
Putting Strong Linearizability in Context:
Preserving Hyperproperties in Programs that Use
Concurrent Objects
Hagit Attiya
Technion - Israel Institute of Technology, Israel
hagit@cs.technion.ac.il

Constantin Enea
Université de Paris, IRIF, CNRS, F-75013 Paris, France
cenea@irif.fr

Abstract
It has been observed that linearizability, the prevalent consistency condition for implementing
concurrent objects, does not preserve some probability distributions. A stronger condition, called
strong linearizability has been proposed, but its study has been somewhat ad-hoc. This paper
investigates strong linearizability by casting it in the context of observational refinement of objects.
We present a strengthening of observational refinement, which generalizes strong linearizability,
obtaining several important implications.

When a concrete concurrent object refines another, more abstract object—often sequential—the
correctness of a program employing the concrete object can be verified by considering its behaviors
when using the more abstract object. This means that trace properties of a program using the
concrete object can be proved by considering the program with the abstract object. This, however,
does not hold for hyperproperties, including many security properties and probability distributions
of events.

We define strong observational refinement, a strengthening of refinement that preserves hyper-
properties, and prove that it is equivalent to the existence of forward simulations. We show that
strong observational refinement generalizes strong linearizability. This implies that strong lineariz-
ability is also equivalent to forward simulation, and shows that strongly linearizable implementations
can be composed both horizontally (i.e., locality) and vertically (i.e., with instantiation).

For situations where strongly linearizable implementations do not exist (or are less efficient), we
argue that reasoning about hyperproperties of programs can be simplified by strong observational
refinement of non-atomic abstract objects.

2012 ACM Subject Classification Theory of computation → Concurrency; Theory of computation
→ Program specifications; General and reference → Verification

Keywords and phrases Concurrent Objects, Linearizability, Hyperproperties, Forward Simulations

Digital Object Identifier 10.4230/LIPIcs.DISC.2019.2

Related Version Additional material can be found at https://arxiv.org/abs/1905.12063.

Funding Hagit Attiya: Partially supported by the Israel Science Foundation (1749/14 and 380/18).
Constantin Enea: Supported in part by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (grant agreement No 678177).

1 Introduction

Abstraction is key to the design and verification of large, complicated software. In concurrent
programs, featuring intricate interactions between multiple threads, abstraction is often used
to encapsulate low-level shared memory accesses within high-level abstract data types, called
concurrent objects. Arguing about properties of such a program P is greatly simplified by
considering a concurrent object as a refinement of another, more abstract one: a concrete

© Hagit Attiya and Constantin Enea;
licensed under Creative Commons License CC-BY

33rd International Symposium on Distributed Computing (DISC 2019).
Editor: Jukka Suomela; Article No. 2; pp. 2:1–2:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hagit@cs.technion.ac.il
mailto:cenea@irif.fr
https://doi.org/10.4230/LIPIcs.DISC.2019.2
https://arxiv.org/abs/1905.12063
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Putting Strong Linearizability in Context

object O1 is said to observationally refine another, abstract object O2 if any behavior
P can observe with O1 is also observed by P with O2. When O2 is an atomic object,
in which each operation is applied in exclusion, observational refinement is equivalent to
linearizability [5, 12].1

Intuitively, linearizability, and more generally, observational refinement, seem to imply
that anything we can prove about P with O2 also holds when P executes with O1. This is
indeed the case when considering trace properties, i.e., properties that are specified as sets of
traces, in particular, safety properties.

Unfortunately, many interesting properties cannot be specified as properties of individual
traces, i.e., as trace properties. Notable examples are security properties such as noninterfer-
ence [13], stipulating that commands executed by users with high clearance have no effect
on system behavior observed by users with low clearance. Other examples are quantitative
properties like bounds on the probability distribution of events, e.g., the mean response time
over sets of executions. Indeed, while the fact that the average response time of an operation
in an execution is smaller than some bound X is a trace property, the requirement that the
average response time over all executions is smaller than X cannot be stated as a trace
property.

Hyperproperties [9], namely, sets of sets of traces, allow to capture such expectations. By
definition, every property of system behavior (for systems modeled as trace sets) can be
specified as a hyperproperty. It is known that observational refinement does not preserve
hyperproperties [18], in general. More recently, it has been shown that linearizability does not
preserve probability distributions over traces [14], allowing an adversary scheduler additional
control over the possible outcomes of a distributed randomized program. (An example
appears in Section 2.)

This paper defines the notion of strong observational refinement, relates it to hyper-
properties, and shows its equivalence to forward simulations. We show that strong observa-
tional refinement generalizes strong linearizability [14].2 We also explore the possibility of
using—instead of the classical sequential specifications—concurrent specifications, which are
nevertheless simpler.

To explain our results in more detail, consider a labeled transition system (LTS) that,
intuitively, represents all the executions of the object under the most general client (that
may call methods in any order and from any thread). A state of the LTS corresponds to
a state of the object and transitions correspond to method calls/returns, or internal steps
within a method invocation. A sequential specification corresponds to a concurrent object
where essentially, method bodies consist of a single atomic step that acts according to the
sequential specification (hence, they are totally ordered in time during any execution).

An LTS O1 observationally refines an LTS O2 if and only if the histories (i.e., sequences
of call/return actions) generated by O1 are included in those generated by O2 [5]. In this
way, observational refinement of two LTSs reduces to a inclusion between their traces, when
projected over some alphabet Γ (in this case, Γ is the set of call/return actions), called
Γ-refinement.

A forward simulation maps every step of O1 to a sequence of steps of O2, starting from
the initial state of O1 and advancing in a forward manner; a backward simulation is similar,
but it goes in the reverse direction, from end states back to initial states. When proving

1 Linearizability [16] states that a concurrent execution of operations corresponds to some serial sequence
of the same operations permitted by the specification.

2 Strong linearizability requires that the linearization of a prefix of a concurrent execution is a prefix of
the linearization of the whole execution, see Section 5.

H. Attiya and C. Enea 2:3

a = push(0);
low1 = pop(); ∣∣

b = push(1);
low2 = pop(); ∣∣

assume a == b == OK;
push(2);
high = highBooleanInput();

Figure 1 A program with three threads using a concurrent stack (we assume that push returns
the value OK). Statements in the same thread are aligned vertically. The statement assume blocks
the program when the Boolean condition is not satisfied and highBooleanInput returns a Boolean
value labeled as high clearance. The assume statement enforces that push(0) and push(1) finish
before push(2) starts.

linearizability, an important special case of forward simulation is the identification of fixed
linearization points. A forward/backward simulation can be parameterized by an alphabet Γ,
in which case the sequence of steps of O2 associated to a step of O1 should contain a step
labeled by an action a ∈ Γ if and only if the step of O1 is also labeled by a. It is known [17]
that Γ-refinement holds if and only if there is a combination of Γ-forward and Γ-backward
simulations from O1 to O2; a forward simulation suffices when the projection of O2 on Γ is
deterministic. (See Section 3.)

The notion of strong observational refinement relies on the concept of a deterministic
scheduler that resolves the non-determinism introduced for instance, from the execution of
internal actions by parallel threads (it is similar to the notion of strong adversary introduced
in the context of randomized algorithms [4]). O1 strongly (observationally) refines O2 if a
program P running under a deterministic schedule with O1 makes the same observations
as when P runs with O2 with a possibly-different deterministic schedule. (The complete
definition appears in Section 4.) We prove that strong observational refinement implies
the existence of a forward simulation. The converse direction is fairly straightforward,
proving the equivalence of these two notions, and imply compositional proof methodologies.
(These results appear in Section 5.) By relating strong linearizability to strong observational
refinement, we prove that a concrete object is a strong linearization of an atomic object if
and only if there is an appropriate forward simulation between the two. This immediately
implies methods for composing strongly linearizable concurrent objects.

To address situations where there is no concrete object that strongly linearizes a particular
atomic object [15, 10], or in cases where such an object is less efficient, we suggest concrete
objects that strongly refine other, more abstract objects that still expose some concurrency.
This follows [6] and allows to simplify reasoning about randomized programs even when using
objects like the Herlihy&Wing queue [16] or snapshot objects [1], which are not strongly
linearizable. For example, in the case of atomic snapshots, the abstract object that obtains
several instantaneous snapshots during the scan operation and then arbitrarily returns one
of them (see Section 6). Arguing about a program using this abstract object is simpler, while
still exposing the power of an adversarial scheduler to manipulate the responses of a scan.

2 Motivating Example: A Stack Implementation that Leaks
Information

When an object O1 refines a specification object O2, any safety property of a program P

using O2 (that refers only to P ’s state and is agnostic to the internal state of the object
O2) is preserved when O2 is replaced by its refinement O1. However, refinement does not
preserve hyperproperties [9], i.e., properties of sets of traces.

We explain this issue by considering noninterference [13] in the program of Figure 1. This
program invokes methods of a concurrent stack, and we wish to show that independently
of the thread scheduler, none of the low clearance variables low1 and low2 can leak the

DISC 2019

2:4 Putting Strong Linearizability in Context

push(0)

push(1)

pop():

 r1 = range //2

pop():

 r2 = range //2

push(2)

high=…

pop()

 returns 1

low1=1pop()

 returns 0

low1=0

pop()

 returns 1

high=0 high=1

pop()

 returns 0

Figure 2 A scheduler for the program in Figure 1. Time flows from top to bottom. Dotted
edges denote periods of time where a thread is not active.

value of the high clearance variable high, i.e., it is impossible to define a thread scheduler
which admits only executions where low1 = high or only executions where low2 = high. A
precise notion of scheduler will be defined below, but for now, it is enough to think of a
thread scheduler as a monitor that chooses to activate threads depending on the history of
the execution. This property is satisfied by the program when invoking an atomic concurrent
stack. Indeed, assuming that push(0) is scheduled before the one of push(1) (the other case
is similar), then either (i) push(2) is scheduled before at least one of the pop invocations,
and then, low1,low2 ∈ {1,2} which shows that none of these two variables equals the value
of high when high = 0, or (ii) push(2) is scheduled after the pop invocations, and then, the
scheduler admits executions where low1 = b1, low2 = b2, and high = 0 if and only if it admits
executions where low1 = b1, low2 = b2, and high = 1 (for b1, b2 ∈ {0,1,2}).

This property is however not satisfied by this program when using the concurrent stack of
Afek et al. [2]. This stack stores the elements into an infinite array items; a shared variable
range keeps the index of the first unused position in items. The push method stores the
input value in the array while also incrementing range (the details are irrelevant for our
example). The pop method first reads range and then traverses the array backwards starting
from the predecessor of this position, until it finds a position storing a non-null element (array
cells can be nullified by concurrent pop invocations). It atomically reads this element and
stores null in its place. If the pop reaches the bottom of the array without finding non-null
cells, then it returns that the stack is empty. Unlike the case of atomic stacks, Figure 2
shows a thread scheduler where low1 stores the value of high. This scheduler imposes that
push(0) executes before push(1) (so that 0 occurs before 1 in the array items),3 and then
preempts pop invocations just after reading the value of range which equals 2 (assuming the
array indexing starts at 0). Then, it schedules the third thread and, depending on the value
of high, it schedules the rest of the pop invocations such that the pop in the first thread

3 A similar scheduler can be defined when push(1) executes before push(0).

H. Attiya and C. Enea 2:5

extracts a value which equals high. This ensures that low1 == high.
This shows that noninterference in programs invoking the atomic stack is not preserved

when the latter is replaced by the concurrent stack of Afek et al. [2], although the latter
is a refinement of the atomic stack. Section 4 presents a stronger notion of observational
refinement that preserves hyperproperties and in particular, noninterference.

3 Modelling Concurrent Objects as Labeled Transition Systems

Labeled transition systems (LTS) capture shared-memory programs with an arbitrary number
of threads, abstracting away the details of any particular programming system irrelevant to
our development.

An LTS A = (Q,Σ, s0, δ) over the possibly-infinite alphabet Σ is a possibly-infinite set Q
of states with initial state s0 ∈ Q, and a transition relation δ ⊆ Q×Σ×Q. The ith symbol of a
sequence τ ∈ Σ∗ is denoted τi, and ε is the empty sequence. An execution of A is an alternating
sequence of states and transition labels (also called actions) ρ = s0, a0, s1 . . . ak−1, sk for some
k > 0 such that (si, ai, si+1) ∈ δ for each 0 ≤ i < k. We write si

ai...aj−1
ÐÐÐÐ→A sj as shorthand for

the subsequence si, ai, ..., sj−1, aj−1, sj of ρ. (in particular si
ε
Ð→ si).

The projection τ ∣Γ of a sequence τ is the maximum subsequence of τ over alphabet Γ.
This notation is extended to sets of sequences as usual. A trace of A is the projection ρ∣Σ of
an execution ρ of A. The set of executions of an LTS A is denoted by E(A), while the set of
traces of A is denoted T(A). An LTS is deterministic if for any state s and any sequence
τ ∈ Σ∗, there is at most one state s′ such that s τ

Ð→ s′. More generally, for an alphabet Γ ⊆ Σ,
an LTS is Γ-deterministic if for any state s and any sequence τ ∈ Γ∗, there is at most one
state s′ such that s τ ′

Ð→ s′ and τ is a subsequence of τ ′.
An object is a deterministic LTS over alphabet C ∪ R ∪ Σo where C is the set of call

actions, R is the set of return actions, and Σo is an alphabet of internal actions. Formally, a
call action call(m,d, k) combines a method m and argument d with an operation identifier k,
while a return action ret(m,d, k) combines a method m and return value d with an operation
identifier k. Operation identifiers are used to pair call and return actions. We assume that the
traces of an object satisfy standard well-formedness properties, e.g., return actions correspond
to previous call actions. Given a standard description of an object implementation as a set of
methods, its LTS represents the executions of its most general client (that may call methods
in any order and from any thread). The states of the LTS represent the shared state of the
object together with the local state of each thread. The transitions correspond to statements
in the method bodies (in which case they are labeled by internal actions in Σo), or call and
return actions. For simplicity, we ignore the association of method invocations to threads
since it is irrelevant to our development. A trace τ of an object O projected over call and
return actions is called a history of O, and it is denoted by hist(τ). The set of histories
admitted by an object O is denoted by H(O). Call and return actions call(m,_, k) and
ret(m,_, k) are called matching when they contain the same operation identifier. A call
action is called unmatched in a history h when h does not contain the matching return.
A history h is called sequential if every call call(m,d, k) is immediately followed by the
matching return ret(m,_, k). Otherwise, it is called concurrent.

Linearizability [16] is a standard correctness criterion for concurrent objects expressing
conformance to a given sequential specification. This criterion is based on a relation ⊑ between
histories: h1 ⊑ h2 iff there exists a well-formed history h′1 obtained from h1 by appending
return actions that correspond to unmatched call actions in h1 or deleting unmatched call
actions, such that h2 is a permutation of h′1 that preserves the order between return and call

DISC 2019

2:6 Putting Strong Linearizability in Context

actions, i.e., a given return action occurs before a given call action in h′1 iff the same holds
in h2. We say that h2 is a linearization of h1. A history h1 is called linearizable w.r.t. an
object O2 iff there exists a sequential history h2 ∈H(O2) such that h1 ⊑ h2. An object O1 is
linearizable w.r.t. O2, written O1 ⊑ O2, iff each history h1 ∈H(O1) is linearizable w.r.t. O2.

Linearizability has been shown equivalent to a criterion called observational refinement
which states that every behavior of every program possible using a concrete object would
also be possible were the abstract object used instead [5, 12] (the precise meaning of behavior
is given below). Actually, this result holds only when the abstract object is atomic, i.e.,
an implementation where the methods of a sequential object are guarded by a global-lock
acquisition. Formally, given a set of sequential histories Seq, an atomic object is an LTS
O = (Q,Σ, s0, δ) where the states are pairs formed of a history h and a linearization hs of h,
i.e., Q = {(h,hs) ∶ hs ∈ Seq and h ⊑ hs}, the internal actions are linearization point actions
lin(k) (for linearizing an operation with identifier k), i.e., Σ = C ∪R ∪ {lin(k) ∶ k ∈ I} where
I denotes the set of operation identifiers, the initial state contains an empty history and
linearization, s0 = (ε, ε), and the transition relation is defined by: ((h,hs), a, (h

′, h′s)) ∈ δ if

a ∈ C Ô⇒ h′ = h ⋅ a and h′s = hs
a ∈ R Ô⇒ h′ = h ⋅ a and h′s = hs and a occurs in h′s
a = lin(k) Ô⇒ h′ = h and h′s = hs ⋅ call(m,d1, k) ⋅ ret(m,d2, k), for some m, d1, and d2.

Call actions are only appended to the history h, return actions ensure that additionally, the
linearization h′s contains the corresponding operation, and linearization points extend the
linearization with a new operation. Note that O admits every history which is linearizable
w.r.t. Seq, i.e., H(O) = {h ∶ ∃h′ ∈ Seq. h ⊑ h′}.

A program is a deterministic LTS over alphabet C ∪R ∪Σp where Σp is an alphabet of
program actions. Program actions can be interpreted for instance, as assignments to some
program variables which are disjoint from the variables used by the object, or as different
outcomes of a random choice. The executions of a program P with an object O are obtained
as the executions of the LTS product P × O 4. As program and object alphabets only
intersect on call and return actions, our formalization supposes that programs and objects
communicate only through method calls and returns, and not, e.g., through additional shared
random-access memory.

Observational refinement between objects O1 and O2 means that any “observation”
extracted from a program execution possible with O1 (referred to as a “concrete” object),
is also possible with O2 (referred to as the “specification”). We define observations as
projections of traces over program actions. The methods invoked by a program along with
their inputs and return values can be recorded using additional program actions. In the
context of a concrete programming language, one can use additional program variables to
record the inputs before calling a method and the return values upon their return.

I Definition 1. The object O1 observationally refines O2, written O1 ≤ O2, iff

T (P ×O1)∣Σp ⊆ T (P ×O2)∣Σp

for all programs P over alphabet Σp ∪C ∪R.

4 The product A1 ×A2 of two LTSs is defined as usual, respecting E(A1 ×A2)∣(Σ1 ∩Σ2) = E(A1)∣Σ2 ∩
E(A2)∣Σ1.

H. Attiya and C. Enea 2:7

The following theorem relates observational refinement to a standard notion of refinement
between LTSs, defined roughly as inclusion of traces, in the context of concurrent objects.5
For two LTSs A1 and A2, we say that A1 refines A2 when T (A1) ⊆ T (A2). More generally, for
an alphabet Γ, A1 Γ-refines A2 when T (A1)∣Γ ⊆ T (A2)∣Γ. By an abuse of notation, A1 ⊆Γ A2
denotes the fact that A1 Γ-refines A2 (we will omit Γ when it is understood from the context).
Intuitively, the alphabet Γ represents a set of actions which are “observable” in both A1
and A2, the actions not in Γ are considered to be “internal” to A1 or A2. Observational
refinement is equivalent to (C ∪R)-refinement which means that the histories of the concrete
object are included in those of the specification (note that “plain” refinement would not hold
because the internal actions may differ).

I Theorem 2 ([5, 12]). O1 ≤ O2 iff O1 ⊆C∪R O2. If O2 is atomic, then O1 ≤ O2 iff O1 ⊑ O2.

In the rest of the paper, since observational refinement and (C ∪ R)-refinement are
equivalent, we will not make the distinction between the two and refer to both as refinement.

4 Strong Observational Refinement

As discussed in Section 2, refinement does not preserve hyperproperties, which are properties
of sets of traces and not individual traces as in the case of safety properties. In the following,
we define a stronger notion of observational refinement that preserves such properties, using
a notion of scheduler that is actually just a mechanism for resolving the non-determinism
induced by internal actions, irrespectively of whether it comes from executing a set of parallel
threads.

A scheduler for a deterministic LTS A = (Q,Σ, s0, δ) over alphabet Σ is a function
S ∶ Σ∗ → 2Σ which prescribes a possible set of next actions to continue an execution based
on a sequence of previous actions. A trace τ = a0 ⋅ . . . ⋅ ak−1 is consistent with a scheduler S if
ai ∈ S(a0 ⋅ . . . ⋅ ai−1) for all 0 ≤ i < k (where by an abuse of notation, a0 ⋅ a−1 represents the
empty sequence). An execution is consistent with a scheduler S if its trace is. The set of
executions of an LTS A consistent with a scheduler S can be defined using an LTS which is
the product between A and an LTS AS whose states are sequences in Σ∗ and the transitions
link a state τ ∈ Σ∗ to a state τ ⋅ a ∈ Σ∗ provided that a ∈ S(τ) (such a transition is labeled by
a). Let T (A,S) denote the set of traces of A consistent with S. A scheduler is admitted by
A if for every k, if τ = a0 ⋅ . . . ⋅ ak−1 is a trace of A consistent with S, then S(a0 ⋅ . . . ⋅ ak−1) is
non-empty and every a ∈ S(a0 ⋅ . . . ⋅ ak−1) is enabled in the state sk with s0

a0⋅...⋅ak−1
ÐÐÐÐÐ→A sk.

A scheduler of an LTS P ×O (the product of a program P and an object O) is called
deterministic when it fixes in a unique way the actions of O to continue an execution, i.e., for
every sequence τ , S(τ) ⊆ Σp or ∣S(τ)∣ = 1 (where Σp is the set of program actions). When
program actions represent outcomes of random choices made by the program, a deterministic
scheduler can be used to model a strong adversary [4] which schedules threads depending
on those outcomes. An object O1 strongly (observationally) refines an object O2 if any
deterministic schedule admitted by a program P when using O1 leads to exactly the same set
of “observations” as a deterministic schedule admitted by P were O2 used instead. Formally,
I Definition 3. The object O1 strongly (observationally) refines O2, written O1 ≤s O2, iff

5 This relationship has been shown under natural assumptions about objects and programs [5]. For
instance, concerning objects, it is assumed that call actions cannot be disabled and they cannot disable
other actions (they can be reordered to the left while preserving the computation), and return actions
cannot enable other actions.

DISC 2019

2:8 Putting Strong Linearizability in Context

for every deterministic scheduler S1 admitted by P ×O1,
there exists a deterministic scheduler S2 admitted by P ×O2,

such that T (P ×O1, S1)∣Σp = T (P ×O2, S2)∣Σp
for all programs P over alphabet Σp ∪C ∪R.

A hyperproperty of a program P over alphabet Σp ∪C ∪R is a set of sets of sequences
over Σp. For instance, the hyperproperty discussed in the context of the program in Figure 1
is the set of all sets T s.t.

(∃τ ∈ T. low1(τ) ≠ high(τ)) ∧ (∃τ ∈ T. low2(τ) ≠ high(τ))

where for any variable x, x(t) is the value of x at the end of trace t. A hyperproperty ϕ
is satisfied by a program P with an object O, written P ×O ⊧ ϕ, if T (P ×O,S)∣Σp ∈ ϕ for
every deterministic scheduler S.

I Theorem 4. If O1 ≤s O2, then P ×O2 ⊧ ϕ implies P ×O1 ⊧ ϕ for every hyperproperty ϕ
of P .

Proof. Assume that O1 ≤s O2 and P ×O2 ⊧ ϕ for some hyperproperty ϕ of P . Let S1 be
a deterministic scheduler admitted by P ×O1. Since O1 ≤s O2, there exists a deterministic
scheduler S2 admitted by P × O2 such that T (P × O1, S1)∣Σp = T (P × O2, S2)∣Σp. Since,
P × O2 ⊧ ϕ, we get that T (P × O2, S2)∣Σp ∈ ϕ, which implies that T (P × O1, S1)∣Σp ∈ ϕ.
Therefore, P ×O1 ⊧ ϕ. J

This preservation result applies to probabilistic hyperproperties as well, for instance when
reasoning about randomized consensus protocols [4]. Since a deterministic scheduler fixes in
a unique way the object’s actions to continue an execution, probability distributions can be
assigned only to actions which are internal to the program P . This holds for randomized
protocols, where randomization is due to coin flip operations that are internal to the protocol
and do not concern the behavior of the objects it invokes. Then, the probabilities associated
with program actions can be encoded in the action names, thereby encoding probabilistic
(hyper)properties as properties of (sets of) traces (see [9] for more details).

5 Characterizing Strong Refinement Using Forward Simulations

In general, proving refinement between two LTSs relies on simulation relations which roughly,
are relations between the states of the two LTSs showing that one can mimic every step
of the other one. Forward simulations show that every outgoing transition from a given
state can be mimicked by the other LTS while backward simulations show the same for
every incoming transition to a given state. Applying induction, forward simulations show
that every trace of an LTS is admitted by the other LTS starting from initial states and
advancing in a forward manner, while backward simulations consider the backward direction,
from end states to initial states. It has been shown that (Γ-)refinement is equivalent to the
existence of a composition of forward and backward simulations, and to the existence of
only a forward simulation provided that the specification6 is (Γ-)deterministic [17]. In the
following, we show that strong observational refinement is equivalent to the existence of a
forward simulation, which implies that refinement is strictly weaker than strong observational
refinement (forward simulations do not suffice to establish refinement in general).

6 When an LTS A1 (Γ-)refines another LTS A2, we refer to A2 as the specification.

H. Attiya and C. Enea 2:9

I Definition 5. Let A1 = (Q1,Σ1, s
1
0, δ1) and A2 = (Q2,Σ2, s

2
0, δ2) be two LTSs and Γ an

alphabet. A relation F ⊆ Q1×Q2 is called a Γ-forward simulation from A1 to A2 iff (s1
0, s

2
0) ∈ F

and:
for all s1, s

′
1 ∈ Q1, a ∈ Σ1, and s2 ∈ Q2, such that (s1, a, s

′
1) ∈ δ1 and (s1, s2) ∈ F , we have

that there exists s′2 ∈ Q2 and τ ∈ Σ∗
2 such that (s′1, s

′
2) ∈ F and s2

τ
Ð→A2 s

′
2 and τ ∣Γ = a∣Γ.

A Γ-forward simulation states that every step of A1 is simulated by a sequence of steps
of A2 (this sequence can be empty to allow for stuttering). Since it should imply that A1
Γ-refines A2, every step of A1 labeled by an observable action a ∈ Γ should be simulated
by a sequence of steps of A2 where exactly one transition is labeled by a and all the other
transitions are labeled by non-observable actions (this is implied by τ ∣Γ = a∣Γ). Also, every
internal step of A1 should be simulated by a sequence of internal steps of A2.

An instantiation of forward simulations are linearizability proofs using the so-called
“fixed linearization points”. Linearizability of a history can be proved by showing that each
invocation can be seen as happening at some point, called linearization point, occurring
somewhere between the call and return actions of that invocation. Then, the linearization
points are fixed when they are mapped to a certain fixed set of statements (usually, one
statement per method). This defines a mapping between steps of a concrete implementation
and steps of an atomic object, i.e., those fixed statements map to linearization point actions
in the atomic object and all the other statements correspond to stuttering steps of the atomic
object, thereby defining a forward simulation between the two. As a side remark, backward
simulation is necessary to prove linearizability w.r.t. atomic specifications, when linearization
points depend on future steps in the execution, the Herlihy&Wing queue [16] being a classic
example (Schellhorn et al. [21] present such a proof).

The easier direction is showing that forward simulations imply strong refinement. A
forward simulation from O1 to O2 can be used to simulate any scheduler S1 of a program P

using O1 by a scheduler of the same program P when using O2. Program actions will be
replayed exactly as in S1 while the actions of O2 simulating actions of O1 can be chosen
according to the forward simulation.

I Lemma 6. If there exists a (C ∪R)-forward simulation from O1 to O2, then O1 ≤s O2.

Proof. Let O1 = (Q1,Σ1, s
1
0, δ1) and O2 = (Q2,Σ2, s

2
0, δ2) be two objects, and F a (C ∪R)-

forward simulation from O1 to O2. Let P be a program over alphabet Σp ∪C ∪R and S1 a
deterministic scheduler admitted by P ×O1. We define a rewriting relation ↝ between traces
of P ×O1 consistent with S1 and traces of P ×O2 such that intuitively, if τ ↝ τ ′ then τ ′ is a
trace of P ×O2 which simulates the trace π of P ×O1 with respect to the simulation relation
F . Formally, ↝ is the smallest relation satisfying the following:

ε↝ ε

if τ ↝ τ ′, S1(τ) ⊆ Σp, and a ∈ S1(τ), then τ ⋅ a↝ τ ′ ⋅ a,
if τ ↝ τ ′, S1(τ) ∩Σp = ∅, and a = S1(τ) (in this case, a ∈ Σ1 and S1(τ) is a singleton
because S1 is deterministic), then τ ⋅ a↝ τ ′ ⋅ F (S1(τ)), where F (S1(τ)) is a sequence of
actions of O2 simulating the action a = S1(τ) in the state reached after the trace τ ∣Σ1.
Formally, if s1

0
τ ∣Σ1
ÐÐ→O1 s1, then a simple induction on the length of executions can show

that (s1, s2) ∈ F where s2
0
τ ′∣Σ2
ÐÐÐ→O2 s2. Then, since s1

S1(τ)
ÐÐÐ→O1 s

′
1 is a transition of O1

and F is a forward simulation, we get that there exists s′2 such that (s′1, s
′
2) ∈ F and

s2
σ
Ð→O2 s

′
2 and σ∣(C ∪R) = S1(τ)∣(C ∪R). We define F (S1(τ)) = σ.

DISC 2019

2:10 Putting Strong Linearizability in Context

Then, we define a deterministic scheduler S2 admitted by P ×O2 inductively as follows:

S2(ε) = S1(ε) if τ ↝ τ ′, then S2(τ
′
) =

⎧⎪⎪
⎨
⎪⎪⎩

S1(τ), if S1(τ) ⊆ Σp
F (S1(τ)),otherwise

Note that S2 is a slight deviation from the definition of a scheduler because F (S1(τ)) is
not necessarily a single action, but a sequence of actions. However, the definition of S2 can
be adapted easily such that this sequence of steps is performed one by one. For any other
sequence τ ′ which is not considered in the definition above, S2(τ

′) is defined arbitrarily.
Since F is a (C ∪R)-forward simulation, T (P ×O1, S1)∣Σp ⊆ T (P ×O2, S2)∣Σp is obvious.

The reverse, i.e., T (P ×O2, S2)∣Σp ⊆ T (P ×O1, S1)∣Σp, follows from the fact that S2 is defined
inductively following the definition of S1. J

We now prove our key technical result: strong observational refinement (from O1 to
O2) implies the existence of a (C ∪ R)-forward simulation (from O1 to O2). Since the
latter implies refinement, a corollary of this result is that strong observational refinement
implies observational refinement. Thus, we define a program P which corresponds to the
most general client (of O1) and which uses particular program actions to guess the possible
continuations of a given execution with call and return actions. Then, we define a scheduler
S1 which ensures that the executions of P with O1 are consistent with the guesses made
by the program. By strong observational refinement, there exists a scheduler S2 such that
P produces the same sequences of “guess” actions and call/return actions when using O2
and constrained by S2 as when using O1 and constrained by S1 (since strong observational
refinement considers traces projected over program actions, the preservation of call/return
actions is not guaranteed explicitly, but it can be enforced using additional program actions
used to record them). If Γ is the union of the set of “guess” actions and the set of call/return
actions, then the program P used in conjunction with O2 and constrained by the scheduler
S2 is Γ-deterministic. Therefore, there exists a forward simulation between the two variations
of P . Because the program states are disjoint from the object states, this forward simulation
between programs leads to a forward simulation between objects.

I Lemma 7. If O1 ≤s O2, then there exists a (C ∪R)-forward simulation from O1 to O2.

Proof. Let O1 = (Q1,Σ1, s
1
0, δ1) and O2 = (Q2,Σ2, s

2
0, δ2) be two objects. Also, let Σp =

{record(a), guess(H) ∶ a ∈ C ∪R,H ⊆ (C ∪R)∗} be a set of program actions for recording a
call/return action a (record(a)) or guessing a set H of possible continuations with sequences
of call/return actions (guess(H)). We define a program P with a single state and self-loop
transitions labeled by all symbols in Σp ∪ C ∪ R, i.e., P = ({s0},Σp ∪ C ∪ R,s0, δ) where
(s0, α, s0) ∈ δ for all α ∈ Σp ∪C ∪R.

We define a deterministic scheduler S1 which ensures that the guesses made by P when
using O1 are correct, and that the call/return actions are tracked correctly using record
actions. To ensure the correctness of guesses, we define a mapping after1 ∶ Q1 → 2(C∪R)

∗

which associates every state s with the set of call/return sequences admitted from s, i.e.,
after1(s) = {σ ∶ σ ∈ (C ∪R)∗,∃τ, s′. s

τ
Ð→O1 s

′ ∧ τ ∣(C ∪R) = σ}.
Let S1 be a deterministic scheduler such that for every a0, . . . , ak−1 ∈ Σ1 and k ≥ 0,

S1(a0 ⋅ . . . ⋅ ak−1) = {record(ak−1)} if ak−1 ∈ C ∪R and k ≥ 1

S1(a0 ⋅ . . . ⋅ ak−1[⋅record(ak−1)]) = {guess(H) ∶ ∃a. s1
0

a0 ⋅...⋅ak−1 ∣Σ1
ÐÐÐÐÐÐÐ→O1 s

a
Ð→O1 s′ and H = after1(s

′
)}

if ak−1 /∈ Σp

S1(a0 ⋅ . . . ⋅ ak−1 ⋅ guess(H)) = {a}, for some a ∈ Σ1 s.t. s1
0

a0 ⋅...⋅ak−1 ⋅a∣Σ1
ÐÐÐÐÐÐÐÐ→O1 s and H = after1(s)

H. Attiya and C. Enea 2:11

Informally, the first rule enforces that every call/return action a is followed by a program
action record(a). The second rule ensures that S1 is permissive enough, i.e., it allows all the
successors of the current object state that have different after1 images. More precisely, for
every sequence σ ending in an internal object action ak−1 ∈ Σ1 ∖ (C ∪R) or the sequence
ak−1 ⋅ record(ak−1) when ak−1 ∈ C ∪R (we use σ[⋅a] to denote a sequence where the character
a is optional), S1 schedules every guess(H) action where H is the after1 image of a successor
of the current object state. The third rule ensures that every guess(H) is followed by an
action leading to an object state s with H = after1(s). The last two cases ensure that every
action a of O1 is preceded by a guess(H) program action where H is the set of call/return
sequences admitted from the post-state of a.

Although S1 does not admit all the executions of O1 (because of the arbitrary choice
of a in the third case above), we show that the set of executions it admits simulate all the
executions of O1: let O1[S1] be an LTS representing the set of executions of O1 consistent
with S1 (obtained from the set of executions of P consistent with S1 by projecting out
the program state and actions). We show that the relation F1 between states of O1 and
O1[S1], respectively, defined by (s, s′) ∈ F1 iff after1(s) = after1(s

′), is a (C ∪R)-forward
simulation from O1 to O1[S1]. The fact that it relates the initial object states s1

0 and s1
0

is trivial. Now, let s, s1 ∈ Q1 and a ∈ Σ1 such that (s, a, s1) ∈ δ1 and (s, s′) ∈ F1. Using a
simple induction on the length of executions, it can be shown that there exists a state s′1 with
after1(s1) = after1(s

′
1) such that (s′, b, s′1) for some action b. If a ∈ C ∪R, then b = a because

otherwise, the continuations with call/return actions admitted from s1 will be different from
those admitted from s′1 (for instance, if a is a call action and b is an internal action, then
the matching return action will be eventually enabled in executions starting from s1 but not
from s′1, at least not before a occurs). For the same reason, if a is an internal action, then b
is also an internal action. This concludes the proof that F1 is a forward simulation.

Since O1 ≤s O2, there exists a scheduler S2 such that T (P ×O1, S1)∣Σp = T (P ×O2, S2)∣Σp.
Let P [O2, S2] denote the LTS representation of the set of executions of P with O2 and
consistent with S2 (explained in Section 4). It can be easily seen that P [O2, S2] is Σp-
deterministic (the interleaving of a sequence of Σp actions with internal actions of O2 is
uniquely determined by S2 because it is a deterministic scheduler). Let P [O1, S1] be the
LTS representation of the set of executions of P with O1 and consistent with S1. Since
T (P [O1, S1])∣Σp ⊆ T (P [O2, S2])∣Σp,7 we get that there exists a Σp-forward simulation FS1,S2

from P [O1, S1] to P [O2, S2]. Such a forward simulation defines a relation between states of
O1 and O2, respectively, by removing the program state, i.e., s1 and s2 are related whenever
((s0, s1), (s0, s2)) ∈ FS1,S2 . For simplicity, this relation is denoted by FS1,S2 as well. Because
of the record(a) actions in Σp, we get that FS1,S2 is a (C ∪ R)-forward simulation from
O1[S1] to O2. It is easy to check that F1 ○ FS1,S2 (where ○ is the usual composition of
relations) is a (C ∪R)-forward simulation from O1 to O2. J

The two lemmas above imply that:

I Theorem 8. O1 ≤s O2 iff there exists a (C ∪R)-forward simulation from O1 to O2.

The fact that forward simulations are necessary for strong refinement makes it possible to
derive in a simple way compositional methods for proving strong refinement. In the following

7 Note that T (P ×Oi, Si) and T (P [Oi, Si]) with i ∈ {1, 2} denote exactly the same set of traces.

DISC 2019

2:12 Putting Strong Linearizability in Context

we consider the case of composed objects defined as a product of a fixed set of objects, and
parametrized objects defined from a set of “base” objects which are considered as parameters.

We show that strong refinement is a local property, i.e., it holds for composed objects if and
only if it holds for individual objects in this composition. As usual, we consider compositions
of objects with disjoint states and sets of actions. Indeed, any forward simulation between
composed objects can be “projected” to a set of forward simulations that hold between
individual objects, and vice versa. We state this result for compositions of two objects, the
extension to an arbitrary number of objects is obvious.

I Theorem 9. Let O1 and O2, resp., O′
1 and O′

2, be two objects over an alphabet Σ, resp.,
Σ′, such that Σ ∩Σ′ = ∅. Then, O1 ×O

′
1 ≤s O2 ×O

′
2 iff O1 ≤s O2 and O′

1 ≤s O
′
2.

Next, we consider the case of parametrized objects whose implementation is parametrized
by a set of base objects, e.g., snapshot objects defined from a set of atomic registers. We
show that if the parametrized object is a strong refinement of an abstract specification Spec
assuming that the base objects behave according to their own abstract specifications Speci,
then instantiating any base object with an implementation that is a strong refinement of Speci
leads to an object which remains a strong refinement of Spec. Assuming for simplicity only
one base object, a parametrized object O can be formally defined as a product O = Spec1 ×C

where Spec1 is the base object’s specification and C is the context in which this object is
used to derive the implementation of O 8. To distinguish parametrization from composition,
we use O(Spec1) to denote an object parametrized by a base object Spec1. The next result
is an immediate consequence of the fact that the forward simulation admitted by the base
object can be composed 9 with the one admitted by the parametrized object (assuming base
object’s specification) to derive a forward simulation for the instantiation.

I Theorem 10. If O(Spec1) ≤s Spec and B1 ≤s Spec1, then O(B1) ≤s Spec.

Finally, it can be shown that the existence of forward simulations is equivalent to strong
linearizability [14] when concrete objects are related to atomic abstract objects. Thus, let
O2 be an atomic object defined by a set of sequential histories Seq, i.e., H(O2) = {h ∶ ∃h′ ∈
Seq. h ⊑ h′} (according to the definition in Section 3). We say that an object O1 is strongly
linearizable w.r.t. O2, written O1 ⊑s O2, when there exists a function f ∶ T (O1) → Seq such
that (1) for any trace τ ∈ T (O1), hist(τ) ⊑ f(τ), and (2) f is prefix-preserving, i.e., for any
two traces τ1, τ2 ∈ T (O1) such that τ1 is a prefix of τ2, f(τ1) is a prefix of f(τ2). It can be
shown that the function f induces a forward simulation and vice-versa.

The easier direction is showing that existence of a forward simulation F implies strong
linearizability. Essentially, the sequential history associated to a given trace τ (by the function
f) is extracted from the atomic object state related by F with the end state of τ .

I Lemma 11. Let O1 be an object and O2 an atomic object. If there exists a (C∪R)-forward
simulation from O1 to O2, then O1 is strongly linearizable w.r.t. O2.

Proof. Let F be a (C ∪R)-forward simulation from O1 to O2. Also, let state(τ) denote the
state of O1 reached after a trace τ (since O1 is deterministic, this state is unique). We define
a function f ∶ T (O1) → Seq by f(τ) = hs where hs satisfies (state(τ), (h,hs)) ∈ F . The fact

8 For a parametrized object O = Spec1 ×C, the alphabets of Spec1 and C share the call/return actions of
Spec1 (the base object) and the alphabet of C contains the call/return actions of O. This is different
from the the composition of two objects O1 ×O′

1 where the alphabets of O1 and O′

1 are disjoint.
9 Here, we refer to classical composition of relations.

H. Attiya and C. Enea 2:13

that hist(τ) ⊑ f(τ) for every trace τ follows from the definition since (h,hs) is a valid state
of O2 and h = hist(τ) (because F preserves call and return actions). The fact that f is
prefix-preserving follows from the fact that F is a forward simulation. J

For the reverse direction, strong linearizability implies the existence of a forward simulation
where a “concrete” object state s1 is related to an atomic object state which contains the
sequential history associated by the function f witnessing strong linearizability to a trace
leading to s1.

I Lemma 12. Let O1 be an object and O2 an atomic object. If O1 is strongly linearizable
w.r.t. O2, then there exists a (C ∪R)-forward simulation from O1 to O2.

Proof. Let F be a relation between states of O1 and O2 defined by (s1, s2) ∈ F iff there
exists a trace τ such that s1 = state(τ) and s2 = (hist(τ), f(τ)) (by the definition of f in
strong linearizability, the latter is a valid state of O2).

We show that F is a (C ∪R)-forward simulation from O1 to O2. The fact that it relates
the initial object state s1

0 and the initial state (ε, ε) of O2 is trivial. Now, let s1, s
′
1 ∈ Q1,

a ∈ Σ1, and s2 ∈ Q2, such that (s1, a, s
′
1) ∈ δ1 and (s1, s2) ∈ F . We have to show that there

exists s′2 ∈ Q2 and σ ∈ Σ2 such that (s′1, s
′
2) ∈ F , s2

σ
Ð→O2 s

′
2, and σ∣(C ∪R) = a∣(C ∪R). (

Let τ be a trace such that s1 = state(τ) and s2 = (hist(τ), f(τ)). Then, s′1 = state(τ ⋅ a) and
f(τ) is a prefix of f(τ ⋅ a). Several cases are to be discussed:

if a ∈ C, then hist(τ ⋅ a) = hist(τ) ⋅ a and hist(τ) ⋅ a ⊑ f(τ) provided that hist(τ) ⊑ f(τ).
Therefore, s2

a
Ð→O2 (hist(τ) ⋅ a, f(τ)) and (s′1, (hist(τ) ⋅ a, f(τ))) ∈ F .

if a ∈ R and the operation identifier k in a occurs in f(τ), then s2
a
Ð→O2 (hist(τ) ⋅

a, f(τ)) and (s′1, (hist(τ) ⋅ a, f(τ))) ∈ F like above. If k does not occur in f(τ), then
f(τ ⋅ a) = f(τ) ⋅ c ⋅ a where c is the call action corresponding to a (otherwise, f(τ ⋅ a)
would not be a linearization of hist(τ ⋅ a)). By the definition of O2, we have that
s2

lin(k)⋅a
ÐÐÐÐ→O2 (hist(τ) ⋅ a, f(τ ⋅ a)) which concludes the proof of this case.

if a /∈ C ∪R, then f(τ ⋅a) is obtained from f(τ) by appending some sequence of operations
with identifiers k1, . . ., kn (this follows from the fact that f is prefix-preserving). Then,
s2

lin(k1)⋅...⋅lin(kn)
ÐÐÐÐÐÐÐÐÐ→O2 (hist(τ), f(τ ⋅ a)) and (s′1, (hist(τ), f(τ ⋅ a))) ∈ F (because in this

case, hist(τ ⋅ a) = hist(τ)).
J

Lemma 11 and Lemma 12 imply the following.

I Theorem 13. If O2 is atomic, then O1 ⊑s O2 iff there exists a (C ∪R)-forward simulation
from O1 to O2.

6 Strong Observational Refinements of Non-Atomic Specifications

We demonstrate that many concurrent objects defined in the literature are strong observational
refinements of much simpler abstract objects, even though not necessarily atomic (w.r.t.
the definition of atomic object in Section 3). We focus on objects which are not strongly
linearizable, since by Theorem 13, the latter are strong refinements of atomic objects.

Figure 3 lists an implementation of a snapshot object with two methods update(i,data)
for writing the value data to a location i of a shared array mem, and scan() for returning
a snapshot of the array mem.10 While the implementation of update is obvious, a scan

10This is a simplified version of the snapshot object defined by Afek et al. [1].

DISC 2019

2:14 Putting Strong Linearizability in Context

1 procedure update(i,data)
2 mem[i] = data;

4 procedure scan()
5 for i = 1 to n do r1[i] = mem[i];
6 repeat
7 r2 = r1;
8 for i = 1 to n do r1[i] = mem[i];
9 until r1 == r2

10 return r1;

1 procedure update(i,data)
2 mem[i] = data;

4 procedure scan()
5 while (nondet)
6 r = atomic_snapshot();
7 snaps = snaps ⋅ r;
8 return r1 ∈ snaps;

Figure 3 A snapshot object (on the left), and a concurrent specification (on the right). The
shared state of both is an array mem of size n. The local variables r1, r2, and r are arrays of size n
(initialized to the same value as mem). The local variable snaps is a sequence of arrays of size n (⋅
denotes the concatenation operator), initially containing a single array which equals the initial value
of mem. The use of nondet means that the loop is executed for an arbitrary number of times. The
procedure atomic_snapshot returns a snapshot of mem in a single step executed in isolation.

operation performs several “collect” phases, where it reads successively all the cells of mem,
until two consecutive phases return the same array.

This object does not admit a forward simulation towards the standard atomic specification
where scan takes a single instantaneous snapshot of the entire array which is subsequently
returned (it is not a strong refinement of such a specification). Intuitively, this holds because
the linearization point of scan depends on future steps in the execution, e.g., a read in the
second for loop is a linearization point only if it is not followed by updates on array cells
before and after the current loop index. This is exactly the scenario in which backward
simulations are necessary, intuitively, reading an execution backwards it is possible to identify
precisely the linearization points of scan invocations. The impossibility of defining such a
forward simulation is also a consequence of this object not being strongly linearizable [14].

However, this object is a strong refinement of the simpler “concurrent” specification given
on the right of Figure 3 (see more explanation in the full version). The implementation
of update remains the same, while a scan operation performs a sequence of instantaneous
snapshots of the entire array mem and returns any snapshot in this sequence. Compared
to the implementation on the left, it is simpler because it does not allow that reading the
array mem is interleaved with other operations. However, it is not atomic since an execution
of scan contains more than one step. In comparison with the atomic specification, the
sequence of snapshots in scan allows that an adversary (scheduler) decides on the return
value “lazily” after observing other invocations, e.g., updates, exactly as in the concrete
implementation. Therefore, the abstract specification in Figure 3 can be used while reasoning
about hyperproperties of clients, which is not the case for the atomic specification.

Beyond snapshot objects, Bouajjani et al. [6] show that a similar simplification holds even
for concurrent queues and stacks which are not strongly linearizable, e.g., Herlihy&Wing
queue [16] and Time-Stamped Stack [11]. These objects admit forward simulations towards
“concurrent” specifications where roughly, the elements are stored in a partially-ordered set
instead of a sequence (which is consistent with the real-time order between the enqueues/-
pushes that added those elements). The enqueues/pushes have no internal steps, while the
dequeues/pops have a single internal step which roughly, corresponds to a linearization point
that extracts a minimal (for queues) or maximal (for stacks) element from the partially-
ordered set. The stack of Afek at al. [2] can also be proved to be a strong refinement of such
a specification. These forward simulations imply that these objects are strong refinements of

H. Attiya and C. Enea 2:15

their specifications.

7 Related Work and Discussion

An important contribution of our paper is to put the work on strong linearizability [10,
14, 15] in the context of standard results concerning hyperproperties [8, 9] and property-
preserving refinements [3, 17, 18]. McLean [18] showed that refinements do not preserve
security properties, which were later found to be instances of the more generic notion of
hyperproperty [9]. By exploiting the equivalence between linearizability and refinement [5, 12],
our paper clarifies that a stronger notion of linearizability is needed because standard
linearizability does not preserve hyperproperties.

Our notion of strong observational refinement is a variation of the hyperproperty-
preserving refinement introduced in [9], which takes into account the specificities of concurrent
object clients. The relationship between forward simulations and preservation of hyperprop-
erties has been investigated in [3]. They show that the existence of forward simulations
is sufficient for preserving some specific class of hyperproperties (information-flow security
properties like non-interference), corresponding to the straightforward direction of Theorem 8
(Lemma 6); they also show that their condition is not necessary in their context. In contrast,
our work shows that the existence of forward simulations is both necessary and sufficient for
preserving any hyperproperty in the context of concurrent object clients.

An important consequence of our results is that strong linearizability is equivalent to
the existence of a forward simulation towards an atomic specification. This equivalence has
been established independently by Rady [20], albeit using a different formalism that leads
to a relatively more complex proof. The equivalence to the well-studied notion of forward
simulation immediately implies methods for composing concurrent objects, in particular,
locality and instantiation. This stands in contrast to the effort needed to prove similar results
in [14] and [19].

While [14] relates strong linearizability to preserving a rather unspecified class of prop-
erties of randomized programs when replacing objects by their atomic specifications, the
equivalence we prove implies that strong linearizability is necessary and sufficient for preserv-
ing hyperproperties in this context. Note that forward simulations are more general than
strong linearizability. Section 6 presents several objects which are not strongly linearizable,
but which admit forward simulations towards non-atomic abstract specifications. Our results
imply that it is sound to use such specifications when reasoning about hyperproperties of
client programs. Moreover, as opposed to strong linearizability, forward simulations are
applicable to interval-linearizable objects [7], which do not have any atomic specification,
but are essentially LTSs as in our formalization.

Finally, Bouajjani et al. [6] show that intricate implementations of concurrent stacks and
queues like Herlihy&Wing queue [16] and Time-Stamped Stack [11] admit forward simulations
towards non-atomic abstract specifications, but they do not discuss the connection between
existence of forward simulations and preservation of hyperproperties, which is the main
contribution of our paper.

Our definition of strong observational refinement and its relation to forward simulations
deepens our understanding of the role of strong linearizability in preserving hyperproperties.
We plan to explore strong observational refinement of almost-atomic objects and develop
additional proof methodologies. Also, our notion of strong refinement uses deterministic
schedulers that model strong adversaries w.r.t. Aspnes’ classification [4], and it is interesting
to explore variations of this notion that take into account other adversary models.

DISC 2019

2:16 Putting Strong Linearizability in Context

References

1 Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit. Atomic
snapshots of shared memory. J. ACM, 40(4):873–890, 1993. URL: https://doi.org/10.1145/
153724.153741, doi:10.1145/153724.153741.

2 Yehuda Afek, Eli Gafni, and Adam Morrison. Common2 extended to stacks and unbounded
concurrency. Distributed Computing, 20(4):239–252, 2007. URL: https://doi.org/10.1007/
s00446-007-0023-3, doi:10.1007/s00446-007-0023-3.

3 Rajeev Alur, Pavol Cerný, and Steve Zdancewic. Preserving secrecy under refinement. In
Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener, editors, Automata,
Languages and Programming, 33rd International Colloquium, ICALP 2006, Venice, Italy,
July 10-14, 2006, Proceedings, Part II, volume 4052 of Lecture Notes in Computer Science,
pages 107–118. Springer, 2006. URL: https://doi.org/10.1007/11787006_10, doi:10.1007/
11787006_10.

4 James Aspnes. Randomized protocols for asynchronous consensus. Distributed Computing,
16(2-3):165–175, 2003. URL: https://doi.org/10.1007/s00446-002-0081-5, doi:10.1007/
s00446-002-0081-5.

5 Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza. Tractable refinement
checking for concurrent objects. In Sriram K. Rajamani and David Walker, editors, Proceedings
of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2015, Mumbai, India, January 15-17, 2015, pages 651–662. ACM, 2015.
URL: https://doi.org/10.1145/2676726.2677002, doi:10.1145/2676726.2677002.

6 Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Suha Orhun Mutluergil. Proving
linearizability using forward simulations. In Rupak Majumdar and Viktor Kuncak, editors,
Computer Aided Verification - 29th International Conference, CAV 2017, Heidelberg, Germany,
July 24-28, 2017, Proceedings, Part II, volume 10427 of Lecture Notes in Computer Science,
pages 542–563. Springer, 2017. URL: https://doi.org/10.1007/978-3-319-63390-9_28,
doi:10.1007/978-3-319-63390-9_28.

7 Armando Castañeda, Sergio Rajsbaum, and Michel Raynal. Unifying concurrent objects
and distributed tasks: Interval-linearizability. J. ACM, 65(6):45:1–45:42, 2018. URL: https:
//doi.org/10.1145/3266457, doi:10.1145/3266457.

8 Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N.
Rabe, and César Sánchez. Temporal logics for hyperproperties. In Martín Abadi and Steve
Kremer, editors, Principles of Security and Trust - Third International Conference, POST
2014, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings, volume 8414 of Lecture Notes
in Computer Science, pages 265–284. Springer, 2014. URL: https://doi.org/10.1007/
978-3-642-54792-8_15, doi:10.1007/978-3-642-54792-8_15.

9 Michael R. Clarkson and Fred B. Schneider. Hyperproperties. Journal of Computer
Security, 18(6):1157–1210, 2010. URL: https://doi.org/10.3233/JCS-2009-0393, doi:
10.3233/JCS-2009-0393.

10 Oksana Denysyuk and Philipp Woelfel. Wait-freedom is harder than lock-freedom under
strong linearizability. In Yoram Moses, editor, Distributed Computing - 29th International
Symposium, DISC 2015, Tokyo, Japan, October 7-9, 2015, Proceedings, volume 9363 of Lecture
Notes in Computer Science, pages 60–74. Springer, 2015. URL: https://doi.org/10.1007/
978-3-662-48653-5_5, doi:10.1007/978-3-662-48653-5_5.

11 Mike Dodds, Andreas Haas, and Christoph M. Kirsch. A scalable, correct time-stamped
stack. In Sriram K. Rajamani and David Walker, editors, Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015,
Mumbai, India, January 15-17, 2015, pages 233–246. ACM, 2015. URL: https://doi.org/
10.1145/2676726.2676963, doi:10.1145/2676726.2676963.

https://doi.org/10.1145/153724.153741
https://doi.org/10.1145/153724.153741
http://dx.doi.org/10.1145/153724.153741
https://doi.org/10.1007/s00446-007-0023-3
https://doi.org/10.1007/s00446-007-0023-3
http://dx.doi.org/10.1007/s00446-007-0023-3
https://doi.org/10.1007/11787006_10
http://dx.doi.org/10.1007/11787006_10
http://dx.doi.org/10.1007/11787006_10
https://doi.org/10.1007/s00446-002-0081-5
http://dx.doi.org/10.1007/s00446-002-0081-5
http://dx.doi.org/10.1007/s00446-002-0081-5
https://doi.org/10.1145/2676726.2677002
http://dx.doi.org/10.1145/2676726.2677002
https://doi.org/10.1007/978-3-319-63390-9_28
http://dx.doi.org/10.1007/978-3-319-63390-9_28
https://doi.org/10.1145/3266457
https://doi.org/10.1145/3266457
http://dx.doi.org/10.1145/3266457
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15
http://dx.doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.3233/JCS-2009-0393
http://dx.doi.org/10.3233/JCS-2009-0393
http://dx.doi.org/10.3233/JCS-2009-0393
https://doi.org/10.1007/978-3-662-48653-5_5
https://doi.org/10.1007/978-3-662-48653-5_5
http://dx.doi.org/10.1007/978-3-662-48653-5_5
https://doi.org/10.1145/2676726.2676963
https://doi.org/10.1145/2676726.2676963
http://dx.doi.org/10.1145/2676726.2676963

H. Attiya and C. Enea 2:17

12 Ivana Filipovic, Peter W. O’Hearn, Noam Rinetzky, and Hongseok Yang. Abstraction for
concurrent objects. Theor. Comput. Sci., 411(51-52):4379–4398, 2010. URL: https://doi.
org/10.1016/j.tcs.2010.09.021, doi:10.1016/j.tcs.2010.09.021.

13 Joseph A. Goguen and José Meseguer. Security policies and security models. In 1982
IEEE Symposium on Security and Privacy, Oakland, CA, USA, April 26-28, 1982, pages
11–20. IEEE Computer Society, 1982. URL: https://doi.org/10.1109/SP.1982.10014, doi:
10.1109/SP.1982.10014.

14 Wojciech M. Golab, Lisa Higham, and Philipp Woelfel. Linearizable implementations do not
suffice for randomized distributed computation. In Lance Fortnow and Salil P. Vadhan, editors,
Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA,
USA, 6-8 June 2011, pages 373–382. ACM, 2011. URL: https://doi.org/10.1145/1993636.
1993687, doi:10.1145/1993636.1993687.

15 Maryam Helmi, Lisa Higham, and Philipp Woelfel. Strongly linearizable implementations:
possibilities and impossibilities. In Darek Kowalski and Alessandro Panconesi, editors, ACM
Symposium on Principles of Distributed Computing, PODC ’12, Funchal, Madeira, Portugal,
July 16-18, 2012, pages 385–394. ACM, 2012. URL: https://doi.org/10.1145/2332432.
2332508, doi:10.1145/2332432.2332508.

16 Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990. URL: https://doi.org/10.
1145/78969.78972, doi:10.1145/78969.78972.

17 Nancy A. Lynch and Frits W. Vaandrager. Forward and backward simulations: I. untimed
systems. Inf. Comput., 121(2):214–233, 1995. URL: https://doi.org/10.1006/inco.1995.
1134, doi:10.1006/inco.1995.1134.

18 John McLean. A general theory of composition for trace sets closed under selective interleaving
functions. In 1994 IEEE Computer Society Symposium on Research in Security and Privacy,
Oakland, CA, USA, May 16-18, 1994, pages 79–93. IEEE Computer Society, 1994. URL:
https://doi.org/10.1109/RISP.1994.296590, doi:10.1109/RISP.1994.296590.

19 Sean Ovens and Philipp Woelfel. Strongly linearizable implementations of snapshots and other
types. In 38th ACM Symposium on Principles of Distributed Computing (PODC 2019), 2019.

20 Amgad Sadek Rady. Characterizing Implementations that Preserve Properties of Concurrent
Randomized Algorithms. Master’s thesis, York University, Toronto, Canada, 2017.

21 Gerhard Schellhorn, Heike Wehrheim, and John Derrick. How to prove algorithms linearisable.
In P. Madhusudan and Sanjit A. Seshia, editors, Computer Aided Verification - 24th Inter-
national Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings, volume
7358 of Lecture Notes in Computer Science, pages 243–259. Springer, 2012. URL: https:
//doi.org/10.1007/978-3-642-31424-7_21, doi:10.1007/978-3-642-31424-7_21.

DISC 2019

https://doi.org/10.1016/j.tcs.2010.09.021
https://doi.org/10.1016/j.tcs.2010.09.021
http://dx.doi.org/10.1016/j.tcs.2010.09.021
https://doi.org/10.1109/SP.1982.10014
http://dx.doi.org/10.1109/SP.1982.10014
http://dx.doi.org/10.1109/SP.1982.10014
https://doi.org/10.1145/1993636.1993687
https://doi.org/10.1145/1993636.1993687
http://dx.doi.org/10.1145/1993636.1993687
https://doi.org/10.1145/2332432.2332508
https://doi.org/10.1145/2332432.2332508
http://dx.doi.org/10.1145/2332432.2332508
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
http://dx.doi.org/10.1145/78969.78972
https://doi.org/10.1006/inco.1995.1134
https://doi.org/10.1006/inco.1995.1134
http://dx.doi.org/10.1006/inco.1995.1134
https://doi.org/10.1109/RISP.1994.296590
http://dx.doi.org/10.1109/RISP.1994.296590
https://doi.org/10.1007/978-3-642-31424-7_21
https://doi.org/10.1007/978-3-642-31424-7_21
http://dx.doi.org/10.1007/978-3-642-31424-7_21

	Introduction
	Motivating Example: A Stack Implementation that Leaks Information
	Modelling Concurrent Objects as Labeled Transition Systems
	Strong Observational Refinement
	Characterizing Strong Refinement Using Forward Simulations
	Strong Observational Refinements of Non-Atomic Specifications
	Related Work and Discussion

