
On the Complexity of Checking Consistency for
Replicated Data Types?

Ranadeep Biswas1, Michael Emmi2, and Constantin Enea1

1 Université de Paris, IRIF, CNRS, F-75013 Paris, France
ranadeep@irif.fr, cenea@irif.fr

2 SRI International, New York, NY, USA, michael.emmi@sri.com

Abstract. Recent distributed systems have introduced variations of
familiar abstract data types (ADTs) like counters, registers, flags, and
sets, that provide high availability and partition tolerance. These conflict-
free replicated data types (CRDTs) utilize mechanisms to resolve the effects
of concurrent updates to replicated data. Naturally these objects weaken
their consistency guarantees to achieve availability and partition-tolerance,
and various notions of weak consistency capture those guarantees.
In this work we study the tractability of CRDT-consistency checking.
To capture guarantees precisely, and facilitate symbolic reasoning, we
propose novel logical characterizations. By developing novel reductions
from propositional satisfiability problems, and novel consistency-checking
algorithms, we discover both positive and negative results. In particular,
we show intractability for replicated flags, sets, counters, and registers, yet
tractability for replicated growable arrays. Furthermore, we demonstrate
that tractability can be redeemed for registers when each value is written
at most once, for counters when the number of replicas is fixed, and for
sets and flags when the number of replicas and variables is fixed.

1 Introduction

Recent distributed systems have introduced variations of familiar abstract data
types (ADTs) like counters, registers, flags, and sets, that provide high availability
and partition tolerance. These conflict-free replicated data types (CRDTs) [33]
efficiently resolve the effects of concurrent updates to replicated data. Naturally
they weaken consistency guarantees to achieve availability and partition-tolerance,
and various notions of weak consistency capture such guarantees [35, 36, 29, 8, 11].

In this work we study the tractability of CRDT consistency checking; Figure 1
summarizes our results. In particular, we consider runtime verification: deciding
whether a given execution of a CRDT is consistent with its ADT specification. This
problem is particularly relevant as distributed-system testing tools like Jepsen [25]
are appearing; without efficient, general consistency-checking algorithms, such
tools could be limited to specialized classes of errors like node crashes.
? This work is supported in part by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement
No 678177).

Data Types Complexity

Add-Wins Set, Remove-Wins Set np-complete
Enable-Wins Flag, Disable-Wins Flag np-complete
Sets & Flags — with bounded domains ptime
Last-Writer-Wins Register (lww) np-complete
Multi-Value Register (mvr) np-complete
Registers – with unique values ptime
Replicated Counters np-complete
Counters – with bounded replicas ptime
Replicated Growable Array (rga) ptime

Fig. 1: The complexity of consistency checking for various replicated data types. We
demonstrate intractability and tractability results in Sections 3 and 4, respectively.

Our setting captures executions across a set of replicas as per-replica sequences
of operations called histories. Roughly speaking, a history is consistent so long
as each operation’s return value can be justified according to the operations that
its replica has observed so far. In the setting of CRDTs, the determination of a
replica’s observations is essentially an implementation choice: replicas are only
obliged to observe their own operations, and the predecessors of those it has
already observed. This relatively-weak constraint on replicas’ observations makes
the CRDT consistency checking problem unique.

Our study proceeds in three parts. First, to precisely characterize the con-
sistency of various CRDTs, and facilitate symbolic reasoning, we develop novel
logical characterizations to capture their guarantees. Our logical models are built
on a notion of abstract execution, which relates the operations of a given history
with three separate relations: a read-from relation, governing the observations
from which a given operation constitutes its own return value; a happens-before
relation, capturing the causal relationships among operations; and a linearization
relation, capturing any necessary arbitration among non-commutative effects
which are executed concurrently, e.g., following a last-writer-wins policy. Accord-
ingly, we capture data type specifications with logical axioms interpreted over
the read-from, happens-before, and linearization relations of abstract executions,
reducing the consistency problem to: does there exist an abstract execution over
the given history which satisfies the axioms of the given data type?

Second, we demonstrate the intractability of several replicated data types
by reduction from propositional satisfiability (SAT) problems. In particular, we
consider the 1-in-3 SAT problem [19], which asks for a truth assignment to
the variables of a given set of clauses such that exactly one literal per clause
is assigned true. Our reductions essentially simulate the existential choice of a
truth assignment with the existential choice of the read-from and happens-before
relations of an abstract execution. For a given 1-in-3 SAT instance, we construct
a history of replicas obeying carefully-tailored synchronization protocols, which
is consistent exactly when the corresponding SAT instance is positive.

2

Third, we develop tractable consistency-checking algorithms for individual
data types and special cases: replicated growing arrays; multi-value and last-
writer-wins registers, when each value is written only once; counters, when replicas
are bounded; and sets and flags, when their sizes are also bounded. While the
algorithms for each case are tailored to the algebraic properties of the data types
they handle, they essentially all function by constructing abstract executions
incrementally, processing replicas’ operations in prefix order.

The remainder of this article is organized around our three key contributions:

1. We develop novel logical characterizations of consistency for the replicated
register, flag, set, counter, and array data types (§2);

2. We develop novel reductions from propositional satisfiability problems to
consistency checking to demonstrate intractability for replicated flags, sets,
counters, and registers (§3); and

3. We develop tractable consistency-checking algorithms for replicated growable
arrays, registers, when written values are unique, counters, when replicas are
bounded, and sets and flags, when their sizes are also bounded (§4–6).

Section 7 overviews related work, and Section 8 concludes.

2 A Logical Characterization of Replicated Data Types

In this section we describe an axiomatic framework for defining the semantics
of replicated data types. We consider a set of method names M, and that each
method m ∈M has a number of arguments and a return value sampled from a
data domain D. We will use operation labels of the form m(a)

i⇒ b to represent
the call of a method m ∈ M, with argument a ∈ D, and resulting in the value
b ∈ D. Since there might be multiple calls to the same method with the same
arguments and result, labels are tagged with a unique identifier i. We will ignore
identifiers when unambiguous.

The interaction between a data type implementation and a client is represented
by a history h = 〈Op, ro〉 which consists of a set of operation labels Op and a
partial replica order ro ordering operations issued by the client on the same replica.
Usually, ro is a union of sequences, each sequence representing the operations
issued on the same replica, and the width of ro, i.e., the maximum number of
mutually-unordered operations, gives the number of replicas in a given history.

To characterize the set of histories h = 〈Op, ro〉 admitted by a certain repli-
cated data type, we use abstract executions e = 〈rf, hb, lin〉, which include:
– a read-from binary relation rf over operations in Op, which identifies the set

of updates needed to “explain” a certain return value, e.g., a write operation
explaining the return value of a read,

– a strict partial happens-before order hb, which includes ro and rf, representing
the causality constraints in an execution, and

– a strict total linearization order lin, which includes hb, used to model conflict
resolution policies based on timestamps.

3

ReadFrom(R)

∀o1, o2. rf(o1, o2)⇒ R(o1, o2)

ReadFromMaximal(R)

∀o1, o2, o3. rf(o1, o2) ∧R(o3, o2)⇒
¬hb(o1, o3) ∨ ¬hb(o3, o2)

ReadAllMaximals(R)

∀o1, o2. hb(o1, o2) ∧R(o1, o2)
⇒ ∃o3. hb∗(o1, o3) ∧ rf(o3, o2)

ClosedRF(R)

∀o1, o2, o3. R(o1, o2) ∧ hb(o1, o3)

∧ rf(o3, o2)⇒ rf(o1, o2)

RetvalSet(X, v, Y)

∀o1. meth(o1) = X ∧ ret(o1) = v

⇔ ∃o2. rf(o2, o1) ∧meth(o2) = Y

∧ arg(o1) = arg(o2)

RetvalCounter

∀o1. meth(o1) = read

⇒ ret(o1) = |{o2 : meth(o2) = inc ∧ rf(o2, o1)}|
− |{o2 : meth(o2) = dec ∧ rf(o2, o1)}|

LinLWW

∀o1, o2, o3. rf(o1, o2) ∧meth(o3) = write

∧ arg1(o3) = arg(o2) ∧ hb(o3, o2)⇒ lin(o3, o1)

RetvalReg

∀o1, v.meth(o1) = read ∧ v ∈ ret(o1)⇒ ∃!o2.rf(o2, o1) ∧meth(o2) = write ∧ arg2(o2) = v

Fig. 2: The axiomatic semantics of replicated data types. Quantified variables are
implicitly distinct, and ∃!o denotes the existence of a unique operation o.

In this work, we consider replicated data types which satisfy causal consis-
tency [26], i.e., updates which are related by cause and effect relations are
observed by all replicas in the same order. This follows from the fact that the
happens-before order is constrained to be a partial order, and thus transitive
(other forms of weak consistency don’t pose this constraint). Some of the repli-
cated data types we consider in this paper do not consider resolution policies
based on timestamps and in those cases, the linearization order can be ignored.

A replicated data type is defined by a set of first-order axioms Φ characterizing
the relations in an abstract execution. A history h is admitted by a data type
when there exists an abstract execution e such that 〈h, e〉 |= Φ. The satisfaction
relation |= is defined as usual in first order logic. The admissibility problem is
the problem of checking whether a history h is admitted by a given data type.

In the following, we define the replicated data types with respect to which we
study the complexity of the admissibility problem. The axioms used to define them
are listed in Figure 2 and Figure 3. These axioms use the function symbols meth-
od, arg-ument, and ret-urn interpreted over operation labels, whose semantics is
self-explanatory.

2.1 Replicated Sets and Flags

The Add-Wins Set and Remove-Wins Set [34] are two implementations of a
replicated set with operations add(x), remove(x), and contains(x) for adding,
removing, and checking membership of an element x. Although the meaning of

4

these methods is self-evident from their names, the result of conflicting concurrent
operations is not evident. When concurrent add(x) and remove(x) operations are
delivered to a certain replica, the Add-Wins Set chooses to keep the element x in
the set, so every subsequent invocation of contains(x) on this replica returns true,
while the Remove-Wins Set makes the dual choice of removing x from the set.

The formal definition of their semantics uses abstract executions where
the read-from relation associates sets of add(x) and remove(x) operations to
contains(x) operations. Therefore, the predicate ReadOk(o1, o2) is defined by

meth(o1) ∈ {add, remove} ∧meth(o2) = contains ∧ arg(o1) = arg(o2)

and the Add-Wins Set is defined by the following set of axioms:

ReadFrom(ReadOk) ∧ReadFromMaximal(ReadOk) ∧
ReadAllMaximals(ReadOk) ∧RetvalSet(contains, true, add)

ReadFromMaximal says that every operation read by a contains(x) is maximal
among its hb-predecessors that add or remove x while ReadAllMaximals says
that all such maximal hb-predecessors are read. The RetvalSet instantiation
ensures that a contains(x) returns true iff it reads-from at least one add(x).

The definition of the Remove-Wins Set is similar, except for the parame-
ters of RetvalSet, which become RetvalSet(contains, false, remove), i.e., a
contains(x) returns false iff it reads-from at least one remove(x).

The Enable-Wins Flag and Disable-Wins Flag are implementations of a set
of flags with operations: enable(x), disable(x), and read(x), where enable(x) turns
the flag x to true, disable(x) turns x to false, while read(x) returns the state of
the flag x. Their semantics is similar to the Add-Wins Set and Remove-Wins
Set, respectively, where enable(x), disable(x), and read(x) play the role of add(x),
remove(x), and contains(x), respectively. Their axioms are defined as above.

2.2 Replicated Registers

We consider two variations of replicated registers called Multi-Value Register
(MVR) and Last-Writer-Wins Register (LWW) [34] which maintain a set of
registers and provide write(x,v) operations for writing a value v on a register x
and read(x) operations for reading the content of a register x (the domain of
values is kept unspecified since it is irrelevant). While a read(x) operation of
MVR returns all the values written by concurrent writes which are maximal
among its happens-before predecessors, therefore, leaving the responsibility for
solving conflicts between concurrent writes to the client, a read(x) operation
of LWW returns a single value chosen using a conflict-resolution policy based
on timestamps. Each written value is associated to a timestamp, and a read
operation returns the most recent value w.r.t. the timestamps. This order between
timestamps is modeled using the linearization order of an abstract execution.

Therefore, the predicate ReadOk(o1, o2) is defined by

meth(o1) = write ∧meth(o2) = read ∧ arg1(o1) = arg(o2) ∧ arg2(o1) ∈ ret(o2)

5

(we use arg1(o1) to denote the first argument of a write operation, i.e., the register
name, and arg2(o1) to denote its second argument, i.e., the written value) and
the MVR is defined by the following set of axioms:

ReadFrom(ReadOk) ∧ReadFromMaximal(ReadOk) ∧
ReadAllMaximals(ReadOk) ∧RetvalReg

where RetvalReg ensures that a read(x) operation reads from a write(x,v)
operation, for each value v in the set of returned values 3.

LWW is obtained from the definition of MVR by replacing ReadAllMaxi-
mals with the axiom LinLWW which ensures that every write(x,_) operation
which happens-before a read(x) operation is linearized before the write(x,_)
operation from where the read(x) takes its value (when these two write oper-
ations are different). This definition of LWW is inspired by the “bad-pattern”
characterization in [6], corresponding to their causal convergence criterion.

2.3 Replicated Counters

The replicated counter datatype [34] maintains a set of counters interpreted as
integers (the counters can become negative). This datatype provides operations
inc(x) and dec(x) for incrementing and decrementing a counter x, and read(x)
operations to read the value of the counter x. The semantics of the replicated
counter is quite standard: a read(x) operation returns the value computed as the
difference between the number of inc(x) operations and dec(x) operations among
its happens-before predecessors. The axioms defined below will enforce the fact
that a read(x) operation reads-from all its happens-before predecessors which are
inc(x) or dec(x) operations.

Therefore, the predicate ReadOk(o1, o2) is defined by

meth(o1) ∈ {inc, dec} ∧meth(o2) = read ∧ arg(o1) = arg(o2)

and the replicated counter is defined by the following set of axioms:

ReadFrom(ReadOk) ∧ClosedRF(ReadOk) ∧RetvalCounter.

2.4 Replicated Growable Array

The Replicated Growing Array (RGA) [32] is a replicated list used for text-
editing applications. RGA supports three operations: addAfter(a,b) which adds
the character b immediately after the occurrence of the character a assumed to
be present in the list, remove(a) which removes a assumed to be present in the
list, and read() which returns the list contents. It is assumed that a character is
added at most once 4. The conflicts between concurrent addAfter operations that
3 For simplicity, we assume that every history contains a set of write operations writing
the initial values of variables, which precede every other operation in replica order.

4 In a practical context, this can be enforced by tagging characters with replica
identifiers and sequence numbers.

6

ReadFromRGA

∀o2. meth(o2) = addAfter⇒ arg1(o2) = ◦ ∨
∃o1. meth(o1) = addAfter ∧ arg2(o1) = arg1(o2) ∧ rf(o1, o2)

∧meth(o2) = remove⇒ ∃o1. meth(o1) = addAfter ∧ arg2(o1) = arg(o2) ∧ rf(o1, o2)

∧ meth(o2) = read⇒ ∀v ∈ ret(o2) ∃o1.meth(o1) = addAfter ∧ arg2(o1) = v ∧ rf(o1, o2)

RetvalRGA

∀o1, o2. meth(o1) = read ∧meth(o2) = addAfter ∧ hb(o2, o1) ∧ arg2(o2) 6∈ ret(o1)

⇒ ∃o3. meth(o3) = remove ∧ arg(o3) = arg2(o2) ∧ rf(o3, o1)

LinRGA

∀o1, o2.
(
meth(o1) = meth(o2) = addAfter ∧ arg1(o1) = arg1(o2) ∧
∃o3, o4, o5. meth(o3) = meth(o4) = addAfter ∧ rf∗addAfter(o1, o3) ∧ rf∗addAfter(o2, o4)∧
meth(o5) = read ∧ arg2(o4) <o5 arg2(o3)

)
⇒ lin(o1, o2)

Fig. 3: Axioms used to define the semantics of RGA.

add a character immediately after the same character is solved using timestamps
(i.e., each added character is associated to a timestamp and the order between
characters depends on the order between the corresponding timestamps), which
in the axioms below are modeled by the linearization order.

Figure 3 lists the axioms defining RGA. ReadFromRGA ensures that:

– every addAfter(a,b) operation reads-from the addAfter(_,a) adding the char-
acter a, except when a = ◦ which denotes the “root” element of the list5,

– every remove(a) operation reads-from the operation adding a, and
– every read operation returning a list containing a reads-from the operation

addAfter(_,a) adding a.

Then, RetvalRGA ensures that a read operation o1 happening-after an
operation adding a character a reads-from a remove(a) operation when a doesn’t
occur in the list returned by o1 (the history must contain a remove(a) operation
because otherwise, a should have occurred in the list returned by the read).

Finally, LinRGA models the conflict resolution policy by constraining the
linearization order between addAfter(a,_) operations adding some character
immediately after the same character a. As a particular case, LinRGA enforces
that addAfter(a,b) is linearized before addAfter(a,c) when a read operation returns
a list where c precedes b (addAfter(a,b) results in the list a · b and applying
addAfter(a,c) on a·b results in the list a·c·b). However, this is not sufficient: assume
that the history contains the two operations addAfter(a,b) and addAfter(a,c) along
with two operations remove(b) and addAfter(b,d). Then, a read operation returning
the list a · c · d must enforce that addAfter(a,b) is linearized before addAfter(a,c)
because this is the only order between these two operations that can lead to the
result a · c · d, i.e., executing addAfter(a,b), addAfter(b,d), remove(b), addAfter(a,c)
in this order. LinRGA deals with any scenario where arbitrarily-many characters
can be removed from the list: rf∗addAfter is the reflexive and transitive closure of
5 This element is not returned by read operations.

7

the projection of rf on addAfter operations and <o5 denotes the order between
characters in the list returned by the read operation o5.

3 Intractability for Registers, Sets, Flags, and Counters

In this section we demonstrate that checking the consistency is intractable for
many widely-used data types. While this is not completely unexpected, since
some related consistency-checking problems like sequential consistency are also
intractable [20], this contrasts recent tractability results for checking strong
consistency (i.e., linearizability) of common non-replicated data types like sets,
maps, and queues [15]. In fact, in many cases we show that intractability even
holds if the number of replicas is fixed.

Our proofs of intractability follow the general structure of Gibbons and
Korach’s proofs for the intractability of checking sequential consistency (SC)
for atomic registers with read and write operations [20]. In particular, we re-
duce a specialized type of NP-hard propositional satisfiability (SAT) problem
to checking whether histories are admitted by a given data type. While our
construction borrows from Gibbons and Korach’s, the adaptation from SC to
CRDT consistency requires a significant extension to handle the consistency
relaxation represented by abstract executions: rather than a direct sequencing
of threads’ operations, CRDT consistency requires the construction of three
separate relations: read-from, happens-before, and linearization.

Technically, our reductions start from the 1-in-3 SAT problem [19]: given
a propositional formula

∧m
i=1(αi ∨ βi ∨ γi) over variables x1, . . . , xn with only

positive literals, i.e., αi, βi, γi ∈ {x1, . . . , xn}, does there exist an assignment to
the variables such that exactly one of αi, βi, γi per clause is assigned true? The
proofs of Theorems 1 and 2 reduce 1-in-3 SAT to CRDT consistency checking.

Theorem 1. The admissibility problem is NP-hard when the number of replicas is
fixed for the following data types: Add-Wins Set, Remove-Wins Set, Enable-Wins
Flag, Disable-Wins Flag, Multi-Value Register, and Last-Writer-Wins Register.

Proof. We demonstrate a reduction from the 1-in-3 SAT problem. For a given
problem p =

∧m
i=1(αi ∨βi ∨ γi) over variables x1, . . . , xn, we construct a 3-replica

history hp of the flag data type — either enable- or disable-wins — as illustrated in
Figure 4. The encoding includes a flag variable xj for each propositional variable
xj , along with a per-replica flag variable yj used to implement synchronization
barriers. Intuitively, executions of hp proceed in m+ 1 rounds: the first round
corresponds to the assignment of a truth valuation, while subsequent rounds
check the validity of each clause given the assignment. The reductions to sets
and registers are slight variations on this proof, in which the Read, Enable, and
Disable operations are replaced with Contains, Add, and Remove, respectively,
and Read and Writes of values 1 and 0, respectively.

It suffices to show that the constructed history hp is admitted if and only if
the given problem p is satisfiable. Since the flag data type does not constrain

8

Replica 0 Replica 1 Replica 2

Round 0

Enable(x1) Disable(x1)
.
Enable(xn) Disable(xn)

Barrier 1

Enable(y0) Enable(y1) Enable(y2)
Read(y1) = true Read(y0) = true Read(y0) = true
Read(y2) = true Read(y2) = true Read(y1) = true

Round 1

Read(α1) = true Read(α1) = false Read(α1) = false
Read(β1) = false Read(β1) = true Read(β1) = false
Read(γ1) = false Read(γ1) = false Read(γ1) = true
Disable(α1) Disable(β1) Disable(γ1)
Enable(β1) Enable(γ1) Enable(α1)

Barrier 2

Disable(y0) Disable(y1) Disable(y2)
Read(y1) = false Read(y0) = false Read(y0) = false
Read(y2) = false Read(y2) = false Read(y1) = false

.

Round m

Read(αm) = true Read(αm) = false Read(αm) = false
Read(βm) = false Read(βm) = true Read(βm) = false
Read(γm) = false Read(γm) = false Read(γm) = true
Disable(αm) Disable(βm) Disable(γm)
Enable(βm) Enable(γm) Enable(αm)

Fig. 4: The encoding of a 1-in-3 SAT problem
∧m

i=1(αi∨βi∨γi) over variables x1, . . . , xn
as a 3-replica history of a flag data type. Besides the flag variable xj for each propositional
variable xj , the encoding adds per-replica variables yj for synchronization barriers.

the linearization relation of its abstract executions, we regard only the read-
from and happens-before components. It is straightforward to verify that the
happens-before relations of hp’s abstract executions necessarily order:
1. every pair of operations in distinct rounds — due to barriers; and
2. every operation in a given round, over all replicas, without interleaving the

operations of distinct replicas within the same round — since a replica’s
reads in a given round are only consistent with the other replicas’ after the
re-enabling and -disabling of flag variables.

In other words, replicas appear to execute atomically per round, in a round-robin
fashion. Furthermore, since all operations in a given round happen before the
operations of subsequent rounds, the values of flag variables are consistent across
rounds — i.e., as read by the first replica to execute in a given round — and
determined in the initial round either by conflict resolution — i.e., enable- or
disable-wins — or by happens-before, in case conflict resolution would have been
inconsistent with subsequent reads.

In the “if” direction, let r ∈ {0, 1, 2}m be the positions of positively-assigned
variables in each clause, e.g., ri = 0 implies αi = true and βi = γi = false.
We construct an abstract execution er in which the happens-before relation
sequences the operations of replica ri before those of ri + 1 mod 3, and in turn
before ri + 2 mod 3. In other words, the replicas in round i appear to execute in
left-to-right order from starting with the replica ri, whose reads correspond to the
satisfying assignment of (αi ∨ βi ∨ γi). The read-from relation of er relates each
Read(xj) = true operation to the most recent Enable(xj) operation in happens-
before order, which is unique since happens-before sequences the operations of

9

all rounds; the case for Read(xj) = false and Disable(xj) is symmetric. It is then
straightforward to verify that er satisfies the axioms of the enable- or disable-wins
flag, and thus hp is admitted.

In the “only if” direction, let e be an abstract execution of hp, and let
r ∈ {0, 1, 2}m be the replicas first to execute in each round according to the
happens-before order of e. It is straightforward to verify that the assignment in
which a given variable is set to true iff the replica encoding its positive assignment
in some clause executes first in its round, i.e.,

xj =

{
true if ∃i.(ri = 0 ∧ αi = xj) ∨ (ri = 1 ∧ βi = xj) ∨ (ri = 2 ∧ γi = xj)
false otherwise,

is a satisfying assignment to p. ut
Theorem 1 establishes intractability of consistency for the aforementioned

sets, flags, and registers, independently from the number of replicas. In contrast,
our proof of Theorem 2 for counter data types depends on the number of replicas,
since our encoding requires two replicas per propositional variable. Intuitively,
since counter increments and decrements are commutative, the initial round in
the previous encoding would have fixed all counter values to zero. Instead, the
next encoding isolates initial increments and decrements to independent replicas.
The weaker result is indeed tight since checking counter consistency with a fixed
number of replicas is polynomial time, as Section 5 demonstrates.
Theorem 2. The admissibility problem for the Counter data type is NP-hard.
Proof. We demonstrate a reduction from the 1-in-3 SAT problem. For a given
problem p =

∧m
i=1(αi ∨ βi ∨ γi) over variables x1, . . . , xn, we construct a history

hp of the counter data type over 2n+ 3 replicas, as illustrated in Figure 5.
Besides the differences imposed due to the commutativity of counter incre-

ments and decrements, our reduction follows the same strategy as in the proof of
Theorem 1: the happens-before relation of hp’s abstract executions order every
pair of operations in distinct rounds (of Replicas 0–2), and every operation in
a given (non-initial) round. As before, Replicas 0–2 appear to execute atomi-
cally per round, in a round-robin fashion, and counter variables are consistent
across rounds. The key difference is that here abstract executions’ happens-before
relations only relate the operations of either Replica 2j+1 or 2j+2, for each
j = 1, . . . , n, to operations in subsequent rounds: the other’s operations are never
observed by other replicas. Our encoding ensures that exactly one of each is
observed by ensuring that the counter y is incremented exactly n times — and
relying on the fact that every variable appears in some clause, so that a read
that observed neither or both would yield the value zero, which is inconsistent
with hp. Otherwise, our reasoning follows the proof of Theorem 1, in which the
read-from relation selects all increments and decrements of the same counter
variable in happens-before order. ut

4 Polynomial-Time Algorithms for Registers and Arrays

We show that the problem of checking consistency is polynomial time for RGA,
and even for LWW and MVR under the assumption that each value is written at

10

Replica 0 Replica 2j+1 Replica 2j+2

Round 0

Inc(y) Inc(y)
Inc(xj) Dec(xj)

Read(y) = n

Replica 1 Replica 2

Barrier 1
{

Inc(z) Inc(z) Inc(z)
Read(z) = 3 Read(z) = 3 Read(z) = 3

Round 1

Read(α1) = 1 Read(α1) = −1 Read(α1) = −1
Read(β1) = −1 Read(β1) = 1 Read(β1) = −1
Read(γ1) = −1 Read(γ1) = −1 Read(γ1) = 1
Dec(α1); Dec(α1) Dec(β1); Dec(β1) Dec(γ1); Dec(γ1)
Inc(β1); Inc(β1) Inc(γ1); Inc(γ1) Inc(α1); Inc(α1)

Barrier 2
{

Dec(z) Dec(z) Dec(z)
Read(z) = 0 Read(z) = 0 Read(z) = 0

.

Round m

Read(αm) = 1 Read(αm) = −1 Read(αm) = −1
Read(βm) = −1 Read(βm) = 1 Read(βm) = −1
Read(γm) = −1 Read(γm) = −1 Read(γm) = 1
Dec(αm); Dec(αm) Dec(βm); Dec(βm) Dec(γm); Dec(γm)
Inc(βm); Inc(βm) Inc(γm); Inc(γm) Inc(αm); Inc(αm)

Barrier m+1

{
Inc(z) or Dec(z) Inc(z) or Dec(z) Inc(z) or Dec(z)
Read(z) = 3 or 0 Read(z) = 3 or 0 Read(z) = 3 or 0

Round m+1
{

Read(y) = n

Fig. 5: The encoding of a 1-in-3 SAT problem
∧m

i=1(αi∨βi∨γi) over variables x1, . . . , xn
as the history of a counter over 2n+3 replicas. Besides the counter variables xj encoding
propositional variables xj , the encoding adds a variable y encoding the number of initial
increments and decrements, and a variable z to implement synchronization barriers.

most once, i.e., for each value v, the input history contains at most one write
operation write(x,v). Histories satisfying this assumption are called differentiated.
The latter is a restriction motivated by the fact that practical implementations
of these datatypes are data-independent [38], i.e., their behavior doesn’t depend
on the concrete values read or written and any potential buggy behavior can
be exposed in executions where each value is written at most once. Also, in a
testing environment, this restriction can be enforced by tagging each value with
a replica identifier and a sequence number.

In all three cases, the feature that enables polynomial time consistency
checking is the fact that the read-from relation becomes fixed for a given history,
i.e., if the history is consistent, then there exists exactly one read-from relation
rf that satisfies the ReadFrom_ and Retval_ axioms, and rf can be derived
syntactically from the operation labels (using those axioms). Then, our axiomatic
characterizations enable a consistency checking algorithm which roughly, consists
in instantiating those axioms in order to compute an abstract execution.

The consistency checking algorithm for RGA, LWW, and MVR is listed
in Algorithm 1. It computes the three relations rf, hb, and lin of an abstract
execution using the datatype’s axioms. The history is declared consistent iff there
exist satisfying rf and hb relations, and the relations hb and lin computed this

11

Input: A differentiated history h = 〈Op, ro〉 and a datatype T .
Output: true iff h satisfies the axioms of T .

1 rf ← ComputeRF(h,ReadFrom[T],Retval[T]);
2 if rf = ⊥ then return false;
3 hb← (ro ∪ rf)+;
4 if hb is cyclic or
〈h, rf, hb〉 6|= ReadFromMaximal[T] ∧ReadAllMaximals[T] then

5 return false;
6 lin← hb;
7 lin ← LinClosure(hb,Lin[T]);
8 if lin is cyclic then return false;
9 return true;

Algorithm 1: Consistency checking for RGA, LWW, and MVR. Re. . . [T]
refers to an axiom of T , or true when T lacks such an axiom. The relation
R+ denotes the transitive closure of R.

way are acyclic. The acyclicity requirement comes from the definition of abstract
executions where hb and lin are required to be partial/total orders. While an
abstract execution would require that lin is a total order, this algorithm computes
a partial linearization order. However, any total order compatible with this partial
linearization would satisfy the axioms of the datatype.

ComputeRF computes the read-from relation rf satisfying the ReadFrom_
and Retval_ axioms. In the case of LWW and MVR, it defines rf as the set
of all pairs formed of write(x,v) and read(x) operations where v belongs to the
return value of the read. By Retval_, each read(x) operation must be associated
to at least one write(x,_) operation. Also, the fact that each value is written at
most once implies that this rf relation is uniquely defined, e.g., for LWW, it is
not possible to find two write operations that could be rf related to the same read
operation. In general, if there exists no rf relation satisfying these axioms, then
ComputeRF returns a distinguished value ⊥ to signal a consistency violation. Note
that the computation of the read-from for LWW and MVR is quadratic time6
since the constraints imposed by the axioms relate only to the operation labels,
the methods they invoke or their arguments. The case of RGA is slightly more
involved because the axiom RetvalRGA introduces more read-from constraints
based on the happens-before order which includes ro and the rf itself. In this case,
the computation of rf relies on a fixpoint computation, which converges in at most
quadratic time (the maximal size of rf), described in Algorithm 2. Essentially, we
use the axiom ReadFromRGA to populate the read-from relation and then,
apply the axiom RetvalRGA iteratively, using the read-from constraints added
in previous steps, until the computation converges.

After computing the read-from relation, our algorithm defines the happens-
before relation hb as the transitive closure of ro union rf. This is sound because
none of the axioms of these datatypes enforce new happens-before constraints,

6 Assuming constant time lookup/insert operations (e.g., using hashmaps), this com-
plexity is linear time.

12

Input: A history h = 〈Op, ro〉 of RGA.
Output: An rf satisfying ReadFromRGA ∧RetvalRGA, if exists; ⊥ o/w

1 rf← {(o1, o2) : meth(o1) = addAfter,meth(o2) ∈
{addAfter, remove, read}, arg2(o1) = arg1(o2) ∨ arg2(o1) ∈ ret(o2)};

2 if 〈h, rf〉 6|= ReadFromRGA then return ⊥ ;
3 while true do
4 rf1 ← ∅;
5 foreach o1, o2 ∈ Op s.t. 〈o2, o1〉 ∈ (rf ∪ ro)+ and meth(o1) = read and

meth(o2) = addAfter and arg2(o2) 6∈ ret(o1) do
6 if ∃o3 ∈ Op s.t. meth(o3) = remove and arg(o3) = arg2(o2) then
7 rf1 ← rf1 ∪ {〈o3, o1〉};
8 else
9 return ⊥;

10 if rf1 ⊆ rf then break;
11 else rf← rf ∪ rf1;
12 return rf;

Algorithm 2: The procedure ComputeRF for RGA.

which are not already captured by ro and rf. Then, it checks whether the hb
defined this way is acyclic and satisfies the datatype’s axioms that constrain hb,
i.e., ReadFromMaximal and ReadAllMaximals(when they are present).

Finally, in the case of LWW and RGA, the algorithm computes a (partial)
linearization order that satisfies the corresponding Lin_ axioms. Starting from
an initial linearization order which is exactly the happens-before, it computes
new constraints by instantiating the universally quantified axioms LinLWW
and LinRGA. Since these axioms are not “recursive”, i.e., they don’t enforce
linearization order constraints based on other linearization order constraints, a
standard instantiation of these axioms is enough to compute a partial linearization
order such that any extension to a total order satisfies the datatype’s axioms.

Theorem 3. Algorithm 1 returns true iff the input history is consistent.

The following holds because Algorithm 1 runs in polynomial time — the
rank depends on the number of quantifiers in the datatype’s axioms. Indeed,
Algorithm 1 represents a least fixpoint computation which converges in at most
a quadratic number of iterations (the maximal size of rf).

Corollary 1. The admissibility problem is polynomial time for RGA, and for
LWW and MVR on differentiated histories.

5 Polynomial-Time Algorithms for Replicated Counters

In this section, we show that checking consistency for the replicated counter
datatype becomes polynomial time assuming the number of replicas in the input
history is fixed (i.e., the width of the replica order ro is fixed). We present an
algorithm which constructs a valid happens-before order (note that the semantics
of the replicated counter doesn’t constrain the linearization order) incrementally,

13

Input: History h = (Op, ro), prefix map m, and set seen of invalid prefix maps
Output: true iff there exists read-from and happens-before relations rf and hb

such that m ⊆ hb, and 〈h, rf, hb〉 satisfies the counter axioms.

1 if m is complete then return true;
2 foreach replica i do
3 foreach replica j 6= i do
4 m′ ← m[i← m(i) ∪m(j)];
5 if m′ 6∈ seen and checkCounter(h,m′, seen) then
6 return true;
7 seen ← seen ∪ {m′};
8 if ∃o1. ro1(lasti(m), o1) then
9 if meth(o1) = read and

arg(o1) = x∧ ret(o1) 6= |{o ∈ m[i]|o = inc(x)}|− |{o ∈ m[i]|o = dec(x)}|
then

10 return false;
11 m′ ← m[i← m(i) ∪ {o1}];
12 if m′ 6∈ seen and checkCounter(h,m′, seen) then
13 return true;
14 seen ← seen ∪ {m′};
15 return false;

Algorithm 3: The procedure checkCounter, where ro1 denotes immediate
ro-successor, and f [a← b] updates function f with mapping a 7→ b.

following the replica order. At any time, the happens-before order is uniquely
determined by a prefix mapping that associates to each replica a prefix of the
history, i.e., a set of operations which is downward-closed w.r.t. replica order (i.e.,
if it contains an operation it contains all its ro predecessors). This models the
fact that the replica order is included in the happens-before and therefore, if an
operation o1 happens-before another operation o2, then all the ro predecessors of
o1 happen-before o2. The happens-before order can be extended in two ways: (1)
adding an operation issued on the replica i to the prefix of replica i, or (2) “merging”
the prefix of a replica j to the prefix of a replica i (this models the delivery of
an operation issued on replica j and all its happens-before predecessors to the
replica i). Verifying that an extension of the happens-before is valid, i.e., that
the return values of newly-added read operations satisfy the RetvalCounter
axiom, doesn’t depend on the happens-before order between the operations in the
prefix associated to some replica (it is enough to count the inc and dec operations
in that prefix). Therefore, the algorithm can be seen as a search in the space
of prefix mappings. If the number of replicas in the input history is fixed, then
the number of possible prefix mappings is polynomial in the size of the history,
which implies that the search can be done in polynomial time.

Let h = (Op, ro) be a history. To simplify the notations, we assume that the
replica order is a union of sequences, each sequence representing the operations
issued on the same replica. Therefore, each operation o ∈ Op is associated with a
replica identifier rep(o) ∈ [1..nh], where nh is the number of replicas in h.

14

A prefix of h is a set of operation Op′ ⊆ Op such that all the ro predecessors
of operations in Op′ are also in Op′, i.e., ∀o ∈ Op. ro−1(o) ∈ Op. Note that the
union of two prefixes of h is also a prefix of h. The last operation of replica i in
a prefix Op′ is the ro-maximal operation o with rep(o) = i included in Op′. A
prefix Op′ is called valid if (Op′, ro′), where ro′ is the projection of ro on Op′, is
admitted by the replicated counter.

A prefix map is a mapping m which associates a prefix of h to each replica
i ∈ [1..nh]. Intuitively, a prefix map defines for each replica i the set of operations
which are “known” to i, i.e., happen-before the last operation of i in its prefix.
Formally, a prefix map m is included in a happens-before relation hb, denoted by
m ⊆ hb, if for each replica i ∈ [1..nh], hb(o, oi) for each operation in o ∈ m(i)\{oi},
where oi is the last operation of i in m(i). We call oi the last operation of i in m,
and denoted it by lasti(m). A prefix map m is valid if it associates a valid prefix
to each replica, and complete if it associates the whole history h to each replica i.

Algorithm 3 lists our algorithm for checking consistency of replicated counter
histories. It is defined as a recursive procedure checkCounter that searches for
a sequence of valid extensions of a given prefix map (initially, this prefix map
is empty) until it becomes complete. The axiom RetvalCounter is enforced
whenever extending the prefix map with a new read operation (when the last
operation of a replica i is “advanced” to a read operation). The following theorem
states of the correctness of the algorithm.
Theorem 4. checkCounter(h, ∅, ∅) returns true iff the input history is consistent.

When the number of replicas is fixed, the number of prefix maps becomes
polynomial in the size of the history. This follows from the fact that prefixes are
uniquely defined by their ro-maximal operations, whose number is fixed.
Corollary 2. The admissibility problem for replicated counters is polynomial-
time when the number of replicas is fixed.

6 Polynomial-Time Algorithms for Sets and Flags

While Theorem 1 shows that the admissibility problem is NP-complete for
replicated sets and flags even if the number of replicas is fixed, we show that this
problem becomes polynomial time when additionally, the number of values added
to the set, or the number of flags, is also fixed. Note that this doesn’t limit the
number of operations in the input history which can still be arbitrarily large. In
the following, we focus on the Add-Wins Set, the other cases being very similar.

We propose an algorithm for checking consistency which is actually an ex-
tension of the one presented in Section 5 for replicated counters. The additional
complexity in checking consistency for the Add-Wins Set comes from the validity
of contains(x) return values which requires identifying the maximal predecessors
in the happens-before relation that add or remove x (which are not necessarily
the maximal hb-predecessors all-together). In the case of counters, it was enough
just to count happens-before predecessors. Therefore, we extend the algorithm for
replicated counters such that along with the prefix map, we also keep track of the
hb-maximal add(x) and remove(x) operations for each element x and each replica

15

i. When extending a prefix map with a contains operation, these hb-maximal
operations (which define a witness for the read-from relation) are enough to
verify the RetValSet axiom. Extending the prefix of a replica with an add
or remove operation (issued on the same replica), or by merging the prefix of
another replica, may require an update of these hb-maximal predecessors.

When the number of replicas and elements are fixed, the number of read-
from maps is polynomial in the size of the history — recall that the number of
operations associated by a read-from map to a replica and set element is bounded
by the number of replicas. Combined with the number of prefix maps being
polynomial when the number of replicas is fixed, we obtain the following result.

Theorem 5. Checking whether a history is admitted by the Add-Wins Set,
Remove-Wins Set, Enable-Wins Flag, or the Disable-Wins Flag is polynomial
time provided that the number of replicas and elements/flags is fixed.

7 Related Work

Many have considered consistency models applicable to CRDTs, including causal
consistency [26], sequential consistency [27], linearizability [24], session con-
sistency [35], eventual consistency [36], and happens-before consistency [29].
Burckhardt et al. [8, 11] propose a unifying framework to formalize these models.
Many have also studied the complexity of verifying data-type agnostic notions
of consistency, including serializability, sequential consistency and linearizabil-
ity [30, 20, 1, 2, 18, 4, 22], as well as causal consistency [6]. Our definition of
the replicated LWW register corresponds to the notion of causal convergence
in [6]. This work studies the complexity of the admissibility problem for the
replicated LWW register. It shows that this problem is NP-complete in general
and polynomial time when each value is written only once. Our NP-completeness
result is stronger since it assumes a fixed number of replicas, and our algorithm for
the case of unique values is more general and can be applied uniformly to MVR
and RGA. While Bouajjani et al. [5, 14] consider the complexity for individual
linearizable collection types, we are the first to establish (in)tractability of indi-
vidual replicated data types. Others have developed effective consistency checking
algorithms for sequential consistency [23, 31, 3, 9], serializability [12, 18, 21, 17],
linearizability [37, 10, 16, 28], and even weaker notions like eventual consis-
tency [7] and sequential happens-before consistency [13, 15]. In contrast, we are
the first to establish precise polynomial-time algorithms for runtime verification
of replicated data types.

8 Conclusion

By developing novel logical characterizations of replicated data types, reductions
from propositional satisfiability checking, and tractable algorithms, we have
established a frontier of tractability for checking consistency of replicated data
types. As far as we are aware, our results are the first to characterize the
asymptotic complexity consistency checking for CRDTs.

16

References

[1] Alur, R., McMillan, K.L., Peled, D.A.: Model-checking of correctness con-
ditions for concurrent objects. Inf. Comput. 160(1-2), 167–188 (2000).
https://doi.org/10.1006/inco.1999.2847, https://doi.org/10.1006/inco.
1999.2847

[2] Bingham, J.D., Condon, A., Hu, A.J.: Toward a decidable notion
of sequential consistency. In: Rosenberg, A.L., auf der Heide, F.M.
(eds.) SPAA 2003: Proceedings of the Fifteenth Annual ACM Sym-
posium on Parallelism in Algorithms and Architectures, June 7-9,
2003, San Diego, California, USA (part of FCRC 2003). pp. 304–313.
ACM (2003). https://doi.org/10.1145/777412.777467, https://doi.org/
10.1145/777412.777467

[3] Bingham, J.D., Condon, A., Hu, A.J., Qadeer, S., Zhang, Z.: Automatic
verification of sequential consistency for unbounded addresses and data
values. In: Alur, R., Peled, D.A. (eds.) Computer Aided Verification, 16th
International Conference, CAV 2004, Boston, MA, USA, July 13-17, 2004,
Proceedings. Lecture Notes in Computer Science, vol. 3114, pp. 427–439.
Springer (2004). https://doi.org/10.1007/978-3-540-27813-9_33, https://
doi.org/10.1007/978-3-540-27813-9_33

[4] Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: Verifying concurrent pro-
grams against sequential specifications. In: Felleisen, M., Gardner, P. (eds.)
Programming Languages and Systems - 22nd European Symposium on
Programming, ESOP 2013, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March
16-24, 2013. Proceedings. Lecture Notes in Computer Science, vol. 7792, pp.
290–309. Springer (2013). https://doi.org/10.1007/978-3-642-37036-6_17,
https://doi.org/10.1007/978-3-642-37036-6_17

[5] Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: On reducing lineariz-
ability to state reachability. Inf. Comput. 261(Part), 383–400 (2018).
https://doi.org/10.1016/j.ic.2018.02.014, https://doi.org/10.1016/j.ic.
2018.02.014

[6] Bouajjani, A., Enea, C., Guerraoui, R., Hamza, J.: On verifying causal
consistency. In: Castagna, G., Gordon, A.D. (eds.) Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, January 18-20, 2017. pp. 626–638. ACM (2017),
http://dl.acm.org/citation.cfm?id=3009888

[7] Bouajjani, A., Enea, C., Hamza, J.: Verifying eventual consistency of op-
timistic replication systems. In: Jagannathan, S., Sewell, P. (eds.) The
41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’14, San Diego, CA, USA, January 20-21,
2014. pp. 285–296. ACM (2014). https://doi.org/10.1145/2535838.2535877,
https://doi.org/10.1145/2535838.2535877

[8] Burckhardt, S.: Principles of eventual consistency. Foundations
and Trends in Programming Languages 1(1-2), 1–150 (2014).

17

https://doi.org/10.1561/2500000011, https://doi.org/10.1561/
2500000011

[9] Burckhardt, S., Alur, R., Martin, M.M.K.: Checkfence: checking con-
sistency of concurrent data types on relaxed memory models. In: Fer-
rante, J., McKinley, K.S. (eds.) Proceedings of the ACM SIGPLAN
2007 Conference on Programming Language Design and Implementa-
tion, San Diego, California, USA, June 10-13, 2007. pp. 12–21. ACM
(2007). https://doi.org/10.1145/1250734.1250737, https://doi.org/10.
1145/1250734.1250737

[10] Burckhardt, S., Dern, C., Musuvathi, M., Tan, R.: Line-up: a complete and
automatic linearizability checker. In: Zorn, B.G., Aiken, A. (eds.) Proceedings
of the 2010 ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2010, Toronto, Ontario, Canada, June 5-10,
2010. pp. 330–340. ACM (2010). https://doi.org/10.1145/1806596.1806634,
https://doi.org/10.1145/1806596.1806634

[11] Burckhardt, S., Gotsman, A., Yang, H., Zawirski, M.: Replicated data types:
specification, verification, optimality. In: Jagannathan, S., Sewell, P. (eds.)
The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’14, San Diego, CA, USA, January 20-21,
2014. pp. 271–284. ACM (2014). https://doi.org/10.1145/2535838.2535848,
https://doi.org/10.1145/2535838.2535848

[12] Cohen, A., O’Leary, J.W., Pnueli, A., Tuttle, M.R., Zuck, L.D.: Verifying
correctness of transactional memories. In: Formal Methods in Computer-
Aided Design, 7th International Conference, FMCAD 2007, Austin, Texas,
USA, November 11-14, 2007, Proceedings. pp. 37–44. IEEE Computer Society
(2007). https://doi.org/10.1109/FAMCAD.2007.40, https://doi.org/10.
1109/FAMCAD.2007.40

[13] Emmi, M., Enea, C.: Monitoring weak consistency. In: Chockler, H.,
Weissenbacher, G. (eds.) Computer Aided Verification - 30th Interna-
tional Conference, CAV 2018, Held as Part of the Federated Logic Con-
ference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part I.
Lecture Notes in Computer Science, vol. 10981, pp. 487–506. Springer
(2018). https://doi.org/10.1007/978-3-319-96145-3_26, https://doi.org/
10.1007/978-3-319-96145-3_26

[14] Emmi, M., Enea, C.: Sound, complete, and tractable linearizability mon-
itoring for concurrent collections. PACMPL 2(POPL), 25:1–25:27 (2018).
https://doi.org/10.1145/3158113, https://doi.org/10.1145/3158113

[15] Emmi, M., Enea, C.: Weak-consistency specification via visibility relaxation.
PACMPL 3(POPL), 60:1–60:28 (2019), https://dl.acm.org/citation.
cfm?id=3290373

[16] Emmi, M., Enea, C., Hamza, J.: Monitoring refinement via symbolic
reasoning. In: Grove, D., Blackburn, S. (eds.) Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, Portland, OR, USA, June 15-17, 2015. pp. 260–269. ACM
(2015). https://doi.org/10.1145/2737924.2737983, https://doi.org/10.
1145/2737924.2737983

18

[17] Emmi, M., Majumdar, R., Manevich, R.: Parameterized verification of
transactional memories. In: Zorn, B.G., Aiken, A. (eds.) Proceedings of
the 2010 ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2010, Toronto, Ontario, Canada, June 5-10,
2010. pp. 134–145. ACM (2010). https://doi.org/10.1145/1806596.1806613,
https://doi.org/10.1145/1806596.1806613

[18] Farzan, A., Madhusudan, P.: Monitoring atomicity in concurrent pro-
grams. In: Gupta, A., Malik, S. (eds.) Computer Aided Verification,
20th International Conference, CAV 2008, Princeton, NJ, USA, July 7-
14, 2008, Proceedings. Lecture Notes in Computer Science, vol. 5123,
pp. 52–65. Springer (2008). https://doi.org/10.1007/978-3-540-70545-1_8,
https://doi.org/10.1007/978-3-540-70545-1_8

[19] Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman (1979)

[20] Gibbons, P.B., Korach, E.: Testing shared memories. SIAM J. Comput. 26(4),
1208–1244 (1997). https://doi.org/10.1137/S0097539794279614, https://
doi.org/10.1137/S0097539794279614

[21] Guerraoui, R., Henzinger, T.A., Jobstmann, B., Singh, V.: Model check-
ing transactional memories. In: Gupta, R., Amarasinghe, S.P. (eds.) Pro-
ceedings of the ACM SIGPLAN 2008 Conference on Programming Lan-
guage Design and Implementation, Tucson, AZ, USA, June 7-13, 2008. pp.
372–382. ACM (2008). https://doi.org/10.1145/1375581.1375626, https:
//doi.org/10.1145/1375581.1375626

[22] Hamza, J.: On the complexity of linearizability. In: Bouajjani, A., Fau-
connier, H. (eds.) Networked Systems - Third International Conference,
NETYS 2015, Agadir, Morocco, May 13-15, 2015, Revised Selected Pa-
pers. Lecture Notes in Computer Science, vol. 9466, pp. 308–321. Springer
(2015). https://doi.org/10.1007/978-3-319-26850-7_21, https://doi.org/
10.1007/978-3-319-26850-7_21

[23] Henzinger, T.A., Qadeer, S., Rajamani, S.K.: Verifying sequential consistency
on shared-memory multiprocessor systems. In: Halbwachs, N., Peled, D.A.
(eds.) Computer Aided Verification, 11th International Conference, CAV
’99, Trento, Italy, July 6-10, 1999, Proceedings. Lecture Notes in Computer
Science, vol. 1633, pp. 301–315. Springer (1999). https://doi.org/10.1007/3-
540-48683-6_27, https://doi.org/10.1007/3-540-48683-6_27

[24] Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concur-
rent objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990).
https://doi.org/10.1145/78969.78972, https://doi.org/10.1145/78969.
78972

[25] Kingsbury, K.: Jepsen: Distributed systems safety research (2016), https:
//jepsen.io

[26] Lamport, L.: Time, clocks, and the ordering of events in a
distributed system. Commun. ACM 21(7), 558–565 (1978).
https://doi.org/10.1145/359545.359563, https://doi.org/10.1145/
359545.359563

19

[27] Lamport, L.: How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Trans. Computers 28(9), 690–691 (1979).
https://doi.org/10.1109/TC.1979.1675439, https://doi.org/10.1109/TC.
1979.1675439

[28] Lowe, G.: Testing for linearizability. Concurrency and Computation: Practice
and Experience 29(4) (2017). https://doi.org/10.1002/cpe.3928, https://
doi.org/10.1002/cpe.3928

[29] Manson, J., Pugh, W., Adve, S.V.: The java memory model. In: Pals-
berg, J., Abadi, M. (eds.) Proceedings of the 32nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
2005, Long Beach, California, USA, January 12-14, 2005. pp. 378–391.
ACM (2005). https://doi.org/10.1145/1040305.1040336, https://doi.org/
10.1145/1040305.1040336

[30] Papadimitriou, C.H.: The serializability of concurrent database updates.
J. ACM 26(4), 631–653 (1979). https://doi.org/10.1145/322154.322158,
https://doi.org/10.1145/322154.322158

[31] Qadeer, S.: Verifying sequential consistency on shared-memory multiproces-
sors by model checking. IEEE Trans. Parallel Distrib. Syst. 14(8), 730–741
(2003). https://doi.org/10.1109/TPDS.2003.1225053, https://doi.org/10.
1109/TPDS.2003.1225053

[32] Roh, H., Jeon, M., Kim, J., Lee, J.: Replicated abstract data types: Building
blocks for collaborative applications. J. Parallel Distrib. Comput. 71(3),
354–368 (2011). https://doi.org/10.1016/j.jpdc.2010.12.006, https://doi.
org/10.1016/j.jpdc.2010.12.006

[33] Shapiro, M., Preguiça, N.M., Baquero, C., Zawirski, M.: Conflict-free repli-
cated data types. In: Défago, X., Petit, F., Villain, V. (eds.) Stabiliza-
tion, Safety, and Security of Distributed Systems - 13th International
Symposium, SSS 2011, Grenoble, France, October 10-12, 2011. Proceed-
ings. Lecture Notes in Computer Science, vol. 6976, pp. 386–400. Springer
(2011). https://doi.org/10.1007/978-3-642-24550-3_29, https://doi.org/
10.1007/978-3-642-24550-3_29

[34] Shapiro, M., Preguiça, N.M., Baquero, C., Zawirski, M.: Convergent and
commutative replicated data types. Bulletin of the EATCS 104, 67–88 (2011),
http://eatcs.org/beatcs/index.php/beatcs/article/view/120

[35] Terry, D.B., Demers, A.J., Petersen, K., Spreitzer, M., Theimer, M.,
Welch, B.B.: Session guarantees for weakly consistent replicated data.
In: Proceedings of the Third International Conference on Parallel
and Distributed Information Systems (PDIS 94), Austin, Texas, USA,
September 28-30, 1994. pp. 140–149. IEEE Computer Society (1994).
https://doi.org/10.1109/PDIS.1994.331722, https://doi.org/10.1109/
PDIS.1994.331722

[36] Terry, D.B., Theimer, M., Petersen, K., Demers, A.J., Spreitzer, M.,
Hauser, C.: Managing update conflicts in bayou, a weakly connected
replicated storage system. In: Jones, M.B. (ed.) Proceedings of the Fif-
teenth ACM Symposium on Operating System Principles, SOSP 1995, Cop-
per Mountain Resort, Colorado, USA, December 3-6, 1995. pp. 172–183.

20

ACM (1995). https://doi.org/10.1145/224056.224070, https://doi.org/
10.1145/224056.224070

[37] Wing, J.M., Gong, C.: Testing and verifying concurrent ob-
jects. J. Parallel Distrib. Comput. 17(1-2), 164–182 (1993).
https://doi.org/10.1006/jpdc.1993.1015, https://doi.org/10.1006/
jpdc.1993.1015

[38] Wolper, P.: Expressing interesting properties of programs in proposi-
tional temporal logic. In: Conference Record of the Thirteenth An-
nual ACM Symposium on Principles of Programming Languages, St.
Petersburg Beach, Florida, USA, January 1986. pp. 184–193. ACM
Press (1986). https://doi.org/10.1145/512644.512661, https://doi.org/
10.1145/512644.512661

21

