
Checking Robustness Between Weak
Transactional Consistency Models⋆

Sidi Mohamed Beillahi(B), Ahmed Bouajjani, and Constantin Enea

Université de Paris, IRIF, CNRS, Paris, France, {beillahi,abou,cenea}@irif.fr

Abstract. Concurrent accesses to databases are typically encapsulated
in transactions in order to enable isolation from other concurrent compu-
tations and resilience to failures. Modern databases provide transactions
with various semantics corresponding to different trade-offs between con-
sistency and availability. Since a weaker consistency model provides bet-
ter performance, an important issue is investigating the weakest level of
consistency needed by a given program (to satisfy its specification). As
a way of dealing with this issue, we investigate the problem of checking
whether a given program has the same set of behaviors when replacing
a consistency model with a weaker one. This property known as robust-
ness generally implies that any specification of the program is preserved
when weakening the consistency. We focus on the robustness problem
for consistency models which are weaker than standard serializability,
namely, causal consistency, prefix consistency, and snapshot isolation.
We show that checking robustness between these models is polynomial
time reducible to a state reachability problem under serializability. We
use this reduction to also derive a pragmatic proof technique based on
Lipton’s reduction theory that allows to prove programs robust. We have
applied our techniques to several challenging applications drawn from the
literature of distributed systems and databases.

Keywords: Transactional databases · Weak consistency · Program verification

1 Introduction

Concurrent accesses to databases are typically encapsulated in transactions in or-
der to enable isolation from other concurrent computations and resilience to fail-
ures. Modern databases provide transactions with various semantics correspond-
ing to different tradeoffs between consistency and availability. The strongest
consistency level is achieved with serializable transactions [42] whose outcome
in concurrent executions is the same as if the transactions were executed atom-
ically in some order. Since serializability (SER) carries a significant penalty on
availability, modern databases often provide weaker consistency models, e.g.,

⋆ This work is supported in part by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agree-
ment No 678177).

2 S.M. Beillahi, A. Bouajjani, and C. Enea.

causal consistency (CC) [38], prefix consistency (PC) [22, 25], and snapshot iso-
lation (SI) [12]. Causal consistency requires that if a transaction 𝑡1 “affects”
another transaction 𝑡2, e.g., 𝑡1 executes before 𝑡2 in the same session or 𝑡2 reads
a value written by 𝑡1, then the updates in these two transactions are observed
by any other transaction in this order. Concurrent transactions, which are not
causally related to each other, can be observed in different orders, leading to
behaviors that are not possible under SER. Prefix consistency requires that there
is a total commit order between all the transactions such that each transaction
observes all the updates in a prefix of this sequence (PC is stronger than CC).
Two transactions can observe the same prefix, which leads to behaviors that
are not admitted by SER. Snapshot isolation further requires that two different
transactions observe different prefixes if they both write to a common variable.

Since a weaker consistency model provides better performance, an important
issue is identifying the weakest level of consistency needed by a program (to sat-
isfy its specification). One way to tackle this issue is checking whether a program
𝑃 designed under a consistency model 𝑆 has the same behaviors when run under
a weaker consistency model 𝑊 . This property of a program is generally known
as robustness against substituting 𝑆 with 𝑊 . It implies that any specification of
𝑃 is preserved when weakening the consistency model (from 𝑆 to 𝑊). Preserving
any specification is convenient since specifications are rarely present in practice.

The problem of checking robustness for a given program has been investi-
gated in several recent works, but only when the stronger model (𝑆) is SER,
e.g., [9, 10, 19, 26, 13, 40], or sequential consistency in the non-transactional
case, e.g. [36, 15, 29]. However, there is a large class of specifications that can
be implemented even in the presence of “anomalies”, i.e., behaviors which are
not admitted under SER (see [46] for a discussion). In this context, an impor-
tant question is whether a certain implementation (program) is robust against
substituting a weak consistency model, e.g., SI, with a weaker one, e.g., CC.

In this paper, we consider the sequence of increasingly strong consistency
models mentioned above, CC, PC, and SI, and investigate the problem of checking
robustness for a given program against weakening the consistency model to one
in this range. We study the asymptotic complexity of this problem and propose
effective techniques for establishing robustness based on abstraction. There are
two important cases to consider: robustness against substituting SI with PC and
PC with CC, respectively. Robustness against substituting SI with CC can be
obtained as the conjunction of these two cases.

In the first case (SI vs PC), checking robustness for a program 𝑃 is reduced to
a reachability (assertion checking) problem in a composition of 𝑃 under PC with
a monitor that checks whether a PC behavior is an “anomaly”, i.e., admitted by
𝑃 under PC, but not under SI. This approach raises two non-trivial challenges:
(1) defining a monitor for detecting PC vs SI anomalies that uses a minimal
amount of auxiliary memory (to remember past events), and (2) determining
the complexity of checking if the composition of 𝑃 with the monitor reaches
a specific control location1 under the (weaker) model PC. Interestingly enough,

1 We assume that the monitor goes to an error location when detecting an anomaly.

Checking Robustness Between Weak Transactional Consistency Models 3

we address these two challenges by studying the relationship between these two
weak consistency models, PC and SI, and serializability. The construction of the
monitor is based on the fact that the PC vs SI anomalies can be defined as
roughly, the difference between the PC vs SER and SI vs SER anomalies (investi-
gated in previous work [13]), and we show that the reachability problem under
PC can be reduced to a reachability problem under SER. These results lead to a
polynomial-time reduction of this robustness problem (for arbitrary programs)
to a reachability problem under SER, which is important from a practical point
of view since the SER semantics (as opposed to the PC or SI semantics) can
be encoded easily in existing verification tools (using locks to guard the isola-
tion of transactions). These results also enable a precise characterization of the
complexity class of this problem.

Checking robustness against substituting PC with CC is reduced to the prob-
lem of checking robustness against substituting SER with CC. The latter has been
shown to be polynomial-time reducible to reachability under SER in [10]. This
surprising result relies on the reduction from PC reachability to SER reachability
mentioned above. This reduction shows that a given program 𝑃 reaches a cer-
tain control location under PC iff a transformed program 𝑃 ′, where essentially,
each transaction is split in two parts, one part containing all the reads, and one
part containing all the writes, reaches the same control location under SER. Since
this reduction preserves the structure of the program, CC vs PC anomalies of a
program 𝑃 correspond to CC vs SER anomalies of the transformed program 𝑃 ′.

Beyond enabling these reductions, the characterization of classes of anomalies
or the reduction from the PC semantics to the SER semantics are also important
for a better understanding of these weak consistency models and the differences
between them. We believe that these results can find applications beyond ro-
bustness checking, e.g., verifying conformance to given specifications.

As a more pragmatic approach for establishing robustness, which avoids a
non-reachability proof under SER, we have introduced a proof methodology that
builds on Lipton’s reduction theory [39] and the concept of commutativity de-
pendency graph introduced in [9], which represents mover type dependencies
between the transactions in a program. We give sufficient conditions for robust-
ness in all the cases mentioned above, which characterize the commutativity
dependency graph associated to a given program.

We tested the applicability of these verification techniques on a benchmark
containing seven challenging applications extracted from previous work [30, 34,
19]. These techniques are precise enough for proving or disproving the robustness
of all these applications, for all combinations of the consistency models.

Complete proofs and more details can be found in [11].

2 Overview

We give an overview of the robustness problems investigated in this paper, dis-
cussing first the case PC vs. CC, and then SI vs PC. We end with an example that
illustrates the robustness checking technique based on commutativity arguments.

4 S.M. Beillahi, A. Bouajjani, and C. Enea.

Process 1

CreateEvent(v, e1, 3):
[Tickets[v][e1] := 3]

CountTickets(v):
[r :=

∑︀
e
Tickets[v][e]]

Process 2

CreateEvent(v, e2, 3):
[Tickets[v][e2] := 3]

CountTickets(v):
[r :=

∑︀
e
Tickets[v][e]]

(a) FusionTicket.

CreateEvent(v,e1,3)

CountTickets(v)//r=3

CreateEvent(v,e2,3)

CountTickets(v)//r=3

HB PO
HB

HB PO
HB

(b) A CC trace of FusionTicket.

Process 1

Register(u, p1):
[r := RegisteredUsers[u]

assume r == 0
RegisteredUsers[u] := 1
Password[u] := p1]

Process 2

Register(u, p2):
[r := RegisteredUsers[u]

assume r == 0
RegisteredUsers[u] := 1
Password[u] := p2]

(c) Twitter.

Register(u,p1) Register(u,p2)
HB

HB

(d) A CC and PC trace of Twitter.

Process 1

RegisterRd(u, p1):
[r := RegisteredUsers[u]

assume r == 0]

RegisterWr(u, p1):
[RegisteredUsers[u] := 1

Password[u] := p1]

Process 2

RegisterRd(u, p2):
[r := RegisteredUsers[u]

assume r == 0]

RegisterWr(u, p2):
[RegisteredUsers[u] := 1

Password[u] := p2]

(e) Transformed Twitter.

RegisterRd(u,p1)

RegisterWr(u,p1)

RegisterRd(u,p2)

RegisterWr(u,p2)

HB
HB PO

HB

HB
HB PO

(f) A CC and SER trace of trans-
formed Twitter.

Process 1

PlaceBet(1,2):
[assume time < TIMEOUT

Bets[1] := 2]

Process 2

PlaceBet(2,3):
[assume time < TIMEOUT

Bets[2] := 3]

Process 3

SettleBet():
[Bets’ := Bets
n := Bets’.Length
assume time > TIMEOUT & n > 0
select i s.t. Bets’[i] ̸= ⊥
return := Bets’[i]]

(g) Betting.

PlaceBet(1,2) PlaceBet(2,3) SettleBet() // return=2

HB

HB

(h) A PC and SI trace of Betting.

PlaceBet(1,2) SettleBet() PlaceBet(2,3)

(i) Commutativity dependency
graph of Betting.

Fig. 1: Transactional programs and traces under different consistency models.

Robustness PC vs CC. We illustrate the robustness against substituting PC with
CC using the FusionTicket and the Twitter programs in Figure 1a and Figure 1c,
respectively. FusionTicket manages tickets for a number of events, each event
being associated with a venue. Its state consists of a two-dimensional map that
stores the number of tickets for an event in a given venue (𝑟 is a local variable,
and the assignment in CountTickets is interpreted as a read of the shared state).
The program has two processes and each process contains two transactions. The
first transaction creates an event e in a venue v with a number of tickets n,
and the second transaction computes the total number of tickets for all the
events in a venue v. A possible candidate for a specification of this program is
that the values computed in CountTickets are monotonically increasing since

Checking Robustness Between Weak Transactional Consistency Models 5

each such value is computed after creating a new event. Twitter provides a
transaction for registering a new user with a given username and password,
which is executed by two parallel processes. Its state contains two maps that
record whether a given username has been registered (0 and 1 stand for non-
registered and registered, respectively) and the password for a given username.
Each transaction first checks whether a given username is free (see the assume

statement). The intended specification is that the user must be registered with
the given password when the registration transaction succeeds.

A program is robust against substituting PC with CC if its set of behaviors
under the two models coincide. We model behaviors of a given program as traces,
which record standard control-flow and data-flow dependencies between trans-
actions, e.g., the order between transactions in the same session and whether
a transaction reads the value written by another (read-from). The transitive
closure of the union of all these dependency relations is called happens-before.
Figure 1b pictures a trace of FusionTicket where the concrete values which are
read in a transaction are written under comments. In this trace, each process
registers a different event but in the same venue and with the same number of
tickets, and it ignores the event created by the other process when computing
the sum of tickets in the venue.

Figure 1b pictures a trace of FusionTicket under CC, which is a witness
that FusionTicket is not robust against substituting PC with CC. This trace
is also a violation of the intended specification since the number of tickets is
not increasing (the sum of tickets is 3 in both processes). The happens-before
dependencies (pictured with HB labeled edges) include the program-order PO
(the order between transactions in the same process), and read-write depen-
dencies, since an instance of CountTickets(v) does not observe the value writ-
ten by the CreateEvent transaction in the other process (the latter overwrites
some value that the former reads). This trace is allowed under CC because the
transaction CreateEvent(v, e1, 3) executes concurrently with the transaction
CountTickets(v) in the other process, and similarly for CreateEvent(v, e2, 3).
However, it is not allowed under PC since it is impossible to define a total com-
mit order between CreateEvent(v, e1, 3) and CreateEvent(v, e2, 3) that justi-
fies the reads of both CountTickets(v) transactions (these reads should cor-
respond to the updates in a prefix of this order). For instance, assuming that
CreateEvent(v, e1, 3) commits before CreateEvent(v, e2, 3), CountTickets(v) in
the second process must observe the effect of CreateEvent(v, e1, 3) as well since
it observes the effect of CreateEvent(v, e2, 3). However, this contradicts the fact
that CountTickets(v) computes the sum of tickets as being 3.

On the other hand, Twitter is robust against substituting PC with CC. For
instance, Figure 1d pictures a trace of Twitter under CC, where the assume

in both transactions pass. In this trace, the transactions Register(u,p1) and
Register(u,p2) execute concurrently and are unaware of each other’s writes (they
are not causally related). The HB dependencies include write-write dependencies
since both transactions write on the same location (we consider the transaction
in Process 2 to be the last one writing to the Password map), and read-write de-

6 S.M. Beillahi, A. Bouajjani, and C. Enea.

pendencies since each transaction reads RegisteredUsers that is written by the
other. This trace is also allowed under PC since the commit order can be defined
such that Register(u,p1) is ordered before Register(u,p2), and then both trans-
actions read from the initial state (the empty prefix). Note that this trace has a
cyclic happens-before which means that it is not allowed under serializability.

Checking robustness PC vs CC. We reduce the problem of checking robustness
against substituting PC with CC to the robustness problem against substituting
SER with CC (the latter reduces to a reachability problem under SER [10]). This
reduction relies on a syntactic program transformation that rewrites PC behav-
iors of a given program 𝑃 to SER behaviors of another program 𝑃 ′. The program
𝑃 ′ is obtained by splitting each transaction 𝑡 of 𝑃 into two transactions: the first
transaction performs all the reads in 𝑡 and the second performs all the writes
in 𝑡 (the two are related by program order). Figure 1e shows this transforma-
tion applied on Twitter. The trace in Figure 1f is a serializable execution of
the transformed Twitter which is “observationally” equivalent to the trace in
Figure 1d of the original Twitter, i.e., each read of the shared state returns the
same value and the writes on the shared state are applied in the same order
(the acyclicity of the happens-before shows that this is a serializable trace). The
transformed FusionTicket coincides with the original version because it contains
no transaction that both reads and writes on the shared state.

We show that PC behaviors and SER behaviors of the original and transformed
program, respectively, are related by a bijection. In particular, we show that any
PC vs. CC robustness violation of the original program manifests as a SER vs. CC
robustness violation of the transformed program, and vice-versa. For instance,
the CC trace of the original Twitter in Figure 1d corresponds to the CC trace of
the transformed Twitter in Figure 1f, and the acyclicity of the latter (the fact
that it is admitted by SER) implies that the former is admitted by the original
Twitter under PC. On the other hand, the trace in Figure 1b is also a CC of the
transformed FusionTicket and its cyclicity implies that it is not admitted by
FusionTicket under PC, and thus, it represents a robustness violation.

Robustness SI vs PC. We illustrate the robustness against substituting SI

with PC using Twitter and the Betting program in Figure 1g. Twitter is not
robust against substituting SI with PC, the trace in Figure 1d being a witness
violation. This trace is also a violation of the intended specification since one of
the users registers a password that is overwritten in a concurrent transaction.
This PC trace is not possible under SI because Register(u,p1) and Register(u,p2)
observe the same prefix of the commit order (i.e., an empty prefix), but they
write to a common memory location Password[u] which is not allowed under SI.

On the other hand, the Betting program in Figure 1g, which manages a set of
bets, is robust against substituting SI with PC. The first two processes execute
one transaction that places a bet of a value v with a unique bet identifier id,
assuming that the bet expiration time is not yet reached (bets are recorded in
the map Bets). The third process contains a single transaction that settles the
betting assuming that the bet expiration time was reached and at least one bet
has been placed. This transaction starts by taking a snapshot of the Bets map

Checking Robustness Between Weak Transactional Consistency Models 7

into a local variable Bets’, and then selects a random non-null value (different
from ⊥) in the map to correspond to the winning bet. The intended specification
of this program is that the winning bet corresponds to a genuine bet that was
placed. Figure 1g pictures a PC trace of Betting where SettleBet observes only the
bet of the first process PlaceBet(1,2). The HB dependency towards the second
process denotes a read-write dependency (SettleBet reads a cell of the map Bets

which is overwritten by the second process). This trace is allowed under SI

because no two transactions write to the same location.

Checking robustness SI vs PC. We reduce robustness against substituting
PC with CC to a reachability problem under SER. This reduction is based on a
characterization of happens-before cycles2 that are possible under PC but not SI,
and the transformation described above that allows to simulate the PC seman-
tics of a program on top of SER. The former is used to define an instrumentation
(monitor) for the transformed program that reaches an error state iff the orig-
inal program is not robust. Therefore, we show that the happens-before cycles
in PC traces that are not admitted by SI must contain a transaction that (1)
overwrites a value written by another transaction in the cycle and (2) reads a
value overwritten by another transaction in the cycle. For instance, the trace of
Twitter in Figure 1d is not allowed under SI because Register(u,p2) overwrites
a value written by Register(u,p1) (the password) and reads a value overwritten
by Register(u,p1) (checking whether the username 𝑢 is registered). The trace of
Betting in Figure 1g is allowed under SI because its happens-before is acyclic.

Checking robustness using commutativity arguments. Based on the re-
ductions above, we propose an approximated method for proving robustness
based on the concept of mover in Lipton’s reduction theory [39]. A transaction
is a left (resp., right) mover if it commutes to the left (resp., right) of another
transaction (by a different process) while preserving the computation. We use
the notion of mover to characterize the data-flow dependencies in the happens-
before. Roughly, there exists a data-flow dependency between two transactions
in some execution if one doesn’t commute to the left/right of the other one.

We define a commutativity dependency graph which summarizes the happens-
before dependencies in all executions of a transformed program (obtained by
splitting the transactions of the original program as explained above), and de-
rive a proof method for robustness which inspects paths in this graph. Two
transactions 𝑡1 and 𝑡2 are linked by a directed edge iff 𝑡1 cannot move to the
right of 𝑡2 (or 𝑡2 cannot move to the left of 𝑡1), or if they are related by the
program order. Moreover, two transactions 𝑡1 and 𝑡2 are linked by an undirected
edge iff they are the result of splitting the same transaction.

A program is robust against substituting PC with CC if roughly, its commuta-
tivity dependency graph does not contain a simple cycle of directed edges with
two distinct transactions 𝑡1 and 𝑡2, such that 𝑡1 does not commute left because
of another transaction 𝑡3 in the cycle that reads a variable that 𝑡1 writes to,

2 Traces with an acyclic happens-before are not robustness violations because they
are admitted under serializability, which implies that they are admitted under the
weaker model SI as well.

8 S.M. Beillahi, A. Bouajjani, and C. Enea.

⟨prog⟩ ::= program ⟨process⟩*

⟨process⟩ ::= process ⟨pid⟩ regs ⟨reg⟩* ⟨txn⟩*

⟨txn⟩ ::= begin ⟨read⟩* ⟨test⟩* ⟨write⟩* commit

⟨read⟩ ::= ⟨label⟩: ⟨reg⟩ := ⟨var⟩; goto ⟨label⟩;

⟨test⟩ ::= ⟨label⟩: assume ⟨bexpr⟩; goto ⟨label⟩;

⟨write⟩ ::= ⟨label⟩: ⟨var⟩ := ⟨reg-expr⟩; goto ⟨label⟩;

Fig. 2: The syntax of our programming language. 𝑎* indicates zero or more oc-
currences of 𝑎. ⟨𝑝𝑖𝑑⟩, ⟨𝑟𝑒𝑔⟩, ⟨𝑙𝑎𝑏𝑒𝑙⟩, and ⟨𝑣𝑎𝑟⟩ represent a process identifier, a
register, a label, and a shared variable, respectively. ⟨𝑟𝑒𝑔-𝑒𝑥𝑝𝑟⟩ is an expres-
sion over registers while ⟨𝑏𝑒𝑥𝑝𝑟⟩ is a Boolean expression over registers, or the
non-deterministic choice *.

and 𝑡2 does not commute right because of another transaction 𝑡4 in the cycle (𝑡3
and 𝑡4 can coincide) that writes to a variable that 𝑡2 either reads from or writes
to3. For instance, Figure 1i shows the commutativity dependency graph of the
transformed Betting program, which coincides with the original Betting because
PlaceBet(1,2) and PlaceBet(2,3) are write-only transactions and SettleBet() is
a read-only transaction. Both simple cycles in Figure 1i contain just two trans-
actions and therefore do not meet the criterion above which requires at least 3
transactions. Therefore, Betting is robust against substituting PC with CC.

A program is robust against substituting SI with PC, if roughly, its commu-
tativity dependency graph does not contain a simple cycle with two successive
transactions 𝑡1 and 𝑡2 that are linked by an undirected edge, such that 𝑡1 does
not commute left because of another transaction 𝑡3 in the cycle that writes to
a variable that 𝑡1 writes to, and 𝑡2 does not commute right because of another
transaction 𝑡4 in the cycle (𝑡3 and 𝑡4 can coincide) that writes to a variable that
𝑡2 reads from4. Betting is also robust against substituting SI with PC for the
same reason (simple cycles of size 2).

3 Consistency Models

Syntax. We present our results in the context of the simple programming lan-
guage, defined in Figure 2, where a program is a parallel composition of processes
distinguished using a set of identifiers P. A process is a sequence of transactions
and each transaction is a sequence of labeled instructions. A transaction starts
with a begin instruction and finishes with a commit instruction. Instructions in-
clude assignments to a process-local register from a set R or to a shared variable
from a set V, or an assume. The assignments use values from a data domain

3 The transactions 𝑡1, 𝑡2, 𝑡3, and 𝑡4 correspond to 𝑡1, 𝑡𝑖, 𝑡𝑛, and 𝑡𝑖+1, respectively, in
Theorem 6.

4 The transactions 𝑡1, 𝑡2, 𝑡3, and 𝑡4 correspond to 𝑡1, 𝑡2, 𝑡𝑛, and 𝑡3, respectively, in
Theorem 7.

Checking Robustness Between Weak Transactional Consistency Models 9

D. An assignment to a register ⟨𝑟𝑒𝑔⟩ := ⟨𝑣𝑎𝑟⟩ is called a read of the shared-
variable ⟨𝑣𝑎𝑟⟩ and an assignment to a shared variable ⟨𝑣𝑎𝑟⟩ := ⟨𝑟𝑒𝑔⟩ is called
a write to the shared-variable ⟨𝑣𝑎𝑟⟩. The assume ⟨𝑏𝑒𝑥𝑝𝑟⟩ blocks the process if
the Boolean expression ⟨𝑏𝑒𝑥𝑝𝑟⟩ over registers is false. It can be used to model
conditionals. The goto statement transfers the control to the program location
(instruction) specified by a given label. Since multiple instructions can have the
same label, goto statements can be used to mimic imperative constructs like
loops and conditionals inside transactions.

We assume w.l.o.g. that every transaction is written as a sequence of reads or
assume statements followed by a sequence of writes (a single goto statement from
the sequence of read/assume instructions transfers the control to the sequence
of writes). In the context of the consistency models we study in this paper, every
program can be equivalently rewritten as a set of transactions of this form.

To simplify the technical exposition, programs contain a bounded number of
processes and each process executes a bounded number of transactions. A trans-
action may execute an unbounded number of instructions but these instructions
concern a bounded number of variables, which makes it impossible to model SQL
(select/update) queries that may access tables with a statically unknown num-
ber of rows. Our results can be extended beyond these restrictions as explained
in Remark 1 and Remark 2.

Semantics. We describe the semantics of a program under four consistency
models, i.e., causal consistency5 (CC), prefix consistency (PC), snapshot isolation
(SI), and serializability (SER).

In the semantics of a program under CC, shared variables are replicated across
each process, each process maintaining its own local valuation of these variables.
During the execution of a transaction in a process, its writes are stored in a
transaction log that can be accessed only by the process executing the transaction
and that is broadcasted to all the other processes at the end of the transaction.
To read a shared variable 𝑥, a process 𝑝 first accesses its transaction log and
takes the last written value on 𝑥, if any, and then its own valuation of the
shared variable, if 𝑥 was not written during the current transaction. Transaction
logs are delivered to every process in an order consistent with the causal relation
between transactions, i.e., the transitive closure of the union of the program order
(the order in which transactions are executed by a process), and the read-from
relation (a transaction 𝑡1 reads-from a transaction 𝑡2 iff 𝑡1 reads a value that
was written by 𝑡2). When a process receives a transaction log, it immediately
applies it on its shared-variable valuation.

In the semantics of a program under PC and SI, shared variables are stored
in a central memory and each process keeps a local valuation of these variables.
When a process starts a new transaction, it fetches a consistent snapshot of the
shared variables from the central memory and stores it in its local valuation
of these variables. During the execution of a transaction in a process, writes
to shared variables are stored in the local valuation of these variables, and in a
transaction log. To read a shared variable, a process takes its own valuation of the

5 We consider a variation known as causal convergence [20, 16]

10 S.M. Beillahi, A. Bouajjani, and C. Enea.

shared variable. A process commits a transaction by applying the updates in the
transaction log on the central memory in an atomic way (to make them visible
to all processes). Under SI, when a process applies the writes in a transaction
log on the central memory, it must ensure that there were no concurrent writes
that occurred after the last fetch from the central memory to a shared variable
that was written during the current transaction. Otherwise, the transaction is
aborted and its effects discarded.

In the semantics of a program under SER, we adopt a simple operational
model where we keep a single shared-variable valuation in a central memory
(accessed by all processes) with the standard interpretation of read and write
statements. Transactions execute serially, one after another.

We use a standard model of executions of a program called trace. A trace
represents the order between transactions in the same process, and the data-flow
in an execution using standard happens-before relations between transactions.
We assume that each transaction in a program is identified uniquely using a
transaction identifier from a set T. Also, f : T → 2S is a mapping that associates
each transaction in T with a sequence of read and write events from the set

S = {re(𝑡, 𝑥, 𝑣),we(𝑡, 𝑥, 𝑣) : 𝑡 ∈ T, 𝑥 ∈ V, 𝑣 ∈ D}

where re(𝑡, 𝑥, 𝑣) is a read of 𝑥 returning 𝑣, and we(𝑡, 𝑥, 𝑣) is a write of 𝑣 to 𝑥.

Definition 1. A trace is a tuple 𝜏 = (𝜌, f ,TO,PO,WR,WW,RW) where 𝜌 ⊆ T
is a set of transaction identifiers, and

– TO is a mapping giving the order between events in each transaction, i.e., it
associates each transaction 𝑡 in 𝜌 with a total order TO(𝑡) on f (𝑡) × f (𝑡).

– PO is the program order relation, a strict partial order on 𝜌× 𝜌 that orders
every two transactions issued by the same process.

– WR is the read-from relation between distinct transactions (𝑡1, 𝑡2) ∈ 𝜌 × 𝜌
representing the fact that 𝑡2 reads a value written by 𝑡1.

– WW is the store order relation on 𝜌 × 𝜌 between distinct transactions that
write to the same shared variable.

– RW is the conflict order relation between distinct transactions, defined by
RW = WR−1;WW (; denotes the sequential composition of two relations).

For simplicity, for a trace 𝜏 = (𝜌, f ,TO,PO,WR,WW,RW), we write 𝑡 ∈ 𝜏
instead of 𝑡 ∈ 𝜌. We also assume that each trace contains a fictitious transac-
tion that writes the initial values of all shared variables, and which is ordered
before any other transaction in program order. Also, TrX(𝒫) is the set of traces
representing executions of program 𝒫 under a consistency model X.

For each X ∈ {CC, PC, SI, SER}, the set of traces TrX(𝒫) can be described using
the set of properties in Table 1. A trace 𝜏 is possible under causal consistency iff
there exist two relations CO a partial order (causal order) and ARB a total order
(arbitration order) that includes CO, such that the properties AxCausal, AxArb,
and AxRetVal hold [27, 16]. AxCausal guarantees that the program order and
the read-from relation are included in the causal order, and AxArb guarantees

Checking Robustness Between Weak Transactional Consistency Models 11

AxCausal CO+
0 ⊆ CO

AxArb ARB+
0 ⊆ ARB

AxCC AxRetVal ∧ AxCausal ∧ AxArb
AxPrefix ARB ;CO ⊆ CO
AxPC AxPrefix ∧ AxCC
AxConflict WW ⊆ CO
AxSI AxConflict ∧ AxPC
AxSer AxRetVal ∧ AxCausal ∧ AxArb ∧ CO = ARB

where
CO0 = PO ∪WR and ARB0 = PO ∪WR ∪WW
AxRetVal = ∀ 𝑡 ∈ 𝜏. ∀ re(𝑡, 𝑥, 𝑣) ∈ f (𝑡) we have that

– there exist a transaction 𝑡0 = 𝑀𝑎𝑥ARB ({𝑡′ ∈ 𝜏 | (𝑡′, 𝑡) ∈ CO∧∃ we(𝑡′, 𝑥, ·) ∈ f (𝑡′)})
and an event we(𝑡0, 𝑥, 𝑣) = 𝑀𝑎𝑥TO(𝑡0)({we(𝑡0, 𝑥, ·) ∈ f (𝑡0)}).

Table 1: Declarative definitions of consistency models. For an order relation ≤,
𝑎 = 𝑀𝑎𝑥≤(𝐴) iff 𝑎 ∈ 𝐴 ∧ ∀ 𝑏 ∈ 𝐴. 𝑏 ≤ 𝑎.

that the causal order and the store order are included in the arbitration order.
AxRetVal guarantees that a read returns the value written by the last write in the
last transaction that contains a write to the same variable and that is ordered
by CO before the read’s transaction. We use AxCC to denote the conjunction
of these three properties. A trace 𝜏 is possible under prefix consistency iff there
exist a causal order CO and an arbitration order ARB such that AxCC holds
and the property AxPrefix holds as well [27]. AxPrefix guarantees that every
transaction observes a prefix of transactions that are ordered by ARB before
it. We use AxPC to denote the conjunction of AxCC and AxPrefix. A trace 𝜏
is possible under snapshot isolation iff there exist a causal order CO and an
arbitration order ARB such that AxPC holds and the property AxConflict holds
[27]. AxConflict guarantees that if two transactions write to the same variable
then one of them must observe the other. We use AxSI to denote the conjunction
of AxPC and AxConflict. A trace 𝜏 is serializable iff there exist a causal order CO
and an arbitration order ARB such that the property AxSer holds which implies
that the two relations CO and ARB coincide. Note that for any given program
𝒫, TrSER(𝒫) ⊆ TrSI(𝒫) ⊆ TrPC(𝒫) ⊆ TrCC(𝒫). Also, the four consistency models
we consider disallow anomalies such as dirty and phantom reads.

For a given trace 𝜏 = (𝜌, f ,TO,PO,WR,WW,RW), the happens before order
is the transitive closure of the union of all the relations in the trace, i.e., HB =
(PO ∪ WR ∪ WW ∪ RW)+. A classic result states that a trace 𝜏 is serializable
iff HB is acyclic [2, 47]. Note that HB is acyclic implies that WW is a total
order between transactions that write to the same variable, and (PO ∪ WR)+

and (PO ∪WR ∪WW)+ are acyclic.

3.1 Robustness

In this work, we investigate the problem of checking whether a program 𝒫 under
a semantics Y ∈ {PC, SI} produces the same set of traces as under a weaker
semantics X ∈ {CC, PC}. When this holds, we say that 𝒫 is robust against X
relative to Y.

12 S.M. Beillahi, A. Bouajjani, and C. Enea.

Definition 2. A program 𝒫 is called robust against a semantics
X ∈ {CC, PC, SI} relative to a semantics Y ∈ {PC, SI, SER} such that Y is
stronger than X iff TrX(𝒫) = TrY(𝒫).

If 𝒫 is not robust against X relative to Y then there must exist a trace
𝜏 ∈ TrX(𝒫) ∖ TrY(𝒫). We say that 𝜏 is a robustness violation trace.

[𝑥 := 1]𝑡1

[𝑟1 := 𝑦] //0𝑡2

[𝑦 := 1] 𝑡3

[𝑟2 := 𝑥] //0 𝑡4

PO RW PORW

(a) Store Buffering (SB).

[𝑟1 := 𝑥 //0
𝑥 := 𝑟1 + 1]

𝑡1
[𝑟2 := 𝑥 //0
𝑥 := 𝑟2 + 1]

𝑡2

WW

RW

(b) Lost Update (LU).

[𝑟1 := 𝑥 //0
𝑦 := 1]

𝑡1
[𝑟2 := 𝑦 //0
𝑥 := 1]

𝑡2

RW

RW

(c) Write Skew (WS).

[𝑥 := 1]𝑡1

[𝑦 := 1]𝑡2

[𝑟1 := 𝑦] //1 𝑡3

[𝑟2 := 𝑥] //1 𝑡4

PO WR POWR

(d) Message Passing (MP).

Fig. 3: Litmus programs

We illustrate the notion of robustness on
the programs in Figure 3, which are com-
monly used in the literature. In all programs,
transactions of the same process are aligned
vertically and ordered from top to bottom.
Each read instruction is commented with the
value it reads in some execution.

The store buffering (SB) program in Fig-
ure 3a contains four transactions that are is-
sued by two distinct processes. We empha-
size an execution where 𝑡2 reads 0 from 𝑦
and 𝑡4 reads 0 from 𝑥. This execution is al-
lowed under CC since the two writes by 𝑡1
and 𝑡3 are not causally dependent. Thus, 𝑡2
and 𝑡4 are executed without seeing the writes
from 𝑡3 and 𝑡1, respectively. However, this ex-
ecution is not feasible under PC (which im-
plies that it is not feasible under both SI and
SER). In particular, we cannot have neither
(𝑡1, 𝑡3) ∈ ARB nor (𝑡3, 𝑡1) ∈ ARB which
contradicts the fact that ARB is total or-
der. For example, if (𝑡1, 𝑡3) ∈ ARB , then
(𝑡1, 𝑡4) ∈ CO (since ARB ;CO ⊂ CO) which
contradicts the fact that 𝑡4 does not see 𝑡1.
Similarly, (𝑡3, 𝑡1) ∈ ARB implies that (𝑡3, 𝑡2) ∈ CO which contradicts the fact
that 𝑡2 does not see 𝑡3. Thus, SB is not robust against CC relative to PC.

The lost update (LU) program in Figure 3b has two transactions that are
issued by two distinct processes. We highlight an execution where both transac-
tions read 0 from 𝑥. This execution is allowed under PC since both transactions
are not causally dependent and can be executed in parallel by the two processes.
However, it is not allowed under SI since both transactions write to a common
variable (i.e., 𝑥). Thus, they cannot be executed in parallel and one of them
must see the write of the other. Thus, SB is not robust against PC relative to SI.

The write skew (WS) program in Figure 3c has two transactions that are
issued by two distinct processes. We highlight an execution where 𝑡1 reads 0
from 𝑥 and 𝑡2 reads 0 from 𝑦. This execution is allowed under SI since both
transactions are not causally dependent, do not write to a common variable,
and can be executed in parallel by the two processes. However, this execution
is not allowed under SER since one of the two transactions must see the write of
the other. Thus, WS is not robust against SI relative to SER.

Checking Robustness Between Weak Transactional Consistency Models 13

The message passing (MP) program in Figure 3d has four transactions issued
by two processes. Because 𝑡1 and 𝑡2 are causally dependent, under any semantics
X ∈ {CC, PC, SI, SER} we only have three possible executions of MP, which
correspond to either 𝑡3 and 𝑡4 not observing the writes of 𝑡1 and 𝑡2, or 𝑡3 and 𝑡4
observe the writes of both 𝑡1 and 𝑡2, or 𝑡4 observes the write of 𝑡1 (we highlight
the values read in the second case in Figure 3d). Therefore, the executions of
this program under the four consistency models coincide. Thus, MP is robust
against CC relative to any other model.

4 Robustness Against CC Relative to PC

We show that checking robustness against CC relative to PC can be reduced to
checking robustness against CC relative to SER. The crux of this reduction is a
program transformation that allows to simulate the PC semantics of a program
𝒫 using the SER semantics of a program 𝒫♣. Checking robustness against CC

relative to SER can be reduced in polynomial time to reachability under SER [10].
Given a program 𝒫 with a set of transactions Tr(𝒫), we define a program

𝒫♣ such that every transaction 𝑡 ∈ Tr(𝒫) is split into a transaction 𝑡[𝑟] that
contains all the read/assume statements in 𝑡 (in the same order) and another
transaction 𝑡[𝑤] that contains all the write statements in 𝑡 (in the same order).
In the following, we establish the following result:

Theorem 1. A program 𝒫 is robust against CC relative to PC iff 𝒫♣ is robust
against CC relative to SER.

Intuitively, under PC, processes can execute concurrent transactions that fetch
the same consistent snapshot of the shared variables from the central memory
and subsequently commit their writes. Decoupling the read part of a transaction
from the write part allows to simulate such behaviors even under SER.

The proof of this theorem relies on several intermediate results concerning
the relationship between traces of 𝒫 and 𝒫♣. Let 𝜏 = (𝜌,PO,WR,WW,RW) ∈
TrX(𝒫) be a trace of a program 𝒫 under a semantics X. We define the trace
𝜏♣ = (𝜌♣,PO♣,WR♣,WW♣,RW♣) where every transaction 𝑡 ∈ 𝜏 is split into
two transactions 𝑡[𝑟] ∈ 𝜏♣ and 𝑡[𝑤] ∈ 𝜏♣, and the dependency relations are
straightforward adaptations, i.e.,

– PO♣ is the smallest transitive relation that includes (𝑡[𝑟], 𝑡[𝑤]) for every 𝑡,
and (𝑡[𝑤], 𝑡′[𝑟]) if (𝑡, 𝑡′) ∈ PO,

– (𝑡′[𝑤], 𝑡[𝑟]) ∈ WR♣, (𝑡′[𝑤], 𝑡[𝑤]) ∈ WW♣, and (𝑡′[𝑟], 𝑡[𝑤]) ∈ RW♣ if (𝑡′, 𝑡) ∈
WR, (𝑡′, 𝑡) ∈ WW, and (𝑡′, 𝑡) ∈ RW, respectively.

[𝑟1 = 𝑥] //0𝑡1[𝑟]

[𝑥 = 𝑟1 + 1]𝑡1[𝑤]

[𝑟2 = 𝑥] //0 𝑡2[𝑟]

[𝑥 = 𝑟2 + 1] 𝑡2[𝑤]
WW

PO
RW

RW
PO

Fig. 4: A trace of the transformed
LU program (LU♣).

For instance, Figure 4 pictures the
trace 𝜏♣ for the LU trace 𝜏 given in Figure
3b. For traces 𝜏 of programs that contain
singleton transactions, e.g., SB in Figure
3a, 𝜏♣ coincides with 𝜏 .

Conversely, for a given trace 𝜏♣ =
(𝜌♣,PO♣,WR♣,WW♣,RW♣) ∈ TrX(𝒫♣)

14 S.M. Beillahi, A. Bouajjani, and C. Enea.

of a program 𝒫♣ under a semantics X, we define the trace 𝜏 =
(𝜌,PO,WR,WW,RW) where every two components 𝑡[𝑟] and 𝑡[𝑤] are merged into
a transaction 𝑡 ∈ 𝜏 . The dependency relations are defined in a straightforward
way, e.g., if (𝑡′[𝑤], 𝑡[𝑤]) ∈ WW♣ then (𝑡′, 𝑡) ∈ WW.

The following lemma shows that for any semantics X ∈ {CC, PC, SI}, if
𝜏 ∈ TrX(𝒫) for a program 𝒫, then 𝜏♣ is a valid trace of 𝒫♣ under X, i.e.,
𝜏♣ ∈ TrX(𝒫♣). Intuitively, this lemma shows that splitting transactions in a
trace and defining dependency relations appropriately cannot introduce cycles
in these relations and preserves the validity of the different consistency axioms.

The proof of this lemma relies on constructing a causal order CO♣ and an
arbitration order ARB♣ for the trace 𝜏♣ starting from the analogous relations
in 𝜏 . In the case of CC, these are the smallest transitive relations such that:

– PO♣ ⊆ CO♣ ⊆ ARB♣, and
– if (𝑡1, 𝑡2) ∈ CO then (𝑡1[𝑤], 𝑡2[𝑟]) ∈ CO♣, and if (𝑡1, 𝑡2) ∈ ARB then

(𝑡1[𝑤], 𝑡2[𝑟]) ∈ ARB♣.

For PC and SI, CO♣ must additionally satisfy: if (𝑡1, 𝑡2) ∈ ARB , then
(𝑡1[𝑤], 𝑡2[𝑤]) ∈ CO♣. This is required in order to satisfy the axiom AxPrefix, i.e.,
ARB♣;CO♣ ⊂ CO♣, when (𝑡1[𝑤], 𝑡2[𝑟]) ∈ ARB♣ and (𝑡2[𝑟], 𝑡2[𝑤]) ∈ CO♣.

This construction ensures that CO♣ is a partial order and ARB♣ is a total
order because CO is a partial order and ARB is a total order. Also, based on
the above rules, we have that: if (𝑡1[𝑤], 𝑡2[𝑟]) ∈ CO♣ then (𝑡1, 𝑡2) ∈ CO, and
similarly, if (𝑡1[𝑤], 𝑡2[𝑟]) ∈ ARB♣ then (𝑡1, 𝑡2) ∈ ARB .

Lemma 1. If 𝜏 ∈ TrX(𝒫), then 𝜏♣ ∈ TrX(𝒫♣).

Before presenting a strengthening of Lemma 1 when X is CC, we give an
important characterization of CC traces. This characterization is stated in terms
of acyclicity properties.

Lemma 2. 𝜏 is a trace under CC iff ARB+
0 and CO+

0 ;RW are acyclic (ARB0

and CO0 are defined in Table 1).

Next we show that a trace 𝜏 of a program 𝒫 is CC iff the corresponding trace
𝜏♣ of 𝒫♣ is CC as well. This result is based on the observation that cycles in
ARB+

0 or CO+
0 ;RW cannot be broken by splitting transactions.

Lemma 3. A trace 𝜏 of 𝒫 is CC iff the corresponding trace 𝜏♣ of 𝒫♣ is CC.

The following lemma shows that a trace 𝜏 is PC iff the corresponding trace 𝜏♣
is SER. The if direction in the proof is based on constructing a causal order CO
and an arbitration order ARB for the trace 𝜏 from the arbitration order ARB♣
in 𝜏♣ (since 𝜏♣ is a trace under serializability CO♣ and ARB♣ coincide). These
are the smallest transitive relations such that:

– if (𝑡1[𝑤], 𝑡2[𝑟]) ∈ ARB♣ then (𝑡1, 𝑡2) ∈ CO,
– if (𝑡1[𝑤], 𝑡2[𝑤]) ∈ ARB♣ then (𝑡1, 𝑡2) ∈ ARB6.

6 If 𝑡1[𝑤] is empty (𝑡1 is read-only), then we set (𝑡1, 𝑡2) ∈ ARB if (𝑡1[𝑟], 𝑡2[𝑤]) ∈ CO♣.
If 𝑡2[𝑤] is empty, then (𝑡1, 𝑡2) ∈ ARB if (𝑡1[𝑤], 𝑡2[𝑟]) ∈ CO♣. If both 𝑡1[𝑤] and 𝑡2[𝑤]
are empty, then (𝑡1, 𝑡2) ∈ ARB if (𝑡1[𝑟], 𝑡2[𝑟]) ∈ CO♣.

Checking Robustness Between Weak Transactional Consistency Models 15

The only-if direction is based on the fact that any cycle in the dependency
relations of 𝜏 that is admitted under PC (characterized in Lemma 7) is “broken”
by splitting transactions. Also, splitting transactions cannot introduce new cycles
that do not originate in 𝜏 .

Lemma 4. A trace 𝜏 is PC iff 𝜏♣ is SER

The lemmas above are used to prove Theorem 1 as follows:

Proof of Theorem 1: For the if direction, assume by contradiction that 𝒫 is not
robust against CC relative to PC. Then, there must exist a trace 𝜏 ∈ TrCC(𝒫) ∖
TrPC(𝒫). Lemmas 3 and 4 imply that the corresponding trace 𝜏♣ of 𝒫♣ is CC and
not SER. Thus, 𝒫♣ is not robust against CC relative to SER. The only-if direction
is proved similarly. �

Robustness against CC relative to SER has been shown to be reducible in
polynomial time to the reachability problem under SER [10]. Given a program 𝒫
and a control location ℓ, the reachability problem under SER asks whether there
exists an execution of 𝒫 under SER that reaches ℓ. Therefore, as a corollary of
Theorem 1, we obtain the following:

Corollary 1. Checking robustness against CC relative to PC is reducible to the
reachability problem under SER in polynomial time.

In the following we discuss the complexity of this problem in the case of finite-
state programs (bounded data domain). The upper bound follows from Corol-
lary 1 and standard results about the complexity of the reachability problem
under sequential consistency, which extend to SER, with a bounded [35] or para-
metric number of processes [45]. For the lower bound, given an instance (𝒫, ℓ)
of the reachability problem under sequential consistency, we construct a pro-
gram 𝒫 ′ where each statement 𝑠 of 𝒫 is executed in a different transaction that
guards7 the execution of 𝑠 using a global lock (the lock can be implemented in
our programming language as usual, e.g., using a busy wait loop for locking),
and where reaching the location ℓ enables the execution of a “gadget” that corre-
sponds to the SB program in Figure 3a. Executing each statement under a global
lock ensures that every execution of 𝒫 ′ under CC is serializable, and faithfully
represents an execution of 𝒫 under sequential consistency. Moreover, 𝒫 reaches
ℓ iff 𝒫 ′ contains a robustness violation, which is due to the SB execution.

Corollary 2. Checking robustness of a program with a fixed number of variables
and bounded data domain against CC relative to PC is PSPACE-complete when
the number of processes is bounded and EXPSPACE-complete, otherwise.

5 Robustness Against PC Relative to SI

In this section, we show that checking robustness against PC relative to SI can
be reduced in polynomial time to a reachability problem under the SER seman-
tics. We reuse the program transformation from the previous section that allows
to simulate PC behaviors on top of SER, and additionally, we provide a char-
acterization of traces that distinguish the PC semantics from SI. We use this

7 That is, the transaction is of the form [lock; 𝑠; unlock]

16 S.M. Beillahi, A. Bouajjani, and C. Enea.

characterization to define an instrumentation (monitor) that is able to detect if
a program under PC admits such traces.

We show that the happens-before cycles in a robustness violation (against PC
relative to SI) must contain a WW dependency followed by a RW dependency,
and they should not contain two successive RW dependencies. This follows from
the fact that every happens-before cycle in a PC trace must contain either two suc-
cessive RW dependencies, or a WW dependency followed by a RW dependency.
Otherwise, the happens-before cycle would imply a cycle in the arbitration order.
Then, any trace under PC where all its simple happens-before cycles contain two
successive RW dependencies is possible under SI. For instance, the trace of the
non-robust LU execution in Figure 3b contains WW dependency followed by a
RW dependency and does not contain two successive RW dependencies which is
disallowed SI, while the trace of the robust WS execution in Figure 3c contains
two successive RW dependencies. As a first step, we prove the following theorem
characterizing traces that are allowed under both PC and SI.

Theorem 2. A program 𝒫 is robust against PC relative to SI iff every happens-
before cycle in a trace of 𝒫 under PC contains two successive RW dependencies.

Before giving the proof of the above theorem, we state several intermediate
results that characterize cycles in PC or SI traces. First, we show that every PC

trace in which all simple happens-before cycles contain two successive RW is also
a SI trace.

Lemma 5. If a trace 𝜏 is PC and all happens-before cycles in 𝜏 contain two
successive RW dependencies, then 𝜏 is SI.

The proof of Theorem 2 also relies on the following lemma that characterizes
happens-before cycles permissible under SI.

Lemma 6. [23, 13] If a trace 𝜏 is SI, then all its happens-before cycles must
contain two successive RW dependencies.

Proof of Theorem 2: For the only-if direction, if 𝒫 is robust against PC relative
to SI then every trace 𝜏 of 𝒫 under PC is SI as well. Therefore, by Lemma 6, all
cycles in 𝜏 contain two successive RW which concludes the proof of this direction.
For the reverse, let 𝜏 be a trace of 𝒫 under PC such that all its happens-before
cycles contain two successive RW. Then, by Lemma 5, we have that 𝜏 is SI.
Thus, every trace 𝜏 of 𝒫 under PC is SI. �

Next, we present an important lemma that characterizes happens before cy-
cles possible under the PC semantics. This is a strengthening of a result in [13]
which shows that all happens before cycles under PC must have two successive de-
pendencies in {RW,WW} and at least one RW. We show that the two successive
dependencies cannot be RW followed WW, or two successive WW.

Lemma 7. If a trace 𝜏 is PC then all happens-before cycles in 𝜏 must contain
either two successive RW dependencies or a WW dependency followed by a RW
dependency.

Combining the results of Theorem 2 and Lemmas 4 and 7, we obtain the following
characterization of traces which violate robustness against PC relative to SI.

Checking Robustness Between Weak Transactional Consistency Models 17

Theorem 3. A program 𝒫 is not robust against PC relative to SI iff there exists
a trace 𝜏♣ of 𝒫♣ under SER such that the trace 𝜏 obtained by merging8 read and
write transactions in 𝜏♣ contains a happens-before cycle that does not contain
two successive RW dependencies, and it contains a WW dependency followed by
a RW dependency.

The results above enable a reduction from checking robustness against PC relative
to SI to a reachability problem under the SER semantics. For a program 𝒫, we
define an instrumentation denoted by [[𝒫]], such that 𝒫 is not robust against
PC relative to SI iff [[𝒫]] violates an assertion under SER. The instrumentation
consists in rewriting every transaction of 𝒫 as shown in Figure 6.

𝛼 𝑡# 𝛽 𝑡0 𝛾 𝑡

RW HB

WW

Fig. 5: Execution simulating a violation
to robustness against PC relative to SI.

The instrumentation [[𝒫]] running
under SER simulates the PC semantics
of 𝒫 using the same idea of decou-
pling the execution of the read part
of a transaction from the write part.
It violates an assertion when it simu-
lates a PC trace containing a happens-
before cycle as in Theorem 3. The execution corresponding to this trace has the
shape given in Figure 5, where 𝑡# is the transaction that occurs between the
WW and the RW dependencies, and every transaction executed after 𝑡# (this
can be a full transaction in 𝒫, or only the read or write part of a transaction in
𝒫) is related by a happens-before path to 𝑡# (otherwise, the execution of this
transaction can be reordered to occur before 𝑡#). A transaction in 𝒫 can have
its read part included in 𝛼 and the write part included in 𝛽 or 𝛾. Also, 𝛽 and 𝛾
may contain transactions in 𝒫 that executed only their read part. It is possible
that 𝑡0 = 𝑡, 𝛽 = 𝛾 = 𝜖, and 𝛼 = 𝜖 (the LU program shown in Figure 3b is an
example where this can happen). The instrumentation uses auxiliary variables
to track happens-before dependencies, which are explained below.

The instrumentation executes (incomplete) transactions without affecting
the auxiliary variables (without tracking happens-before dependencies) (lines 3
and 5) until a non-deterministically chosen point in time when it declares the
current transaction as the candidate for 𝑡# (line 9). Only one candidate for 𝑡#
can be chosen during the execution. This transaction executes only its reads and
it chooses non-deterministically a variable that it could write as a witness for
the WW dependency (see lines 16-22). The name of this variable is stored in
a global variable varW (see the definition of ℐ#(x := e)). The writes are not
applied on the shared memory. Intuitively, 𝑡# should be thought as a transaction
whose writes are delayed for later, after transaction 𝑡 in Figure 5 executed. The
instrumentation checks that 𝑡# and 𝑡 can be connected by some happens-before
path that includes the RW and WW dependencies, and that does not contain
two consecutive RW dependencies. If it is the case, it violates an assertion at the
commit point of 𝑡. Since the write part of 𝑡# is intuitively delayed to execute
after 𝑡, the process executing 𝑡# is disabled all along the execution (see the
assume false).

8 This transformation has been defined at the beginning of Section 4.

18 S.M. Beillahi, A. Bouajjani, and C. Enea.

Transaction “begin ⟨read⟩* ⟨test⟩* ⟨write⟩* commit” is rewritten to:

1 if (!done#)
2 if (*)
3 begin <read>* <test>* commit
4 if (!done#)
5 begin <write>* commit
6 else
7 ℐ(begin) (ℐ(<write>))* ℐ(commit)
8 else
9 begin (ℐ#(<read>))* <test>* (ℐ#(<write>))* ℐ#(commit)

10 assume false;
11 else if (*)
12 rdSet’ := ∅;
13 wrSet’ := ∅;
14 ℐ(begin) (ℐ(<read>))* <test>* ℐ(commit)
15 ℐ(begin) (ℐ(<write>))* ℐ(commit)

ℐ#(r := x):

16 r := x;
17 hbR[’x’] := 0;
18 rdSet := rdSet ∪ { ’x’ };

ℐ#(x := e):

19 if (varW == ⊥ and *)
20 varW := ’x’;

ℐ#(commit):

21 assume (varW != ⊥)
22 done# := true

ℐ(begin):

23 begin
24 hb := ⊥
25 if (hbP != ⊥ and hbP < 2)
26 hb := 0;
27 else if (hbP = 2)
28 hb := 2;

ℐ(commit):

29 assume (hb != ⊥)
30 assert (hb == 2 or varW ̸∈ wrSet’);
31 if (hbP == ⊥ or hbP > hb)
32 hbP = hb;
33 for each ’x’ ∈ wrSet’
34 if (hbW[’x’] == ⊥ or hbW[’x’] > hb)
35 hbW[’x’] = hb;
36 for each ’x’ ∈ rdSet’
37 if (hbR[’x’] == ⊥ or hbR[’x’] > hb)
38 hbR[’x’] = hb;
39 rdSet := rdSet ∪ rdSet’;
40 wrSet := wrSet ∪ wrSet’;
41 commit

ℐ(r := x):

42 r := x;
43 rdSet’ := rdSet’ ∪ { ’x’ };
44 if (’x’ ∈ wrSet)
45 if (hbW[’x’] != 2)
46 hb := 0
47 else if (hb == ⊥)
48 hb := hbW[’x’]

ℐ(x := e):

49 x := e;
50 wrSet’ := wrSet’ ∪ { ’x’ };
51 if (’x’ ∈ wrSet)
52 if (hbW[’x’] != 2)
53 hb := 0
54 else if (hb == ⊥)
55 hb := hbW[’x’]
56 if (’x’ ∈ rdSet)
57 if (hb = ⊥ or hb > hbR[’x’] + 1)
58 hb := min(hbR[’x’] + 1,2)

Fig. 6: A program instrumentation for checking robustness against PC relative
to SI. The auxiliary variables used by the instrumentation are shared variables,
except for hbP, rdSet’, and wrSet’, which are process-local variables, and they
are initially set to ⊥. This instrumentation uses program constructs which can
be defined as syntactic sugar from the syntax presented in Section 3, e.g., if-
then-else statements (outside transactions).

After choosing the candidate for 𝑡#, the instrumentation uses the auxiliary
variables for tracking happens-before dependencies. Therefore, rdSet and wrSet

record variables read and written, respectively, by transactions that are con-
nected by a happens-before path to 𝑡# (in a trace of 𝒫). This is ensured by
the assume at line 29. During the execution, the variables read or written by a
transaction9 that writes a variable in rdSet (see line 56), or reads or writes a
variable in wrSet (see lines 44 and 51), will be added to these sets (see lines 39

9 These are stored in the local variables rdSet’ and wrSet’ while the transaction is
running.

Checking Robustness Between Weak Transactional Consistency Models 19

and 40). Since the variables that 𝑡# writes in 𝒫 are not recorded in wrSet, these
happens-before paths must necessarily start with a RW dependency (from 𝑡#).
When the assertion fails (line 30), the condition varW ∈ wrSet’ ensures that the
current transaction has a WW dependency towards the write part of 𝑡# (the
current transaction plays the role of 𝑡 in Figure 5).

The rest of the instrumentation checks that there exists a happens-before
path from 𝑡# to 𝑡 that does not include two consecutive RW dependencies,
called a SI¬ path. This check is based on the auxiliary variables whose name is
prefixed by hb and which take values in the domain {⊥, 0, 1, 2} (⊥ represents
the initial value). Therefore,

– hbR[’x’] (resp., hbW[’x’]) is 0 iff there exists a transaction 𝑡′ that reads
x (resp., writes to x), such that there exists a SI¬ path from 𝑡# to 𝑡′ that
ends with a dependency which is not RW,

– hbR[’x’] (resp., hbW[’x’]) is 1 iff there exists a transaction 𝑡′ that reads
x (resp., writes to x) that is connected to 𝑡# by a SI¬ path, and every SI¬
path from 𝑡# to a transaction 𝑡′′ that reads x (resp., writes to x) ends with
an RW dependency,

– hbR[’x’] (resp., hbW[’x’]) is 2 iff there exists no SI¬ path from 𝑡# to a
transaction 𝑡′ that reads x (resp., writes to x).

The local variable hbP has the same interpretation, except that 𝑡′ and 𝑡′′ are in-
stantiated over transactions in the same process (that already executed) instead
of transactions that read or write a certain variable. Similarly, the variable hb

is a particular case where 𝑡′ and 𝑡′′ are instantiated to the current transaction.
The violation of the assertion at line 30 implies that hb is 0 or 1, which means
that there exists a SI¬ path from 𝑡# to 𝑡.

During each transaction that executes after 𝑡#, the variable hb characterizing
happens-before paths that end in this transaction is updated every time a new
happens-before dependency is witnessed (using the values of the other variables).
For instance, when witnessing a WR dependency (line 44), if there exists a SI¬
path to a transaction that writes to x, then the path that continues with the
WR dependency towards the current transaction is also a SI¬ path, and the
last dependency of this path is not RW. Therefore, hb is set to 0 (see line 46).
Otherwise, if every path to a transaction that writes to x is not a SI¬ path,
then every path that continues to the current transaction (by taking the WR
dependency) remains a non SI¬ path, and hb is set to the value of hbW[‘x‘],
which is 2 in this case (see line 48). Before ending a transaction, the value of hb
can be used to modify the hbR, hbW, and hbP variables, but only if those variables
contain bigger values (see lines 31–38).

The correctness of the instrumentation is stated in the following theorem.

Theorem 4. A program 𝒫 is robust against PC relative to SI iff the instrumen-
tation in Figure 6 does not violate an assertion when executed under SER.

Theorem 4 implies the following complexity result for finite-state programs.
The lower bound is proved similarly to the case CC vs PC.

20 S.M. Beillahi, A. Bouajjani, and C. Enea.

Corollary 3. Checking robustness of a program with a fixed number of variables
and bounded data domain against PC relative to SI is PSPACE-complete when
the number of processes is bounded and EXPSPACE-complete, otherwise.

Checking robustness against CC relative to SI can be also shown to be re-
ducible (in polynomial time) to a reachability problem under SER by combining
the results of checking robustness against CC relative to PC and PC relative to SI.

Theorem 5. A program 𝒫 is robust against CC relative to SI iff 𝒫 is robust
against CC relative to PC and 𝒫 is robust against PC relative to SI.

Remark 1. Our reductions of robustness checking to reachability apply to an
extension of our programming language where the number of processes is un-
bounded and each process can execute an arbitrary number of times a statically
known set of transactions. This holds because the instrumentation in Figure 6
and the one in [10] (for the case CC vs. SER) consist in adding a set of instruc-
tions that manipulate a fixed set of process-local or shared variables, which do
not store process or transaction identifiers. These reductions extend also to SQL
queries that access unbounded size tables. Rows in a table can be interpreted
as memory locations (identified by primary keys in unbounded domains, e.g.,
integers), and SQL queries can be interpreted as instructions that read/write
a set of locations in one shot. These possibly unbounded sets of locations can
be represented symbolically using the conditions in the SQL queries (e.g., the
condition in the WHERE part of a SELECT). The instrumentation in Figure 6
needs to be adapted so that read and write sets are updated by adding sets of
locations for a given instruction (represented symbolically as mentioned above).

6 Proving Robustness Using Commutativity Dependency
Graphs

We describe an approximated technique for proving robustness, which leverages
the concept of left/right mover in Lipton’s reduction theory [39]. This technique
reasons on the commutativity dependency graph [9] associated to the transforma-
tion 𝒫♣ of an input program 𝒫 that allows to simulate the PC semantics under
serializability (we use a slight variation of the original definition of this class of
graphs). We characterize robustness against CC relative to PC and PC relative to
SI in terms of certain properties that (simple) cycles in this graph must satisfy.

We recall the concept of movers and the definition of commutativity de-
pendency graphs. Given a program 𝒫 and a trace 𝜏 = 𝑡1 · . . . · 𝑡𝑛 ∈ TrSER(𝒫)
of 𝒫 under serializability, we say that 𝑡𝑖 ∈ 𝜏 moves right (resp., left) in 𝜏 if
𝑡1 · . . . · 𝑡𝑖−1 · 𝑡𝑖+1 · 𝑡𝑖 · 𝑡𝑖+2 · . . . · 𝑡𝑛 (resp., 𝑡1 · . . . · 𝑡𝑖−2 · 𝑡𝑖 · 𝑡𝑖−1 · 𝑡𝑖+1 · . . . · 𝑡𝑛)
is also a valid execution of 𝒫, 𝑡𝑖 and 𝑡𝑖+1 (resp., 𝑡𝑖−1) are executed by distinct
processes, and both traces reach the same end state. A transaction 𝑡 ∈ Tr(𝒫) is
not a right (resp., left) mover iff there exists a trace 𝜏 ∈ TrSER(𝒫) such that 𝑡 ∈ 𝜏
and 𝑡 doesn’t move right (resp., left) in 𝜏 . Thus, when a transaction 𝑡 is not a
right mover then there must exist another transaction 𝑡′ ∈ 𝜏 which caused 𝑡 to

Checking Robustness Between Weak Transactional Consistency Models 21

not be permutable to the right (while preserving the end state). Since 𝑡 and 𝑡′

do not commute, then this must be because of either a write-read, write-write,
or a read-write dependency relation between the two transactions. We say that
𝑡 is not a right mover because of 𝑡′ and a dependency relation that is either
write-read, write-write, or read-write. Notice that when 𝑡 is not a right mover
because of 𝑡′ then 𝑡′ is not a left mover because of 𝑡.

We define MWR as a binary relation between transactions such that (𝑡, 𝑡′) ∈
MWR when 𝑡 is not a right mover because of 𝑡′ and a write-read dependency (𝑡′

reads some value written by 𝑡). We define the relations MWW and MRW corre-
sponding to write-write and read-write dependencies in a similar way. We call
MWR, MWW, and MRW, non-mover relations.

The commutativity dependency graph of a program 𝒫 is a graph where ver-
tices represent transactions in 𝒫. Two vertices are linked by a program order
edge if the two transactions are executed by the same process. The other edges
in this graph represent the “non-mover” relations MWR, MWW, and MRW. Two
vertices that represent the two components 𝑡[𝑤] and 𝑡[𝑟] of the same transaction
𝑡 (already linked by PO edge) are also linked by an undirected edge labeled by
STO (same-transaction relation).

[𝑥 = 1]𝑡1[𝑤]

[𝑦 = 1]𝑡2[𝑤]

[𝑟1 = 𝑦] 𝑡3[𝑟]

[𝑟2 = 𝑥] 𝑡4[𝑟]

PO
MRW

MWRMWR

MRW
PO

Fig. 7: The commutativity dependency
graph of the MP♣ program.

Our results about the robust-
ness of a program 𝒫 are stated over
a slight variation of the commu-
tativity dependency graph of 𝒫♣
(where a transaction is either read-
only or write-only). This graph con-
tains additional undirected edges
that link every pair of transactions
𝑡[𝑟] and 𝑡[𝑤] of 𝒫♣ that were origi-
nally components of the same transaction 𝑡 in 𝒫. Given such a commutativity
dependency graph, the robustness of 𝒫 is implied by the absence of cycles of spe-
cific shapes. These cycles can be seen as an abstraction of potential robustness
violations for the respective semantics (see Theorem 6 and Theorem 7). Figure 7
pictures the commutativity dependency graph for the MP program. Since every
transaction in MP is singleton, the two programs MP and MP♣ coincide.

Using the characterization of robustness violations against CC relative to SER

from [10] and the reduction in Theorem 1, we obtain the following result con-
cerning the robustness against CC relative to PC.

Theorem 6. Given a program 𝒫, if the commutativity dependency graph of the
program 𝒫♣ does not contain a simple cycle formed by 𝑡1 · · · 𝑡𝑖 · · · 𝑡𝑛 such that:

– (𝑡𝑛, 𝑡1) ∈ MRW;
– (𝑡𝑗 , 𝑡𝑗+1) ∈ (PO ∪WR)*, for 𝑗 ∈ [1, 𝑖− 1];
– (𝑡𝑖, 𝑡𝑖+1) ∈ (MRW ∪MWW);
– (𝑡𝑗 , 𝑡𝑗+1) ∈ (MRW ∪MWW ∪MWR ∪ PO), for 𝑗 ∈ [𝑖 + 1, 𝑛− 1].

then 𝒫 is robust against CC relative to PC.

Next we give the characterization of commutativity dependency graphs required
for proving robustness against PC relative to SI.

22 S.M. Beillahi, A. Bouajjani, and C. Enea.

Theorem 7. Given a program 𝒫, if the commutativity dependency graph of the
program 𝒫♣ does not contain a simple cycle formed by 𝑡1 · · · 𝑡𝑛 such that:

– (𝑡𝑛, 𝑡1) ∈ MWW, (𝑡1, 𝑡2) ∈ STO, and (𝑡2, 𝑡3) ∈ MRW;

– (𝑡𝑗 , 𝑡𝑗+1) ∈ (MRW ∪MWW ∪MWR ∪ PO ∪ STO)*, for 𝑗 ∈ [3, 𝑛− 1];

– ∀ 𝑗 ∈ [2, 𝑛− 2].

∙ if (𝑡𝑗 , 𝑡𝑗+1) ∈ MRW then (𝑡𝑗+1, 𝑡𝑗+2) ∈ (MWR ∪ PO ∪MWW);

∙ if (𝑡𝑗+1, 𝑡𝑗+2) ∈ MRW then (𝑡𝑗 , 𝑡𝑗+1) ∈ (MWR ∪ PO).

– ∀ 𝑗 ∈ [3, 𝑛− 3]. if (𝑡𝑗+1, 𝑡𝑗+2) ∈ STO and (𝑡𝑗+2, 𝑡𝑗+3) ∈ MRW then
(𝑡𝑗 , 𝑡𝑗+1) ∈ MWW.

then 𝒫 is robust against PC relative to SI.

In Figure 7, we have three simple cycles in the graph:

– (𝑡1[𝑤], 𝑡4[𝑟]) ∈ MWR and (𝑡4[𝑟], 𝑡1[𝑤]) ∈ MRW,

– (𝑡2[𝑤], 𝑡3[𝑟]) ∈ MWR and (𝑡3[𝑟], 𝑡2[𝑤]) ∈ MRW,

– (𝑡1[𝑤], 𝑡2[𝑤]) ∈ PO, (𝑡2[𝑤], 𝑡3[𝑟]) ∈ MWR, (𝑡3[𝑟], 𝑡4[𝑟]) ∈ PO, and
(𝑡4[𝑟], 𝑡1[𝑤]) ∈ MRW.

Notice that none of the cycles satisfies the properties in Theorems 6 and 7.
Therefore, MP is robust against CC relative to PC and against PC relative to SI.

Remark 2. For programs that contain an unbounded number of processes, an
unbounded number of instantiations of a fixed number of process “templates”,
or unbounded loops with bodies that contain entire transactions, a sound ro-
bustness check consists in applying Theorem 6 and Theorem 7 to (bounded)
programs that contain two copies of each process template, and where each
loop is unfolded exactly two times. This holds because the mover relations are
“static”, they do not depend on the context in which the transactions execute,
and each cycle requiring more than two process instances or more than two loop
iterations can be short-circuited to a cycle that exists also in the bounded pro-
gram. Every outgoing edge from a third instance/iteration can also be taken
from the second instance/iteration. Two copies/iterations are necessary in or-
der to discover cycles between instances of the same transaction (the cycles in
Theorem 6 and Theorem 7 are simple and cannot contain the same transaction
twice). These results extend easily to SQL queries as well because the notion of
mover is independent of particular classes of programs or instructions.

7 Experimental Evaluation

We evaluated our approach for checking robustness on 7 applications extracted
from the literature on databases and distributed systems, and an application
Betting designed by ourselves. Two applications were extracted from the OLTP-
Bench benchmark [30]: a vote recording application (Vote) and a consumer
review application (Epinions). Three applications were obtained from Github
projects (used also in [9, 19]): a distributed lock application for the Cassan-
dra database (CassandraLock [24]), an application for recording trade activities

Checking Robustness Between Weak Transactional Consistency Models 23

(SimpleCurrencyExchange [48]), and a micro social media application (Twit-
ter [49]). The last two applications are a movie ticketing application (Fusion-
Ticket) [34], and a user subscription application inspired by the Twitter appli-
cation (Subscription). Each application consists of a set of SQL transactions that
can be called an arbitrary number of times from an arbitrary number of pro-
cesses. For instance, Subscription provides an AddUser transaction for adding a
new user with a given username and password, and a RemoveUser transaction
for removing an existing user. (The examples in Figure 1 are particular varia-
tions of FusionTicket, Twitter, and Betting.) We considered five variations of
the robustness problem: the three robustness problems we studied in this paper
along with robustness against SI relative to SER and against CC relative to SER.
The artifacts are available in a GitHub repository [31].

Table 2: Results of the experiments. The columns titled X-Y stand for the result
of applications robustness against X relative to Y.

Application Transactions Robustness
CC-PC PC-SI CC-SI SI-SER CC-SER

Betting 2 yes yes yes yes yes

CassandraLock 3 yes yes yes yes yes

Epinions 8 no yes no yes no

FusionTicket 3 no no no yes no

SimpleCurrencyExchange 4 yes yes yes yes yes

Subscription 2 yes no no yes no

Twitter 3 no no no yes no

Vote 1 yes yes yes no no

In the first part of the experiments, we check for robustness violations in
bounded-size executions of a given application. For each application, we have
constructed a client program with a fixed number of processes (2) and a fixed
number of transactions of the corresponding application (at most 2 transactions
per process). For each program and pair of consistency models, we check for
robustness violations using the reductions to reachability under SER presented
in Section 4 and Section 5 in the case of pairs of weak consistency models, and
the reductions in [9, 10] when checking for robustness relative to SER.

We check for reachability (assertion violations) using the Boogie program
verifier [8]. We model tables as unbounded maps in Boogie and SQL queries as
first-order formulas over these maps (that may contain existential or universal
quantifiers). To model the uniqueness of primary keys we use Boogie linear types.

Table 2 reports the results of this experiment (cells filled with “no”)10. Five
applications are not robust against at least one of the semantics relative to some
other stronger semantics. The runtimes (wall-clock times) for the robustness
checks are all under one second, and the memory consumption is around 50
Megabytes. Concerning scalability, the reductions to reachability presented in
Section 4 and Section 5 show that checking robustness is as hard as checking

10 The Twitter client in Table 2, which is not PC vs CC robust, is different from the one
described in Section 2. This client program consists of two processes, each executing
FollowUser and AddTweet.

24 S.M. Beillahi, A. Bouajjani, and C. Enea.

reachability (the size of the instrumented program is only linear in the size of
the original program). Therefore, checking robustness will also suffer from the
classic state explosion problem when increasing the number of processes. On the
other hand, increasing the number of transactions in a process does not seem to
introduce a large overhead. Increasing the number of transactions per process in
the clients of Epinions, FusionTicket, and SimpleCurrencyExchange from 2 to 5
introduces a running time overhead of at most 25%.

All the robustness violations we report correspond to violations of the in-
tended specifications. For instance: (1) the robustness violation of Epinions
against CC relative to PC allows two users to update their ratings for a given
product and then when each user queries the overall rating of this product they
do not observe the latest rating that was given by the other user, (2) the ro-
bustness violation of Subscription against PC relative to SI allows two users to
register new accounts with the same identifier, and (3) the robustness violation
of Vote against SI relative to SER allows the same user to vote twice. The spec-
ification violation in Twitter was reported in [19]. However, it was reported as
violation of a different robustness property (CC relative to SER) while our work
shows that the violation persists when replacing a weak consistency model (e.g.,
SI) with a weaker one (e.g. CC). This implies that this specification violation
is not present under SI (since it appears in the difference between CC and SI

behaviors), which cannot be deduced from previous work.

In the second part of the experiments, we used the technique described in
Section 6, based on commutativity dependency graphs, to prove robustness. For
each application (set of transactions) we considered a program that for each
ordered pair of (possibly identical) transactions in the application, contains two
processes executing that pair of transactions. Following Remark 2, the robustness
of such a program implies the robustness of a most general client of the appli-
cation that executes each transaction an arbitrary number of times and from an
arbitrary number of processes. We focused on the cases where we could not find
robustness violations in the first part. To build the “non-mover” relations MWR,
MWW, and MRW for the commutativity dependency graph, we use the left/right
mover check provided by the CIVL verifier [33]. The results are reported in Ta-
ble 2, the cells filled with “yes”. We showed that the three applications Betting,
CassandraLock and SimpleCurrencyExchange are robust against any semantics
relative to some other stronger semantics. As mentioned earlier, all these ro-
bustness results are established for arbitrarily large executions and clients with
an arbitrary number of processes. For instance, the robustness of SimpleCur-
rencyExchange ensures that when the exchange market owner observes a trade
registered by a user, they observe also all the other trades that were done by
this user in the past.

In conclusion, our experiments show that the robustness checking techniques
we present are effective in proving or disproving robustness of concrete applica-
tions. Moreover, it shows that the robustness property for different combinations
of consistency models is a relevant design principle, that can help in choosing
the right consistency model for realistic applications, i.e., navigating the trade-

Checking Robustness Between Weak Transactional Consistency Models 25

off between consistency and performance (in general, weakening the consistency
leads to better performance).

8 Related Work

The consistency models in this paper were studied in several recent works [21,
20, 25, 43, 16, 44, 14]. Most of them focused on their operational and axiomatic
formalizations. The formal definitions we use in this paper are based on those
given in [25, 16]. Biswas and Enea [14] shows that checking whether an execution
is CC is polynomial time while checking whether it is PC or SI is NP-complete.

The robustness problem we study in this paper has been investigated in the
context of weak memory models, but only relative to sequential consistency,
against Release/Aquire (RA), TSO and Power [36, 17, 15, 29]. Checking ro-
bustness against CC and SI relative to SER has been investigated in [9, 10].
In this work, we study the robustness problem between two weak consistency
models, which poses different non-trivial challenges. In particular, previous work
proposed reductions to reachability under sequential consistency (or SER) that
relied on a concept of minimal robustness violations (w.r.t. an operational se-
mantics), which does not apply in our case. The relationship between PC and
SER is similar in spirit to the one given by Biswas and Enea [14] in the context
of checking whether an execution is PC. However, that relationship was proven
in the context of a “weaker” notion of trace (containing only program order and
read-from), and it does not extend to our notion of trace. For instance, that
result does not imply preserving WW dependencies which is crucial in our case.

Some works describe various over- or under-approximate analyses for check-
ing robustness relative to SER. The works in [13, 18, 19, 26, 40] propose static
analysis techniques based on computing an abstraction of the set of computa-
tions, which is used for proving robustness. In particular, [19, 40] encode program
executions under the weak consistency model using FOL formulas to describe
the dependency relations between actions in the executions. These approaches
may return false alarms due to the abstractions they consider in their encoding.
Note that in this paper, we prove a strengthening of the results of [13] with
regard to the shape of happens before cycles allowed under PC.

An alternative to trace-based robustness, is state-based robustness which re-
quires that a program is robust if the sets of reachable states under two semantics
coincide. While state-robustness is the necessary and sufficient concept for pre-
serving state-invariants, its verification, which amounts in computing the set of
reachable states under the weak semantics models is in general a hard problem.
The decidability and the complexity of this problem has been investigated in
the context of relaxed memory models such as TSO and Power, and it has been
shown that it is either decidable but highly complex (non-primitive recursive), or
undecidable [5, 6]. Automatic procedures for approximate reachability/invariant
checking have been proposed using either abstractions or bounded analyses, e.g.,
[7, 4, 28, 1]. Proof methods have also been developed for verifying invariants in
the context of weakly consistent models such as [37, 32, 41, 3]. These methods,
however, do not provide decision procedures.

26 S.M. Beillahi, A. Bouajjani, and C. Enea.

References

1. Abdulla, P.A., Atig, M.F., Bouajjani, A., Ngo, T.P.: Context-bounded anal-
ysis for POWER. In: Legay, A., Margaria, T. (eds.) Tools and Algorithms
for the Construction and Analysis of Systems - 23rd International Conference,
TACAS 2017, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Pro-
ceedings, Part II. Lecture Notes in Computer Science, vol. 10206, pp. 56–
74 (2017). https://doi.org/10.1007/978-3-662-54580-5 4, https://doi.org/10.1007/
978-3-662-54580-5 4

2. Adya, A.: Weak consistency: A generalized theory and optimistic implementations
for distributed transactions. Ph.D. thesis (1999)

3. Alglave, J., Cousot, P.: Ogre and pythia: an invariance proof method for weak
consistency models. In: Castagna, G., Gordon, A.D. (eds.) Proceedings of the
44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, January 18-20, 2017. pp. 3–18. ACM (2017), http:
//dl.acm.org/citation.cfm?id=3009883

4. Alglave, J., Kroening, D., Tautschnig, M.: Partial orders for efficient bounded
model checking of concurrent software. In: Sharygina, N., Veith, H. (eds.) Com-
puter Aided Verification - 25th International Conference, CAV 2013, Saint Peters-
burg, Russia, July 13-19, 2013. Proceedings. Lecture Notes in Computer Science,
vol. 8044, pp. 141–157. Springer (2013). https://doi.org/10.1007/978-3-642-39799-
8 9, https://doi.org/10.1007/978-3-642-39799-8 9

5. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: On the verification
problem for weak memory models. In: Hermenegildo, M.V., Palsberg, J. (eds.)
Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2010, Madrid, Spain, January 17-23, 2010. pp.
7–18. ACM (2010). https://doi.org/10.1145/1706299.1706303, https://doi.org/10.
1145/1706299.1706303

6. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: What’s decidable about
weak memory models? In: Seidl, H. (ed.) Programming Languages and Systems
- 21st European Symposium on Programming, ESOP 2012, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2012,
Tallinn, Estonia, March 24 - April 1, 2012. Proceedings. Lecture Notes in Computer
Science, vol. 7211, pp. 26–46. Springer (2012). https://doi.org/10.1007/978-3-642-
28869-2 2, https://doi.org/10.1007/978-3-642-28869-2 2

7. Atig, M.F., Bouajjani, A., Parlato, G.: Getting rid of store-buffers in TSO
analysis. In: Gopalakrishnan, G., Qadeer, S. (eds.) Computer Aided Verifica-
tion - 23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-
20, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6806, pp. 99–
115. Springer (2011). https://doi.org/10.1007/978-3-642-22110-1 9, https://doi.
org/10.1007/978-3-642-22110-1 9

8. Barnett, M., Chang, B.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A mod-
ular reusable verifier for object-oriented programs. In: de Boer, F.S., Bonsangue,
M.M., Graf, S., de Roever, W.P. (eds.) Formal Methods for Components and
Objects, 4th International Symposium, FMCO 2005, Amsterdam, The Nether-
lands, November 1-4, 2005, Revised Lectures. Lecture Notes in Computer Science,
vol. 4111, pp. 364–387. Springer (2005). https://doi.org/10.1007/11804192 17,
https://doi.org/10.1007/11804192 17

https://doi.org/10.1007/978-3-662-54580-5_4
https://doi.org/10.1007/978-3-662-54580-5_4
https://doi.org/10.1007/978-3-662-54580-5_4
http://dl.acm.org/citation.cfm?id=3009883
http://dl.acm.org/citation.cfm?id=3009883
https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1145/1706299.1706303
https://doi.org/10.1145/1706299.1706303
https://doi.org/10.1145/1706299.1706303
https://doi.org/10.1007/978-3-642-28869-2_2
https://doi.org/10.1007/978-3-642-28869-2_2
https://doi.org/10.1007/978-3-642-28869-2_2
https://doi.org/10.1007/978-3-642-22110-1_9
https://doi.org/10.1007/978-3-642-22110-1_9
https://doi.org/10.1007/978-3-642-22110-1_9
https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/11804192_17

Checking Robustness Between Weak Transactional Consistency Models 27

9. Beillahi, S.M., Bouajjani, A., Enea, C.: Checking robustness against snapshot
isolation. In: Dillig, I., Tasiran, S. (eds.) Computer Aided Verification - 31st
International Conference, CAV 2019, New York City, NY, USA, July 15-18,
2019, Proceedings, Part II. Lecture Notes in Computer Science, vol. 11562, pp.
286–304. Springer (2019). https://doi.org/10.1007/978-3-030-25543-5 17, https:
//doi.org/10.1007/978-3-030-25543-5 17

10. Beillahi, S.M., Bouajjani, A., Enea, C.: Robustness against transactional causal
consistency. In: Fokkink, W.J., van Glabbeek, R. (eds.) 30th International Confer-
ence on Concurrency Theory, CONCUR 2019, August 27-30, 2019, Amsterdam, the
Netherlands. LIPIcs, vol. 140, pp. 30:1–30:18. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2019). https://doi.org/10.4230/LIPIcs.CONCUR.2019.30, https:
//doi.org/10.4230/LIPIcs.CONCUR.2019.30

11. Beillahi, S.M., Bouajjani, A., Enea, C.: Checking robustness between weak transac-
tional consistency models. CoRR abs/2101.09032 (2021), http://arxiv.org/abs/
2101.09032

12. Berenson, H., Bernstein, P.A., Gray, J., Melton, J., O’Neil, E.J., O’Neil, P.E.:
A critique of ANSI SQL isolation levels. In: Carey, M.J., Schneider, D.A. (eds.)
Proceedings of the 1995 ACM SIGMOD International Conference on Management
of Data, San Jose, California, USA, May 22-25, 1995. pp. 1–10. ACM Press (1995).
https://doi.org/10.1145/223784.223785, https://doi.org/10.1145/223784.223785

13. Bernardi, G., Gotsman, A.: Robustness against consistency models with atomic
visibility. In: Desharnais, J., Jagadeesan, R. (eds.) 27th International Confer-
ence on Concurrency Theory, CONCUR 2016, August 23-26, 2016, Québec City,
Canada. LIPIcs, vol. 59, pp. 7:1–7:15. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik (2016). https://doi.org/10.4230/LIPIcs.CONCUR.2016.7, https://doi.org/
10.4230/LIPIcs.CONCUR.2016.7

14. Biswas, R., Enea, C.: On the complexity of checking transactional con-
sistency. Proc. ACM Program. Lang. 3(OOPSLA), 165:1–165:28 (2019).
https://doi.org/10.1145/3360591, https://doi.org/10.1145/3360591

15. Bouajjani, A., Derevenetc, E., Meyer, R.: Checking and enforcing robustness
against TSO. In: Felleisen, M., Gardner, P. (eds.) Programming Languages and
Systems - 22nd European Symposium on Programming, ESOP 2013, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS
2013, Rome, Italy, March 16-24, 2013. Proceedings. Lecture Notes in Computer
Science, vol. 7792, pp. 533–553. Springer (2013). https://doi.org/10.1007/978-3-
642-37036-6 29, https://doi.org/10.1007/978-3-642-37036-6 29

16. Bouajjani, A., Enea, C., Guerraoui, R., Hamza, J.: On verifying causal consistency.
In: Castagna, G., Gordon, A.D. (eds.) Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017, Paris, France,
January 18-20, 2017. pp. 626–638. ACM (2017), http://dl.acm.org/citation.cfm?
id=3009888

17. Bouajjani, A., Meyer, R., Möhlmann, E.: Deciding robustness against total store
ordering. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) Automata, Languages and
Programming - 38th International Colloquium, ICALP 2011, Zurich, Switzer-
land, July 4-8, 2011, Proceedings, Part II. Lecture Notes in Computer Science,
vol. 6756, pp. 428–440. Springer (2011). https://doi.org/10.1007/978-3-642-22012-
8 34, https://doi.org/10.1007/978-3-642-22012-8 34

18. Brutschy, L., Dimitrov, D., Müller, P., Vechev, M.T.: Serializability for eventual
consistency: criterion, analysis, and applications. In: Castagna, G., Gordon, A.D.
(eds.) Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Pro-

https://doi.org/10.1007/978-3-030-25543-5_17
https://doi.org/10.1007/978-3-030-25543-5_17
https://doi.org/10.1007/978-3-030-25543-5_17
https://doi.org/10.4230/LIPIcs.CONCUR.2019.30
https://doi.org/10.4230/LIPIcs.CONCUR.2019.30
https://doi.org/10.4230/LIPIcs.CONCUR.2019.30
http://arxiv.org/abs/2101.09032
http://arxiv.org/abs/2101.09032
https://doi.org/10.1145/223784.223785
https://doi.org/10.1145/223784.223785
https://doi.org/10.4230/LIPIcs.CONCUR.2016.7
https://doi.org/10.4230/LIPIcs.CONCUR.2016.7
https://doi.org/10.4230/LIPIcs.CONCUR.2016.7
https://doi.org/10.1145/3360591
https://doi.org/10.1145/3360591
https://doi.org/10.1007/978-3-642-37036-6_29
https://doi.org/10.1007/978-3-642-37036-6_29
https://doi.org/10.1007/978-3-642-37036-6_29
http://dl.acm.org/citation.cfm?id=3009888
http://dl.acm.org/citation.cfm?id=3009888
https://doi.org/10.1007/978-3-642-22012-8_34
https://doi.org/10.1007/978-3-642-22012-8_34
https://doi.org/10.1007/978-3-642-22012-8_34

28 S.M. Beillahi, A. Bouajjani, and C. Enea.

gramming Languages, POPL 2017, Paris, France, January 18-20, 2017. pp. 458–
472. ACM (2017), http://dl.acm.org/citation.cfm?id=3009895

19. Brutschy, L., Dimitrov, D., Müller, P., Vechev, M.T.: Static serializability anal-
ysis for causal consistency. In: Foster, J.S., Grossman, D. (eds.) Proceedings of
the 39th ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018. pp. 90–104.
ACM (2018). https://doi.org/10.1145/3192366.3192415, https://doi.org/10.1145/
3192366.3192415

20. Burckhardt, S.: Principles of eventual consistency. Found. Trends Program.
Lang. 1(1-2), 1–150 (2014). https://doi.org/10.1561/2500000011, https://doi.org/
10.1561/2500000011

21. Burckhardt, S., Gotsman, A., Yang, H., Zawirski, M.: Replicated data types:
specification, verification, optimality. In: Jagannathan, S., Sewell, P. (eds.) The
41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014. pp. 271–284.
ACM (2014). https://doi.org/10.1145/2535838.2535848, https://doi.org/10.1145/
2535838.2535848

22. Burckhardt, S., Leijen, D., Protzenko, J., Fähndrich, M.: Global sequence protocol:
A robust abstraction for replicated shared state. In: Boyland, J.T. (ed.) 29th Euro-
pean Conference on Object-Oriented Programming, ECOOP 2015, July 5-10, 2015,
Prague, Czech Republic. LIPIcs, vol. 37, pp. 568–590. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2015). https://doi.org/10.4230/LIPIcs.ECOOP.2015.568,
https://doi.org/10.4230/LIPIcs.ECOOP.2015.568

23. Cahill, M.J., Röhm, U., Fekete, A.D.: Serializable isolation for snap-
shot databases. ACM Trans. Database Syst. 34(4), 20:1–20:42 (2009).
https://doi.org/10.1145/1620585.1620587, https://doi.org/10.1145/1620585.
1620587

24. Cassandra-lock: https://github.com/dekses/cassandra-lock
25. Cerone, A., Bernardi, G., Gotsman, A.: A framework for transactional consistency

models with atomic visibility. In: Aceto, L., de Frutos-Escrig, D. (eds.) 26th In-
ternational Conference on Concurrency Theory, CONCUR 2015, Madrid, Spain,
September 1.4, 2015. LIPIcs, vol. 42, pp. 58–71. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2015). https://doi.org/10.4230/LIPIcs.CONCUR.2015.58, https:
//doi.org/10.4230/LIPIcs.CONCUR.2015.58

26. Cerone, A., Gotsman, A.: Analysing snapshot isolation. J. ACM 65(2), 11:1–11:41
(2018). https://doi.org/10.1145/3152396, https://doi.org/10.1145/3152396

27. Cerone, A., Gotsman, A., Yang, H.: Algebraic laws for weak consistency.
In: Meyer, R., Nestmann, U. (eds.) 28th International Conference on Con-
currency Theory, CONCUR 2017, September 5-8, 2017, Berlin, Germany.
LIPIcs, vol. 85, pp. 26:1–26:18. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik (2017). https://doi.org/10.4230/LIPIcs.CONCUR.2017.26, https://doi.org/
10.4230/LIPIcs.CONCUR.2017.26

28. Dan, A.M., Meshman, Y., Vechev, M.T., Yahav, E.: Effective abstractions for
verification under relaxed memory models. Comput. Lang. Syst. Struct. 47, 62–
76 (2017). https://doi.org/10.1016/j.cl.2016.02.003, https://doi.org/10.1016/j.cl.
2016.02.003

29. Derevenetc, E., Meyer, R.: Robustness against power is pspace-complete. In: Es-
parza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) Automata, Lan-
guages, and Programming - 41st International Colloquium, ICALP 2014, Copen-
hagen, Denmark, July 8-11, 2014, Proceedings, Part II. Lecture Notes in Computer

http://dl.acm.org/citation.cfm?id=3009895
https://doi.org/10.1145/3192366.3192415
https://doi.org/10.1145/3192366.3192415
https://doi.org/10.1145/3192366.3192415
https://doi.org/10.1561/2500000011
https://doi.org/10.1561/2500000011
https://doi.org/10.1561/2500000011
https://doi.org/10.1145/2535838.2535848
https://doi.org/10.1145/2535838.2535848
https://doi.org/10.1145/2535838.2535848
https://doi.org/10.4230/LIPIcs.ECOOP.2015.568
https://doi.org/10.4230/LIPIcs.ECOOP.2015.568
https://doi.org/10.1145/1620585.1620587
https://doi.org/10.1145/1620585.1620587
https://doi.org/10.1145/1620585.1620587
https://github.com/dekses/cassandra-lock
https://doi.org/10.4230/LIPIcs.CONCUR.2015.58
https://doi.org/10.4230/LIPIcs.CONCUR.2015.58
https://doi.org/10.4230/LIPIcs.CONCUR.2015.58
https://doi.org/10.1145/3152396
https://doi.org/10.1145/3152396
https://doi.org/10.4230/LIPIcs.CONCUR.2017.26
https://doi.org/10.4230/LIPIcs.CONCUR.2017.26
https://doi.org/10.4230/LIPIcs.CONCUR.2017.26
https://doi.org/10.1016/j.cl.2016.02.003
https://doi.org/10.1016/j.cl.2016.02.003
https://doi.org/10.1016/j.cl.2016.02.003

Checking Robustness Between Weak Transactional Consistency Models 29

Science, vol. 8573, pp. 158–170. Springer (2014). https://doi.org/10.1007/978-3-
662-43951-7 14, https://doi.org/10.1007/978-3-662-43951-7 14

30. Difallah, D.E., Pavlo, A., Curino, C., Cudré-Mauroux, P.: Oltp-bench: An ex-
tensible testbed for benchmarking relational databases. Proc. VLDB Endow.
7(4), 277–288 (2013). https://doi.org/10.14778/2732240.2732246, http://www.
vldb.org/pvldb/vol7/p277-difallah.pdf

31. Experiments: https://github.com/relative-robustness/artifact
32. Gotsman, A., Yang, H., Ferreira, C., Najafzadeh, M., Shapiro, M.: ’cause

i’m strong enough: reasoning about consistency choices in distributed sys-
tems. In: Bod́ık, R., Majumdar, R. (eds.) Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016. pp. 371–384.
ACM (2016). https://doi.org/10.1145/2837614.2837625, https://doi.org/10.1145/
2837614.2837625

33. Hawblitzel, C., Petrank, E., Qadeer, S., Tasiran, S.: Automated and modular refine-
ment reasoning for concurrent programs. In: Kroening, D., Pasareanu, C.S. (eds.)
Computer Aided Verification - 27th International Conference, CAV 2015, San Fran-
cisco, CA, USA, July 18-24, 2015, Proceedings, Part II. Lecture Notes in Computer
Science, vol. 9207, pp. 449–465. Springer (2015). https://doi.org/10.1007/978-3-
319-21668-3 26, https://doi.org/10.1007/978-3-319-21668-3 26

34. Holt, B., Bornholt, J., Zhang, I., Ports, D.R.K., Oskin, M., Ceze, L.: Dis-
ciplined inconsistency with consistency types. In: Aguilera, M.K., Cooper,
B., Diao, Y. (eds.) Proceedings of the Seventh ACM Symposium on
Cloud Computing, Santa Clara, CA, USA, October 5-7, 2016. pp. 279–293.
ACM (2016). https://doi.org/10.1145/2987550.2987559, https://doi.org/10.1145/
2987550.2987559

35. Kozen, D.: Lower bounds for natural proof systems. In: 18th Annual Sympo-
sium on Foundations of Computer Science, Providence, Rhode Island, USA,
31 October - 1 November 1977. pp. 254–266. IEEE Computer Society (1977).
https://doi.org/10.1109/SFCS.1977.16, https://doi.org/10.1109/SFCS.1977.16

36. Lahav, O., Margalit, R.: Robustness against release/acquire semantics. In:
McKinley, K.S., Fisher, K. (eds.) Proceedings of the 40th ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019. pp. 126–141.
ACM (2019). https://doi.org/10.1145/3314221.3314604, https://doi.org/10.1145/
3314221.3314604

37. Lahav, O., Vafeiadis, V.: Owicki-gries reasoning for weak memory models. In:
Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) Automata,
Languages, and Programming - 42nd International Colloquium, ICALP 2015, Ky-
oto, Japan, July 6-10, 2015, Proceedings, Part II. Lecture Notes in Computer
Science, vol. 9135, pp. 311–323. Springer (2015). https://doi.org/10.1007/978-3-
662-47666-6 25, https://doi.org/10.1007/978-3-662-47666-6 25

38. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978). https://doi.org/10.1145/359545.359563,
https://doi.org/10.1145/359545.359563

39. Lipton, R.J.: Reduction: A method of proving properties of parallel programs.
Commun. ACM 18(12), 717–721 (1975). https://doi.org/10.1145/361227.361234,
https://doi.org/10.1145/361227.361234

40. Nagar, K., Jagannathan, S.: Automated detection of serializability violations un-
der weak consistency. In: Schewe, S., Zhang, L. (eds.) 29th International Con-
ference on Concurrency Theory, CONCUR 2018, September 4-7, 2018, Beijing,

https://doi.org/10.1007/978-3-662-43951-7_14
https://doi.org/10.1007/978-3-662-43951-7_14
https://doi.org/10.1007/978-3-662-43951-7_14
https://doi.org/10.14778/2732240.2732246
http://www.vldb.org/pvldb/vol7/p277-difallah.pdf
http://www.vldb.org/pvldb/vol7/p277-difallah.pdf
https://github.com/relative-robustness/artifact
https://doi.org/10.1145/2837614.2837625
https://doi.org/10.1145/2837614.2837625
https://doi.org/10.1145/2837614.2837625
https://doi.org/10.1007/978-3-319-21668-3_26
https://doi.org/10.1007/978-3-319-21668-3_26
https://doi.org/10.1007/978-3-319-21668-3_26
https://doi.org/10.1145/2987550.2987559
https://doi.org/10.1145/2987550.2987559
https://doi.org/10.1145/2987550.2987559
https://doi.org/10.1109/SFCS.1977.16
https://doi.org/10.1109/SFCS.1977.16
https://doi.org/10.1145/3314221.3314604
https://doi.org/10.1145/3314221.3314604
https://doi.org/10.1145/3314221.3314604
https://doi.org/10.1007/978-3-662-47666-6_25
https://doi.org/10.1007/978-3-662-47666-6_25
https://doi.org/10.1007/978-3-662-47666-6_25
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/361227.361234
https://doi.org/10.1145/361227.361234

30 S.M. Beillahi, A. Bouajjani, and C. Enea.

China. LIPIcs, vol. 118, pp. 41:1–41:18. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2018). https://doi.org/10.4230/LIPIcs.CONCUR.2018.41, https:
//doi.org/10.4230/LIPIcs.CONCUR.2018.41

41. Najafzadeh, M., Gotsman, A., Yang, H., Ferreira, C., Shapiro, M.: The CISE tool:
proving weakly-consistent applications correct. In: Alvaro, P., Bessani, A. (eds.)
Proceedings of the 2nd Workshop on the Principles and Practice of Consistency
for Distributed Data, PaPoC@EuroSys 2016, London, United Kingdom, April 18,
2016. pp. 2:1–2:3. ACM (2016). https://doi.org/10.1145/2911151.2911160, https:
//doi.org/10.1145/2911151.2911160

42. Papadimitriou, C.H.: The serializability of concurrent database updates. J. ACM
26(4), 631–653 (1979). https://doi.org/10.1145/322154.322158, https://doi.org/
10.1145/322154.322158

43. Perrin, M., Mostéfaoui, A., Jard, C.: Causal consistency: beyond mem-
ory. In: Asenjo, R., Harris, T. (eds.) Proceedings of the 21st ACM
SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, PPoPP 2016, Barcelona, Spain, March 12-16, 2016. pp. 26:1–26:12.
ACM (2016). https://doi.org/10.1145/2851141.2851170, https://doi.org/10.1145/
2851141.2851170

44. Raad, A., Lahav, O., Vafeiadis, V.: On the semantics of snapshot isolation. In:
Enea, C., Piskac, R. (eds.) Verification, Model Checking, and Abstract Inter-
pretation - 20th International Conference, VMCAI 2019, Cascais, Portugal, Jan-
uary 13-15, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11388,
pp. 1–23. Springer (2019). https://doi.org/10.1007/978-3-030-11245-5 1, https:
//doi.org/10.1007/978-3-030-11245-5 1

45. Rackoff, C.: The covering and boundedness problems for vector addition sys-
tems. Theor. Comput. Sci. 6, 223–231 (1978). https://doi.org/10.1016/0304-
3975(78)90036-1, https://doi.org/10.1016/0304-3975(78)90036-1

46. Shapiro, M., Ardekani, M.S., Petri, G.: Consistency in 3d. In: Deshar-
nais, J., Jagadeesan, R. (eds.) 27th International Conference on Concur-
rency Theory, CONCUR 2016, August 23-26, 2016, Québec City, Canada.
LIPIcs, vol. 59, pp. 3:1–3:14. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik (2016). https://doi.org/10.4230/LIPIcs.CONCUR.2016.3, https://doi.org/
10.4230/LIPIcs.CONCUR.2016.3

47. Shasha, D.E., Snir, M.: Efficient and correct execution of parallel programs
that share memory. ACM Trans. Program. Lang. Syst. 10(2), 282–312 (1988).
https://doi.org/10.1145/42190.42277, https://doi.org/10.1145/42190.42277

48. Trade: https://github.com/Haiyan2/Trade
49. Twitter: https://github.com/edmundophie/cassandra-twitter

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

https://doi.org/10.4230/LIPIcs.CONCUR.2018.41
https://doi.org/10.4230/LIPIcs.CONCUR.2018.41
https://doi.org/10.4230/LIPIcs.CONCUR.2018.41
https://doi.org/10.1145/2911151.2911160
https://doi.org/10.1145/2911151.2911160
https://doi.org/10.1145/2911151.2911160
https://doi.org/10.1145/322154.322158
https://doi.org/10.1145/322154.322158
https://doi.org/10.1145/322154.322158
https://doi.org/10.1145/2851141.2851170
https://doi.org/10.1145/2851141.2851170
https://doi.org/10.1145/2851141.2851170
https://doi.org/10.1007/978-3-030-11245-5_1
https://doi.org/10.1007/978-3-030-11245-5_1
https://doi.org/10.1007/978-3-030-11245-5_1
https://doi.org/10.1016/0304-3975(78)90036-1
https://doi.org/10.1016/0304-3975(78)90036-1
https://doi.org/10.1016/0304-3975(78)90036-1
https://doi.org/10.4230/LIPIcs.CONCUR.2016.3
https://doi.org/10.4230/LIPIcs.CONCUR.2016.3
https://doi.org/10.4230/LIPIcs.CONCUR.2016.3
https://doi.org/10.1145/42190.42277
https://doi.org/10.1145/42190.42277
https://github.com/Haiyan2/Trade
https://github.com/edmundophie/cassandra-twitter
http://creativecommons.org/licenses/by/4.0/

Checking Robustness Between Weak Transactional Consistency Models 31

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

	Checking Robustness Between Weak Transactional Consistency Models-5pt

