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Abstract. We address the problem of checking that computations of a
shared memory implementation (with write and read operations) adheres
to some given consistency model. It is known that checking conformance
to Sequential Consistency (SC) for a given computation is NP-hard, and
the same holds for checking Total Store Order (TSO) conformance. This
poses a serious issue for the design of scalable verification or testing
techniques for these important memory models. In this paper, we tackle
this issue by providing an approach that avoids hitting systematically
the worst-case complexity. The idea is to consider, as an intermediary
step, the problem of checking weaker criteria that are as strong as pos-
sible while they are still checkable in polynomial time (in the size of
the computation). The criteria we consider are new variations of causal
consistency suitably defined for our purpose. The advantage of our ap-
proach is that in many cases (1) it can catch violations of SC/TSO early
using these weaker criteria that are efficiently checkable, and (2) when
a computation is causally consistent (according to our newly defined
criteria), the work done for establishing this fact simplifies significantly
the work required for checking SC/TSO conformance. We have imple-
mented our algorithms and carried out several experiments on realistic
cache-coherence protocols showing the efficiency of our approach.

1 Introduction

This paper addresses the problem of checking whether a given implementation of
a shared memory offers the expected consistency guarantees to its clients which
are concurrent programs composed of several threads running in parallel. Indeed,
users of a memory need to see it as an abstract object allowing to perform con-
current reads and writes over a set of variables, which conform to some memory
model defining the valid visible sequences of such operations. Various memory
models can be considered in this context. Sequential Consistency (SC) [24] is
the model where operations can be seen as atomic, executing according to some
interleaving of the operations issued by the different threads, while preserving
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the order in which these operations were issued by each of the threads. This
fundamental model offers strong consistency in the sense that for each write op-
eration, when it is issued by a thread, it is immediately visible to all the other
threads. Other weaker memory models are adopted in order to meet performance
and/or availability requirements in concurrent/distributed systems. One of the
most widely used models in this context is Total Store Order (TSO) [29]. In this
model, writes can be delayed, which means that after a write is issued, it is not
immediately visible to all threads (except for the thread that issued it), and it is
committed later after some arbitrary delay. However, writes issued by the same
thread are committed in the same order are they were issued, and when a write
is committed it becomes visible to all the other threads simultaneously. TSO is
implemented in hardware but also in a distributed context over a network [22].

Implementing shared memories that are both highly performant and correct
with respect to a given memory model is an extremely hard and error prone
task. Therefore, checking that a given implementation is indeed correct from
this point of view is of paramount importance. In this paper we address the
issue of checking that a given execution of a shared memory implementation is
consistent, and we consider as consistency criteria the cases of SC and TSO.

Checking SC or TSO conformance is known to be NP-complete [18, 21]. This
is due to the fact that in order to justify that the execution is consistent, one
has to find a total order between the writes which explains the read operations
happening along the computation. It can be proved that one cannot avoid enu-
merating all the possible total orders between writes, in the worst case. The
situation is different for other weaker criteria such as Causal Consistency (CC)
and its different variations, which have been shown to be checkable in polyno-
mial time (in the the size of the computation) [6]. In fact, CC imposes fewer
constraints than SC/TSO on the order between writes, and the way it imposes
these constraints is “deterministic”, in the sense that they can be derived from
the history of the execution by applying a least fixpoint computation (which
can be encoded for instance, as a standard DATALOG program). All these com-
plexity results hold under the assumption that each value is written at most
once, which is without loss of generality for implementations which are data-
independent [31], i.e., their behavior doesn’t depend on the concrete values read
or written in the program. Indeed, any buggy behavior of such implementations
can be exposed in executions satisfying this assumption 3.

The intrinsic hardness of the problem of checking SC/TSO poses a crucial is-
sue for the design of scalable verification or testing techniques for these important
consistency models. Tackling this issue requires the development of practical ap-
proaches that can work well (with polynomial complexity) when the instance of
the problem does not need to generate the worst case (exponential) complexity.

The purpose of this paper is to propose such an approach. The idea is to
reduce the amount of “nondeterminism” in searching for the write orders in order

3 All the CC variations become NP-complete without the assumption that each value
is written at most once [6]. This holds for the variations of CC we introduce in this
paper as well.
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to establish SC/TSO conformance. For that, our approach for SC is to consider
a weaker consistency model called CCM (for Convergent Causal Memory), that
is “as strong as possible” while being polynomial time checkable. In fact CCM
is stronger than both causal memory [2, 26] (CM) and causal convergence [7]
(CCv), two other well-known variations of causal consistency. Then, if CCM
is already violated by the given computation then we can conclude that the
computation does not satisfy the stronger criterion SC. Here the hope is that
in practice many computations violating SC can be caught already at this stage
using a polynomial time check. Now, in the case that the computation does not
violate CCM, we exploit the fact that establishing CCM already imposes a set of
constraints on the order between writes. We show that these constraints form a
partial order which must be a subset of any total write order that would witness
for SC conformance. Therefore, at this point, it is enough to find an extension
of this partial write order, and the hope is that in many practical cases, this set
of constraints is already large enough, letting only a small number of pairs of
writes to be ordered in order to check SC conformance. For the case of TSO, we
proceed in the same way, but we consider a different intermediary polynomial
time checkable criterion called weak CCM (wCCM). This is due to the fact
that some causality constraints need to be relaxed in order to take into account
the program order relaxations of TSO, that allow reads to overtake writes. The
definitions of the new criteria CCM and wCCM we use in our approach are quite
subtile. Ensuring that these criteria are “as strong as possible” by including all
possible order constraints on pairs of writes that can be computed (in polynomial
time) using a least fixpoint calculation, while still ensuring that they are weaker
than SC/TSO, and proving this fact, is not trivial.

As a proof of concept, we implemented our approach for checking SC/TSO
and applied it to executions extracted from realistic cache coherence protocols
within the Gem5 simulator [5] in system emulation mode. This evaluation shows
that our approach scales better than a direct encoding of the axioms defining
SC and TSO [3] into boolean satisfiability. We also show that the partial order
of writes imposed by the stronger criteria CCM and wCCM leaves only a small
percentage of writes unordered (6.6% in average) in the case that the executions
are valid, and most SC/TSO violations are also CCM/wCCM violations.

2 Sequential Consistency and TSO

We consider multi-threaded programs over a set of shared variables Var =
{𝑥, 𝑦, . . .}. Threads issue read and write operations. Assuming an unspecified
set of values Val and a set of operation identifiers OId, we let

Op = {read𝑖(𝑥, 𝑣),write𝑖(𝑥, 𝑣) : 𝑖 ∈ OId, 𝑥 ∈ Var, 𝑣 ∈ Val}

be the set of operations reading a value 𝑣 or writing a value 𝑣 to a variable
𝑥. We omit operation identifiers when they are not important. The set of read,
resp., write, operations is denoted by R, resp., W. The set of read, resp., write,
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operations in a set of operations 𝑂 is denoted by R(𝑂), resp., W(𝑂). The variable
accessed by an operation 𝑜 is denoted by var(𝑜).

Consistency criteria like SC or TSO are formalized on an abstract view of
an execution called history. A history includes a set of write or read opera-
tions ordered according to a (partial) program order po which order operations
issued by the same thread. Most often, po is a union of sequences, each se-
quence containing all the operations issued by some thread. Then, we assume
that the history includes a write-read relation which identifies the write opera-
tion writing the value returned by each read in the execution. Such a relation
can be extracted easily from executions where each value is written at most
once. Since shared-memory implementations (or cache coherence protocols) are
data-independent [31] in practice, i.e., their behavior doesn’t depend on the con-
crete values read or written in the program, any potential buggy behavior can
be exposed in such executions.

Definition 1. A history ⟨𝑂, po,wr⟩ is a set of operations 𝑂 along with a strict
partial program order po and a write-read relation wr ⊆ W(𝑂) × R(𝑂), such
that the inverse of wr is a total function and if (write(𝑥, 𝑣), read(𝑥′, 𝑣′)) ∈ wr,
then 𝑥 = 𝑥′ and 𝑣 = 𝑣′.

We assume that every history includes a write operation writing the initial
value of variable 𝑥, for each variable 𝑥. These write operations precede all other
operations in po. We use ℎ, ℎ1, ℎ2, . . . to range over histories.

We now define the SC and TSO memory models (we use the same definitions
as in the formal framework developed by Alglave et al. [3]). Given a history
ℎ = ⟨𝑂, po,wr⟩ and a variable 𝑥, a store order on 𝑥 is a strict total order
ww𝑥 on the write operations write (𝑥, ) in 𝑂. A store order is a union of
store orders ww𝑥, one for each variable 𝑥 used in ℎ. A history ⟨𝑂, po,wr⟩ is
sequentially consistent (SC, for short) if there exists a store order ww such that
po∪wr∪ww∪rw is acyclic. The read-write relation rw is defined by rw = wr−1∘ww
(where ∘ denotes the standard relation composition).

The definition of TSO relies on three additional relations: (1) the ppo relation
which excludes from the program order pairs formed of a write and respectively,
a read operation, i.e., ppo = po ∖ (W(𝑂) × R(𝑂)), (2) the po-loc relation which
is a restriction of po to operations accessing the same variable, i.e., po-loc =
po∩{(𝑜, 𝑜′) | var(𝑜) = var(𝑜′)}, and (3) the write-read external relation wr𝑒 which
is a restriction of the write-read relation to pairs of operations in different threads
(not related by program order), i.e., wr𝑒 = wr∩{(𝑜, 𝑜′) | (𝑜, 𝑜′) ̸∈ po and (𝑜′, 𝑜) ̸∈
po}. Then, we say that a history satisfies TSO if there exists a store order ww
such that po-loc ∪ wr𝑒 ∪ ww ∪ rw and ppo ∪ wr𝑒 ∪ ww ∪ rw are both acyclic.

Notice that the formal definition of the TSO given above is equivalent to the
formal operational model of TSO that consists in considering that each thread
has a store buffer, and then, each write issued by a thread is first sent to its
store buffer before being committed to the memory later in a nondeterministic
way. To read a value on some variable 𝑥, a thread first checks if it there is still
a write on 𝑥 pending in its own buffer and in this case it takes the value of the
last such as write, otherwise it fetches the value of 𝑥 in the memory.
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3 Checking Sequential Consistency

We define an algorithm for checking whether a history satisfies SC which enforces
a polynomially-time checkable criterion weaker than SC, a variation of causal
consistency, in order to construct a partial store order, i.e., one in which not
all the writes on the same variable are ordered. This partial store order is then
completed until it orders every two writes on the same variable using a standard
backtracking enumeration. This approach is efficient when the number of writes
that remain to be ordered using the backtracking enumeration is relatively small,
a hypothesis confirmed by our experimental evaluation (see Section 5.).

The variation of causal consistency mentioned above, called convergent causal
memory (CCM, for short), is stronger than existing variations [6] while still
being polynomially-time checkable (and weaker than SC). Its definition uses
several relations between read and write operations which are analogous or even
exactly the same relations used to define those variations. Section 3.1 recalls
the existing notions of causal consistency as they are defined in [6] (using the
so called “bad-pattern” characterization introduced in that paper), Section 3.2
introduces CCM, while Section 3.3 presents our algorithm for checking SC.

3.1 Causal Consistency

The weakest variation of causal consistency, called weak causal consistency (CC,
for short), requires that any two causally-dependent values are observed in the
same order by all threads, where causally-dependent means that either those
values were written by the same thread (i.e., the corresponding writes are ordered
by po), or that one value was written by a thread after reading the other value,
or any transitive composition of such dependencies. Values written concurrently
by two threads can be observed in any order, and even-more, this order may
change in time. A history ⟨𝑂, po,wr⟩ satisfies CC if po ∪ wr ∪ rw[co] is acyclic
where co = (po∪wr)+ is called the causal relation. The read-write relation rw[co]
induced by the causal relation is defined by

(read(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ rw[co] iff (write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ co and

(write(𝑥, 𝑣), read(𝑥, 𝑣)) ∈ wr, for some write(𝑥, 𝑣)

The read-write relation rw[co] is a variation of rw from the definition of
SC/TSO where the store order ww is replaced by the projection of co on pairs
of writes. In general, given a binary relation 𝑅 on operations, 𝑅WW denotes the
projection of 𝑅 on pairs of writes on the same variable. Then,

Definition 2. The read-write relation rw[𝑅] induced by a relation 𝑅 is defined
by rw[𝑅] = wr−1 ∘𝑅WW.

Causal convergence (CCv, for short) is a strengthening of CC where concur-
rent values are required to be observed in the same order by all threads.
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𝑡0:
write(𝑥, 1)
read(𝑥, 2)

𝑡1:
write(𝑥, 2)
read(𝑥, 1)

(a) CM but not CCv nor wCCM

𝑡0:
write(𝑧, 1)
write(𝑥, 1)
write(𝑦, 1)

𝑡1:
write(𝑥, 2)
read(𝑧, 0)
read(𝑦, 1)
read(𝑥, 2)

(b) CCv, wCCM and TSO but not CM

𝑡0:
write(𝑥, 1)
write(𝑥, 2)
read(𝑦, 1)

𝑡1:
write(𝑦, 1)
write(𝑦, 2)
read(𝑦, 2)
read(𝑥, 1)

(c) CM and CCv but not CCM

𝑡0:
write(𝑥, 1)
read(𝑦, 0)
write(𝑦, 1)
read(𝑥, 1)

𝑡1:
write(𝑥, 2)
read(𝑦, 0)
write(𝑦, 2)
read(𝑥, 2)

(d) CCM but not SC

Fig. 1: Histories with two threads used to compare different consistency models.
Operations of the same thread are aligned vertically.

A history ⟨𝑂, po,wr⟩ satisfies CCv if it satisfies CC and po∪wr∪cf is acyclic
where the conflict relation cf is defined by

(write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ cf iff (write(𝑥, 𝑣), read(𝑥, 𝑣′)) ∈ co and

(write(𝑥, 𝑣′), read(𝑥, 𝑣′)) ∈ wr, for some read(𝑥, 𝑣′)

The conflict relation relates two writes 𝑤1 and 𝑤2 when 𝑤1 is causally related
to a read taking its value from 𝑤2. The definition of CCM, our new variation
of causal consistency, relies on a generalization of the conflict relation where a
different relation is used instead of co. Given a binary relation 𝑅 on operations,
𝑅WR denotes the projection of 𝑅 on pairs of writes and reads on the same
variable, respectively.

Definition 3. The conflict relation cf[𝑅] induced by a relation 𝑅 is defined by
cf[𝑅] = 𝑅WR ∘ wr−1.

Finally, causal memory (CM, for short) is a strengthening of CC where
roughly, concurrent values are required to be observed in the same order by
a thread during its entire execution. Differently from CCv, this order can differ
from one thread to another. Although this intuitive description seems to imply
that CM is weaker than CCv, the two models are actually incomparable. For
instance, the history in Figure 1a is allowed by CM, but not by CCv. It is not
allowed by CCv because reading 1 from 𝑥 in the first thread implies that it ob-
served write(𝑥, 1) after write(𝑥, 2) while reading 2 from 𝑥 in the second thread
implies that it observed write(𝑥, 2) after write(𝑥, 1). While this is allowed by CM
where different threads can observe concurrent writes in different orders, it is
not allowed by CCv. Then, the history in Figure 1b is CCv but not CM. It is not
allowed by CM because reading the initial value 0 from 𝑧 implies that write(𝑥, 1)
is observed after write(𝑥, 2) while reading 2 from 𝑥 implies that write(𝑥, 2) is
observed after write(𝑥, 1) (write(𝑥, 1) must have been observed because the same
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thread reads 1 from 𝑦 and the writes on 𝑥 and 𝑦 are causally related). However,
under CCv, a thread simply reads the most recent value on each variable and the
order in which these values are ordered using timestamps for instance is inde-
pendent of the order in which variables are read in a thread, e.g., reading 0 from
𝑧 doesn’t imply that the timestamp of write(𝑥, 2) is smaller than the timestamp
of write(𝑥, 1). This history is admitted by CCv assuming that the order in which
write(𝑥, 1) and write(𝑥, 2) are observed is write(𝑥, 1) before write(𝑥, 2).

Let us give the formal definition of CM. Let h=⟨𝑂, po,wr⟩ be a history. For
every operation 𝑜 in h, let hb𝑜 be the smallest transitive relation such that:

1. if two operations are causally related, and each one causally related to 𝑜,
then they are related by hb𝑜, i.e., (𝑜1, 𝑜2) ∈ hb𝑜 if (𝑜1, 𝑜2) ∈ co, (𝑜1, 𝑜) ∈ co,
and (𝑜2, 𝑜) ∈ co* (where co* is the reflexive closure of co), and

2. two writes 𝑤1 and 𝑤2 are related by hb𝑜 if 𝑤1 is hb𝑜-related to a read taking
its value from 𝑤2, and that read is done by the same thread executing 𝑜
and before 𝑜 (this scenario is similar to the definition of the conflict relation
above), i.e., (write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ hb𝑜 if (write(𝑥, 𝑣), read(𝑥, 𝑣′)) ∈ hb𝑜,
(write(𝑥, 𝑣′), read(𝑥, 𝑣′)) ∈ wr, and (read(𝑥, 𝑣′), 𝑜) ∈ po*, for some read(𝑥, 𝑣′).

A history ⟨𝑂, po,wr⟩ satisfies CM if it satisfies CC and for each operation 𝑜
in the history, the relation hb𝑜 is acyclic.

Bouajjani et al. [6] show that the problem of checking whether a history
satisfies CC, CCv, or CM is polynomial time. This result is a straightforward
consequence of the above definitions, since the union of relations required to be
acyclic can be computed in polynomial time from the relations po and wr which
are fixed in a given history. In particular, the union of these relations can be
computed by a DATALOG program.

3.2 Convergent Causal Memory

We define a new variation of causal consistency which builds on causal memory,
but similar to causal convergence it enforces that all threads agree on an order in
which to observe values written by concurrent (causally-unrelated) writes, and
also, it uses a larger read-write relation. A history ⟨𝑂, po,wr⟩ satisfies convergent
causal memory (CCM, for short) if po ∪ wr ∪ pww ∪ rw[pww] is acyclic, where
the partial store order pww is defined by

pww = (hbWW ∪ cf[hb])+ with hb =
(︀ ⋃︁
𝑜∈𝑂

hb𝑜
)︀+

.

The partial store order pww contains the ordering constraints between writes in
all relations hb𝑜 used to defined causal memory, and also, the conflict relation
induced by this set of constraints (a weaker version of conflict relation was used
to define causal convergence).

As a first result, we show that all the variations of causal consistency in
Section 3.1, i.e., CC, CCv and CM, are strictly weaker than CCM.

Lemma 1. If a history satisfies CCM, then it satisfies CC, CCv and CM.
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Proof. Let ℎ = ⟨𝑂, po,wr⟩ be a history satisfying CCM. By the definition of hb,
we have that coWW ⊆ hbWW. Indeed, any two writes 𝑜1 and 𝑜2 related by co are
also related by hb𝑜2 , which by the definition of hb, implies that they are related
by hbWW. Then, by the definition of pww, we have that hbWW ⊆ pww. This
implies that rw[co] ⊆ rw[pww] (by definition, rw[co] = rw[coWW]). Therefore, the
acyclicity of po∪wr ∪ pww ∪ rw[pww] implies that its subset (po∪wr ∪ rw[co] is
also acyclic, which means that ℎ satisfies CC. Also, it implies that po∪wr∪cf[hb]
is acyclic (the last term of the union is included in pww), which by co ⊆ hb,
implies that po ∪ wr ∪ cf[co] is acyclic, and thus, ℎ satisfies CCv. The fact that
ℎ satisfies CM follows from the fact that ℎ satisfies CC (since po∪wr is acyclic)
and hb is acyclic (hbWW is included in pww and the rest of the dependencies in
hb are included in po ∪ wr). �

The reverse of the above lemma doesn’t hold. Figure 1c shows a history
which satisfies CM and CCv, but it is not CCM. To show that this history
does not satisfy CCM we use the fact that pww relates any two writes which are
ordered by program order. Then, we get that read(𝑥, 1) and write(𝑥, 2) are related
by rw[pww] (because write(𝑥, 1) is related by write-read with read(𝑥, 1)), which
further implies that (read(𝑥, 1), read(𝑦, 1)) ∈ rw[pww]∘po. Similarly, we have that
(read(𝑦, 1), read(𝑥, 1)) ∈ rw[pww]∘po, which implies that po∪wr∪pww∪rw[pww]
is not acyclic, and therefore, the history does not satisfy CCM. The fact that
this history satisfies CM and CCv follows easily from definitions.

Next, we show that CCM is weaker than SC, which will be important in our
algorithm for checking whether a history satisfies SC.

Lemma 2. If a history satisfies SC, then it satisfies CCM.

Proof. Using the definition of CCM, Let ℎ = ⟨𝑂, po,wr⟩ be a history satisfying
SC. Then, there exists a store order ww such that po∪wr∪ww∪rw[ww] is acyclic.
We show that the two relations hbWW and cf[hb], whose union constitutes pww,
are both included in ww. We first prove that hb ⊆ (po∪wr ∪ww ∪ rw[ww])+ by
structural induction on the definition of hb𝑜:

1. if (𝑜1, 𝑜2) ∈ co = (po∪wr)+, then clearly, (𝑜1, 𝑜2) ∈ (po∪wr∪ww∪rw[ww])+,
2. if (write(𝑥, 𝑣), read(𝑥, 𝑣′)) ∈ (po∪wr∪ww∪ rw[ww])+ and there is read(𝑥, 𝑣′)

such that (write(𝑥, 𝑣′), read(𝑥, 𝑣′)) ∈ wr, then (write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ ww.
Otherwise, assuming by contradiction that (write(𝑥, 𝑣′),write(𝑥, 𝑣)) ∈ ww,
we get that (read(𝑥, 𝑣′),write(𝑥, 𝑣)) ∈ rw[ww] (by the definition of rw[ww]
using the hypothesis (write(𝑥, 𝑣′), read(𝑥, 𝑣′)) ∈ wr). Note that the latter
implies that po ∪ wr ∪ ww ∪ rw[ww] is cyclic.

Since hb ⊆ (po ∪ wr ∪ ww ∪ rw[ww])+, we get that hbWW ⊆ ww. Also, since
cf[(po ∪ wr ∪ ww ∪ rw[ww])+] ⊆ (po ∪ wr ∪ ww ∪ rw[ww])+ (using a similar
argument as in point (2) above), we get that cf[hb] ⊆ (po∪wr ∪ww ∪ rw[ww])+.

Finally, since pww ⊆ ww, we get that (po ∪ wr ∪ pww ∪ rw[pww])+ ⊆ (po ∪
wr ∪ ww ∪ rw[ww])+, which implies that the acyclicity of the latter implies the
acyclicity of the former. Therefore, ℎ satisfies CCM. �
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Fig. 2: Relationships between consistency models. Directed arrows denote the
“weaker-than” relation while dashed lines connect incomparable models.

Input: A history ℎ = ⟨𝑂, po,wr⟩
Output: true iff ℎ satisfies SC

1 if po ∪ wr ∪ pww ∪ rw[pww] is cyclic then
2 return false;
3 end
4 foreach ww ⊃ pww do
5 if po ∪ wr ∪ ww ∪ rw[ww] is acyclic then
6 return true;
7 end

8 end
9 return false;

Algorithm 1: Checking SC conformance.

The reverse of the above lemma doesn’t hold. For instance, the history in
Figure 1d is not SC but it is CCM. This history admits a partial store order
pww where the writes in different threads are not ordered.

The left side of Figure 2 (ignoring wCCM and TSO) summarizes the rela-
tionships between the consistency models presented in this section.

The partial store order pww can be computed in polynomial time (in the size
of the input history). Indeed, the hb𝑜 relations can be computed using a least
fixpoint calculation that converges in at most a quadratic number of iterations
and acyclicity can be decided in polynomial time. Therefore,

Theorem 1. Checking whether a history satisfies CCM is polynomial time in
the size of the history.

3.3 An Algorithm for Checking Sequential Consistency

Algorithm 1 checks whether a given history satisfies sequential consistency. As
a first step, it checks whether the given history satisfies CCM. If this is not
the case, then, by Lemma 2, the history does not satisfy SC as well, and the
algorithm returns false. Otherwise, it enumerates store orders which extend the
partial store order pww, until finding one that witnesses for satisfaction of SC.
The history is a violation to SC iff no such store order is found. The soundness
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𝑡0:
write(𝑥, 1)

𝑡1:
write(𝑦, 1)

𝑡2:
read(𝑥, 1)
read(𝑦, 0)

𝑡3:
read(𝑦, 1)
read(𝑥, 0)

Fig. 3: A history admitted by wCCM and CCM but not by TSO.

of this last step is implied by the proof of Lemma 2, which shows that pww is
included in any store order ww witnessing for SC satisfaction.

Theorem 2. Algorithm 1 returns true iff the input history ℎ satisfies SC.

4 Checking conformance to the TSO model

We consider now the problem of checking whether a history satisfies TSO. Follow-
ing the approach developed above for SC, we define a polynomial time checkable
criterion, based on a (different) variation of causal consistency that is suitable
for the case of TSO. This allows to reduce the number of pairs of writes for
which an order must be guessed in order to establish conformance to TSO.

The case of TSO requires the definition of a new intermediary consistency
model because CCM is based on a causality order that includes the program
order po which is relaxed in the context of TSO, compared to the SC model.
Indeed, CCM is not weaker than TSO as shown by the history in Figure 1b (note
that this does not imply that other variations of causal consistency, CC and CCv,
are also not weaker than TSO). This history satisfies TSO because, based on its
operational model, the operation write(𝑥, 2) of thread 𝑡1 can be delayed (pending
in the store buffer of 𝑡1) until the end of the execution. Therefore, after executing
read(𝑧, 0), all the writes of thread 𝑡0 are committed to the main memory so that
thread 𝑡1 can read 1 from 𝑦 and 2 from 𝑥 (it is obliged to read the value of 𝑥
from its own store buffer). This history is not admitted by CCM because it is
not admitted by the weaker causal consistency variation CM. Figure 3 shows a
history admitted by CCM but not by TSO. Indeed, under TSO, both 𝑡2 and 𝑡3
should see the writes on 𝑥 and 𝑦 performed by 𝑡0 and 𝑡1, respectively, in the
same order. This is not the case, because 𝑡2 “observes” the write on 𝑥 before the
write on 𝑦 (since it reads 0 from 𝑦) and 𝑡3 “observes” the write on 𝑦 before the
write on 𝑥 (since it reads 0 from 𝑥). This history is admitted by CCM because
the two writes are causally independent and they concern different variables.
We mention that TSO and CM are also incomparable. For instance, the history
in Figure 1a is allowed by CM, but not by TSO. The history in Figure 1b is
admitted by TSO, but not by CM.

Next, we define a weakening of CCM, called weak convergent causal memory
(wCCM), which is also weaker than TSO. The model wCCM is based on causality
relations induced by the relaxed program orders ppo and po-loc instead of po,
and the external write-read relation instead of the full write-read relation.
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4.1 Weak Convergent Causal Memory

First, we define two causality relations relative to the partial program orders in
the definition of TSO and the external write-read relation: For 𝜋 ∈ {ppo, po-loc},
let co𝜋 = (𝜋 ∪ wr𝑒)

+. We also consider a notion of conflict that is defined in
terms of the external write-read relation as follows: For a given relation 𝑅, let
cf𝑒[𝑅] = 𝑅WR ∘ wr−1

𝑒 .
Then, given a history ⟨𝑂, po,wr⟩, we define for each operation 𝑜 two happens-

before relations hbppo𝑜 and hbpo-loc𝑜 . The definition of these relations is similar to
the one of hb𝑜 (from causal memory), the differences being that po is replaced
by ppo and po-loc respectively, co is replaced by coppo and copo-loc respectively,
and wr is replaced by wr𝑒. Therefore, for 𝜋 ∈ {ppo, po-loc}, hb𝜋𝑜 is is the smallest
transitive relation such that:

1. (𝑜1, 𝑜2) ∈ hb𝜋𝑜 if (𝑜1, 𝑜2) ∈ co𝜋, (𝑜1, 𝑜) ∈ co𝜋, and (𝑜2, 𝑜) ∈ (co𝜋)*, and
2. (write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ hb𝜋𝑜 if (write(𝑥, 𝑣), read(𝑥, 𝑣′)) ∈ hb𝜋𝑜 , and

(write(𝑥, 𝑣′), read(𝑥, 𝑣′)) ∈ wr and (read(𝑥, 𝑣′), 𝑜) ∈ 𝜋*, for some read(𝑥, 𝑣′).

Let hb𝜋 = (
⋃︀

𝑜∈𝑂 hb𝜋𝑜 )+, for 𝜋 ∈ {ppo, po-loc}, and let whb = (hbppo𝑜 ∪
hbpo-loc𝑜 )+. Then, the weak partial store order is defined as follows:

wpww = (whbWW ∪ cf𝑒[hb
po-loc] ∪ cf𝑒[hb

ppo])+

Then, we say that a history ⟨𝑂, po,wr⟩ satisfies weak convergent causal memory
(wCCM) if both relations:

ppo ∪ wr𝑒 ∪ wpww ∪ rw[wpww] and po-loc ∪ wr𝑒 ∪ wpww ∪ rw[wpww]

are acyclic.

Lemma 3. If a history satisfies TSO, then it satisfies wCCM.

Proof. Let ℎ = ⟨𝑂, po,wr⟩ be a history satisfying TSO. Then, there exists a
store order ww such that po-loc ∪ wr𝑒 ∪ ww ∪ rw and ppo ∪ wr𝑒 ∪ ww ∪ rw are
both acyclic. The fact that

hbpo-loc ⊆ (po-loc ∪ wr𝑒 ∪ ww ∪ rw)+ and hbppo ⊆ (ppo ∪ wr𝑒 ∪ ww ∪ rw)+

can be proved by structural induction like in the case of SC (the step of the
proof showing that hb ⊆ po∪wr ∪ww ∪ rw[ww]). Then, since ww is a total order
on writes on the same variable, we get that the projection of whb (the transitive
closure of the union of hbpo-loc and hbppo) on pairs of writes on the same variable
is included in ww. Therefore, whbWW ⊆ ww. Then, since cf𝑒[𝑅

𝜋] ⊆ 𝑅𝜋 for each
𝑅𝜋 = (𝜋 ∪wr𝑒 ∪ww ∪ rw)+ with 𝜋 ∈ {ppo, po-loc} and since each cf𝑒[𝑅

𝜋] relates
only writes on the same variable, we get that each cf𝑒[𝑅

𝜋] is included in ww.
This implies that wpww ⊆ ww.

Finally, since wpww ⊆ ww, we get that (𝜋 ∪ wr ∪ wpww ∪ rw[wpww])+ ⊆
(𝜋 ∪wr ∪ww ∪ rw[ww])+, for each 𝜋 ∈ {ppo, po-loc}. In each case, the acyclicity
of the latter implies the acyclicity of the former. Therefore, ℎ satisfies wCCM.
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Input: A history ℎ = ⟨𝑂, po,wr⟩
Output: true iff ℎ satisfies TSO

1 if ppo ∪ wr𝑒 ∪ wpww ∪ rw[wpww] or po-loc ∪ wr𝑒 ∪ pww ∪ rw[wpww] is cyclic
then

2 return false;
3 end
4 foreach ww ⊃ wpww do
5 if ppo∪wr𝑒 ∪ww ∪ rw[ww] and po-loc∪wr𝑒 ∪ww ∪ rw[ww] are acyclic then
6 return true;
7 end

8 end
9 return false;

Algorithm 2: Checking TSO conformance.

The reverse of the above lemma does not hold. Indeed, it can be easily seen
that wCCM is weaker than CCM (since wpww is included in pww) and the
history in Figure 3, which satisfies CCM but not TSO (as explained in the
beginning of the section), is also an example of a history that satisfies wCCM
but not TSO. Then, wCCM is incomparable to CM. For instance, the history in
Figure 1b is allowed by wCCM (since it is allowed by TSO as explained in the
beginning of the section) but not by CM. Also, since CCM is stronger than CM,
the history in Figure 3 satisfies CM but not wCCM (since it does not satisfy
TSO). These relationships are summarized in Figure 2. Establishing the precise
relation between CC/CCv and TSO is hard because they are defined using one,
resp., two, acyclicity conditions. We believe that CC and CCv are weaker than
TSO, but we don’t have a formal proof.

Finally, it can be seen that, similarly to pww, the weak partial store order
wpww can be computed in polynomial time, and therefore:

Theorem 3. Checking whether a history satisfies wCCM is polynomial time in
the size of the history.

4.2 An Algorithm for Checking TSO conformance

The algorithm for checking TSO conformance for a given history is given in Fig-
ure 2. It starts by checking whether the history violates the weaker consistency
model wCCM. If yes, it returns false. If not, it starts enumerating the orders
between the writes that are not related by the weak partial store order wpww
until it founds one that allows establishing TSO conformance and in this case it
returns true. Otherwise it returns false.

Theorem 4. Algorithm 2 returns true iff the input history ℎ satisfies TSO.
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(a) Checking SC while varying the
number of operations.

(b) Checking SC while varying the
number of cpus.

Fig. 4: Checking SC for valid histories.

5 Experimental Evaluation

To demonstrate the practical value of the theory developed in the previous sec-
tions, we argue that our algorithms are efficient and scalable. We experiment
with both SC and TSO algorithms, investigating their running time compared
to a standard encoding of these models into boolean satisfiability on a bench-
mark obtained by running realistic cache coherence protocols within the Gem5
simulator [5] in system emulation mode.

Histories are generated with random clients of the following cache coher-
ence protocols included in the Gem5 distribution: MI, MEOSI Hammer, MESI
Two Level, and MEOSI AMD Base. The randomization process is parametrized
by the number of cpus (threads) and the total number of read/write operations.
We ensure that every value is written at most once.

We have compared two variations of our algorithms for checking SC/TSO
with a standard encoding of SC/TSO into boolean satisfiability (named X-SAT
where X is SC or TSO). The two variations differ in the way in which the partial
store order pww dictated by CCM is completed to a total store order ww as re-
quired by SC/TSO: either using standard enumeration (named X-CCM+Enum
where X is SC or TSO) or using a SAT solver (named X-CCM+SAT where X
is SC or TSO).

The computation of the partial store order pww is done using an encoding of
its definition into a DATALOG program. The inductive definition of hb𝑜 supports
an easy translation to DATALOG rules, and the same holds for the union of two
relations, or their composition. We used Clingo [19] to run DATALOG programs.

5.1 Checking SC

Figure 4 reports on the running time of the three algorithms while increasing
the number of operations or cpus. All the histories considered in this experi-
ment satisfy SC. This is intended because valid histories force our algorithms
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Fig. 5: Checking SC for invalid histories while increasing the number of cpus.

to enumerate extensions of the partial store order (SC violations may be de-
tected while checking CCM). The graph on the left pictures the evolution of
the running time when increasing the number of operations from 100 to 500, in
increments of 100 (while using a constant number of 4 cpus). For each number
of operations, we have considered 200 histories and computed the average run-
ning time. The graph on the right shows the running time when increasing the
number of cpus from 2 to 6, in increments of 1. For 𝑥 cpus, we have limited
the number of operations to 50𝑥. As before for each number of cpus, we have
considered 200 histories and computed the average running time. As it can be
observed, our algorithms scale much better than the SAT encoding and interest-
ingly enough, the difference between an explicit enumeration of pww extensions
and one using a SAT solver is not significant. Note that even small improvements
on the average running time provide large speedups when taking into account
the whole testing process, i.e., checking consistency for a possibly large num-
ber of (randomly-generated) executions. For instance, the work on McVerSi [13],
which focuses on the complementary problem of finding clients that increase the
probability of uncovering bugs, shows that exposing bugs in some realistic cache
coherence implementations requires even 24 hours of continuous testing.

Since the bottleneck in our algorithms is given by the enumeration of pww
extensions, we have measured the percentage of pairs of writes that are not
ordered by pww. Thus, we have considered a random sample of 200 histories
(with 200 operations per history) and evaluated this percentage to be just 6.6%,
which is surprisingly low. This explains the net gain in comparison to a SAT
encoding of SC, since the number of pww extensions that need to be enumerated
is quite low. As a side remark, using CCv instead of CCM in the algorithms
above leads to a drastic increase in the number of unordered writes. For the
same random sample of 200 histories, we conclude that using CCv instead of
CCM leaves 57.75% of unordered writes in average which is considerably bigger
than the percentage of unordered writes when using CCM.

We have also evaluated our algorithms on SC violations. These violations
were generated by reordering statements from the MI implementation, e.g.,
swapping the order of the actions s store hit and p profileHit in the tran-
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(a) Checking TSO while varying the
number of operations.

(b) Checking TSO while varying the
number of cpus.

Fig. 6: Checking TSO for valid histories.

sition transition(M, Store). As an optimization, our implementation checks
gradually the weaker variations of causal consistency CC and CCv before check-
ing CCM. This is to increase the chances of returning in the case of a violation
(a violation to CC/CCv is also a violation to CCM and SC). We have considered
1000 histories with 100 to 400 operations and 2 to 8 cpus, equally distributed
in function of the number of cpus. Figure 5 reports on the evolution of the
average running time. Since these histories happen to all be CCM violations,
SC-CCM+Enum and SC-CCM+SAT have the same running time. As an eval-
uation of our optimization, we have found that 50% of the histories invalidate
weaker variations of causal consistency, CC or CCv.

5.2 Checking TSO

We have evaluated our TSO algorithms on the same set of histories used for
SC in Figure 4. Since these histories satisfy SC, they satisfy TSO as well. As
in the case of SC, our algorithms scale better than the SAT encoding. However,
differently from SC, the enumeration of wpww extensions using a SAT solver
outperforms the explicit enumeration. Since this difference was more negligible
in the case of SC, it seems that the SAT variation is generally better.

6 Related Work

While several static techniques have been developed to prove that a shared-
memory implementation (or cache coherence protocol) satisfies SC [1, 4, 9, 10, 11,
12, 17, 20, 23, 27, 28] few have addressed dynamic techniques such as testing and
runtime verification (which scale to more realistic implementations). From the
complexity standpoint, Gibbons and Korach[21] showed that checking whether
a history is SC is np-hard while Alur et al. [4] showed that checking SC for
finite-state shared-memory implementations (over a bounded number of threads,
variables, and values) is undecidable [4]. The fact that checking whether a history
satisfies TSO is also np-hard has been proved by Furbach et al. [18].
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There are several works that addressed the testing problem for related cri-
teria, e.g., linearizability. While SC requires that the operations in a history
be explained by a linearization that is consistent with the program order, lin-
earizability requires that such a linearization be also consistent with the real-
time order between operations (linearizability is stronger than SC). The works
in [25, 30] describe monitors for checking linearizability that construct lineariza-
tions of a given history incrementally, in an online fashion. This incremental con-
struction cannot be adapted to SC since it strongly relies on the specificities of
linearizability. Line-Up [8] performs systematic concurrency testing via schedule
enumeration, and offline linearizability checking via linearization enumeration.
The works in [15, 16] show that checking linearizability for some particular class
of ADTs is polynomial time. Emmi and Enea [14] consider the problem of check-
ing weak consistency criteria, but their approach focuses on specific relaxations
in those criteria, falling back to an explicit enumeration of linearizations in the
context of a criterion like SC or TSO. Bouajjani et al. [6] consider the problem
of checking causal consistency. They formalize the different variations of causal
consistency we consider in this work and show that the problem of checking
whether a history satisfies one of these variations is polynomial time.

The complementary issue of test generation, i.e., finding clients that increase
the probability of uncovering bugs in shared memory implementations, has been
approached in the McVerSi framework [13]. Their methodology for checking a
criterion like SC lies within the context of white-box testing, i.e., the user is
required to annotate the shared memory implementation with events that define
the store order in an execution. Our algorithms have the advantage that the
implementation is treated as a black-box requiring less user intervention.

7 Conclusion

We have introduced an approach for checking the conformance of a computation
to SC or to TSO, a problem known to be NP-hard. The idea is to avoid an
explicit enumeration of the exponential number of possible total orders between
writes in order to solve these problems. Our approach is to define weaker criteria
that are as strong as possible but still polynomial time checkable. This is use-
ful for (1) early detection of violations, and (2) reducing the number of pairs of
writes for which an order must be found in order to check SC/TSO conformance.
Morally, the approach consists in being able to capture an “as large as possi-
ble” partial order on writes that can be computed in polynomial time (using a
least fixpoint calculation), and which is a subset of any total order witnessing
SC/TSO conformance. Our experimental results show that this approach is in-
deed useful and performant: it allows to catch most of violations early using an
efficient check, and it allows to compute a large kernel of write constraints that
reduces significantly the number of pairs of writes that are left to be ordered in
an enumerative way. Future work consists in exploring the application of this
approach to other correctness criteria that are hard to check such a serializability
in the context of transactional programs.
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