from the Scal2 High-Performance Multicore-Scalable Com-
puting suite. Six of these implementations, such as the Michael-
Scott Queue [16], are meant to preserve observational refinement3

while the other four, such as the non-blocking bounded-reordering
queue [13], are meant to preserve weaker properties.

The input to our checking algorithms are histories given as text
files consisting of line-separated call and return actions. For the
selected set of concurrent object implementations, we generated
the histories of several executions under pseudo-random scheduling
by logging calls and returns in the order in which they occurred.

1 Classically this check is performed by set inclusion, as the length of h is
assumed to be bounded by some number n ∈ N of operations, and the subset
Hn ⊆ H of n-operation histories of H is computable in finite time. As we
assume no such bound on the number of operations, we perform this check
via theorem-prover query instead.
2 http://scal.cs.uni-salzburg.at
3 More precisely, they are designed to be linearizable.
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Figure 12. The number of steps each algorithm is able to process
in given time limits of 5s, 25s, 50s, 75s, and 100s over 10 histories
of Scal’s Michael-Scott Queue implementation. Whiskers indicate
minimums and maximums, numbers indicate medians, and box
extents indicate first and third quartiles. Steps are plotted to a
logarithmic scale.

While scanning an input history, the selected algorithm performs a
membership test at each prefix at which an operation completes —
i.e., at return actions.

Our first set of experiments (§6.1) demonstrates that our symbolic
algorithms are drastically more scalable than existing algorithms, in
that they are able to process vastly more history operations in much
shorter time. Our second set of experiments (§6.2) demonstrates that
our more efficient algorithms are complete in practice: the violations
surfacing in the logs of actual executions are consistently discovered.
We made all measurements on similar MacBook Pro 2.XGHz Intel
Core i5/i7 machines, and discharged theorem-prover queries with
an in-process instance of Z34.

Our implementation of the algorithms and all (generated) histo-
ries used in these experiments, are available on GitHub5.

6.1 Scalability of Symbolic Checking
Our first experiment measures the number of steps each algorithm
is able to process for varying time limits over 10 histories of Scal’s
Michael-Scott Queue implementation with 10000 steps each. We
used five per-history time limits of 5s, 25s, 50s, 75s, and 100s.
Results are shown in the graph of Figure 12 — results are similar for
the other nine Scal implementations. The ENUMERATE algorithm
performs worst, progressing only from median 18 steps in 5s to
median 32 steps in 100s. The SYMBOLIC algorithm is a significant
improvement, progressing from median 37 steps in 5s to median 70
steps in 100s. While adding match removal helps, achieving roughly
an order-of-magnitude improvement over ENUMERATE, the cost of
checking remains exponential in the number of steps.

Even without match removal, the SATURATE checker achieves a
drastic improvement over ENUMERATE, progressing from median
357 steps in 5s to median 854 steps in 100s. Most impressively,
adding match removal to the SATURATE checker allows it to process
median 1303 steps in under 5s.

While the measurements of Figure 12 do demonstrate that
SATURATE is more scalable than ENUMERATE and SYMBOLIC,
they do not reveal whether SATURATE scales linearly in the number
of steps when match removal is enabled. This is not visible since
the asymptotic complexity of SATURATE grows polynomially in

4 https://github.com/Z3Prover/z3
5 https://github.com/imdea-software/
observational-refinement-checking

http://scal.cs.uni-salzburg.at
https://github.com/Z3Prover/z3
https://github.com/imdea-software/observational-refinement-checking
https://github.com/imdea-software/observational-refinement-checking
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Figure 13. The number of steps each algorithm is able to process in
time limits 5s, 25s, 50s, 75s, and 100s normalized by the square of
average capacity of a given run over 10 histories of Scal’s Michael-
Scott Queue implementation. Steps are plotted to a logarithmic scale
on the x-axis, and the y-axis represents normalized time.

the capacity6 of the given concurrent data structures, and the
capacities seen in our pseudo-random executions tend to grow as
time goes on. Figure 13 cancels out the effect of capacity growth by
normalizing data points against the square of the average capacity
throughout a run: for each data point 〈s, t, c〉 of s steps in time
t with average capacity c, we plot the point 〈s, t/c2〉. Here we
clearly see that SATURATE scales linearly in the number of steps
when normalized against capacity-squared, whereas ENUMERATE
and SYMBOLIC continue to scale poorly despite normalization. The
apparent anomaly that SATURATE appears to scale linearly even
with match removal disabled is explained by the fact that unmatched
(add) operations, which could not have been removed in any case,
tend to outnumber matched operations in these recorded histories.

6.2 Completeness in Practice
Our second experiment measures the amount of violations each
algorithm is able discover across 100 histories of each of the ten
Scal implementations used. Six of the ten are linearizable, and, cor-
rectly, no algorithm reported a violation therein. The amount of
violations detected in the remaining four are plotted in Figure 14.
The ENUMERATE algorithm is the baseline being the most-obviously
complete algorithm, and detects all violations except 1 for which it
exceeds a 10s timeout. As expected, the SYMBOLIC algorithm, also
being theoretically complete, also detects all violations. Validating
our hypotheses that the SATURATE algorithm and match removal are
complete in practice, Figure 14 demonstrates that every single viola-
tion is also caught by SATURATE, and enabling removal furthermore
does not cause missed violations.

In order to compare the precision of our algorithms with Boua-
jjani et al. [5]’s parameterized approximation algorithms, we also
plot the number of violations caught using the k = 4 and k = 2
approximations. Essentially, their k-approximation abstract histo-
ries via weakening by forgetting ordering constraints such that the
resulting order is a k-length interval order. As Figure 14 demon-
strates, while small values of k can miss many violations, larger
values of k can catch increasingly more, at the expense of additional
runtime overhead. To avoid clutter in Figure 12, we did not plot
their runtimes, though we remark that Bouajjani et al.’s algorithms
perform on par with our SYMBOLIC algorithm.

Finally, we address the possible sources of incompleteness due to
match removal discussed in Section 5. Recall the history h1 and its

6 Here capacity means the number of values stored inside the data structure
at a given moment.
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Figure 14. The number of violations each algorithm is able to
detect across 100 histories of each of the four non-linearizable
Scal implementations. Algorithms are abbreviated: ENUMERATE,
SYMBOLIC, SATURATE, and COUNTING(k), for k = 2, 4.

extension h2 of Figure 11 from Example 5.8. Since the SATURATE
algorithm does not speculate on whether the pending rem operation
might match the add of 2 or 3 (or both!), it will not detect the
violation in h1 until the pending rem operation completes. Simply
removing the add-rem match of value 1 from h1 before the pending
rem operation completes would result in a non-violating history.
However, by applying the stack-theory axioms THEORY(Hst) to
completed operations before removing this match, the SATURATE
algorithm infers the constraints

add(2) < (rem⇒ 1) < (rem⇒ empty)

of which add(2) < (rem ⇒ empty) persists after the match
removal. Finally, when the pending rem-operation does complete,
returning 2, the SATURATE algorithm derives a contradiction, since

add(2) < (rem⇒ empty) < (rem⇒ 2).

The incremental nature of the SATURATE algorithm thus avoids
the practically-occurring sources of possible incompleteness due to
match removal of which we are aware.

7. Discussion
In this work, we do not claim theoretical completeness of the
SATURATE algorithm since we lack a formal completeness proof.
Such a proof appears to be very challenging, and would seem to
rely on yet-to-be-articulated assumptions on naturally-occurring
concurrent objects. However, our empirical experience, reported
in Section 6, suggests completeness, and we have no evidence to
suggest that SATURATE is incomplete, even with operation removal.

While the ENUMERATE algorithm is complete by definition,
it follows from Sections 3 and 4 that the SYMBOLIC algorithm
is also complete without operation removal, and it follows from
Section 5 that both ENUMERATE and SYMBOLIC are incomplete
with operation removal.

Based on our experience in this and prior works [4, 5], we
conjecture the theoretical completeness of SATURATE as well, with
and without operation removal, for naturally-occurring objects like
atomic stacks, queues, and locks, under the assumption that all
operations eventually return. This would imply that the propositional
backtracking thought to be inherent in linearizability is unnecessary,
and that linearizability is polynomial-time checkable for typical
concurrent objects. This insight has not been suggested by any
previous works of which we are aware.



8. Related Work
Previous work on automated refinement verification focuses on
linearizability [12], which is now known to be equivalent when
considering atomic reference implementations [5, 9]. The theoretical
limits of linearizability checking are well studied. While checking a
single execution is NP-complete [10], checking all executions of a
finite-state implementation is in EXPSPACE when the number of
program threads is bounded [2], and undecidable otherwise [4].

Several semi-automated verification approaches rely on annotat-
ing method bodies with linearization points [1, 3, 8, 14, 17, 20, 23]
to reduce the otherwise-exponential number of possible lineariza-
tions to one single linearization. These methods typically rely on
programmer annotation, and do not admit conclusive evidence of
a violation in the case of a failed proof. “Aspect-oriented proofs”
reduce verification for certain atomic objects to a small set of sim-
pler properties. Specifically, checking executions of atomic queue
implementations against the theory THEORY(Hq) of the atomic
queue7 kernel from Section 3 is sound and complete for complete
histories [11].

Most automated approaches for detecting linearizability viola-
tions [6, 7, 21, 22] enumerate the exponentially-many lineariza-
tions of each execution, limiting them to executions with few opera-
tions, as observed in Section 6. Colt [18]’s approach mitigates this
cost with programmer-annotated linearization points, as mentioned
above, and ultimately suffers from the same problem: a failed proof
only indicates incorrect annotation.

One closely-related work aims to reduce the complexity of refine-
ment checking by approximating executions with weaker, bounded
histories [5]. While this approach is also sound, in the sense that only
actual violations are flagged, its completeness in practice is reported
to rely on observing many executions with varying thread schedules,
and its applicability is limited to executions with a bounded number
of argument/return values. On the contrary, the requirements for
long-term execution monitoring which we address demand com-
pleteness for each individual execution without bounding the num-
ber of data values. Technically, our approximations differ as well:
while theirs forgets the order between some operations, our match
removal optimization forgets operations completely. Note however
that by removing operations only after saturation of their logical
implications, the effect of forgotten operations can persist.
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