
Compositional Invariant Checking for Overlaid and
Nested Linked Lists?

Constantin Enea, Vlad Saveluc, and Mihaela Sighireanu

Univ Paris Diderot, Sorbonne Paris Cite, LIAFA CNRS UMR 7089, Paris,
{cenea,sighirea}@liafa.univ-paris-diderot.fr

vlad.saveluc@gmail.com

Abstract. We introduce a fragment of separation logic, called NOLL, for auto-
mated reasoning about programs manipulating overlaid and nested linked lists,
where overlaid means that the lists share the same set of objects. The distinguish-
ing features of NOLL are: (1) it is parametrized by a set of user-defined predicates
specifying nested linked list segments, (2) a “per-field” version of the separating
conjunction allowing to share object locations but not record field locations, and
(3) it can express sharing constraints between list segments. We prove that check-
ing the entailment between two NOLL formulas is co-NP complete using a small
model property. We also provide an effective procedure for checking entailment
in NOLL, which first constructs a Boolean abstraction of the two formulas in order
to infer all the implicit constraints, and then, it checks the existence of a homo-
morphism between the two formulas, viewed as graphs. We have implemented
this procedure and applied it on verification conditions generated from several
interesting case studies that manipulate overlaid and nested data structures.

1 Introduction

Reasoning about behaviors of programs that manipulate dynamic data structures is a
challenging problem because of the difficulty of representing (potentially infinite) sets
of configurations, and of manipulating these representations for the analysis of the exe-
cution of program statements. For instance, pre/post-condition reasoning requires being
able, given pre- and post-conditions φ resp. ψ, and a straight-line code P, (1) to com-
pute the (strongest) post-condition of executing P starting from φ, denoted post(P,φ),
and (2) to check that it entails ψ. Therefore, an important issue is to investigate logic-
based formalisms where pre/post conditions are expressible for the class of programs
under interest, and for which it is possible to compute effectively post-conditions, and
to efficiently check the entailment. The latter can be done either using theorem provers,
where user-provided tactics are needed to guide the proof system, or using decision pro-
cedures, when the given annotations are in a decidable fragment. An essential ingredient
in order to scale to large programs is being able to perform compositional reasoning and,
in this context, Separation Logic [17] (SL) has emerged as a fundamental approach. Its
main tool is the frame rule, which states that if the Hoare triple {φ}P{ψ} holds and P
does not alter free variables in σ then {φ∗σ}P{ψ∗σ} also holds, where ∗ denotes the

? This work has been partially supported by the French ANR project Veridyc and by FSMP.

2 Constantin Enea, Vlad Saveluc, and Mihaela Sighireanu

separating conjunction. Therefore, when reasoning about P one has to manipulate only
specifications for the heap region altered by P.

In this paper, we define a fragment of SL, called NOLL, suitable for compositional
reasoning about programs that manipulate overlaid and nested linked lists, built with
an arbitrary set of fields. Such data structures are used in low-level code to link objects
with respect to different aspects. For example, the network monitoring software Nagios
(www.nagios.com) manipulates hash-tables with closed addressing, implemented as
arrays of linked lists, where all the elements in the lists are also linked in the order of
their insertion time. Here, we have two overlaid data structures, i.e., which share a set
of objects: an array of linked lists and a singly-linked list.

To specify such data structures, NOLL is parametrized by a fixed, but arbitrary,
set of recursive predicates defined in a higher-order extension of NOLL and which are
expressive enough to specify various types of (nested) linked lists, e.g., singly-linked
lists of singly-linked lists, where all the elements point to some fixed object.

To specify that these list segments are overlapped, NOLL includes, besides the clas-
sical operator ∗, that we will call object separating conjunction, a field separating con-
junction operator ∗w. Both operators separate the heap into disjoint regions, the only
difference being the granularity of the separated heap cells. For ∗, a heap cell corre-
sponds to a heap object. For ∗w, a heap cell corresponds to a field from a heap object.
Thus, the ∗w operator allows to specify data structures sharing sets of objects as long
as they are built over disjoint sets of fields. In the example above, if ArrOfSl and Sl are
formulas specifying the array of lists, resp. the list, then ArrOfSl∗wSl expresses the fact
that the two structures share some objects.

However, ∗w alone is not enough to describe precisely overlaid data structures. In
the example above, we would also need to express the fact that the objects of the list
described by Sl are exactly all the list objects in ArrOfSl; let Sl type be their type. To
this, we index each atomic formula specifying list segments by a variable, called a set
of locations variable and interpreted as the set of all heap objects in the list segment.
The values of these new variables can be constrained in a logic that uses classical set
operators ⊆ and ∪. For example, the specification ArrOfSlα ∗w Slβ ∧α(Sl type) = β

constrains the set of objects in the linked list to be exactly the set of objects of type
Sl type in the array of linked lists. (A NOLL formula ϕ can also put constrains over
some set of locations variables, which are not associated to atomic formulas in ϕ.)

The semantics of the field separating conjunction ∗w allows us to establish another
frame rule, which is essential for compositional reasoning about overlaid data struc-
tures: if the Hoare triple {φ} P {ψ} holds then {φ ∗w σ} P {ψ ∗w σ} also holds, where
P is a straight-line code that does not alter fields described by σ, and the set of loca-
tions variables in σ are not bound to atomic formulas in φ or ψ. The consequences of
this frame rule are that, to reason about a program fragment P, one has to provide only
specifications for the data structures built with fields altered by P.

We prove that checking satisfiability of NOLL formulas is NP-complete and that the
problem of checking entailments between NOLL formulas is co-NP complete. The up-
per bound on the complexity of checking satisfiability/entailment is first proved using
a small model argument, and subsequently, following the approach in [8]. The second
proof provides also an effective decision procedure for proving the validity of an en-

Compositional Invariant Checking for Overlaid and Nested Linked Lists 3

tailment ϕ⇒ ψ by (1) computing a normal form for the two formulas and (2) checking
the existence of a homomorphism from the graph representation of the normal form
of ψ to the graph representation of the normal form of ϕ. The main advantages of this
decision procedure are: (i) by defining a Boolean abstraction for NOLL formulas, the
construction of the normal form is reduced to (un)satisfiability queries to a SAT solver
and (ii) checking the existence of a homomorphism between graph representations of
formulas can be done in polynomial time.

To summarize, this work makes the following contributions:

– defines a fragment of SL, called NOLL, that can be used to perform compositional
reasoning about overlaid and nested linked structures,

– proves that checking satisfiability, resp. entailment, of NOLL formulas is NP-
complete, resp. co-NP complete,

– defines effective procedures for checking satisfiability and entailment of NOLL for-
mulas based on SAT solvers, which are implemented in a prototype tool and proven
to be efficient in practice.

Related Work: SL has been widely used in the literature for the analysis and the veri-
fication of programs with dynamic data structures [1–8, 12, 13, 17, 19].

The NOLL fragment incorporates several existing features of SL: the separating
conjunction ∗ introduced in [12], the separating conjunction ∗w introduced in [6], and
the inductive predicates describing nested linked structures introduced in [1]. The set
of location variables are an abstraction of the sequences defined in [17]. However, [1,
6] use these features in order to define abstract domains for program analysis. The
(partial) order relation on elements of these abstract domains can be seen as a sound,
but not complete, decision procedure for entailment.

The works in [2, 5, 8] introduce results concerning the decidability/complexity of
the satisfiability/entailment problem in fragments of SL. Berdine et al. [2] defines a
fragment that allows to reason about programs with singly-linked lists and proves that
the satisfiability of a formula can be decided in NP and that checking the validity of
an entailment between two formulas belongs to the co-NP complexity class. A decision
procedure for entailments in the same fragment is introduced in [16], which combines
SL inference rules with a superposition calculus to deal with (in)equalities between
variables. These complexity results were improved in [8] where it is proved that the
satisfiability/entailment problem for the previous fragment can be solved in polynomial
time. In fact, the procedure for checking entailments of NOLL formulas based on nor-
mal forms and graph homomorphism is inspired by the work in [8]. The differences
are that (a) the procedure for computing the normal form of a NOLL formula is based
on a new approach that uses Boolean abstractions (the procedure in [8] works only for
singly-linked lists and can not be extended to NOLL) and (b) the notion of graph homo-
morphism is extended in order to handle the two versions of the separating conjunction,
the constraints on set of locations variables, and more general recursive predicates.

The (sound) decision procedures for satisfiability/entailment introduced in [18, 15]
are also based on Boolean abstractions of formulas. As in our case, the Boolean abstrac-
tions are used to transform logical validity into simpler decidable problems. However,
they concern different types of logics: algebraic data types specifications for reason-

4 Constantin Enea, Vlad Saveluc, and Mihaela Sighireanu

ing about functional programs in [18] and a recursive extension of first-order logic for
reasoning about programs manipulating tree data structures in [15].

Semi-automatic frameworks for reasoning about programs within SL, based on the-
orem provers, have been defined in [7, 4, 13]. In this paper, we target a completely au-
tomatic framework based on decision procedures.

2 Overview

In general, NOLL formulas have the form Π∧Σ∧Λ, where Π is the pure part, i.e., a
conjunction of equalities and inequalities between program variables expressing alias-
ing constraints, Σ is the spatial part specifying the data structures and the separation
properties, and Λ specifies the sharing constraints between the data structures. The ob-
jects building the data structures in the heap are sets of record fields, called simply fields
in the following.

ϕ := x 6= NULL∧Hashα(x,y,NULL) ∗w Listβ(z,NULL)∧α(Sl type) = β (1)

Hash(in,out,dest) , (in = out)∨ (∃u,v. in 7→ {(g,u);(h,v)} ∗ LowList(v,dest)
∗ Hash(u,out,dest))

(2)

LowList(in,out) , (in = out)∨ (∃u. in 7→ {(s,u)} ∗ LowList(u,out)) (3)

List(in,out) , (in = out)∨ (∃u. in 7→ {(f ,u)} ∗ List(u,out)) (4)

Fig. 1: NOLL specification of a hash table whose elements are shared with a list.

Examples of NOLL formulas: Fig. 1 contains a NOLL formula ϕ describing a list of
lists, using the predicate Hashα(x,y,NULL), such that the elements of the nested lists
are shared with another list, represented by the predicate Listβ(z,NULL). This is an ab-
straction of the hash table sharing all its elements with a singly-linked list, presented in
Sec. 1, in the sense that we use a linked list to represent the array structure.

The predicate Hashα(in,out,dest) has a recursive definition, written in a higher-
order extension of NOLL: either in = out, which means that the nested list segment is
empty, or in contains a field h pointing to an inner singly-linked list (in 7→ {...;(h,v)}∗
LowList(v,dest)) and also a field g pointing to a new location u (in 7→ {(g,u); ...}),
which is the starting point of another nested list segment. Note that the elements of the
lists described by LowList(v,dest) are linked by the field s. In general, we suppose that
variables and fields are typed. Thus, if Sl type is the type of the variables used in the
predicate LowList, all the objects in the nested lists are of type Sl type. Moreover, the
use of the object separating conjunction ∗ implies that all the nested lists are disjoint.

The overlapping property is expressed using two features of this logic. The first one
is the field separating conjunction operator ∗w which allows to share object locations
but not the locations of fields in these objects. The second feature is the ability to speak
about the set of all object locations in a list segment. This set of locations is given
by the interpretation of the variable that indexes some recursive predicate, e.g., α in
Hashα(. . .). These variables are constrained in the Λ part of a formula. For example,
α(Sl type) = β says that all the locations of type Sl type in the list of lists are also
present in the list starting in z (β stands for the set of locations in Listβ(z,NULL)).

Compositional Invariant Checking for Overlaid and Nested Linked Lists 5

The operators ∗ and ∗w can be nested. This is essential to specify a similar data
structure (considered in [11]) where the elements stored in a hash table are shared be-
tween two disjoint linked lists (using the predicates from Fig. 1):

x 6= NULL∧Hashα(x,y,NULL)∗w (Listβ(z,NULL)∗Listγ(u,NULL))∧α(Sl type) = β∪ γ,

xϕ1 : y z

xϕ2 : z

List

List

f

(a)

xϕ1 :

t

y

x,yϕ2 : t

List

f

f

(b)

Fig. 2

where ∗ is used to specify the disjointness of the linked
lists starting in z and u.
Decision procedure for entailment: We define a proce-
dure for checking entailments of NOLL formulas, which is
based on the graph homomorphism approach in [8]. The
basic idea is to think of formulas as graphs, where nodes
represent variables (sets of equal variables) and edges rep-
resent list segments, and then, given ϕ1 and ϕ2 two for-
mulas, if there exists a homomorphism from ϕ2 to ϕ1 then
ϕ1⇒ ϕ2 holds. Roughly, the homomorphism is a function
mapping each node of ϕ2 to a node of ϕ1 representing at
least the same set of variables. It is required that this func-
tion defines a mapping from edges of ϕ2 to disjoint paths
in ϕ1. (Note that the homomorphism is unique.) For exam-
ple, there exists such a homomorphism from ϕ2 to ϕ1 in
Fig. 2(a), where a snaked edge labeled by List from x to
y denotes a predicate List(x,y), a straight edge labeled by
f from y to z denotes a points-to constraint y 7→ {(f ,z)},
all these constraints are supposed to be separated by ∗, and

the dotted edges represent the homomorphism.
In order to be complete, this procedure needs that the formulas of an entailment

contain the maximum number of equalities and inequalities; in this case, we say that
the formula is in normal form. Also, if it contains an equality u = v then, it contains
no spatial constraint defining a list segment from u to v (as usual in separation logic,
u = v∧List(u,v) is equivalent to u = v). For example, although the entailment ϕ1⇒ ϕ2
in Fig. 2(b) holds, there exists no homomorphism from ϕ2 to ϕ1. (Because the field f
is already defined in x, the list segment using this field and starting in x is empty. Thus,
ϕ1 implies x = y, which is needed to show that ϕ1⇒ ϕ2.)
Boolean abstractions of NOLL formulas: Our first insight in defining such a decision
procedure is that the normal form of a NOLL formula ϕ = Π∧Σ∧Λ can be constructed
through a boolean abstraction of ϕ, denoted F(ϕ). For the moment, let us consider the
case when Λ = true. Then, the formula F(ϕ) is defined over a set of boolean variables
denoting (in)equalities between variables and atomic formulas from the spatial part Σ.

We illustrate the definition of F(ϕ) on the formula:

ϕ := List(x,y)∗List(x,z)∗ y 7→ {(f , t)}∗List(y,s). (5)

The set of boolean variables in F(ϕ) consists of:

– a variable [u = v], for every two variables u and v in ϕ,
– a variable [y, t, f] to represent the points-to constraint y 7→ {(f , t)}, and

6 Constantin Enea, Vlad Saveluc, and Mihaela Sighireanu

– a variable [List(u,v)], for every spatial constraint List(u,v) in ϕ.

In this case, the formula F(ϕ) , Feq∧F(Σ), where Feq encodes the reflexivity and the
transitivity of the equality relation, i.e.,∧

u,v,w variables in ϕ

[u = u] ∧ ([u = v]∧ [v = w])⇒ [u = w],

and F(Σ) models the spatial part of ϕ, i.e.,

F(Σ), [y, t, f] ∧
∧

List(u,v) atom in ϕ

[List(u,v)]⊕ [u = v] ∧
∧

A,B atoms in Σ

F∗(A,B).

The sub-formula [y, t, f] ensures that the points-to constraint is satisfied by any model
of ϕ; the sub-formula [List(u,v)]⊕ [u = v] models the fact that in any model of ϕ,
either u = v or List(u,v) describes a non-empty list segment. The sub-formula F∗(A,B)
contains the in(equalities) implied by the use of ∗, i.e,

F∗(y 7→ {(f , t)},List(u,v)) , ¬[y = u]∨ [u = v], for any u,v,
F∗(List(u1,v1),List(u2,v2)) , ¬[u1 = u2]∨ [u1 = v1]∨ [u2 = v2], for any u1,v1,u2,v2.

In general, the size of F(ϕ) is polynomial in the size of the formula ϕ. Also, ϕ is
satisfiable iff F(ϕ) is satisfiable.

Computing the normal form: The formula F(ϕ) can be used to compute the normal
form of ϕ since ϕ⇒ (u = v) iff F(ϕ)⇒ [u = v], for any u and v. Thus, for any valid
entailment F(ϕ)⇒ [u= v], the equality u= v is added to ϕ, and all predicates describing
list segments between u and v are removed. For example, the normal form of ϕ in (5) is
y = s∧ x = z∧List(x,y)∗ y 7→ {(f , t)} (the formula F(ϕ) implies [y = s] and [x = z]).

Handling sharing constraints: For NOLL formulas with sharing constraints, comput-
ing the normal form before checking the existence of a graph homomorphism is not
enough. Besides (in)equalities, we may have implicit spatial constraints which are not
exposed in some formula. Consider the entailment ϕ1⇒ ϕ2, where:

ϕ1 := Listα(x,y)∗w LowListβ(n,m)∧β⊆ α (6)

ϕ2 :=
(
Listδ(x,n)∗Listγ(n,y)

)
∗w LowListβ′(n,m)∧β

′ ⊆ δ∪ γ (7)

Note that β⊆ α implies that n is a location on the list segment described by Listα(x,y)
and thus ϕ1⇒ ϕ2 holds. In this case, F(ϕ1) includes constraints over a set of boolean
variables [u ∈ ε] representing the fact that u is a location in the set of locations denoted
by ε, for any u and ε ∈ {α,β} (we defer the reader to Sec. 5 for more details).

In general, if the formula F(ϕ) implies [u ∈ ε], for some u and ε, then the graph rep-
resentation of ϕ includes some additional edges induced by the fact that u is a location
on the list segment indexed by ε. In this case, F(ϕ1)⇒ [n∈α] and the graph representa-
tion of ϕ1 completed with these additional edges is the graph G(ϕ1) in Fig. 3. Now, it is
easy to see that there exists a homomorphism from G(ϕ2) to G(ϕ1) (the homomorphism
must satisfy additional constraints explained in Sec. 6.3).

Compositional Invariant Checking for Overlaid and Nested Linked Lists 7

xG(ϕ1) :

n

y

m

Listα

LowListβ

xG(ϕ1) :

n

y

m

Listα

LowListβ

Listα1

Listα2

x : G(ϕ2)

n

y

m

Listδ

Listγ

LowListβ′

Fig. 3: The graph representations G(ϕ1) resp. G(ϕ2) of the (normal forms of the) for-
mulas in eq. (6–7). G(ϕ1) is the graph representation of ϕ1 that includes the implicit
spatial constraints. Dotted edges represent the homomorphism proving that ϕ1⇒ ϕ2.

3 Logic NOLL

The logic NOLL is a multi-sorted fragment of Separation Logic [17]. Let T be a set of
sorts (corresponding to record types defined in the program), Flds a set of field names,
and τ a typing function mapping each field name into a function type over T . A field
f ∈ Flds is called recursive iff τ(f) = R−→R with R ∈ T and non-recursive, otherwise.
The set of recursive fields is denoted by Fldsrec.
Syntax: Let LVars and SetVars be two sets of variables, called location variables and
set of locations variables, respectively. We assume that the typing function τ associates
a sort, resp. a set of sorts, to every variable in LVars, resp. SetVars. For simplicity, we
assume that LVars contains the constant NULL. The syntax of NOLL is given in Fig. 4.

x,y,yi ∈ LVars location variables −→z ∈ LVars+ tuples of location variables
f , fi ∈ Flds field names α ∈ SetVars set of locations variables

R ∈ T sort P ∈ P list segment predicates
ϕ ::= Π∧Σ∧Λ NOLL formula
Π ::= true | x 6= y | x = y |Π∧Π pure constraints
Σ ::= emp | x 7→ {(f1,y1); . . . ;(fk,yk)} | Pα(x,y,−→z) | Σ∗Σ | Σ∗w Σ spatial constraints
Λ ::= true | t ⊆ t ′ | x ∈ t | x 6∈ t | Λ∧Λ sharing constraints
t ::= {x} | α | α(R) | t ∪ t ′ set of locations terms

Fig. 4: Syntax of NOLL formulas.

An atomic points-to constraint x 7→ {(f1,y1); . . . ;(fk,yk)} is used to specify the
values of fields f1,. . ., fk in the location denoted by x: the value stored by the field fi is
yi, for all 1 ≤ i ≤ k. The fields shall be pairwise disjoint and the formula shall be well
typed, i.e., for any fi, τ(fi) = τ(x)→ τ(yi).

In every list segment constraint Pα(x,y,−→z), P is a predicate from a fixed, but arbi-
trary, set P . The predicates in P have recursive definitions with the following syntax:

8 Constantin Enea, Vlad Saveluc, and Mihaela Sighireanu

P(in,out,
−→
nhb) , (in = out) ∨

(∃u,−→v .Σ0(in,u∪−→v ∪
−→
nhb)∗Σ1(

−→v ,
−→
nhb) ∗ P(u,out,

−→
nhb))

Σ0(in,V) ::= in 7→ θ, where θ⊆ {(f ,w) | f ∈ Flds,w ∈V}

Σ1(
−→v ,
−→
nhb) ::= emp | Q(v,b,

−→
b) | Σ1(

−→v ,
−→
nhb)∗Σ1(

−→v ,
−→
nhb) with b,

−→
b ⊆
−→
nhb, and Q ∈ P

where in,out,u ∈ LVars and
−→
nhb,−→v ,

−→
b ∈ LVars+. The definition of every P ∈ P is

well typed and satisfies the additional typing constraints τ(in) = τ(out) = τ(u), and
τ(in) 6= τ(v), for every v∈−→v . Moreover, the definitions in P are not mutually recursive.

A predicate P(in,out,
−→
nhb) defines possibly empty list segments starting from in and

ending in out. The fields of each element in this list segment are defined by Σ0 while
the nested lists to which it points to are defined by Σ1. The parameters

−→
nhb are used to

define the “boundaries” of the nested list segment described by P, in the sense that every
location described by P belongs to a path between in and some location in out ∪

−→
nhb

(this path may be defined by more than one field). Every element of the list segment
described by P points to several nested lists, each one of them being described by a
predicate Q in P . The use of ∗ in the definition of P implies that the inner list segments
are disjoint. The typing constraints ensure bounded nesting.

For simplicity of the presentation, we have restricted ourselves to such inductive
definitions, which are not expressive enough to describe doubly-linked lists or nested
lists containing cyclic lists on their inner levels. However, our techniques can be ex-
tended to cover such cases. For example, to describe doubly-linked lists, one must allow
further points-to constraints and use a special type of existential variables representing
the next to last location in a doubly-linked list segment like, e.g., in [1].

For any predicate P, Σ0(P), resp. Σ1(P), denotes the sub-formula Σ0, resp. Σ1 of
P. Moreover, Flds0(P) denotes the set of fields of in that point to u according to the
formula Σ0(P), i.e., f ∈ Flds0(P) iff Σ0(P) = in 7→ θ and (f ,u) ∈ θ.

In every spatial constraint Pα(x,y,−→z), α is a set of locations variable, which is said
to be bounded to or to index the spatial constraint. The constraint Λ may contain set of
locations variables which are not bounded to some spatial constraint. For simplicity, we
assume that a variable in SetVars appears in Σ at most once. Also, we consider that all
atomic constraints in Λ are well typed, i.e., for any t ⊆ t ′ in Λ, τ(t)⊆ τ(t ′) and for any
(x ∈ t) in Λ, τ(x) ∈ τ(t), where τ is extended to set of locations terms as usual.

In the following, we denote by LVars(ϕ) (and SetVars(ϕ)) the set of location vari-
ables (resp. set of locations variables) used in ϕ. Also, atoms(ϕ) denotes the set of
atomic formulas in ϕ. Two atoms in Σ are object separated, resp. field separated, if
their least common ancestor in the syntactic tree of ϕ is ∗, resp. ∗w.

Semantics: Let Loc be a multi-sorted set of locations typed by the typing function τ,
and let LocR denote the set of locations in Loc of sort R.

A program heap is modeled by a pair C = (S,H), where S : LVars→ Loc maps
location variables to locations in Loc and H : Loc×Flds ⇀ Loc defines values of fields
for a subset of locations. Intuitively, each allocated object is denoted by a location in Loc
and then, H defines the fields for the allocated objects and S gives for each variable, the
object it points to. The set of locations l for which there exists f s.t. H(l, f) is defined

Compositional Invariant Checking for Overlaid and Nested Linked Lists 9

(C,J) |= ϕ1∧ϕ2 iff (C,J) |= ϕ1 and (C,J) |= ϕ2

(C,J) |= x = y iff S(x) = S(y)
(C,J) |= x 7→ ∪i∈I{(fi,yi)} iff H(S(x), fi) = S(yi) for all i ∈ I
(C,J) |= Pα(x,y,−→z) iff there exists k ∈ N s.t. (C,J) |= Pk

α(x,y,
−→z)

(C,J) |= P0
α(x,y,

−→z) iff S(x) = S(y) and J(α) = /0

(C,J) |= Pk+1
α (x,y,−→z) iff S(x) 6= S(y) and there exists ρ : {u}∪−→v → Loc and J′ s.t.

(C[S 7→ S∪ρ],J′) |= Σ0(x,u∪−→v ∪−→z)∗Σ1(
−→v ,−→z)∗Pk

α(u,y,
−→z),

img(ρ)∩img(S) = /0,
J′(α) = J(α)\ ({S(x)}∪ρ(−→v)), and J′(β) = J(β), for any β 6= α

(C,J) |= Σ1 ∗Σ2 iff there exist program heaps C1 and C2 s.t. C =C1 ∗C2,
(C1,J) |= Σ1, and (C2,J) |= Σ2

(C,J) |= Σ1 ∗w Σ2 iff there exist program heaps C1 and C2 s.t. C =C1 ∗w C2,
(C1,J) |= Σ1, and (C2,J) |= Σ2

(C,J) |= x ∈ t iff S(x) ∈ [t]J
(C,J) |= t ⊆ t ′ iff [t]J ⊆ [t ′]J

Separation operators over program heaps:

C =C′ ∗C′′ iff Loc(C) = Loc(C′)∪Loc(C′′) and Loc(C′)∩Loc(C′′) =∅,
SC′ = SC |Loc(C′) and SC′′ = SC |Loc(C′′)

C =C′ ∗w C′′ iff dom(HC) = dom(HC′)∪dom(HC′′) and dom(HC′)∩dom(HC′′) =∅,
SC′ = SC |Loc(C′) and SC′′ = SC |Loc(C′′)

Interpretation of a term t, [t]J :

[{x}]J = {S(x)}, [α]J = J(α), [α(R)]J = J(α)∩LocR, [t ∪ t ′]J = [t]J ∪ [t ′]J .

Fig. 5: Semantics of NOLL formulas. dom(F) denotes the domain of the function F and
S∪ρ denotes a new mapping K : dom(S)∪dom(ρ)→ Loc s.t. K(x) = ρ(x), ∀x∈ dom(ρ)
and K(y) = S(y), ∀y ∈ dom(S)).

is called the set of locations in C, and denoted by Loc(C). The component S (resp. H)
of a heap C is denoted by SC (resp. HC).

NOLL interpretations are pairs (C,J), where C = (S,H) is a program heap and J :
SetVars→ 2Loc interprets variables in SetVars to finite subsets of Loc. We assume that
S, H, and J are well-typed w.r.t. τ. A NOLL interpretation (C,J) is a model of a formula
ϕ iff (C,J) |= ϕ, where |= is defined in Fig. 5 for its non trivial cases. For simplicity, we
consider the intuitionistic semantics of SL [17]: if a formula is true on a model then it
remains true for any extension of that model with more locations. Our techniques can
be adapted to work also for the non-intuitionistic semantics [10].

Note the difference between the two kinds of separation of heaps: C =C′ ∗C′′ holds
iff the set of locations in C′ and C′′ are disjoint while C =C′ ∗w C′′ holds iff the domains
of the H component in C′ and C′′ are disjoint.

W.l.o.g., we suppose that the sharing constraints in Λ are in a simplified form ob-
tained as follows. First, inclusion constraints are put in the form α⊆ t, where t contains
at most two set of locations variables. Second, for any atomic formula α⊆ t in Λ such
that α is bound to some spatial constraint Pα(x,y,−→z), we remove from t (1) all the vari-
ables α′ such that α and α′ are bound to object separated spatial constraints and (2) all
the terms of the form {x} such that ϕ contains a points-to constraint x 7→ θ, which is

10 Constantin Enea, Vlad Saveluc, and Mihaela Sighireanu

object separated from the spatial constraint indexed by α. If t becomes empty then, the
equality x = y is added to ϕ.

We denote by [ϕ] the set of pairs (C,J) which are models of ϕ. The entailment
between two NOLL formulas is denoted by⇒ and it is defined by ϕ⇒ ψ iff [ϕ]⊆ [ψ].

Fragment MOLL: To illustrate some constructions in this paper, we consider the frag-
ment MOLL which does not allow to specify nested lists, but only overlaid multi-
linked lists. Formally, the fragment MOLL contains all the NOLL formulas defined
over a set of predicates P such that, for any P ∈ P , Σ1(P) = emp, i.e., P is defined
by P(in,out,

−→
nhb), (in = out)∨ (∃u.Σ0(in,u∪

−→
nhb)∗P(u,out,

−→
nhb)).

4 A model-theoretic procedure for checking entailment

We prove that satisfiability, resp. entailment checking, of NOLL formulas is NP-
complete, resp. co-NP complete. The upper bound for the complexity of satisfiability
is proved using a small model property: if ϕ ∈ NOLL has a model, then it has also a
model of size polynomial in the size of ϕ and P (the size of P is defined as the size
of all recursive definitions for predicates in P). The co-NP upper bound for entailment
checking is obtained by proving a small model property for formulas of the form ϕ 6⇒ψ

(a model for this formula corresponds to a counter-example for ϕ⇒ ψ).

4.1 Satisfiability problem

The NP lower bound of the satisfiability problem for NOLL formulas is given by the
next theorem. The proof is based on a reduction of 3SAT, the satisfiability problem for
CNF formulas with three literals in each clause, to the satisfiability problem for MOLL
formulas. The proof of this result is detailed in [10].

Theorem 1. The satisfiability problem for NOLL (MOLL) is NP-hard.

To prove the small model property for the NP upper bound, we use an abstraction
of the models of NOLL formulas by colored heap graphs. Intuitively, a model (C,J)
of a NOLL formula is represented by a colored graph where each location ` from C is
represented by a set of graph nodes V`. V` is a singleton when ` is the interpretation of
a location variable or it is not shared between list segments described in ϕ. Otherwise,
each node in V` represents a subset of fields at location ` such that two nodes in V`

represent disjoint sets of fields. All nodes in V` are colored by ` and are called sibling
nodes. The abstraction is built such that the sub-graphs corresponding to list segments
defined using different atoms of ϕ share only nodes which are interpretations of location
variables. Thus, we can collapse in these sub-graphs most of nodes and still obtain a
model of ϕ. The collapsed nodes shall not be colored by the interpretation of a location
variable, i.e., they are anonymous nodes. We show that for any model (C,J), one can
identify a set of anonymous nodes, whose size is polynomial in the size of ϕ and P ,
called crucial nodes, such that by collapsing all the non-crucial anonymous nodes one
can still obtain a model of ϕ. Formally,

Compositional Invariant Checking for Overlaid and Nested Linked Lists 11

Definition 1 (Colored heap graph). A colored heap graph over LVars, Flds, and
SetVars is a tuple G = (V,E,P ,L ,S), where (1) V is a finite set of nodes, (2) E :
V × Flds ⇀ V is a set of edges, (3) P : LVars(ϕ) → V is a labeling of nodes with
location variables, (4) L : V → Loc is a coloring of nodes with locations, and (5)
S : SetVars→ 2V is an interpretation of variables in SetVars to sets of nodes.

Fig. 6 pictures a model of ϕ in eq. (1) and its colored heap graph abstraction. We
denote the components of a colored heap graph G using superscripts, e.g., the set V
in G is denoted by V G. The semantics of NOLL formulas on colored heap graphs is
defined similarly to the one on NOLL interpretations, except for ∗ and the constraints in
Λ. A colored heap graph G satisfies a formula ϕ1 ∗ϕ2 iff G can be split into two disjoint
graphs G1 and G2 such that G1 |= ϕ1, G2 |= ϕ2, and for any two nodes v1 ∈ V G1 and
v2 ∈V G2 , LG1(v1) 6= LG2(v2). Also, for any constraint Pα(x,y,−→z), S(α) is interpreted
as the union of L(v), for all nodes v in the unique subgraph defined by Pα.

1

x

2 3 4

5 6 7

8 9

z

0

NULL

g

g

g

h
s s

s
h s

s

h s

f

f

ff

f

f

(a)

1

x

2s

x′

3s 4s

5 6s 7s

8z′ 9

z

0

NULL

7 f 4 f 3 f 2 f

y′

6 f

g

g

g

h
s s

s
h s

s
h s

f
f f f f

f

(b)

Fig. 6: A program heap satisfying ϕ in (1) and its colored heap graph. For any 0≤ n≤ 9,
the nodes ns and n f in (b) are colored by the location n from (a). Primed variables
x′,y′,z′ label crucial nodes. A small model is obtained by collapsing filled nodes in (b).

Lemma 1. If a NOLL formula ϕ has a model (C,J) then it also has a model (Cs,Js) of
size polynomial in the size of ϕ and P .

Proof. (Idea) The proof builds a small model following the steps given in Fig. 7a.
Roughly, we show that anonymous locations from (C,J) can be collapsed until the list
segments are of bounded length. The bounds are determined by the sharing constraints
in ϕ and the levels of nesting in the definition of the recursive predicates. To collapse
anonymous locations on list segments, we use the colored heap graph abstraction. How-
ever, some distinguished set of crucial anonymous nodes shall not be collapsed because
this will invalidate spatial or sharing constraints in ϕ (an example is shown below). Also,
to preserve the truth value of sharing constraints, if a node is found crucial on some list
segment, then all its sibling nodes are also marked as crucial (this corresponds to the
fact that the small model contains all the fields for that location).

12 Constantin Enea, Vlad Saveluc, and Mihaela Sighireanu

The procedure purify removes from (C,J) all the locations not involved in spatial
constraints from ϕ. This is possible because the minimal part of C satisfying some
spatial constraint is unique. splitLocations builds the colored heap graph abstraction
of (C′,J′) by splitting the nodes not labeled by location variables but shared between
several list segments described by predicates in ϕ. An example is given in Fig. 6.

1: (C′,J′) := purify(ϕ)(C,J)

2: G := splitLocations(C′,J′)

3: V ′ := crucialNodes(ϕ,G)

4: G′ := labelCrucial(G,V ′)

5: G′′ := collapseAnonymous(G′)

6: (Cs,Js) := mergeNodes(G′′)

(a) Steps for computing a small model.

1x

2sx′

5

6s

0 NULL

2sx′

1x

0 NULL

g g g

h

s

h

s

h

s

collapse

(b) Example of collapsing.

Fig. 7: Computing a small model for NOLL formulas.

crucialNodes computes the set of crucial nodes V ′ as the closure under the sibling
relation of the set of (anonymous) nodes in G which are either (1) the successor of a
labeled node by a non recursive field (e.g., node 2s in Fig. 6), or (2) the source or the
target of a non recursive field on a fixed path between two nodes labeled by location
variables (e.g., node 8 in Fig. 6). Because the nesting of recursive predicates is bounded,
the size of the set V ′ is bounded by a polynomial in the size of ϕ and P (the number of
variables, the nesting depth, and the size of Flds). The crucial nodes are labeled with a
set of additional location variables LVars′ in labelCrucial.

Afterwards, the anonymous nodes (not labeled by variables in LVars(ϕ)∪ LVars′)
are collapsed by collapseAnonymous in a bottom up manner, i.e., starting from the
inner list segments to the upper ones. Roughly, the collapsing removes a node (and the
sub-graph representing the nested, anonymous structure) if it is between two recursive
fields (see Fig. 7b). Intuitively, this process preserves a model of ϕ because no edges are
added and the nodes marked as important for the satisfaction of the spatial and sharing
constraints are kept. Due to the special syntax of predicates in P , we can compute for
each list segment the minimal number of anonymous nodes that must be preserved in
order to satisfy some given spatial constraint. This number depends only on the size
of P and it is obtained when all the spatial constraints in the predicate definition are
interpreted as list segments of length one. Thus, we obtain a colored heap graph G′′

where all labeled nodes are preserved and with them some sub-graphs with a bounded
number of anonymous nodes. Finally, from G′′, a (small) model (Cs,Js) of ϕ is built, by
applying mergeNodes, which roughly merges sibling nodes in locations. �

Since the complexity of the model-checking problem for NOLL formulas is poly-
nomial, the following result holds.

Theorem 2. The satisfiability problem for NOLL is NP-complete.

Compositional Invariant Checking for Overlaid and Nested Linked Lists 13

4.2 Entailment problem

The colored heap graph abstraction is also used to prove a small counter-example prop-
erty for entailments ϕ⇒ψ when ϕ and ψ are in NOLL. The proof is similar to the proof
of Lemma 1, with two main differences. Let (C,J) be a counter-example for ϕ⇒ ψ.
First, in purify, the locations not used in ϕ are removed from (C,J) except for locations
that are witnesses for some unsatisfied sharing constraint in ψ. It is enough to keep one
location per sharing constraint in ψ and thus, their number is bounded by the size of
ψ. We label these locations with variables from some set LVars′′. Second, crucialNodes
marks some additional nodes as crucial, in order to keep track if two list segments are
sharing at least one location and in order to distinguish between list segments of size 1
and list segments of size at least 2. However, this process adds at most one more node
per constraint, and thus the bound on the number of nodes is increased by a linear term
in the size of ϕ and ψ. This property and the NP-completeness of satisfiability imply:

Theorem 3. Checking the validity of an entailment between two NOLL formulas is co-
NP complete.

5 Computing the normal form

This section makes a first step towards the effective procedure for checking entailments
of NOLL formulas by presenting the procedure for computing the normal form of a
NOLL formula. We say that a NOLL formula is in normal form if it contains the max-
imum set of equalities and disequalities between location variables and the minimum
set of list segment constraints. Formally,

Definition 2 (Normal form). A NOLL formula ϕ = Π∧Σ∧Λ is in normal form iff:

– for any x,y ∈ LVars(ϕ), if ϕ⇒ x = y, resp. ϕ⇒ x 6= y, then Π contains the atom
x = y, resp. x 6= y, and

– for any atomic formula Pα(x,y,−→z) in Σ, there exists a model (C,J) of ϕ such that
SC(x) 6= SC(y).

The normal form of ϕ is a formula ϕ′ in normal form and equivalent to ϕ.

We now describe the main ideas behind the procedure that computes the normal
form and to this, we must define the class of reduced, explicit NOLL formulas.

A NOLL formula is called explicit if it contains x = y or x 6= y, for any constraint
Pα(x,y,−→z) in ϕ, and x ∈ α or x 6∈ α, for any x and α in ϕ. Then, an explicit formula ψ

is called reduced if it does not contain both the atoms x = y and Pα(x,y,−→z).
Any NOLL formula ϕ is equivalent to a disjunction of reduced, explicit formulas

ψ1 ∨ . . .∨ψn. The formulas ψi are obtained from ϕ by (1) adding in all possible ways
atoms x = y, x 6= y, x∈ α, and x 6∈ α until the obtained formula is explicit and then, (2) if
a formula contains x = y, by removing atoms Pα(x,y,−→z) together with all occurrences
of α in the sharing constraints (e.g., every atom x ∈ α or β ⊆ α, where β indexes a
constraint Qβ(u,v,

−→w) and u 6= v belongs to the formula, is replaced by false).
The equivalent formula ψ1∨ . . .∨ψn can be used to compute the normal form of ϕ

as follows. An atom x = y or x 6= y is implied by ϕ iff this atom is included in all the

14 Constantin Enea, Vlad Saveluc, and Mihaela Sighireanu

satisfiable formulas ψi. Also, for any P(x,y,−→z) in ϕ, there exists a model (C,J) of ϕ

s.t. SC(x) 6= SC(y) iff this atom is included in some satisfiable ψi.
In general, the number of satisfiable formulas in the disjunction ψ1 ∨ . . .∨ψn may

be exponential w.r.t. the size of ϕ. However, all these formulas can be represented sym-
bolically as the satisfying assignments of a boolean formula, denoted by F(ϕ).

In order to simplify the presentation, we give below the construction of F(ϕ) only
for MOLL formulas where variables are of the same type; [10] gives the general case.
F(ϕ) is defined over the set of boolean variables BVars(F(ϕ)) defined in Tab. 1.

Table 1: Definition of the set BVars(F(ϕ)) of boolean variables used in F(ϕ).

[x = y] for every x,y ∈ LVars(ϕ)

[x,y, f] for every atom x 7→ θ of ϕ with (f ,y) ∈ θ

[Pα(x,y,−→z)] for every atom Pα(x,y,−→z) of ϕ

[x ∈ α] for every x ∈ LVars(ϕ) and α ∈ SetVars(ϕ)

Given a satisfying assignment σ : BVars(F(ϕ)) → {0,1} for F(ϕ) such that
σ([x,y, f]) = 1, for any [x,y, f] ∈ BVars(F(ϕ)), we define the MOLL formula ψσ to
be ϕ to which the following transformations are applied:

– if σ([x = y]) is 0, resp. 1, then ψσ includes the pure constraint x 6= y, resp. x = y,
– if σ([Pα(x,y,−→z)]) = 0 then Pα(x,y,−→z) and α are removed from ϕ,
– if σ([x ∈ α]) is 0, resp. 1, then x 6∈ α, resp. x ∈ α, is added to ψσ.

Let ϕ = Π∧Σ∧Λ be a MOLL formula. The formula F(ϕ) is defined by:

F(ϕ) = F(Π)∧Feq∧F(Σ)∧Fdet ∧F(Λ)∧F∈, (8)

where F(Π), F(Σ), and F(Λ) encode the semantics of the atomic formulas of ϕ, Feq
encodes the reflexivity and the transitivity of the equality relation in Π, Fdet encodes
the semantics of the field separating conjunction, and F∈ encodes the properties of the
membership relation ∈. These sub-formulas are defined inductively on the syntax of
MOLL formulas. Most of them are not difficult to follow. We provide here some intu-
ition for the most interesting ones.

In F(Σ), an atom Pα(x,y,−→z) is translated into F(Pα(x,y,−→z)) = [Pα(x,y,−→z)]⊕ [x =
y], where⊕ is the exclusive or. This expresses the fact that the atom is kept in a reduced,
explicit MOLL formula only if its endpoints are not equal.

The separation of fields (defined for locations which are interpretations of location
variables) induced by the use of the field separating conjunction is expressed in the
formula Fdet in Fig. 8. Thus, Fdet states that for any location variable x and any field
f ∈ Flds, at most one of the following conditions is true:

1. the reduced, explicit formula contains the equality x = x′ and a points-to constraint
x′ 7→ θ such that (f ,y) ∈ θ, for some y,

2. the reduced, explicit formula contains the atoms x ∈ α and Pα(x′,y,−→z) (therefore
it also includes x′ 6= y), for some y and −→z , such that f ∈ Flds0(Pα).

Compositional Invariant Checking for Overlaid and Nested Linked Lists 15

Fdet =
∧

for any [x1,y1, f], [x2,y2, f] ∈ BVars(F(ϕ)) different variables

[x1 = x2]∧ [x1,y1, f] ⇒ ¬[x2,y2, f] (9)∧
for any [x1,y1, f], [Pα(x2,y2,

−→z2)] ∈ BVars(F(ϕ)) s.t. f ∈ Flds0(P) and x ∈ LVars(ϕ)

[x1 = x]∧ [x ∈ α]∧ [x1,y1, f] ⇒ ¬[Pα(x2,y2,
−→z2)] (10)∧

for any [Pα(x1,y1,
−→z1)], [Qβ(x2,y2,

−→z2)] ∈ BVars(F(ϕ)) different variables

s.t. Flds0(P)∩Flds0(Q) 6= /0 and x,x′ ∈ LVars(ϕ)

[x ∈ α]∧ [x′ ∈ β]∧ [x = x′]∧ [Pα(x1,y1,
−→z1)] ⇒ ¬[Qβ(x2,y2,

−→z2)] (11)

Fig. 8: Definition of Fdet for a MOLL formula ϕ = Π∧Σ∧Λ.

Fig. 9 gives the main definitions of F(Λ). For instance, F(α1 ⊆ α2) in eq. (14)
expresses the fact that if there exists some variable x such that x ∈ α1 is true then x ∈ α2
also holds. In eq. (15), F∈ encodes the closure of ∈ under the equality, the fact that if
a boolean variable [x1 ∈ α] is true then the list segment bound to α in ϕ, if any, is not
empty, and if α is bound to a non-empty list segment Pα(x,y,−→z) in ϕ, then α contains
the first element of the segment, i.e., x.

F(x ∈ α1) = [x ∈ α1] (12)

F(x ∈
⋃

1≤i≤n
{ui}) =

∨
1≤i≤n

[x = ui] (13)

F(α1 ⊆ α2) =
∧

x∈LVars(ϕ)

[x ∈ α1]⇒ [x ∈ α2] (14)

F∈ =
∧

u,v,α in ϕ

(
[u = v]∧ [u ∈ α]

)
⇒ [v ∈ α] (15)

∧
∧

x1,Pα(x,y,−→z) in ϕ

(
[x1 ∈ α]⇒ [Pα(x,y,−→z)]

)
∧

(
[Pα(x,y,−→z)]⇒ [x ∈ α]

)
Fig. 9: Main definitions of F(Λ) and F∈ for a MOLL formula ϕ = Π∧Σ∧Λ.

Proposition 1. The size of F(ϕ) is polynomial in the size of ϕ.

Proposition 2. Let ϕ be a NOLL formula. For any satisfying assignment σ of F(ϕ), ψσ

is an explicit, reduced, and satisfiable formula. Also, ϕ is equivalent to the disjunction
of ψσ, for all satisfying assignments σ of F(ϕ).

Theorem 4. The problem of computing the normal form of a formula ϕ is in co-NP.

Proof. To compute the maximum set of (in)equalities that should be included in the
normal form of ϕ, we iterate over every pair of location variables x, y in ϕ and check if
F(ϕ)⇒ [x = y] or F(ϕ)⇒¬[x = y] is valid. In the first (resp., second) case, x = y (resp.,
x 6= y) is included in the normal form. When some equality x = y is added to the normal
form, the atoms Pα(x,y,−→z) in ϕ are removed, and all occurrences of α are interpreted
as the empty set. Since we need to perform a polynomial number of Boolean formula
validity tests, the overall complexity of this procedure is co-NP time. �

16 Constantin Enea, Vlad Saveluc, and Mihaela Sighireanu

6 An effective procedure for checking entailment

The procedure for checking the validity of the entailments ϕ ⇒ ψ be-
tween two NOLL formulas is detailed in Fig. 10. It has three main steps:

procedure CheckEntl(ϕ⇒ ψ)
1: ϕ′ := the normal form of ϕ

2: ψ′ := the normal form of ψ

3: G1 := the complete NOLL graph of ϕ′

4: G2 := the NOLL graph of ψ′

5: h := the function h : V (G2)⇀V (G1) s.t.
varsG2(n)⊆ varsG1(h(n)), ∀n ∈V (G2)

6: return (h is total) and
(h is a homomorphism)

Fig. 10

(a) compute (lines 1–2) the nor-
mal form of ϕ and ψ, denoted by
ϕ′ and ψ′, respectively, (b) com-
pute (line 3) additional spatial
constraints, which are implied
by ϕ, and (c) check (lines 3–6) if
the graph representation of ψ′ is
homomorphic to the graph rep-
resentation of both ϕ′ and the
additional constraints computed
in the previous step.
In the following, we first de-
scribe the step (b) above, then

we define graph representations for NOLL formulas, called (complete) NOLL graphs,
and finally, we define the notion of homomorphism between NOLL graphs. Moreover,
we assume that ϕ and ψ are satisfiable. Otherwise, Proposition 2 implies that a formula
ϕ is satisfiable iff F(ϕ) is satisfiable, which allows to decide in co-NP time entailments
of the form ϕ⇒ ψ when ϕ or ψ is unsatisfiable.

6.1 Inferring additional spatial constraints

In order to give an intuition about the additional spatial constraints deduced from ϕ,
recall the entailment ϕ1 ⇒ ϕ2, where ϕ1 and ϕ2 are defined in eq. (6–7) at page 6.
The entailment holds because the list segments linking x to n and n to y, and described
by Listδ(x,n) ∗ Listγ(n,y), exist in every model of ϕ1. To obtain a complete decision
procedure for entailment, such constraints must be made explicit before checking the
existence of a homomorphism between the two formulas viewed as graphs.

Observe that ϕ1 does not imply ϕ1∗w
(
Listδ(x,n)∗Listγ(n,y)

)
but, ϕ1∧

(
Listδ(x,n)∗

Listγ(n,y)
)
. Thus, these implicit constraints will be added only to the graph representa-

tion of NOLL formulas and not to the formula itself, as explained in Sec. 6.2.
For simplicity, we give the definition only for MOLL formulas ϕ. Let ξ be a set of

atoms in ϕ of the form Qβ(u,v,
−→w). For any such ξ, P (ξ) denotes the set of recursive

predicates in ξ, SetVars(ξ) denotes the set of variables β ∈ SetVars bounded to atoms in
ξ, and tξ is the term defined as the union of all variables in SetVars(ξ).

An atom Pα(x,y,−→z) is called implicit in ξ iff one of the following holds:

– ξ consists of one atom Pβ(u,v,
−→z), the source of Pα is the same as the source of Pβ,

i.e., ϕ⇒ x = u, and the destination of Pα is included in the list segment defined by
Pβ, i.e., ϕ⇒ y ∈ β;

– (1) ϕ⇒ x∈ tξ, (2) tξ is a minimal term t such that ϕ⇒ x∈ t, i.e., for every other term
t ′, which is the union of the variables from a strict subset of SetVars(ξ), ϕ 6⇒ x ∈ t ′,
(3) Flds0(P) =

⋂
Q∈P (ξ) Flds0(Q), and (4) ϕ⇒

∧
Qβ(u,v,

−→z)∈ξ y = v.

Compositional Invariant Checking for Overlaid and Nested Linked Lists 17

Similarly, an atom x 7→ {(f ,y)} is called implicit in ξ iff the conditions (1) and (2)
above hold, (3′) an atom u 7→ θi with (f ,di) ∈ θi is included in the definition of Q, for
all Q ∈ P (ξ), and (4′) ϕ⇒

∧
1≤i≤n y = di.

For example, for ξ = {Listα(x,y)} a set of atoms in ϕ1 from eq. (6), the atom
Listδ(x,n) is implicit in ξ because β ⊆ α in ϕ1 implies that n ∈ α and the equality
x = x is trivially implied by ϕ1. Also, the atom Listγ(n,y) is implicit in ξ because the
conditions (1–4) above hold.

By definition, the Boolean abstraction F(ϕ) defined in Sec. 5 can be used to check
that ϕ implies the equalities and the sharing constraints in the above conditions. The
conditions (3) and (3′) can be checked syntactically. Thus, the computation of the im-
plicit spatial constraints for a formula is co-NP complete.

6.2 NOLL graphs

We define NOLL graphs, a graph representation for NOLL formulas. Roughly, the nodes
of these graphs represent sets of equal location variables and the edges represent spatial
or difference constraints. The object separated spatial constraints are represented by a
binary relation Ω∗ over edges while the sharing constraints are kept unchanged.

Definition 3 (NOLL graph). Given a NOLL formula ϕ = Π∧Σ∧Λ over a set of pred-
icates P , the NOLL graph of ϕ, denoted G(ϕ), is a tuple (V,EP,ER,ED, `,Ω∗,Λ) or the
error graph ⊥, where:

– each node in V denotes an equivalence class over elements of LVars w.r.t. the equal-
ity relation defined in Π; the equivalence class of x is denoted by [x]. If Π contains
both x 6= y and x = y then G is the error graph ⊥;

– EP ⊆ V ×Flds×V represents the points-to constraints: ([x], f , [y]) ∈ EP iff x 7→ θ

with (f ,y) ∈ θ is an atomic formula in Σ;
– ER ⊆V ×P ×V+×V represents list segment constraints: ([x],Pα, [

−→z], [y]) ∈ ER iff
Pα(x,y,−→z) is an atomic formula in Σ;

– ED ⊆V ×V represents inequalities: ([x], [y]) ∈ ED iff x 6= y is an atom in Π;
– ` : LVars−→V , called variable labeling, it is defined by `(x) = [x], for any x ∈ LVars;
– Ω∗ contains all pairs of edges in EP∪ER denoting object separated atoms in Σ.

In the following, V (G), denotes the set of nodes in the NOLL graph G. We use a
similar notation for all the other components of G. Also, for any n ∈ V (G), varsG(n)
denotes the set of all the variables labeling the node n in G. The graph G(ϕ2) in Fig. 3
represents the NOLL graph of ϕ2, where V = {x,y,n,m}, EP = ED = /0, ER contains
the three edges corresponding to the three list segments, Ω∗ contains only one pair
〈([x],Listα, [n]),([n],Listβ′ , [y])〉, and Λ is β′ ⊆ δ∪ γ.

A graph representation for ϕ which includes an edge for each implicit spatial con-
straint of ϕ is called a complete NOLL graph. This representation has an additional
attribute ∆, which identifies the set of atoms where a spatial constraint is implicit in.

Definition 4 (complete NOLL graph). Given a NOLL formula ϕ=Π∧Σ∧Λ, the com-
plete NOLL graph of ϕ, denoted by G(ϕ) is a tuple (G,∆) where:

18 Constantin Enea, Vlad Saveluc, and Mihaela Sighireanu

– G is a NOLL graph where all components except ER, EP, Ω∗, and Λ are equal to
the components of G(ϕ);

– ER(G) (resp. EP(G)) includes ER(G(ϕ)) (resp. EP(G(ϕ))) and, for any atom
Pα(x,y,−→z) (resp. x 7→ {(f ,y)}) which is implicit in some set of atoms ξ, e =
([x],Pα, [

−→z], [y]) ∈ ER(G) (resp. e = ([x], f , [y]) ∈ EP(G));
– Ω∗(G) consists of Ω∗(G(ϕ)) plus all pairs (e,e′) s.t. e represents an implicit con-

straint in ξ and (e′,e′′) ∈Ω∗(G) for some e′′ representing an atom in ξ;
– ∆⊆ (EP∪ER)×2ER represents the relation between edges and the sets of list seg-

ments where they are implicit in, i.e., for every Pα(x,y,−→z) (resp. x 7→ {(f ,y)})
implicit in ξ, (([x],Pα, [

−→z], [y]),Eξ) ∈ ∆ (resp. (([x], f , [y]),Eξ) ∈ ∆), where Eξ is
the set of edges representing the atoms in ξ;

– if Pα1(x,y,
−→z) and Pα2(y, t,

−→z) are implicit in ξ = {Pα(x, t,−→z)} then, α = α1∪α2
is added to Λ.

The graph in the middle of Fig. 3 represents the complete NOLL graph of ϕ1, G(ϕ1),
where V = {x,y,n,m}, EP = ED = Ω∗ = /0, and EP contains the four edges: two edges
represent the spatial constraints in ϕ1, and the edges ([x],Listα1 , [n]) and ([n],Listα2 , [m])
represent implicit constraints in ξ = {Listα(x,y)}. Λ is β⊆ α∧α = α1∪α2 and ∆ is the
relation {

(
([x],Listα1 , [n]),ξ),(([n],Listα2 , [m]),ξ)}.

6.3 NOLL graph homomorphism

Given a NOLL graph G1 and a complete NOLL graph G2, a homomorphism from G1 to
G2 is a mapping h : V (G1) 7→V (G2), which:

1. preserves the labeling with location variables, i.e., varsG1(n) ⊆ varsG2(h(n)), for
any n ∈V (G1),

2. maps each difference, resp., points-to, edge of G1 to a difference, resp., points-to,
edge of G2, (e.g., for any (n, f ,n′) ∈ EP(G1), (h(n), f ,h(n′)) ∈ EP(G2)),

3. maps each edge representing a list segment in G1 to a path in G2 formed of edges
in EP(G2)∪ER(G2), and

4. satisfies the constraints required by the semantics of the separating conjunctions,
the special status of the implicit spatial constraints, and the sharing constraints.

To explain the mapping of edges in ER(G1) to paths of G2, let us consider the case of
an edge (n,Pα,m, p) ∈ ER(G1), where n,m, p ∈V (G1) and P is a MOLL predicate, i.e.,
P(in,out,b), (in = out)∨ (∃u.Σ0(in,u∪b)∗P(u,out,b)). The definition of h requires
that there exists a sequence of nodes π= π1 . . .πk, k≥ 1, in G2 s.t. π1 = h(n), πk = h(p),
and for every two consecutive nodes πi and πi+1, either

– EP(G2) contains some set of edges between πi, πi+1, and h(m), which prove that
Σ0(xi,xi+1 ∪ xh(m)) holds, where xi, xi+1, and xh(m) are some variables labeling πi,
πi+1, and h(m), respectively, or

– there exists an edge (πi,P′β,
−→q ,πi+1) in ER(G2), representing a stronger predicate

than Pα, i.e., h(m) ∈ −→q and P′
β
(xi,xi+1,

−→z)⇒ Pα(xi,xi+1,xh(m)), where xi, xi+1,
and xh(m) are as above, and−→z is a set of variables labeling −→q s.t. xh(m) ∈−→z (this is
possible because h(m) ∈ −→q). The entailment between recursive predicates can be
checked syntactically in polynomial time.

Compositional Invariant Checking for Overlaid and Nested Linked Lists 19

In the following, we explain the constraints required by the 4th item in the definition
of the homomorphism. For any edge e in EP(G1)∪ER(G1), we define a set used(e) ⊆
EP(G2)∪2(ER(G2)×Flds), which represents all the edges/fields used in the path from G2
to which e is mapped by h. If e ∈ EP(G1) then used(e) = {e′}, where e′ is the edge of
G2 to which e is mapped by h. If e ∈ ER(G1) represents a list segment Pα then, used(e)
consists of (1) the set of points-to edges in the path associated to e and (2) the set of
pairs (e′, f), where e′ represents a list segment Qβ from the same path, if such an edge
exists, and f ∈ Flds0(P)∩Flds0(Q). When the path associated to e ∈ ER(G1) labeled
by Pα (resp. e ∈ EP(G1) labeled by f) contains an edge e′ representing a constraint
implicit in some ξ, i.e., (e′,Eξ) ∈ ∆(G2), then used(e) includes all pairs (e′′, f) with
e′′ ∈ Eξ labeled by Qβ ∈ ξ, and f ∈ Flds0(P)∩Flds0(Q) (resp. f ∈ Flds0(Q)).

Then, to express the semantics of ∗w, we require that used(e1)∩ used(e2) = /0, for
any two edges e1 and e2 in EP(G1)∪ER(G1). Concerning ∗, it is required that for any
two edges e1 and e2 in EP(G1)∪ER(G1) s.t. (e1,e2) ∈Ω∗(G1), we have that (e′1,e

′
2) ∈

Ω∗(G2), for any e′1 an edge appearing in used(e1) and e′2 an edge appearing in used(e2).
Finally, for the sharing constraints, the mapping by h of edges in ER(G1) to paths

in G2 defines a substitution Γ for set of locations variables in Λ(G1) to terms over set
of locations variables in Λ(G2). For example, the homomorphism in Fig. 3 defines the
substitution Γ(δ) = α1, Γ(γ) = α2, and Γ(β′) = β. Then, it is required that Λ(G2)⇒
Λ(G1)[Γ]. Such a formula belongs for instance, to the fragment of BAPA [14], and thus
its validity can be decided in NP-time. For the example in Fig. 3, we obtain the trivial
entailment β⊆ α∧α = α1∪α2 ⇒ β⊆ α1∪α2.

6.4 Checking entailments of NOLL formulas

The following theorem states the correctness and the complexity of the procedure
CheckEntl given in Fig. 10; the proof is given in [10].

Theorem 5. Given two NOLL formulas ϕ and ψ, ϕ⇒ ψ holds iff CheckEntl(ϕ⇒ ψ)
returns true. Moreover, the complexity of CheckEntl is co-NP time.

7 Experimental results

We have implemented the procedure for entailment checking in a solver which takes as
input the specification of predicates in P and two formulas ϕ,ψ ∈ NOLL defined over
P and returns as result either the homomorphism found when ϕ⇒ ψ or a diagnosis
explaining why the entailment is not valid. The diagnosis is given as a list of variables
or atomic spatial constraints in ϕ and ψ for which the conditions for the homomorphism
are not satisfied. The solver is implemented in C. It uses MiniSat [9] to compute normal
forms and an ad-hoc solver for the sharing constraints.

We have used this solver to check verification conditions generated for procedures
working on singly linked lists, doubly linked lists, and overlaid hash tables and lists in
the Nagios network monitoring example. We have considered mainly the procedures for
inserting or moving elements in these data structures. The post-condition computation
follows the standard approach: introducing primed variables to denote old values and

20 Constantin Enea, Vlad Saveluc, and Mihaela Sighireanu

unfolding recursive predicates for statements that involve fields. To generate simpler
verification conditions, we use the frame rules for the separating conjunction operators.
In this way, the graph representations for the NOLL formulas have less than ten ver-
tices and twenty edges (including the inferred edges), and less than five set of locations
variables. Each verification condition is decided in less than 0.1 seconds.

References
1. J. Berdine, C. Calcagno, B. Cook, D. Distefano, P.W. O’Hearn, T. Wies, and H. Yang. Shape

analysis for composite data structures. In CAV, volume 4590 of LNCS, pages 178–192.
Springer, 2007.

2. J. Berdine, C. Calcagno, and P.W. O’Hearn. A decidable fragment of separation logic. In
FSTTCS, volume 3328 of LNCS, pages 97–109. Springer, 2004.

3. J. Berdine, C. Calcagno, and P.W. O’Hearn. Smallfoot: Modular automatic assertion check-
ing with separation logic. In FMCO, volume 4111 of LNCS, pages 115–137. Springer, 2005.

4. F. Bobot and J.C. Filliâtre. Separation predicates: a taste of separation logic in first-order
logic. In ICFEM, volume 7635 of LNCS, pages 167–181. Springer, 2012.

5. C. Calcagno, H. Yang, and P.W. O’Hearn. Computability and complexity results for a spatial
assertion language for data structures. In FSTTCS, volume 2245 of LNCS, pages 108–119,
2001.

6. B.-Y.E. Chang and X. Rival. Relational inductive shape analysis. In POPL, pages 247–260.
ACM, 2008.

7. A. Chlipala. Mostly-automated verification of low-level programs in computational separa-
tion logic. In PLDI, pages 234–245. ACM, 2011.

8. B. Cook, C. Haase, J. Ouaknine, M. J. Parkinson, and J. Worrell. Tractable reasoning in a
fragment of separation logic. In CONCUR, volume 6901 of LNCS, pages 235–249, 2011.

9. N. Eén and N. Sörensson. An extensible sat-solver. In SAT, volume 2919 of LNCS, pages
502–518. Springer, 2003.

10. C. Enea, V. Saveluc, and M. Sighireanu. Composite invariant checking for nested, overlaid
linked lists, 2012. Extended version available as HAL-00768389 report.

11. P. Hawkins, A. Aiken, K. Fisher, M.C. Rinard, and M. Sagiv. Data representation synthesis.
In PLDI, pages 38–49. ACM, 2011.

12. S. Ishtiaq and P.W. O’Hearn. BI as an assertion language for mutable data structures. In
POPL, pages 14–26. ACM, 2001.

13. B. Jacobs, J. Smans, and F. Piessens. A quick tour of the VeriFast program verifier. In
APLAS, volume 6461 of LNCS, pages 304–311. Springer, 2010.

14. V. Kuncak, H.H. Nguyen, and M.C. Rinard. An algorithm for deciding BAPA: Boolean alge-
bra with presburger arithmetic. In CADE, volume 3632 of LNCS, pages 260–277. Springer,
2005.

15. P. Madhusudan, X. Qiu, and A. Stefanescu. Recursive proofs for inductive tree data-
structures. In POPL, pages 123–136. ACM, 2012.

16. J.A. Navarro Pérez and A. Rybalchenko. Separation logic + superposition calculus = heap
theorem prover. In PLDI, pages 556–566. ACM, 2011.

17. J.C. Reynolds. Separation logic: A logic for shared mutable data structures. In LICS, pages
55–74. IEEE Computer Society, 2002.

18. P. Suter, M. Dotta, and V. Kuncak. Decision procedures for algebraic data types with ab-
stractions. In POPL, pages 199–210. ACM, 2010.

19. H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and P.W. O’Hearn. Scalable
shape analysis for systems code. In CAV, volume 6901 of LNCS, pages 385–398. Springer,
2008.

