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Abstract. We present a method for proving that a program running
under the Total Store Ordering (TSO) memory model is robust, i.e., all
its TSO computations are equivalent to computations under the Sequen-
tial Consistency (SC) semantics. This method is inspired by Lipton’s
reduction theory for proving atomicity of concurrent programs. For pro-
grams which are not robust, we introduce an abstraction mechanism
that allows to construct robust programs over-approximating their TSO
semantics. This enables the use of proof methods designed for the SC
semantics in proving invariants that hold on the TSO semantics of a
non-robust program. These techniques have been evaluated on a large
set of benchmarks using the infrastructure provided by CIVL, a generic
tool for reasoning about concurrent programs under the SC semantics.

1 Introduction

A classical memory model for shared-memory concurrency is Sequential Con-
sistency [16] (SC), where the actions of different threads are interleaved while
the program order between actions of each thread is preserved. For performance
reasons, modern multiprocessors implement weaker memory models, e.g., Total
Store Ordering (TSO) [20] in x86 machines, which relax the program order. For
instance, the main feature of TSO is the write-to-read relaxation, which allows
reads to overtake writes. This relaxation reflects the fact that writes are buffered
before being flushed non-deterministically to the main memory.

Nevertheless, most programmers usually assume that memory accesses hap-
pen instantaneously and atomically like in the SC memory model. This assump-
tion is safe for data-race free programs [3]. However, many programs employing
lock-free synchronization are not data-race free, e.g., programs implementing sy-
nchronization operations and libraries implementing concurrent objects. In most
cases, these programs are designed to be robust against relaxations, i.e., they
admit the same behaviors as if they were run under SC. Memory fences must
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be included appropriately in programs in order to prevent non-SC behaviors.
Getting such programs right is a notoriously difficult and error-prone task. Ro-
bustness can also be used as a proof method, that allows to reuse the existing
SC verification technology. Invariants of a robust program running under SC are
also valid for the TSO executions. Therefore, the problem of checking robustness
of a program against relaxations of a memory model is important.

In this paper, we address the problem of checking robustness in the case of
TSO. We present a methodology for proving robustness which uses the concepts
of left/right mover in Lipton’s reduction theory [17]. Intuitively, a program sta-
tement is a left (resp., right) mover if it commutes to the left (resp., right) with
respect to the statements in the other threads. These concepts have been used
by Lipton [17] to define a program rewriting technique which enlarges the atomic
blocks in a given program while preserving the same set of behaviors. In essence,
robustness can also be seen as an atomicity problem: every write statement cor-
responds to two events, inserting the write into the buffer and flushing the write
from the buffer to the main memory, which must be proved to happen atomi-
cally, one after the other. However, differently from Lipton’s reduction theory,
the events that must be proved atomic do not correspond syntactically to dif-
ferent statements in the program. This leads to different uses of these concepts
which cannot be seen as a direct instantiation of this theory.

In case programs are not robust, or they cannot be proven robust using our
method, we define a program abstraction technique that roughly, makes reads
non-deterministic (this follows the idea of combining reduction and abstraction
introduced in [12]). The non-determinism added by this abstraction can lead to
programs which can be proven robust using our method. Then, any invariant
(safety property) of the abstraction, which is valid under the SC semantics, is
also valid for the TSO semantics of the original program. As shown in our ex-
periments, this abstraction leads in some cases to programs which reach exactly
the same set of configurations as the original program (but these configurations
can be reached in different orders), which implies no loss of precision.

We tested the applicability of the proposed reduction and abstraction based
techniques on an exhaustive benchmark suite containing 34 challenging programs
(from [2] and [7]). These techniques were precise enough for proving robustness
of 32 of these programs. One program (presented in Figure 3) is not robust, and
required abstraction in order to derive a robust over-approximation. There is only
one program which cannot be proved robust using our techniques (although it is
robust). We believe however that an extension of our abstraction mechanism to
atomic read-write instructions will be able to deal with this case. We leave this
question for future work.

An extended version of this paper with missing proofs can be found at [8].

2 Overview

The TSO memory model allows strictly more behaviors than the classic SC me-
mory model: writes are first stored in a thread-local buffer and non-deterministically



procedure send (){
y := r1 ;
x := 1 ;

}

procedure recv ( ){
do{

r1 := x ;
}while ( r1 == 0 ) ;
r2 := y ;

}
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Fig. 1. An example message passing program and a sample trace. Edges of the trace
shows the happens before order of global accesses and they are simplified by applying
transitive reduction.

flushed into the shared memory at a later time (also, the write buffers are acces-
sed first when reading a shared variable). However, in practice, many programs
are robust, i.e., they have exactly the same behaviors under TSO and SC. Robus-
tness implies for instance, that any invariant proved under the SC semantics is
also an invariant under the TSO semantics. We describe in the following a sound
methodology for checking that a program is robust, which avoids modeling and
verifying TSO behaviors. Moreover, for non-robust programs, we show an ab-
straction mechanism that allows to obtain robust programs over-approximating
the behaviors of the original program.

As a first example, consider the simple “message passing” program in Fi-
gure 1. The send method sets the value of the “communication” variable y to
some predefined value from register r1. Then, it raises a flag by setting the vari-
able x to 1. Another thread executes the method recv which waits until the flag
is set and then, it reads y (and stores the value to register r2). This program is
robust, TSO doesn’t enable new behaviors although the writes may be delayed.
For instance, consider the following TSO execution (we assume that r1 = 42):

(t1, isu) (t1, isu)(t1, com, y, 42) (t1, com, x, 1)

(t2, rd, x, 0) (t2, rd, x, 0) (t2, rd, x, 1)(t2, rd, y, 42)

The actions of each thread (t1 or t2) are aligned horizontally, they are either issue
actions (isu) for writes being inserted into the local buffer (e.g., the first (t1, isu)
represents the write of y being inserted to the buffer), commit actions (com) for
writes being flushed to the main memory (e.g., (t1, com, y, 42) represents the
write y := 42 being flushed and executed on the shared memory), and read
actions for reading values of shared variables. Every assignment generates two
actions, an issue and a commit. The issue action is “local”, it doesn’t enable or
disable actions of other threads.

The above execution can be “mimicked” by an SC execution. If we had not
performed the isu actions of t1 that early but delayed them until just before
their corresponding com actions, we would obtain a valid SC execution of the
same program with no need to use store buffers:

(t1, wr, y, 42) (t1, wr, x, 1)

(t2, rd, x, 0) (t2, rd, x, 0) (t2, rd, x, 1)(t2, rd, y, 42)

Above, consecutive isu and com actions are combined into a single write action
(wr). This intuition corresponds to an equivalence relation between TSO exe-
cutions and SC executions: if both executions contain the same actions on the



shared variables (performing the same accesses on the same variables with the
same values) and the order of actions on the same variable are the same for both
executions, we say that these executions have the same trace [21], or that they
are trace-equivalent. For instance, both the SC and TSO executions given above
have the same trace given in Figure 1. The notion of trace is used to formalize
robustness for programs running under TSO [7]: a program is called robust when
every TSO execution has the same trace as an SC execution.

Our method for showing robustness is based on proving that every TSO exe-
cution can be permuted to a trace-equivalent SC execution (where issue actions
are immediately followed by the corresponding commit actions). We say that an
action α moves right until another action β in an execution if we can swap α
with every later action until β while preserving the feasibility of the execution
(e.g., not invalidating reads and keeping the actions enabled). We observe that
if α moves right until β then the execution obtained by moving α just before
β has the same trace with the initial execution. We also have the dual notion
of moves-left with a similar property. As a corollary, if every issue action moves
right until the corresponding commit action or every commit action moves left
until the corresponding issue action, we can find an equivalent SC execution. For
our execution above, the issue actions of the first thread move right until their
corresponding com actions. Note that there is a commit action which doesn’t
move left: moving (t1, com, x, 1) to the left of (t2, rd, x, 0) is not possible since it
would disable this read.

In general, issue actions and other thread local actions (e.g. statements using
local registers only) move right of other threads’ actions. Moreover, issue actions
(t, isu) move right of commit actions of the same thread that correspond to writes
issued before (t, isu). For the message passing program, the issue actions move
right until their corresponding commits in all TSO executions since commits
cannot be delayed beyond actions of the same thread (for instance reads). Hence,
we can safely deduce that the message passing program is robust. However, this
reasoning may fail when an assignment is followed by a read of a shared variable
in the same thread.

procedure f oo ( ){
x := 1 ;
r1 := z ;
fence
r2 := y ;

}

procedure bar ( ){
y := 1 ;
fence
r3 := x ;

}

Fig. 2. An example store buffering program.

Consider the “store-buffering”
like program in Figure 2. This
program is also robust. Howe-
ver, the issue action generated
by x := 1 might not not always
move right until the correspon-

ding commit. Consider the following execution (we assume that initially, z = 5):

(t1, isu) (t1, rd, z, 5) (t1, com, x, 1) . . .

(t2, isu) (t2, com, y, 1)(t2, τ)(t2, rd, x, 0) . . .

Here, we assumed that t1 executes foo and t2 executes bar. The fence in-
struction generates an action τ . The first issue action of t1 cannot be moved
to the right until the corresponding commit action since this would violate the
program order. Moreover, the corresponding commit action does not move left
due to the read action of t2 on x (which would become infeasible).



The key point here is that a later read action by the same thread, (t1, rd, z, 5),
doesn’t allow to move the issue action to the right (until the commit). However,
this read action moves to the right of other threads actions. So, we can construct
an equivalent SC execution by first moving the read action right after the commit
(t1, com, x, 1) and then move the issue action right until the commit action.

In general, we say that an issue (t, isu) of a thread t moves right until the
corresponding commit if each read action of t after (t, isu) can move right until
the next action of t that follows both the read and the commit. Actually, this
property is not required for all such reads. The read actions that follow a fence
cannot happen between the issue and the corresponding commit actions. For
instance, the last read action of foo cannot happen between the first issue of
foo and its corresponding commit action. Such reads that follow a fence are not
required to move right. In addition, we can omit the right-moves check for read
actions that read from the thread local buffer (see Section 3 for more details).

In brief, our method for checking robustness does the following for every write
instruction (assignment to a shared variable): either the commit action of this
write moves left or the actions of later read instructions that come before a fence
move right in all executions. This semantic condition can be checked using the
concept of movers [18] as follows: every write instruction is either a left-mover
or all the read instructions that come before a fence and can be executed later
than the write (in an SC execution) are right-movers. Note that this requires no
modeling and verification of TSO executions.

For non-robust programs that might reach different configurations under
TSO than under SC, we define an abstraction mechanism that replaces read
instructions with “non-deterministic” reads that can read more values than the
original instructions. The abstracted program has more behaviors than the ori-
ginal one (under both SC and TSO), but it may turn to be robust. When it
is robust, we get that any property of its SC semantics holds also for the TSO
semantics of the original program.

Consider the work stealing queue implementation in Figure 3. A queue is
represented with an array items. Its head and tail indices are stored in the shared
variables H and T, respectively. There are three procedures that can operate on
this queue: any number of threads may execute the steal method and remove
an element from the head of the queue, and a single unique thread may execute
put or take methods nondeterministically. The put method inserts an element
at the tail index and the take method removes an element from the tail index.

This program is not robust. If there is a single element in the queue and the
take method takes it by delaying its writes after some concurrent steals, one
of the concurrent steals might also remove this last element. Popping the same
element twice is not possible under SC, but it is possible under TSO semantics.
However, we can still prove some properties of this program under TSO. Our
robustness check fails on this program because the writes of the worker thread
(executing the put and take methods) are not left movers and the read from
the variable H in the take method is not a right mover.This read is not a right
mover w.r.t. successful CAS actions of the steal procedure that increment H.



var H,T, items ;

procedure s t e a l ( ){
local h , t , r e s ;

L1 : h := H;
t := T;
i f (h ≥ t )

return −1;
r e s := items [ h ] ;
i f ( cas (H, h , h+1) )

return r e s ;
else

goto L1 ;
}

procedure put ( var e l t ){
local t ;
t := T;
items [ t ] := e l t ;
T := t+1;

}

procedure take ( ){
local h , t , r e s ;

L1 : t := T;
T := t−1;
h := H; //havoc (h , h ≤ H) ;
i f ( t < h ){

T := h ;
return −1;

}
r e s := items [ t ] ;
i f ( t > h )

return r e s ;
T := h+1;
i f ( cas (H, h , h+1) )

return task ;
else

goto L1 ;
}

Fig. 3. Work Stealing Queue.

We apply an abstraction on the instruction of the take method that reads
from H such that instead of reading the exact value of H, it can read any value
less than or equal to the value of H. We write this instruction as havoc(h, h ≤ H)
(it assigns to h a nondeterministic value satisfying the constraint h ≤ H). Note
that this abstraction is sound in the sense that it reaches more states under
SC/TSO than the original program.

The resulting program is robust. The statement havoc(h, h ≤ H) is a right
mover w.r.t. successful CAS actions of the stealer threads. Hence, for all the
write instructions, the reachable read instructions become right movers and our
check succeeds. The abstract program satisfies the specification of an idempotent
work stealing queue (elements can be dequeued multiple times) which implies
that the original program satisfies this specification as well.

3 TSO Robustness

We present the syntax and the semantics of a simple programming language
used to state our results. We define both the TSO and the SC semantics, an
abstraction of executions called trace [21] that intuitively, captures the happens-
before relation between actions in an execution, and the notion of robustness.
Syntax. We consider a simple programming language which is defined in Fi-
gure 4. Each program P has a finite number of shared variables −→x and a finite
number of threads (

−→
t ). Also, each thread ti has a finite set of local registers

(−→ri ) and a start label l0i . Bodies of the threads are defined as finite sequences
of labelled instructions. Each instruction is followed by a goto statement which
defines the evolution of the program counter. Note that multiple instructions
can be assigned to the same label which allows us to write non-deterministic
programs and multiple goto statements can direct the control to the same label



〈prog〉 ::= program 〈pid〉 vars 〈var〉∗ 〈thread〉∗

〈thread〉 ::= thread 〈tid〉 regs 〈reg〉∗ init 〈label〉 begin 〈linst〉∗ end

〈linst〉 ::= 〈label〉: 〈inst〉; goto 〈label〉;

〈inst〉 ::= 〈var〉 := 〈expr〉
| 〈reg〉 := 〈expr〉
| 〈reg〉 := 〈var〉
| fence

| 〈reg〉 := cas(〈var〉, 〈expr〉, 〈expr〉)
| skip

| assume 〈bexpr〉

Fig. 4. Syntax of the programs. The star (∗) indicates zero or more occurrences of
the preceding element. 〈pid〉, 〈tid〉, 〈var〉, 〈reg〉 and 〈label〉 are elements of their gi-
ven domains representing the program identifiers, thread identifiers, shared variables,
registers and instruction labels, respectively. 〈expr〉 is an arithmetic expression over
〈reg〉∗. Similarly, 〈bexpr〉 is a boolean expression over 〈reg〉∗.

which allows us to mimic imperative constructs like loops and conditionals. An
assignment to a shared variable 〈var〉 := 〈expr〉 is called a write instruction.
Also, an instruction of the form 〈reg〉 := 〈var〉 is called a read instruction.

Instructions can read from or write to shared variables or registers. Each
instruction accesses at most one shared variable. We assume that the program
P comes with a domain D of values that are stored in variables and registers,
and a set of functions F used to calculate arithmetic and boolean expressions.

The fence statement empties the buffer of the executing thread. The cas

(compare-and-swap) instruction checks whether the value of its input variable
is equal to its second argument. If so, it writes sets third argument as the value
of the variable and returns true. Otherwise, it returns false. In either case, cas
empties the buffer immediately after it executes. The assume statement allows
us to check conditions. If the boolean expression it contains holds at that state,
it behaves like a skip. Otherwise, the execution blocks. Formal description of
the instructions are given in Figure 5.
TSO Semantics. Under the TSO memory model, each thread maintains a local
queue to buffer write instructions. A state s of the program is a triple of the
form (pc,mem, buf). Let L be the set of available labels in the program P.

Then, pc :
−→
t → L shows the next instruction to be executed for each thread,

mem :
⋃
ti∈
−→
t
−→ri ∪−→x → D represents the current values in shared variables and

registers and buf :
−→
t → (−→x ×D)∗ represents the contents of the buffers.

There is a special initial state s0 = (pc0,mem0, buf0). At the beginning, each
thread ti points to its initial label l0i i.e., pc0(ti) = l0i . We assume that there is a
special default value 0 ∈ D. All the shared variables and registers are initiated as
0 i.e., mem0(x) = 0 for all x ∈

⋃
ti∈
−→
t
−→ri ∪−→x . Lastly, all the buffers are initially

empty i.e., buf0(ti) = ε for all ti ∈
−→
t .

The transition relation→TSO between program states is defined in Figure 5.
Transitions are labelled by actions. Each action is an element from

−→
t ×({τ, isu}∪



x := ae(−→rt) ∈ ins(pc(t)) v = eval(ae(−→rt)) x ∈ −→x

(pc,mem, buf)
(t,isu)−−−−−→TSO (pc′,mem, buf [t→ buf(t) ◦ 〈(x, v)〉)]

buf(t) = 〈(x, v)〉 ◦ buf ′ x ∈ −→x

(pc,mem, buf)
(t,com,x,v)−−−−−−−−→TSO (pc,mem, buf [t→ buf ′]

r := ae(−→rt) ∈ ins(pc(t)) v = eval(ae(−→rt)) r ∈ −→rt

(pc,mem, buf)
(t,τ)−−−→TSO (pc′,mem[r → v], buf)

r := x ∈ ins(pc(t)) x ∈ −→x v = mem(x) x /∈ varsOfBuf(buf(t)) r ∈ −→rt

(pc,mem, buf)
(t,rd,x,v)−−−−−−−→TSO (pc′,mem[r → v], buf)

r := x ∈ ins(pc(t)) x ∈ −→x buf = α ◦ 〈(x, v)〉 ◦ β x /∈ varsOfBuf(β) r ∈ −→rt

(pc,mem, buf)
(t,rd,x,v)−−−−−−−→TSO (pc′,mem[r → v], buf)

fence ∈ ins(pc(t)) buf(t) = ε

(pc,mem, buf)
(t,τ)−−−→TSO (pc′,mem, buf)

r := cas(x, ae1(
−→rt), ae2(−→rt)) ∈ ins(pc(t)) mem(x) = eval(ae1(

−→rt)) buf(t) = ε v = eval(ae2(
−→rt))

(pc,mem, buf)
(t,isu)(t,com,x,v)−−−−−−−−−−−−−→TSO (pc′,mem[r → 1][x→ v], buf)

r := cas(x, ae1(
−→rt), ae2(−→rt)) ∈ ins(pc(t)) mem(x) 6= eval(ae1(

−→rt)) buf(t) = ε v = mem(x)

(pc,mem, buf)
(t,rd,x,v)−−−−−−−→TSO (pc′,mem[r → 0], buf)

assume be(−→rt) ∈ ins(pc(t)) eval(be(−→rt)) = >

(pc,mem, buf)
(t,τ)−−−→TSO (pc′,mem, buf)

Fig. 5. The TSO Transition Relation. The function ins takes a label l and returns the
set of instructions labeled by l. We always assume that x ∈ −→x , r ∈ −→rt and pc′ = pc[t→
l′] where pc(t) : inst goto l′; is a labeled instruction of t and inst is the instruction
described at the beginning of the rule. The evaluation function eval calculates the
value of an arithmetic or boolean expression based on mem (ae stands for arithmetic
expression). Sequence concatenation is denoted by ◦. The function varsOfBuf takes
a sequence of pairs and returns the set consisting of the first fields of these pairs.

({com, rd}×−→x ×D)). Actions keep the information about the thread performing
the transition and the actual parameters of the reads and the writes to shared
variables. We are only interested in accesses to shared variables, therefore, other
transitions are labelled with τ as thread local actions.

A TSO execution of a program P is a sequence of actions π = π1, π2, . . . , πn
such that there exists a sequence of states σ = σ0, σ1, . . . , σn, σ0 = s0 is the
initial state of P and σi−1

πi−→ σi is a valid transition for any i ∈ {1, . . . , n}. We
assume that buffers are empty at the end of the execution.

SC Semantics. Under SC, a program state is a pair of the form (pc,mem)
where pc and mem are defined as above. Shared variables are read directly
from the memory mem and every write updates directly the memory mem.
To make the relationship between SC and TSO executions more obvious, every
write instruction generates isu and com actions which follow one another in the



execution (each isu is immediately followed by the corresponding com). Since
there are no write buffers, fence instructions have no effect under SC.

Traces and TSO Robustness. Consider a (TSO or SC) execution π of P. The
trace of π is a graph, denoted by Tr(π): Nodes of Tr(π) are actions of π except
the τ actions. In addition, isu and com actions are unified in a single node.
The isu action that puts an element into the buffer and the corresponding com
action that drains that element from the buffer correspond to the same node
in the trace. Edges of Tr(π) represent the happens before order (hb) between
these actions. The hb is union of four relations. The program order po keeps the
order of actions performed by the same thread excluding the com actions. The
store order so keeps the order of com actions on the same variable that write
different values1. The read-from relation, denoted by rf , relates a com action to
a rd action that reads its value. Lastly, the from-reads relation fr relates a rd
action to a com action that overwrites the value read by rd; it is defined as the
composition of rf and so.

We say that the program P is TSO robust if for any TSO execution π of P,
there exists an SC execution π′ such that Tr(π) = Tr(π′). It has been proven
that robustness implies that the program reaches the same valuations of the
shared memory under both TSO and SC [7].

4 A Reduction Theory for Checking Robustness

We present a methodology for checking robustness which builds on concepts
introduced in Lipton’s reduction theory [18]. This theory allows to rewrite a
given concurrent program (running under SC) into an equivalent one that has
larger atomic blocks. Proving robustness is similar in spirit in the sense that
one has to prove that issue and commit actions can happen together atomically.
However, differently from the original theory, these actions do not correspond
to different statements in the program (they are generated by the same write
instruction). Nevertheless, we show that the concepts of left/right movers can
be also used to prove robustness.

Movers. Let π = π1, . . . , πn be an SC execution. We say that the action πi moves
right (resp., left) in π if the sequence π1, . . . , πi−1, πi+1, πi, πi+2, . . . , πn (resp.,
π1, . . . , πi−2, πi, πi−1, πi+1 . . . , πn) is also a valid execution of P, the thread of πi
is different than the thread of πi+1 (resp., πi−1), and both executions reach to
the same end state σn. Since every issue action is followed immediately by the
corresponding commit action, an issue action moves right, resp., left, when the
commit action also moves right, resp., left, and vice-versa.

1 Our definition of store order deviates slightly from the standard definition which
relates any two writes writing on the same variable, independently of values. The
notion of TSO trace robustness induced by this change is slightly weaker than the
original definition, but still implies preservation of any safety property from the SC
semantics to the TSO semantics. The results concerning TSO robustness used in
this paper (Lemma 1) are also not affected by this change. See [8] for more details.



Let instOfπ be a function, depending on an execution π, which given an
action πi ∈ π, gives the labelled instruction that generated πi. Then, a labelled
instruction ` is a right (resp., left) mover if for all SC executions π of P and for
all actions πi of π such that instOf(πi) = `, πi moves right (resp., left) in π.

A labelled instruction is a non-mover if it is neither left nor right mover, and
it is a both mover if it is both left and right mover.

Reachability Between Instructions. An instruction `′ is reachable from the
instruction ` if ` and `′ both belong to the same thread and there exists an
SC execution π and indices 1 ≤ i < j ≤ |π| such that instOfπ(πi) = ` and
instOfπ(πj) = `′. We say that `′ is reachable from ` before a fence if πk is not an
action generated by a fence instruction in the same thread as `, for all i < k < j.
When ` is a write instruction and `′ a read instruction, we say that `′ is buffer-
free reachable from ` if πk is not an action generated by a fence instruction in
the same thread as ` or a write action on the same variable that `′ reads-from,
for all i < k < j.

Definition 1. We say that a write instruction `w is atomic if it is a left mover
or every read instruction `r buffer-free reachable from `w is a right mover. We
say that P is write atomic if every write instruction `w in P is atomic.

Note that all of the notions used to define write atomicity (movers and in-
struction reachability) are based on SC executions of the programs. The following
result shows that write atomicity implies robustness.

Theorem 1 (Soundness). If P is write atomic, then it is robust.

We will prove the contrapositive of the statement. For the proof, we need
the notion of minimal violation defined in [7]. A minimal violation is a TSO
execution in which the sum of the number of same thread actions between isu
and corresponding com actions for all writes is minimal. A minimal violation
is of the form π = π1, (t, isu), π2, (t, rd, y, ∗), π3, (t, com, x, ∗), π4 such that π1
is an SC execution, only t can delay com actions, the first delayed action is
the (t, com, x, ∗) action after π3 and it corresponds to (t, isu) after π1, π2 does
not contain any com or fence actions by t (writes of t are delayed until after
(t, rd, y, ∗)), (t, rd, y, ∗)→hb+ act for all act ∈ π3 ◦ {(t, com, x, ∗)} (isu and com
actions of other threads are counted as one action for this case), π3 doesn’t
contain any action of t, π4 contains only and all of the com actions of t that are
delayed in (t, isu) ◦ π2 and no com action in (t, com, x, ∗) ◦ π4 touches y.

Minimal violations are important for us because of the following property:

Lemma 1 (Completeness of Minimal Violations [7]). The program P is
robust iff it does not have a minimal violation.

Before going into the proof of Theorem 1, we define some notations. Let π
be a sequence representing an execution or a fragment of it. Let Q be a set of
thread identifiers. Then, π|Q is the projection of π on actions from the threads
in Q. Similarly, π|n is the projection of π on first n elements for some number
n. sz(π) gives the length of the sequence π. We also define a product operator



⊗. Let π and ρ be some execution fragments. Then, π ⊗ ρ is same as π except
that if the ith isu action of π is not immediately followed by a com action by
the same thread, then ith com action of ρ is inserted after this isu. The product
operator helps us to fill unfinished writes in one execution fragment by inserting
commit actions from another fragment immediately after the issue actions.

Proof (Theorem 1). Assume P is not robust. Then, there exists a minimal vio-
lation π = π1, α, π2, θ, π3, β, π4 satisfying the conditions described before, where
α = (t, isu), θ = (t, rd, y, ∗) and β = (t, com, x, ∗). Below, we show that the
write instruction w = instOf(α) is not atomic.

1. w is not a left mover.
1.1. ρ = π1, π2|−→t \{t}, π3|−→t \{t}|sz(π3|−→t \{t})−1, γ, (α, β) is an SC execution of

P where γ is the last action of π3. γ is a read or write action on x
performed by a thread t′ other than t and value of γ is different from
what is written by β.

1.1.1. ρ is an SC execution because t never changes value of a shared va-
riable in π2 and π3. So, even we remove actions of t in those parts,
actions of other threads are still enabled. Since other threads perform
only SC operations in π, π1, π2|−→t \{t}, π3|−→t \{t} is an SC execution.

From π, we also know that the first enabled action of t is α if we
delay the actions of t in π2 and π3.

1.1.2. The last action of π3 is γ. By definition of a minimal violation, we
know that θ →hb+ α and π3 does not contain any action of t. So,
there must exist an action γ ∈ π3 such that either γ reads from x
and γ →fr β in π or γ writes to x and γ →st β in π. Moreover, γ
is the last action of π3 because if there are other actions after γ, we
can delete them and can obtain another minimal violation which is
shorter than π and hence contradict the minimality of π.

1.2. ρ′ = π1, π2|−→t \{t}, π3|−→t \{t}|sz(π3|−→t \{t})−1, (α, β), γ is an SC execution with

a different end state than ρ defined in 1.1 has or it is not an SC execution,
where instOf(γ′) = instOf(γ).

1.2.1. In the last state of ρ, x has the value written by β. If γ is a write
action on x, then x has a different value at the end of ρ′ due to the
definition of a minimal violation. If γ is a read action on x, then
it does not read the value written by β in ρ. However, γ reads this
value in ρ′ . Hence, ρ′ is not a valid SC execution.

2. There exists a read instruction r buffer-free reachable from w such that r is
not a right mover. We will consider two cases: Either there exists a rd action
of t on variable z in π2 such that there is a later write action by another
thread t′ on z in π2 that writes a different value or not. Moreover, z is not a
variable that is touched by the delayed commits in π4 i.e., it does not read
its value from the buffer.

2.1. We first evaluate the negation of above condition. Assume that for all
actions γ and γ′ such that γ occurs before γ′ in π2, either γ 6= (t, rd, z, vz)
or γ′ 6= (t′, isu)(t′, com, z, v′z). Then, r = instOf(θ) is not a right mover
and it is buffer-free reachable from w.



2.1.1. ρ = π1, π2|−→t \{t}, π2|{t} ⊗ π4, θ, θ
′ is a valid SC execution of P where

θ′ = (t′, isu)(t′, com, y, ∗) for some t 6= t′.

2.1.1.1. ρ is an SC execution. π1, π2|−→t \{t} is a valid SC execution since

t does not update value of a shared variable in π2. Moreover,
all of the actions of t become enabled after this sequence since t
never reads value of a variable updated by another thread in π2.
Lastly, the first action of π3 is enabled after this sequence.

2.1.1.2. The first action of π3 is θ′ = (t′, isu)(t′, com, y, ∗). Let θ′ be the
first action of π3. Since θ →hb θ

′ in π and θ′ is not an action
of t by definition of minimal violation, the only case we have is
θ →fr θ

′. Hence, θ′ is a write action on y that writes a different
value than θ reads.

2.1.1.3. r is buffer-free reachable from w. ρ is a SC execution, first action
of ρ after π1, π2|−→t \{t} is α, β; w = instOf((α, β)), r = instOf(θ)

and actions of t in ρ between α, β and θ are not instances of a
fence instruction or write to y.

2.1.2. ρ′ = π1, π2|−→t \{t}, π2|{t} ⊗ π4, θ
′, θ is not a valid SC execution.

2.1.2.1. In the last state of ρ, the value of y seen by t is the value read
in θ. It is different than the value written by θ′. However, at the
last state of ρ′, the value of y t sees must be the value θ′ writes.
Hence, ρ′ is not a valid SC execution.

2.2. Assume that there exists γ = (t, rd, z, vz) and γ′ = (t′, isu)(t′, com, z, v′z)
in π2. Then, r = instOf(γ) is not a right mover and r is buffer-free
reachable from w.

2.2.1. Let i be the index of γ and j be the index of γ′ in π2. Then, define
ρ = π1, π2|j−1|−→t \{t}, π2|i|{t} ⊗ π4, γ

′. ρ is an SC execution of P.

2.2.1.1. ρ is an SC execution. π1, π2|j−1|−→t \{t} prefix is a valid SC execu-

tion because t does not update any shared variable in π2. More-
over, all of the actions of t in π2|i|{t} ⊗ π4 become enabled after
this sequence since t never reads a value of a variable updated
by another thread in π2 and γ′ is the next enabled in π2 after
this sequence since it is a write action.

2.2.2. Let i and j be indices of γ and γ′ in π2 respectively. Define ρ′ =
π1, π2|j−1|−→t \{t}, π2|i−1|{t}⊗π4, γ

′, γ. Then, ρ′ is not a valid SC exe-
cution.

2.2.2.1. In the last state of ρ, value of z seen by t is vz. It is different
than the v′z, value written by γ′. However, in the last state of
ρ′, the value of z t sees must be v′z. Hence, ρ′ is not a valid SC
execution.

2.2.3. r is buffer-free reachable from w because ρ defined in 2.2.1 is an SC
execution, first action after π1, π2|j−1|−→t \{t} is α, β, w = instOf((α, β)),

r = instOf(γ) and actions of t in ρ between α, β and θ are not in-
stances of a fence instruction or a write to z by t.



5 Abstractions and Verifying non-Robust Programs

In this section, we introduce program abstractions which are useful for verifying
non-robust TSO programs (or even robust programs – see an example at the end
of this section). In general, a program P ′ abstracts another program P for some
semantic model M ∈ {SC,TSO} if every shared variable valuation σ reachable
from the initial state in an M execution of P is also reachable in an M execution
of P ′. We denote this abstraction relation as P �M P ′.

In particular, we are interested in read instruction abstractions, which re-
place instructions that read from a shared variable with more “liberal” read
instructions that can read more values (this way, the program may reach more
shared variable valuations). We extend the program syntax in Section 3 with
havoc instructions of the form havoc(〈reg〉, 〈varbexpr〉), where 〈varbexpr〉 is a
boolean expression over a set of registers and a single shared variable 〈var〉.
The meaning of this instruction is that the register reg is assigned with any
value that satisfies varbexpr (where the other registers and the variable var
are interpreted with their current values). The program abstraction we consider
will replace read instructions of the form 〈reg〉 := 〈var〉 with havoc instructions
havoc(〈reg〉, 〈varbexpr〉).

While replacing read instructions with havoc instructions, we must guarantee
that the new program reaches at least the same set of shared variable valuations
after executing the havoc as the original program after the read. Hence, we
allow such a rewriting only when the boolean expression varbexpr is weaker (in
a logical sense) than the equality reg = var (hence, there exists an execution of
the havoc instruction where reg = var).

Lemma 2. Let P be a program and P ′ be obtained from P by replacing an
instruction l1 : x := r; goto l2 of a thread t with l1 : havoc(r, φ(x,−→r )); goto l2
such that ∀x, r. x = r =⇒ φ(x,−→r ) is valid. Then, P �SC P ′ and P �TSO P ′.

The notion of trace extends to programs that contain havoc instructions as
follows. Assume that (t, hvc, x, φ(x)) is the action generated by an instruction
havoc(r, φ(x,−→r )), where x is a shared variable and −→r a set of registers (the
action stores the constraint φ where the values of the registers are instantiated
with their current values – the shared variable x is the only free variable in φ(x)).
Roughly, the hvc actions are special cases of rd actions. Consider an execution
π where an action α = (t, hvc, x, φ(x)) is generated by reading the value of a
write action β = (com, x, v) (i.e., the value v was the current value of x when the
havoc instruction was executed). Then, the trace of π contains a read-from edge
β →rf α as for regular read actions. However, fr edges are created differently. If
α was a rd action we would say that we have α→fr γ if β →rf α and β →st γ.
For the havoc case, the situation is a little bit different. Let γ = (com, x, v′) be
an action. We have α →fr γ if and only if either β →rf α, β →st γ and φ(v′)
is false or α →fr γ

′ and γ′ →st γ where γ′ is an action. Intuitively, there is a
from-read dependency from an havoc action to a commit action, only when the
commit action invalidates the constraint φ(x) of the havoc (or if it follows such
a commit in store order).



procedure f oo ( ){
x := 1 ;
r2 := y ;

}

procedure bar ( ){
do{

r1 = x ;
//havoc ( r1 , (x 6= 0)?r1 = x ∨ r1 = 0 : r1 = 0)
}while ( r1 == 0 ) ;
y := 1 ;

}

Fig. 6. An example program that needs a read abstraction to pass our robustness
checks. The havoc statement in comments reads as follows: if value of x is not 0 then
r1 gets either the value of x or 0. Otherwise, it is 0.

The notion of write-atomicity (Definition 1) extends to programs with ha-
voc instructions by interpreting havoc instructions havoc(r, φ(x,−→r )) as regular
read instructions r := x. Theorem 1 which states that write-atomicity implies
robustness can also be easily extended to this case.

Read abstractions are useful in two ways. First, they allow us to prove pro-
perties of non-robust program as the work stealing queue example in Figure 3.
We can apply appropriate read abstractions to relax the original program so
that it becomes robust in the end. Then, we can use SC reasoning tools on the
robust program to prove invariants of the program.

Second, read abstractions could be helpful for proving robustness directly.
The method based on write-atomicity we propose for verifying robustness is
sound but not complete. Some incompleteness scenarios can be avoided using
read abstractions. If we can abstract read instructions such that the new program
reaches exactly the same states (in terms of shared variables) as the original one,
it may help to avoid executions that violate mover checks.

Consider the program in Figure 6. The write statement x := 1 in procedure
foo is not atomic. It is not a left mover due to the read of x in the do-while loop
of bar. Moreover, the later read from y is buffer-free reachable from this write
and it is not a right mover because of the write to y in bar. To make it atomic, we
apply read abstraction to the read instruction of bar that reads from x. In the
new relaxed read, r1 can read 0 along with the value of x when x is not zero as
shown in the comments below the instruction. With this abstraction, the write
to x becomes a left mover because reads from x after the write can now read the
old value which was 0. Thus, the program becomes write-atomic. If we think of
TSO traces of the abstract program and replace hvc nodes with rd nodes, we
get exactly the TSO traces of the original program. However, the abstraction
adds more SC traces to the program and the program becomes robust.

6 Experimental Evaluation

To test the practical value of our method, we have considered the benchmark
for checking TSO robustness described in [2], which consists of 34 programs.
This benchmark is quite exhaustive, it includes examples introduced in previous
works on this subject. Many of the programs in this benchmark are easy to prove
being write-atomic. Every write is followed by no buffer-free read instruction
which makes them trivially atomic (like the message passing program in Figure
1). This holds for 20 out of the 34 programs. Out of the remaining programs,
13 required mover checks and 4 required read abstractions to show robustness



Table 1. Benchmark results. The second column (RB) stands for the robustness status
of the original program according to our extended hb definition. RA column shows the
number of read abstractions performed. RM column represents the number of read
instructions that are checked to be right movers and the LM column represents the
write instructions that are shown to be left movers. PO shows the total number of
proof obligations generated and VT stands for the total verification time in seconds.

Name RB RA RM LM PO VT

Chase-Lev: - 1 2 - 149 0.332

FIFO-iWSQ: + - 2 - 124 0.323

LIFO-iWSQ: + - 1 - 109 0.305

Anchor- iWSQ: + - 1 - 109 0.309

MCSLock: + 2 2 - 233 0.499

r+detour: + - 1 - 53 0.266

r+detours: + - 1 - 64 0.273

sb+detours+coh: + - 2 - 108 0.322

sb+detours: + - 1 1 125 0.316

write+r+coh: + - 1 - 78 0.289

write+r: + - 1 - 48 0.261

dc-locking: + 1 4 1 52 0.284

inline pgsql: + 2 2 - 90 0.286

(our method didn’t succeed on one of the programs in the benchmark, explained
at the end of this section). Except Chase-Lev, the initial versions of all the 12
examples are trace robust2. Besides Chase-Lev, read-abstractions are equivalent
to the original programs in terms of reachable shared variable configurations.
Detailed information for these examples can be found in Table 1.

To check whether writes/reads are left/right movers and the soundness of
abstractions, we have used the tool Civl [13]. This tool allows to prove asser-
tions about concurrent programs (Owicki-Gries annotations) and also to check
whether an instruction is a left/right mover. The buffer-free read instructions
reachable from a write before a fence were obtained using a trivial analysis of the
control-flow graph (CFG) of the program. This method is a sound approximation
of the definition in Section 4 but it was sufficient for all the examples.

Our method was not precise enough to prove robustness for only one example,
named as nbw-w-lr-rl in [7]. This program contains a method with explicit calls
to the lock and unlock methods of a spinlock. The instruction that writes to
the lock variable inside the unlock method is not atomic, because of the reads
from the lock variable and the calls to the getAndSet primitive inside the lock

method. Abstracting the reads from the lock variable is not sufficient in this
case due to the conflicts with getAndSet actions. However, we believe that read
abstractions could be extended to getAndSet instructions (which both read and
write to a shared variable atomically) in order to deal with this example.

2 If we consider the standard notion of so (that relates any two writes on the same
variable independent of their values), all examples except MCSLock and dc-locking

become non trace robust.



7 Related Work

The weakest correctness criterion that enables SC reasoning for proving invari-
ants of programs running under TSO is state-robustness i.e., the reachable set
of states is the same under both SC and TSO. However, this problem has high
complexity (non-primitive recursive for programs with a finite number of thre-
ads and a finite data domain [6]). Therefore, it is difficult to come up with an
efficient and precise solution. A symbolic decision procedure is presented in [1]
and over-approximate analyses are proposed in [14, 15].

Due to the high complexity of state-robustness, stronger correctness criteria
with lower complexity have been proposed. Trace-robustness (that we call simply
robustness in our paper) is one of the most studied criteria in the literature. Bou-
ajjani et al. [9] have proved that deciding trace-robustness is PSpace-complete,
resp., EXPSpace-complete, for a finite, resp., unbounded, number of threads
and a finite data domain.

There are various tools for checking trace-robustness. Trencher [7] applies
to bounded-thread programs with finite data. In theory, the approach in Trencher
can be applied to infinite-state programs, but implementing it is not obvious
because it requires solving non-trivial reachability queries in such programs. In
comparison, our approach (and our implementation based on Civl) applies to
infinite state programs. All our examples consider infinite data domains, while
Chase-Lev, FIFO-iWSQ, LIFO-iWSQ, Anchor-iWSQ, MCSLock, dc-locking and
inline pgsql have an unbounded number of threads. Musketeer [4] provides
an approximate solution by checking existence of critical cycles on the control-
flow graph. While Musketeer can deal with infinite data (since data is abstracted
away), it is restricted to bounded-thread programs. Thus, it cannot deal with the
unbounded thread examples mentioned above. Furthermore, Musketeer cannot
prove robust even some examples with finitely many threads, e.g., nbw w wr,
write+r, r+detours, sb+detours+coh. Other tools for approximate robustness
checking, to which we compare in similar ways, have been proposed in [5, 10,
11].

Besides trace-robustness, there are other correctness criteria like triangular
race freedom (Trf) and persistence that are stronger than state-robustness.
Persistence ([2]) is incomparable to trace-robustness, and Trf [19] is stronger
than both trace-robustness and persistence. Our method can verify examples
that are state-robust but neither persistent nor Trf.

Reduction and abstraction techniques were used for reasoning on SC pro-
grams. Qed ([12]) is a tool that supports statement transformations as a way of
abstracting programs combined with a mover analysis. Also, Civl ([13]) allows
proving location assertions in the context of the Owicki-Gries logic which is en-
hanced with Lipton’s reduction theory [17]. Our work enables the use of such
tools for reasoning about the TSO semantics of a program.
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