
On Reducing Linearizability to State Reachability?

Ahmed Bouajjani1, Michael Emmi2, Constantin Enea1, and Jad Hamza1

1 LIAFA, Université Paris Diderot, France
2 IMDEA Software Institute, Spain

Abstract. Efficient implementations of atomic objects such as concurrent stacks
and queues are especially susceptible to programming errors, and necessitate
automatic verification. Unfortunately their correctness criteria — linearizability
with respect to given ADT specifications — are hard to verify. Even on classes
of implementations where the usual temporal safety properties like control-state
reachability are decidable, linearizability is undecidable.
In this work we demonstrate that verifying linearizability for certain fixed ADT
specifications is reducible to control-state reachability, despite being harder for
arbitrary ADTs. We effectuate this reduction for several of the most popular
atomic objects. This reduction yields the first decidability results for verification
without bounding the number of concurrent threads. Furthermore, it enables the
application of existing safety-verification tools to linearizability verification.

1 Introduction

Efficient implementations of atomic objects such as concurrent queues and stacks are
difficult to get right. Their complexity arises from the conflicting design requirements
of maximizing efficiency/concurrency with preserving the appearance of atomic behav-
ior. Their correctness is captured by observational refinement, which assures that all
behaviors of programs using these efficient implementations would also be possible
were the atomic reference implementations used instead. Linearizability [12], being
an equivalent property [8, 4], is the predominant proof technique: one shows that each
concurrent execution has a linearization which is a valid sequential execution according
to a specification, given by an abstract data type (ADT) or reference implementation.

Verifying automatically3 that all executions of a given implementation are lineariz-
able with respect to a given ADT is an undecidable problem [3], even on the typical
classes of implementations for which the usual temporal safety properties are decidable,
e.g., on finite-shared-memory programs where each thread is a finite-state machine.
What makes linearization harder than typical temporal safety properties like control-state
reachability is the existential quantification of a valid linearization per execution.

In this work we demonstrate that verifying linearizability for certain fixed ADTs
is reducible to control-state reachability, despite being harder for arbitrary ADTs. We
believe that fixing the ADT parameter of the verification problem is justified, since
in practice, there are few ADTs for which specialized concurrent implementations

? This work is supported in part by the VECOLIB project (ANR-14-CE28-0018).
3 Without programmer annotation — see Section 6 for further discussion.

have been developed. We provide a methodology for carrying out this reduction, and
instantiate it on four ADTs: the atomic queue, stack, register, and mutex.

Our reduction to control-state reachability holds on any class of implementations
which is closed under intersection with regular languages4 and which is data independent
— informally, that implementations can perform only read and write operations on the
data values passed as method arguments. From the ADT in question, our approach relies
on expressing its violations as a finite union of regular languages.

In our methodology, we express the atomic object specifications using inductive
rules to facilitate the incremental construction of valid executions. For instance in our
atomic queue specification, one rule specifies that a dequeue operation returning empty
can be inserted in any execution, so long as each preceding enqueue has a corresponding
dequeue, also preceding the inserted empty-dequeue. This form of inductive rule enables
a locality to the reasoning of linearizability violations.

Intuitively, first we prove that a sequential execution is invalid if and only if some
subsequence could not have been produced by one of the rules. Under certain conditions
this result extends to concurrent executions: an execution is not linearizable if and only if
some projection of its operations cannot be linearized to a sequence produced by one of
the rules. We thus correlate the finite set of inductive rules with a finite set of classes of
non-linearizable concurrent executions. We then demonstrate that each of these classes
of non-linearizable executions is regular, which characterizes the violations of a given
ADT as a finite union of regular languages. The fact that these classes of non-linearizable
executions can be encoded as regular languages is somewhat surprising since the number
of data values, and thus alphabet symbols, is, a priori, unbounded. Our encoding thus
relies on the aforementioned data independence property.

To complete the reduction to control-state reachability, we show that linearizability is
equivalent to the emptiness of the language intersection between the implementation and
finite union of regular violations. When the implementation is a finite-shared-memory
program with finite-state threads, this reduces to the coverability problem for Petri nets,
which is decidable, and EXPSPACE-complete.

To summarize, our contributions are:

– a generic reduction from linearizability to control-state reachability,
– its application to the atomic queue, stack, register, and mutex ADTs,
– the methodology enabling this reduction, which can be reused on other ADTs, and
– the first decidability results for linearizability without bounding the number of

concurrent threads.

Besides yielding novel decidability results, our reduction paves the way for the applica-
tion of existing safety-verification tools to linearizability verification.

Section 2 outlines basic definitions. Section 3 describes a methodology for inductive
definitions of data structure specifications. In Section 4 we identify conditions under
which linearizability can be reduced to control-state reachability, and demonstrate that
typical atomic objects satisfy these conditions. Finally, we prove decidability of lineariz-
ability for finite-shared-memory programs with finite-state threads in Section 5. Proofs
to technical results appear in the extended version of this paper [5].

4 We consider languages of well-formed method call and return actions, e.g., for which each
return has a matching call.

2 Linearizability

We fix a (possibly infinite) set D of data values, and a finite set M of methods. We
consider that methods have exactly one argument, or one return value. Return values
are transformed into argument values for uniformity.5 In order to differentiate methods
taking an argument (e.g., the Enq method which inserts a value into a queue) from
the other methods, we identify a subset Min ⊆ M of input methods which do take an
argument. A method event is composed of a method m ∈ M and a data value x ∈ D, and
is denoted m(x). We define the concatenation of method-event sequences u · v in the
usual way, and ε denotes the empty sequence.

Definition 1. A sequential execution is a sequence of method events,

The projection u|D of a sequential execution u to a subset D ⊆ D of data values is
obtained from u by erasing all method events with a data value not in D. The set of
projections of u is denoted proj(u). We write u r x for the projection u|D\{x}.

Example 1. The projection Enq(1)Enq(2)Deq(1)Enq(3)Deq(2)Deq(3) r 1 is equal to
Enq(2)Enq(3)Deq(2)Deq(3).

We also fix an arbitrary infinite set O of operation (identifiers). A call action is
composed of a method m ∈ M, a data value x ∈ D, an operation o ∈ O, and is denoted
callo m(x). Similarly, a return action is denoted reto m(x). The operation o is used to
match return actions to their call actions.

Definition 2. A (concurrent) execution e is a sequence of call and return actions which
satisfy a well-formedness property: every return has a call action before it in e, using the
same tuple m, x, o, and an operation o can be used only twice in e, once in a call action,
and once in a return action.

Example 2. The sequence callo1 Enq(7) ·callo2 Enq(4) ·reto1 Enq(7) ·reto2 Enq(4)
is an execution, while callo1 Enq(7) · callo2 Enq(4) · reto1 Enq(7) · reto1 Enq(4) and
callo1 Enq(7) · reto1 Enq(7) · reto2 Enq(4) are not.

Definition 3. An implementation I is a set of (concurrent) executions.

Implementations represent libraries whose methods are called by external programs,
giving rise to the following closure properties [4]. In the following, c denotes a call
action, r denotes a return action, a denotes any action, and e, e′ denote executions.

– Programs can call library methods at any point in time:
e · e′ ∈ I implies e · c · e′ ∈ I so long as e · c · e′ is well formed.

– Calls can be made earlier:
e · a · c · e′ ∈ I implies e · c · a · e′ ∈ I.

5 Method return values are guessed nondeterministically, and validated at return points. This
can be handled using the assume statements of typical formal specification languages, which
only admit executions satisfying a given predicate. The argument value for methods without
argument or return values, or with fixed argument/return values, is ignored.

– Returns been made later:
e · r · a · e′ ∈ I implies e · a · r · e′ ∈ I.

Intuitively, these properties hold because call and return actions are not visible to the
other threads which are running in parallel.

For the remainder of this work, we consider only completed executions, where
each call action has a corresponding return action. This simplification is sound when
implementation methods can always make progress in isolation [11]: formally, for any
execution e with pending operations, there exists an execution e′ obtained by extending
e only with the return actions of the pending operations of e. Intuitively this means that
methods can always return without any help from outside threads, avoiding deadlock.

We simply reasoning on executions by abstracting them into histories.

Definition 4. A history is a labeled partial order (O, <, l) with O ⊆ O and l : O→ M×D.

The order < is called the happens-before relation, and we say that o1 happens before o2
when o1 < o2. Since histories arise from executions, their happens-before relations are
interval orders [4]: for distinct o1, o2, o3, o4, if o1 < o2 and o3 < o4 then either o1 < o4,
or o3 < o2. Intuitively, this comes from the fact that concurrent threads share a notion of
global time. Dh ⊆ D denotes the set of data values appearing in h.

The history of an execution e is defined as (O, <, l) where:

– O is the set of operations which appear in e,
– o1 < o2 iff the return action of o1 is before the call action of o2 in e,
– an operation o occurring in a call action callo m(x) is labeled by m(x).

Example 3. The history of the execution callo1 Enq(7) ·callo2 Enq(4) ·reto1 Enq(7) ·
reto2 Enq(4) is ({o1, o2}, <, l) with l(o1) = Enq(7), l(o2) = Enq(4), and with < being the
empty order relation, since o1 and o2 overlap.

Let h = (O, <, l) be a history and u a sequential execution of length n. We say that h is
linearizable with respect to u, denoted h v u, if there is a bijection f : O→ {1, . . . , n} s.t.

– if o1 < o2 then f (o1) < f (o2),
– the method event at position f (o) in u is l(o).

Definition 5. A history h is linearizable with respect to a set S of sequential executions,
denoted h v S, if there exists u ∈ S such that h v u.

A set of histories H is linearizable with respect to S, denoted H v S if h v S for all
h ∈ H. We extend these definitions to executions according to their histories.

A sequential execution u is said to be differentiated if, for all input methods m ∈ Min,
and every x ∈ D, there is at most one method event m(x) in u. The subset of differentiated
sequential executions of a set S is denoted by S,. The definition extends to (sets of)
executions and histories. For instance, an execution is differentiated if for all input
methods m ∈ Min and every x ∈ D, there is at most one call action callo m(x).

Example 4. callo1 Enq(7) · callo2 Enq(7) · reto1 Enq(7) · reto2 Enq(7) is not differ-
entiated, as there are two call actions with the same input method (Enq) and the same
data value.

A renaming r is a function fromD toD. Given a sequential execution (resp., execution
or history) u, we denote by r(u) the sequential execution (resp., execution or history)
obtained from u by replacing every data value x by r(x).

Definition 6. The set of sequential executions (resp., executions or histories) S is data
independent if:

– for all u ∈ S, there exists u′ ∈ S,, and a renaming r such that u = r(u′),
– for all u ∈ S and for all renaming r, r(u) ∈ S.

When checking that a data-independent implementation I is linearizable with re-
spect to a data-independent specification S, it is enough to do so for differentiated
executions [1]. Thus, in the remainder of the paper, we focus on characterizing lineariz-
ability for differentiated executions, rather than arbitrary ones.

Lemma 1 (Abdulla et al. [1]). A data-independent implementation I is linearizable
with respect to a data-independent specification S, if and only if I, is linearizable with
respect to S,.

3 Inductively-Defined Data Structures

A data structure S is given syntactically as an ordered sequence of rules R1, . . . ,Rn, each
of the form u1 · u2 · · · uk ∈ S ∧ Guard(u1, . . . , uk) ⇒ Expr(u1, . . . , uk) ∈ S, where the
variables ui are interpreted over method-event sequences, and

– Guard(u1, . . . , uk) is a conjunction of conditions on u1, . . . , uk with atoms
• ui ∈ M∗ (M ⊆ M)
• matched(m, ui)

– Expr(u1, . . . , uk) is an expression E = a1 · a2 · · · al where
• u1, . . . , uk appear in that order, exactly once, in E,
• each ai is either some u j, a method m, or a Kleene closure m∗ (m ∈ M),
• a method m ∈ M appears at most once in E.

We allow k to be 0 for base rules, such as ε ∈ S.
A condition ui ∈ M∗ (M ⊆ M) is satisfied when the methods used in ui are all in M.

The predicate matched(m, ui) is satisfied when, for every method event m(x) in ui, there
exists another method event in ui with the same data value x.

Given a sequential execution u = u1 · . . . · uk and an expression E = Expr(u1, . . . , uk),
we define JEK as the set of sequential executions which can be obtained from E by
replacing the methods m by a method event m(x) and the Kleene closures m∗ by 0 or
more method events m(x). All method events must use the same data value x ∈ D.

A rule R ≡ u1 ·u2 · · · uk ∈ S∧Guard(u1, . . . , uk)⇒ Expr(u1, . . . , uk) ∈ S is applied
to a sequential execution w to obtain a new sequential execution w′ from the set:⋃

w=w1·w2···wk∧
Guard(w1,...,wk)

JExpr(w1, . . . ,wk)K

We denote this w
R
−→ w′. The set of sequential executions JSK = JR1, . . . ,RnK is then

defined as the set of sequential executions w which can be derived from the empty word:

ε = w0
Ri1
−−→ w1

Ri2
−−→ w2 . . .

Rip
−−→ wp = w,

where i1, . . . , ip is a non-decreasing sequence of integers from {1 . . . , n}. This means that
the rules must be applied in order, and each rule can be applied 0 or several times.

Below we give inductive definitions for the atomic queue and stack data structures.
Other data structures such as atomic registers and mutexes also have inductive definitions,
as demonstrated in the extended version of this paper [5].

Example 5. The queue has a method Enq to add an element to the data structure, and a
method Deq to remove the elements in a FIFO order. The method DeqEmpty can only
return when the queue is empty (its parameter is not used). The only input method is
Enq. Formally, Queue is defined by the rules R0,REnq,REnqDeq and RDeqEmpty.

R0 ≡ ε ∈ Queue

REnq ≡ u ∈ Queue ∧ u ∈ Enq∗ ⇒ u · Enq ∈ Queue

REnqDeq ≡ u · v ∈ Queue ∧ u ∈ Enq∗ ∧ v ∈ {Enq,Deq}∗ ⇒ Enq · u · Deq · v ∈ Queue

RDeqEmpty ≡ u · v ∈ Queue ∧matched(Enq, u)⇒ u · DeqEmpty · v ∈ Queue

One derivation for Queue is:

ε ∈ Queue
REnqDeq
−−−−−→ Enq(1) · Deq(1) ∈ Queue
REnqDeq
−−−−−→ Enq(2) · Enq(1) · Deq(2) · Deq(1) ∈ Queue
REnqDeq
−−−−−→ Enq(3) · Deq(3) · Enq(2) · Enq(1) · Deq(2) · Deq(1) ∈ Queue
RDeqEmpty
−−−−−−−→ Enq(3) · Deq(3) · DeqEmpty · Enq(2) · Enq(1) · Deq(2) · Deq(1) ∈ Queue

Similarly, Stack is composed of the rules R0,RPushPop,RPush,RPopEmpty.

R0 ≡ ε ∈ Stack

RPushPop ≡ u · v ∈ Stack ∧matched(Push, u) ∧matched(Push, v) ∧ u, v ∈ {Push, Pop}∗

⇒ Push · u · Pop · v ∈ Stack

RPush ≡ u · v ∈ Stack ∧matched(Push, u) ∧ u, v ∈ {Push, Pop}∗ ⇒ u · Push · v ∈ Stack

RPopEmpty ≡ u · v ∈ Stack ∧matched(Push, u)⇒ u · PopEmpty · v ∈ Stack

We assume that the rules defining a data structure S satisfy a non-ambiguity property
stating that the last step in deriving a sequential execution in JSK is unique and it can be
effectively determined. Since we are interested in characterizing the linearizations of a
history and its projections, this property is extended to permutations of projections of
sequential executions which are admitted by S. Thus, we assume that the rules defining
a data structure are non-ambiguous, that is:

– for all u ∈ JSK, there exists a unique rule, denoted by last(u), that can be used as
the last step to derive u, i.e., for every sequence of rules Ri1 , . . . ,Rin leading to u,
Rin = last(u). For u < JSK, last(u) is also defined but can be arbitrary, as there is
no derivation for u.

– if last(u) = Ri, then for every permutation u′ ∈ JSK of a projection of u, last(u′) =

R j with j ≤ i. If u′ is a permutation of u, then last(u′) = Ri.

Given a (completed) history h, all the u such that h v u are permutations of one
another. The last condition of non-ambiguity thus enables us to extend the function last
to histories: last(h) is defined as last(u) where u is any sequential execution such that
h v u. We say that last(h) is the rule corresponding to h.

Example 6. For Queue, we define last for a sequential execution u as follows:

– if u contains a DeqEmpty operation, last(u) = RDeqEmpty,
– else if u contains a Deq operation, last(u) = REnqDeq,
– else if u contains only Enq’s, last(u) = REnq,
– else (if u is empty), last(u) = R0.

Since the conditions we use to define last are closed under permutations, we get that
for any permutation u2 of u, last(u) = last(u2), and last can be extended to histories.
Therefore, the rules R0,REnqDeq,RDeqEmpty are non-ambiguous.

4 Reducing Linearizability to State Reachability

Our end goal for this section is to show that for any data-independent implementation
I, and any specification S satisfying several conditions defined in the following, there
exists a computable finite-state automatonA (over call and return actions) such that:

I v S ⇐⇒ I ∩A = ∅

Then, given a model of I, the linearizability of I is reduced to checking emptiness of
the synchronized product between the model of I andA. The automatonA represents
(a subset of the) executions which are not linearizable with respect to S.

The first step in proving our result is to show that, under some conditions, we can
partition the concurrent executions which are not linearizable with respect to S into a
finite number of classes. Intuitively, each non-linearizable execution must correspond to
a violation for one of the rules in the definition of S.

We identify a property, which we call step-by-step linearizability, which is sufficient
to obtain this characterization. Intuitively, step-by-step linearizability enables us to build
a linearization for an execution e incrementally, using linearizations of projections of e.

The second step is to show that, for each class of violations (i.e., with respect to a
specific rule Ri), we can build a regular automatonAi such that: a) when restricted to
well-formed executions,Ai recognizes a subset of this class; b) each non-linearizable
execution has a corresponding execution, obtained by data independence, accepted by
Ai. If such an automaton exists, we say that Ri is co-regular (formally defined later in
this section).

We prove that, provided these two properties hold, we have the equivalence men-
tioned above, by definingA as the union of theAi’s built for each rule Ri.

4.1 Reduction to a Finite Number of Classes of Violations

Our goal here is to give a characterization of the sequential executions which belong to a
data structure, as well as to give a characterization of the concurrent executions which
are linearizable with respect to the data structure. This characterization enables us to
classify the linearization violations into a finite number of classes.

Our characterization relies heavily on the fact that the data structures we consider
are closed under projection, i.e., for all u ∈ S,D ⊆ D, we have u|D ∈ S. The reason for
this is that the guards used in the inductive rules are closed under projection.

Lemma 2. Any data structure S defined in our framework is closed under projection.

A sequential execution u is said to match a rule R with conditions Guard if there
exist a data value x and sequential executions u1, . . . , uk such that u can be written as
JExpr(u1, . . . , uk)K, where x is the data value used for the method events, and such that
Guard(u1, . . . , uk) holds. We call x the witness of the decomposition. We denote by MR
the set of sequential executions which match R, and we call it the matching set of R.

Example 7. MREnqDeq is the set of sequential executions of the form Enq(x) ·u ·Deq(x) ·v
for some x ∈ D, and with u ∈ Enq∗.

Lemma 3. Let S = R1, . . . ,Rn be a data structure and u a differentiated sequential
execution. Then,

u ∈ S ⇐⇒ proj(u) ⊆
⋃

i∈{1,...,n}

MRi

This characterization enables us to get rid of the recursion, so that we only have to
check non-recursive properties. We want a similar lemma to characterize e v S for an
execution e. This is where we introduce the notion of step-by-step linearizability, as the
lemma will hold under this condition.

Definition 7. A data structure S = R1, . . . ,Rn is said be to step-by-step linearizable if
for any differentiated execution e, if e is linearizable w.r.t. MRi with witness x, we have:

e r x v JR1, . . . ,RiK =⇒ e v JR1, . . . ,RiK

This notion applies to the usual data structures, as shown by the following lemma.
The generic schema we use is the following: we let u′ ∈ JR1, . . . ,RiK be a sequential
execution such that e r x v u′ and build a graph G from u′, whose acyclicity implies
that e v JR1, . . . ,RiK. Then, we show that we can always choose u′ so that G is acyclic.

Lemma 4. Queue, Stack, Register, and Mutex are step-by-step linearizable.

Intuitively, step-by-step linearizability will help us prove the right-to-left direction of
Lemma 5 by allowing us to build a linearization for e incrementally, from the lineariza-
tions of projections of e.

Lemma 5. Let S be a data structure with rules R1, . . . ,Rn. Let e be a differentiated
execution. If S is step-by-step linearizable, we have (for any j):

e v JR1, . . . ,R jK ⇐⇒ proj(e) v
⋃
i≤ j

MRi

Thanks to Lemma 5, if we’re looking for an execution e which is not linearizable
w.r.t. some data-structure S, we must prove that proj(e) @

⋃
i MRi, i.e., we must find a

projection e′ ∈ proj(e) which is not linearizable with respect to any MRi (e′ @
⋃

i MRi).
This is challenging as it is difficult to check that an execution is not linearizable w.r.t.

a union of sets simultaneously. Using non-ambiguity, we simplify this check by making
it more modular, so that we only have to check one set MRi at a time.

Lemma 6. Let S be a data structure with rules R1, . . . ,Rn. Let e be a differentiated
execution. If S is step-by-step linearizable, we have:

e v S ⇐⇒ ∀e′ ∈ proj(e). e′ v MR where R = last(e′)

Lemma 6 gives us the finite kind of violations that we mentioned in the beginning
of the section. More precisely, if we negate both sides of the equivalence, we have:
e @ S ⇐⇒ ∃e′ ∈ proj(e). e′ @ MR. This means that whenever an execution is
not linearizable w.r.t. S, there can be only finitely reasons, namely there must exist a
projection which is not linearizable w.r.t. the matching set of its corresponding rule.

4.2 Regularity of Each Class of Violations

Our goal is now to construct, for each R, an automatonA which recognizes (a subset of)
the executions e, which have a projection e′ such that e′ @ MR. More precisely, we want
the following property.

Definition 8. A rule R is said to be co-regular if we can build an automatonA such that,
for any data-independent implementation I, we have:

A∩ I , ∅ ⇐⇒ ∃e ∈ I,, e′ ∈ proj(e). last(e′) = R ∧ e′ @ MR

A data structure S is co-regular if all of its rules are co-regular.

Formally, the alphabet ofA is {call m(x) | m ∈ M, x ∈ D}∪{ret m(x) | m ∈ M, x ∈ D}
for a finite subset D ⊆ D. The automaton doesn’t read operation identifiers, thus, when
taking the intersection with I, we ignore them.

Lemma 7. Queue, Stack, Register, and Mutex are co-regular.

Proof. To illustrate this lemma, we sketch the proof for the rule RDeqEmpty of Queue.
The complete proof of the lemma can be found in the extended version of this paper.

We prove in the extended version that a history has a projection such that last(h′) =

RDeqEmpty and h′ @ MRDeqEmpty if and only if it has a DeqEmpty operation which is
covered by other operations, as depicted in Fig. 1. The automaton ARDeqEmpty in Fig. 2
recognizes such violations.

DeqEmpty(2)

Enq(1)

Enq(1)

Enq(1)

Enq(1)

Deq(1)

Deq(1)

Deq(1)

Deq(1)

Fig. 1. A four-pair RDeqEmpty violation.
The extended version of this paper
demonstrates that this pattern with
arbitrarily-many pairs is regular.

q0

q1 q2

q3

q4

M(3)

M(3) M(3)

M(3)

M(3)

call Enq(1)

ret Enq(1)

call DeqEmpty(2) ret DeqEmpty(2)

ret Enq(1)
call Deq(1)

Fig. 2. An automaton recognizing RDeqEmpty violations,
for which the queue is non-empty, with data value 1,
for the span of DeqEmpty. We assume all call Enq(1)
actions occur initially without loss of generality due to
implementations’ closure properties.

Let I be any data-independent implementation. We show that

ARDeqEmpty ∩ I , ∅ ⇐⇒ ∃e ∈ I,, e′ ∈ proj(e). last(e′) = RDeqEmpty ∧ e′ @ MRDeqEmpty

(⇒) Let e ∈ I be an execution which is accepted by ARDeqEmpty . By data independence,
let e, ∈ I and r a renaming such that e = r(e,). Let d1, . . . , dm be the data values which
are mapped to value 1 by r.

Let d be the data value which is mapped to value 2 by r. Let o the DeqEmpty
operation with data value d. By construction of the automaton we can prove that o
is covered by d1, . . . , dm, and conclude that h has a projection such that last(h′) =

RDeqEmpty and h′ @ MRDeqEmpty.
(⇐) Let e, ∈ I, such that there is a projection e′ such that last(e′) = RDeqEmpty and

e′ @ MRDeqEmpty. Let d1, . . . , dm be the data values given by the RDeqEmpty-characterization
in the full version of this paper, and let d be the data value corresponding to the
DeqEmpty operation.

Without loss of generality, we can always choose the cycle so that Enq(di) doesn’t
happen before Deq(di−2) (if it does, drop di−1).

Let r be the renaming which maps d1, . . . , dm to 1, d to 2, and all other values to 3.
Let e = r(e,). The execution e can be recognized by automatonARDeqEmpty , and belongs
to I by data independence.

When we have a data structure which is both step-by-step linearizable and co-regular,
we can make a linear time reduction from the verification of linearizability with respect
to S to a reachability problem, as illustrated in Theorem 1.

Theorem 1. Let S be a step-by-step linearizable and co-regular data structure and let
I be a data-independent implementation. There exists a regular automatonA such that:

I v S ⇐⇒ I ∩A = ∅

5 Decidability and Complexity of Linearizability

Theorem 1 implies that the linearizability problem with respect to any step-by-step
linearizable and co-regular specification is decidable for any data-independent imple-

mentation for which checking the emptiness of the intersection with finite-state automata
is decidable. Here, we give a class C of data-independent implementations for which the
latter problem, and thus linearizability, is decidable.

Each method of an implementation in Cmanipulates a finite number of local variables
which store Boolean values, or data values from D. Methods communicate through a
finite number of shared variables that also store Boolean values, or data values from
D. Data values may be assigned, but never used in program predicates (e.g., in the
conditions of if and while statements) so as to ensure data independence. This class
captures typical implementations, or finite-state abstractions thereof, e.g., obtained via
predicate abstraction.

Let I be an implementation from class C. The automataA constructed in the proof
of Lemma 7 use only data values 1, 2, and 3. Checking emptiness of I ∩ A is thus
equivalent to checking emptiness of I3 ∩ A with the three-valued implementation
I3 = {e ∈ I | e = e|{1,2,3}}. The set I3 can be represented by a Petri net since bounding
data values allows us to represent each thread with a finite-state machine. Intuitively,
each token in the Petri net represents another thread. The number of threads can be
unbounded since the number of tokens can. Places count the number of threads in each
control location, which includes a local-variable valuation. Each shared variable also has
one place per value to store its current valuation.

Emptiness of the intersection with regular automata reduces to the EXPSPACE-
complete coverability problem for Petri nets. Limiting verification to a bounded number
of threads lowers the complexity of coverability to PSPACE [7]. The hardness part
of Theorem 2 comes from the hardness of state reachability in finite-state concurrent
programs.

Theorem 2. Verifying linearizability of an implementation in C with respect to a step-
by-step linearizable and co-regular specification is PSPACE-complete for a fixed number
of threads, and EXPSPACE-complete otherwise.

6 Related Work

Several works investigate the theoretical limits of linearizability verification. Verifying a
single execution against an arbitrary ADT specification is NP-complete [9]. Verifying all
executions of a finite-state implementation against an arbitrary ADT specification (given
as a regular language) is EXPSPACE-complete when program threads are bounded [2,
10], and undecidable otherwise [3].

Existing automated methods for proving linearizability of an atomic object imple-
mentation are also based on reductions to safety verification [1, 11, 13]. Vafeiadis [13]
considers implementations where operation’s linearization points are fixed to particular
source-code locations. Essentially, this approach instruments the implementation with
ghost variables simulating the ADT specification at linearization points. This approach is
incomplete since not all implementations have fixed linearization points. Aspect-oriented
proofs [11] reduce linearizability to the verification of four simpler safety properties.
However, this approach has only been applied to queues, and has not produced a fully
automated and complete proof technique. Dodds et al. [6] prove linearizability of stack

implementations with an automated proof assistant. Their approach does not lead to full
automation however, e.g., by reduction to safety verification.

7 Conclusion

We have demonstrated a linear-time reduction from linearizability for fixed ADT spec-
ifications to control-state reachability, and the application of this reduction to atomic
queues, stacks, registers, and mutexes. Besides yielding novel decidability results, our
reduction enables the use of existing safety-verification tools for linearizability. While
this work only applies the reduction to these four objects, our methodology also applies
to other typical atomic objects including semaphores and sets. Although this method-
ology currently does not capture priority queues, which are not data independent, we
believe our approach can be extended to include them. We leave this for future work.

References

[1] P. A. Abdulla, F. Haziza, L. Holı́k, B. Jonsson, and A. Rezine. An integrated
specification and verification technique for highly concurrent data structures. In
TACAS ’13. Springer, 2013.

[2] R. Alur, K. L. McMillan, and D. Peled. Model-checking of correctness conditions
for concurrent objects. Inf. Comput., 160(1-2), 2000.

[3] A. Bouajjani, M. Emmi, C. Enea, and J. Hamza. Verifying concurrent programs
against sequential specifications. In ESOP ’13. Springer, 2013.

[4] A. Bouajjani, M. Emmi, C. Enea, and J. Hamza. Tractable refinement checking for
concurrent objects. In POPL ’15. ACM, 2015.

[5] A. Bouajjani, M. Emmi, C. Enea, and J. Hamza. On reducing linearizability to
state reachability. CoRR, abs/1502.06882, 2015. URL http://arxiv.org/abs/
1502.06882.

[6] M. Dodds, A. Haas, and C. M. Kirsch. A scalable, correct time-stamped stack. In
POPL ’15. ACM, 2015.

[7] J. Esparza. Decidability and complexity of petri net problems — an introduction.
In Lectures on Petri Nets I: Basic Models. Springer Berlin Heidelberg, 1998.

[8] I. Filipovic, P. W. O’Hearn, N. Rinetzky, and H. Yang. Abstraction for concurrent
objects. Theor. Comput. Sci., 411(51-52), 2010.

[9] P. B. Gibbons and E. Korach. Testing shared memories. SIAM J. Comput., 26(4),
1997.

[10] J. Hamza. On the complexity of linearizability. CoRR, abs/1410.5000, 2014. URL
http://arxiv.org/abs/1410.5000.

[11] T. A. Henzinger, A. Sezgin, and V. Vafeiadis. Aspect-oriented linearizability proofs.
In CONCUR ’13. Springer, 2013.

[12] M. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst., 12(3), 1990.

[13] V. Vafeiadis. Automatically proving linearizability. In CAV ’10. Springer, 2010.

http://arxiv.org/abs/1502.06882
http://arxiv.org/abs/1502.06882
http://arxiv.org/abs/1410.5000

	On Reducing Linearizability to State Reachability

