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Abstract. Linearizability is the standard correctness criterion for concurrent data
structures such as stacks and queues. It allows to establish observational refine-
ment between a concurrent implementation and an atomic reference implemen-
tation. Proving linearizability requires identifying linearization points for each
method invocation along all possible computations, leading to valid sequential
executions, or alternatively, establishing forward and backward simulations. In
both cases, carrying out proofs is hard and complex in general. In particular,
backward reasoning is difficult in the context of programs with data structures,
and strategies for identifying statically linearization points cannot be defined for
all existing implementations. In this paper, we show that, contrary to common
belief, many such complex implementations, including, e.g., the Herlihy&Wing
Queue and the Time-Stamped Stack, can be proved correct using only forward
simulation arguments. This leads to simple and natural correctness proofs for
these implementations that are amenable to automation.

1 Introduction

Programming efficient concurrent implementations of atomic collections, e.g., stacks
and queues, is error prone. To minimize synchronization overhead between concurrent
method invocations, implementors avoid blocking operations like lock acquisition, al-
lowing methods to execute concurrently. However, concurrency risks unintended inter-
operation interference, and risks conformance to atomic reference implementations.
Conformance is formally captured by (observational) refinement, which assures that
all behaviors of programs using these efficient implementations would also be possible
were the atomic reference implementations used instead.

Observational refinement can be formalized as a trace inclusion problem, and the
latter can itself be reduced to an invariant checking problem, but this requires in gen-
eral introducing history and prophecy variables [1]. Alternatively, verifying refinement
requires in general establishing a forward simulation and a backward simulation [21].
While simulations are natural concepts, backward reasoning, corresponding to the use
of prophecy variables, is in general hard and complex for programs manipulating data
structures. Therefore, a crucial issue is to understand the limits of forward reasoning
in establishing refinement. More precisely, an important question is to determine for
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which concurrent abstract data structures, and for which classes of implementations, it
is possible to carry out a refinement proof using only forward simulations.

To get rid of backward simulations (or prophecy variables) while preserving com-
pleteness w.r.t. refinement, it is necessary to have reference implementations that are
deterministic. Interestingly, determinism allows also to simplify the forward simulation
checking problem. Indeed, in this case, this problem can be reduced to an invariant
checking problem. Basically, the simulation relation can be seen as an invariant of the
system composed of the two compared programs. Therefore, existing methods and tools
for invariant checking can be leveraged in this context.

But, in order to determine precisely what is meant by determinism, an important
point is to fix the alphabet of observable events along computations. Typically, to rea-
son about refinement between two library implementations, the only observable events
are the calls and returns corresponding to the method invocations along computations.
This means that only the external interface of the library is considered to compare be-
haviors, and nothing else from the implementations is exposed. Unfortunately, it can
be shown that in this case, it is impossible to have deterministic atomic reference im-
plementations for common data structures such as stacks and queues (see, e.g., [24]).
Then, an important question is what is the necessary amount of information that should
be exposed by the implementations to overcome this problem ?

One approach addressing this question is based on linearizability [18] and its cor-
respondence with refinement [12, 7]. Linearizability of a computation (of some im-
plementation) means that each of the method invocations can be seen as happening at
some point, called linearization point, occurring somewhere between the call and re-
turn events of that invocation. The obtained sequence of linearization points along the
computation should define a sequence of operations that is possible in the atomic refer-
ence implementation. Proving the existence of such sequences of linearization points,
for all the computations of a concurrent library, is a complex problem [3, 5, 14]. How-
ever, proving linearizability becomes less complex when linearization points are fixed
for each method, i.e., associated with the execution of a designated statement in its
source code [5]. In this case, we can consider that libraries expose in addition to calls
and returns, events signaling linearization points. By extending this way the alphabet of
observable events, it becomes straightforward to define deterministic atomic reference
implementations. Therefore, proving linearizability can be carried out using forward
simulations when linearization points are fixed, e.g., [28, 4, 27, 2]. Unfortunately, this
approach is not applicable to efficient implementations such as the LCRQ queue [22]
(based on the principle of the Herlihy&Wing queue [18]), and the Time-Stamped Stack
[10]. The proofs of linearizability of these implementations are highly nontrivial, very
involved, and hard to read, understand and automatize. Therefore, the crucial question
we address is what is precisely the kind of information that is necessary to expose in
order to obtain deterministic atomic reference implementations for such data structures,
allowing to derive simple and natural linearizability proofs for such complex implemen-
tations, based on forward simulations, that are amenable to automation ?

We observe that the main difficulty in reasoning about these implementations is that,
linearization points of enqueue/push operations occurring along some given computa-
tion, depend in general on the linearization points of dequeue/pop operations that occur



arbitrarily far in the future. Therefore, since linearization points for enqueue/push oper-
ations cannot be determined in advance, the information that could be fixed and exposed
can concern only the dequeue/pop operations.

One first idea is to consider that linearization points are fixed for dequeue/pop meth-
ods and only for these methods. We show that under the assumption that implementa-
tions expose linearizations points for these methods, it is possible to define determinis-
tic atomic reference implementations for both queues and stacks. We show that this is
indeed useful by providing a simple proof of the Herlihy&Wing queue (based on estab-
lishing a forward simulation) that can be carried out as an invariant checking proof.

However, in the case of Time-Stamped Stack, fixing linearization points of pop
operations is actually too restrictive. Nevertheless, we show that our approach can be
generalized to handle this case. The key idea is to reason about what we call commit
points, and that correspond roughly speaking to the last point a method accesses to the
shared data structure during its execution. We prove that by exposing commit points
(instead of linearization points) for pop methods, we can still provide deterministic
reference implementations. We show that using this approach leads to a quite simple
proof of the Time-Stamped Stack, based on forward simulations.

2 Preliminaries

We formalize several abstraction relations between libraries using a simple yet universal
model of computation, namely labeled transition systems (LTS). This model captures
shared-memory programs with an arbitrary number of threads, abstracting away the
details of any particular programming language irrelevant to our development.

A labeled transition system (LTS) A = (Q,Σ,s0,δ) over the possibly-infinite alpha-
bet Σ is a possibly-infinite set Q of states with initial state s0 ∈ Q, and a transition
relation δ ⊆ Q×Σ×Q. The ith symbol of a sequence τ ∈ Σ∗ is denoted τi, and ε de-
notes the empty sequence. An execution of A is an alternating sequence of states and
transition labels (also called actions) ρ = s0,e0,s1 . . .ek−1,sk for some k > 0 such that
δ(si,ei,si+1) for each i such that 0≤ i < k. We write si

ei...e j−1−−−−→A s j as shorthand for the
subsequence si,ei, . . . .,s j−1,e j−1,s j of ρ, for any 0 ≤ i ≤ j < k (in particular si

ε−→ si).
The projection τ|Γ of a sequence τ is the maximum subsequence of τ over alphabet Γ.
This notation is extended to sets of sequences as usual. A trace of A is the projection ρ|Σ
of an execution ρ of A. The set of executions, resp., traces, of an LTS A is denoted by
E(A), resp., Tr(A). An LTS is deterministic if for any state s and any sequence τ ∈ Σ∗,
there is at most one state s′ such that s τ−→ s′. More generally, for an alphabet Γ⊆ Σ, an
LTS is Γ-deterministic if for any state s and any sequence τ ∈ Γ∗, there is at most one

state s′ such that s τ′−→ s′ and τ is a subsequence of τ′.

2.1 Libraries

Programs interact with libraries by calling named library methods, which receive ar-
guments and yield return values upon completion. We fix arbitrary sets M and V of
method names and argument/return values. We fix an arbitrary set O of operation iden-
tifiers, and for given sets M and V of methods and values, we fix the sets



C = {inv(m,d,k) : m ∈M,d ∈ V,k ∈O} and R = {ret(m,d,k) : m ∈M,d ∈ V,k ∈O}
of call actions and return actions; each call action inv(m,d,k) combines a method m ∈
M and value d ∈V with an operation identifier k ∈O. Operation identifiers are used to
pair call and return actions. We may omit the second field from a call/return action for
methods that have no arguments or return values. For notational convenience, we take
O= N for the rest of the paper.

A library is an LTS over alphabet Σ such that C∪R⊆ Σ. We assume that the traces
of a library satisfy standard well-formedness properties, e.g., return actions correspond
to previous call actions. Given a standard library description as a set of methods, the
LTS represents the executions of its most general client (that calls an arbitrary set of
methods with an arbitrary set of threads in an unbounded loop). The states of this LTS
consist of the shared state of the library together with the local state of each thread. The
transitions correspond to statements in the methods’ bodies, or call and return actions.
An operation k is called completed in a trace τ when ret(m,d,k) occurs in τ, for some
m and d. Otherwise, it is called pending.

The projection of a library trace over C∪R is called a history. The set of histories of
a library L is denoted by H(L). Since libraries only dictate methods executions between
their respective calls and returns, for any history they admit, they must also admit his-
tories with weaker inter-operation ordering, in which calls may happen earlier, and/or
returns later. A history h1 is weaker than a history h2, written h1 v h2, iff there exists a
history h′1 obtained from h1 by appending return actions, and deleting call actions, s.t.:
h2 is a permutation of h′1 that preserves the order between return and call actions, i.e., if
a given return action occurs before a given call action in h′1, then the same holds in h2.

A library L is called atomic when there exists a set S of sequential histories such that
H(L) contains every weakening of a history in S. Atomic libraries are often considered
as specifications for concurrent objects. Libraries can be made atomic by guarding their
methods bodies with global lock acquisitions.

A library L is called a queue implementation when M = {enq,deq} (enq is the
method that enqueues a value and deq is the method removing a value) and V =
N∪ {EMPTY} where EMPTY is the value returned by deq when the queue is empty.
Similarly, a library L is called a stack implementation when M = {push, pop} and
V = N∪ {EMPTY}. For queue and stack implementations, we assume that the same
value is never added twice, i.e., for every trace τ of such a library and every two call
actions inv(m,d1,k1) and inv(m,d2,k2) where m∈ {enq, push}we have that d1 6= d2. As
shown in several works [2, 6], this assumption is without loss of generality for libraries
that are data independent, i.e., their behaviors are not influenced by the values added to
the collection. All the queue and stack implementations that we are aware of are data
independent. On a technical note, this assumption is used to define (Γ-)deterministic
abstract implementations of stacks and queues in Section 4 and Section 5.

2.2 Refinement and Linearizability

Conformance of a library L1 to a specification given as an “abstract” library L2 is for-
mally captured by (observational) refinement. Informally, we say L1 refines L2 iff every
computation of every program using L1 would also be possible were L2 used instead. We
assume that a program can interact with the library only through call and return actions,



and thus refinement can be defined as history set inclusion. Refinement is equivalent to
the linearizability criterion [18] when L2 is an atomic library [12, 7].

Definition 1. A library L1 refines another library L2 iff H(L1)⊆ H(L2).

Linearizability [18] requires that every history of a concurrent library L1 can be
“linearized” to a sequential history admitted by a library L2 used as a specification.
Formally, a sequential history h2 with only complete operations is called a linearization
of a history h1 when h1 v h2. A history h1 is linearizable w.r.t. a library L2 iff there
exists a linearization h2 of h1 such that h2 ∈ H(L2). A library L1 is linearizable w.r.t.
L2, written L1 v L2, iff each history h1 ∈ H(L1) is linearizable w.r.t. L2.

Theorem 1 ([12, 7]). Let L1 and L2 be two libraries, such that L2 is atomic. Then,
L1 v L2 iff L1 refines L2.

In the rest of the paper, we discuss methods for proving refinement (and thus, lin-
earizability) focusing mainly on queue and stack implementations.

3 Refinement Proofs

Library refinement is an instance of a more general notion of refinement between LTSs,
which for some alphabet Γ of observable actions is defined as the inclusion of sets of
traces projected on Γ. Library refinement corresponds to the case Γ =C∪R. Typically,
Γ-refinement between two LTSs A1 and A2 is proved using simulation relations which
roughly, require that A2 can mimic every step of A1 using a (possibly empty) sequence
of steps. Mainly, there are two kinds of simulation relations, forward or backward, de-
pending on whether the preservation of steps is proved starting from a similar state
forward or backward. It has been shown that Γ-refinement is equivalent to the existence
of backward simulations, modulo the addition of history variables that record events in
the implementation, and to the existence of forward simulations provided that the right-
hand side LTS, A2, is Γ-deterministic [1, 21]. We focus on proofs based on forward
simulations because they are easier to automatize.

In general, forward simulations are not a complete proof method for library refine-
ment because libraries are not C∪R-deterministic (the same sequence of call/return ac-
tions can lead to different states depending on the interleaving of the internal actions).
However, there are classes of atomic libraries, e.g., libraries with “fixed linearization
points” (defined later in this section), for which it is possible to identify a larger al-
phabet Γ of observable actions (including call/return actions), and implementations that
are Γ-deterministic. For queues and stacks, Section 4 and Section 5 define other such
classes of implementations that cover all the implementations that we are aware of.

Let A1 = (Q1,Σ,s1
0,δ1) and A2 = (Q2,Σ,s2

0,δ2) be two LTSs over Σ1 and Σ2, respec-
tively, and Γ an alphabet, such that Γ⊆ Σ1∩Σ2.

Definition 2. The LTS A1 Γ-refines A2 iff Tr(A1)|Γ⊆ Tr(A2)|Γ.

The notion of Γ-refinement instantiated to libraries (i.e., to LTSs defining libraries)
implies the notion of refinement in Definition 1 for every Γ such that C∪R⊆ Γ.

We define a notion of forward simulation that can be used to prove Γ-refinement

Definition 3. A relation F ⊆ Q1×Q2 is called a Γ-forward simulation from A1 to A2
iff F(s1

0,s
2
0) and:



– For all s,s′ ∈ Q1, γ ∈ Γ, and u ∈ Q2, such that (s,γ,s′) ∈ δ1 and F(s,u), we have
that there exists u′ ∈Q2 such that F(s′,u′) and u σ−→ u′ where σi = γ, for some i, and
σ j ∈ Σ2 \Γ, for all j 6= i.

– For all s,s′ ∈ Q1, e ∈ Σ1 \Γ, and u ∈ Q2, such that (s,e,s′) ∈ δ1 and F(s,u), we
have that there exists u′ ∈ Q2 such that F(s′,u′) and u σ−→ u′ where σ ∈ (Σ2 \Γ)∗.

A Γ-forward simulation states that every step of A1 is simulated by a sequence of steps
of A2. To imply Γ-refinement, every step of A1 labeled by an observable action γ ∈ Γ

should be simulated by a sequence of steps of A2 where exactly one transition is labeled
by γ and all the other transitions are labeled by non-observable actions. The dual notion
of backward simulation where steps are simulated backwards can be defined similarly.

The following shows the soundness and the completeness of Γ-forward simulations
(when A2 is Γ-deterministic). It is an instantiation of previous results [1, 21].

Theorem 2. If there is a Γ-forward simulation from A1 to A2, then A1 Γ-refines A2.
Also, if A1 Γ-refines A2 and A2 is Γ-deterministic, then there is a Γ-forward simulation
from A1 to A2.

The linearization of a concurrent history can be also defined in terms of lineariza-
tion points. Informally, a linearization point of an operation in an execution is a point in
time where the operation is conceptually effectuated; given the linearization points of
each operation, the linearization of a concurrent history is the sequential history which
takes operations in the order of their linearization points. For some libraries, the lin-
earization points of all the invocations of a method m correspond to the execution of
a fixed statement in m’s body. For instance, when method bodies are guarded with a
global-lock acquisition, the linearization point of every method invocation corresponds
to the execution of the body. When the linearization points are fixed, we assume that the
library is an LTS over an alphabet that includes actions lin(m,d,k) with m ∈M, d ∈ V
and k ∈O, representing the linearization point of the operation k returning value d. Let
Lin denote the set of such actions. The projection of a library trace over C∪R∪ Lin
is called an extended history. A trace or extended history is called Lin-complete when
every completed operation has a linearization point, i.e., each return action ret(m,d,k)
is preceded by an action lin(m,d,k). A library L over alphabet Σ is called with fixed
linearization points iff C∪R∪Lin⊆ Σ and every trace τ ∈ Tr(L) is Lin-complete.

Proving the correctness of an implementation L1 of a concurrent object such as a
queue or a stack with fixed linearization points reduces to proving that L1 is a (C∪R∪
Lin)-refinement of an abstract implementation L2 of the same object where method bod-
ies are guarded with a global-lock acquisition. As a direct consequence of Theorem 2,
since the abstract implementation is (C∪R∪Lin)-deterministic, proving (C∪R∪Lin)-
refinement is equivalent to finding a (C∪R∪Lin)-forward simulation from L1 to L2.

Section 4 and Section 5 extend this result to queue and stack implementations where
the linearization point of the methods adding values to the collection is not fixed.

4 Queues With Fixed Dequeue Linearization Points

The classical abstract queue implementation, denoted AbsQ0, maintains a sequence of
enqueued values; dequeues return the oldest non-dequeued value, at the time of their



void enq(int x) {
i = back++; items[i] = x;

}
int deq() {
while (1) {

range = back - 1;
for (int i = 0; i <= range; i++) {

x = swap(items[i],null);
if (x != null) return x;

} } }

Fig. 1. The Herlihy & Wing Queue [18].
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Fig. 2. Forward simulation with AbsQ. Lines depict
operations, and circles depict call, return, and lin-
earization point actions.

function loc: O→{inv,lin,ret,⊥}
function arg, ret: O→ V
function present , pending: O→ B
function before: O×O→ B

rule inv(enq,v,k):
arg(k) := v
present(k) := true
pending(k) := true
forall k1 with present(k1):

if ¬pending(k1):
before(k1,k) := true

rule ret(enq,k):
pending(k) := false

rule inv(deq,k):
pass

rule lin(deq,v,k):
ret(k) := v
if v = EMPTY:

forall k’ with present(k’):
assert pending(k’)

else:
let k1 = arg−1(v)
assert present(k1)
forall k2 with present(k2):
assert ¬before(k2,k1)

present(k1) := false

rule ret(deq,v,k):
assert ret(k) = v

Fig. 3. The AbsQ implementation;
each rule α(_,k) implicitly begins
with assert loc(k)=α and ends with
the appropriate loc(k):=β.

linearization points, or EMPTY. Some implementations, like the queue of Herlihy and
Wing [18], denoted HWQ and listed in Figure 1, are not forward-simulated by AbsQ0,
even though they refine AbsQ0, since the order in which their enqueues are linearized
to form AbsQ0s sequence is not determined until later, when their values are dequeued.

In this section we develop an abstract queue implementation, denoted AbsQ, which
maintains a partial order of enqueues, rather than a linear sequence. Since AbsQ does not
force refining implementations to eagerly pick among linearizations of their enqueues, it
forward-simulates many more queue implementations. In fact, AbsQ forward-simulates
all queue implementations of which we are aware that are not forward-simulated by
AbsQ0, including HWQ, The Baskets Queue [19], The Linked Concurrent Ring Queue
(LCRQ) [22], and The Time-Stamped Queue [10].

4.1 Enqueue Methods With Non-Fixed Linearization Points

We describe HWQ where the linearization points of the enqueue methods are not fixed.
The shared state consists of an array items storing the values in the queue and a counter
back storing the index of the first unused position in items. Initially, all the positions in



the array are null and back is 0. An enqueue method starts by reserving a position in
items (i stores the index of this position and back is incremented so the same position
cannot be used by other enqueues) and then, stores the argument x at this position. The
dequeue method traverses the array items starting from the beginning and atomically
swaps null with the encountered value. If the value is not null, then the dequeue
returns that value. If it reaches the end of the array, then it restarts.

The linearization points of the enqueues are not fixed, they depend on dequeues ex-
ecuting in the future. Consider the following trace with two concurrent enqueues (i(k)
represents the value of i in operation k): inv(enq,x,1), inv(enq,y,2), i(1) = bck++,
i(2) = bck++, items[i(2)] = y. Assuming that the linearization point corresponds
to the assignment of i, the history of this trace should be linearized to inv(enq,x,1),
ret(enq,1), inv(enq,y,2), ret(enq,2). However, a dequeue executing until completion
after this trace will return y (only position 1 is filled in the array items) which is not
consistent with this linearization. On the other hand, assuming that enqueues should be
linearized at the assignment of items[i] and extending the trace with items[i(1)] = x
and a completed dequeue that in this case returns x, leads to the incorrect linearization:
inv(enq,y,2), ret(enq,2), inv(enq,x,1), ret(enq,1), inv(deq,3), ret(deq,x,3).

The dequeue method has a fixed linearization point which corresponds to an exe-
cution of swap returning a non-null value. This action alone contributes to the effect of
that value being removed from the queue. Every concurrent history can be linearized to
a sequential history where dequeues occur in the order of their linearization points in
the concurrent history. This claim is formally proved in Section 4.3.

Since the linearization points of the enqueues are determined by future dequeue
invocations, there exists no forward simulation from HWQ to AbsQ0. In the following,
we describe the abstract implementation AbsQ for which such a forward simulation
does exist.

4.2 Abstract Queue Implementation
Informally, AbsQ records the set of enqueue operations, whose argument has not yet
been removed by a matching dequeue operation. In addition, it records the happens-
before order between those enqueue operations: this is a partial order ordering an en-
queue k1 before another enqueue k2 iff k1 returned before k2 was invoked. The lineariza-
tion point of a dequeue can either remove a minimal enqueue k (w.r.t. the happens-
before stored in the state) and fix the return value to the value d added by k, or fix
the return value to EMPTY provided that the current state stores only pending enqueues
(intuitively, the dequeue overlaps with all the enqueue operations stored in the current
state and it can be linearized before all of them).

Fig. 2 pictures two executions of AbsQ for two extended histories (that include de-
queue linearization points). The state of AbsQ after each action is pictured as a graph
below the action. The nodes of this graph represent enqueue operations and the edges
happens-before constraints. Each node is labeled by a value (the argument of the en-
queue) and a flag PEND or COMP showing whether the operation is pending or completed.
For instance, in the case of the first history, the dequeue linearization point lin(deq,y,3)
is enabled because the current happens-before contains a minimal enqueue operation
with argument y. Note that a linearization point lin(deq,x,3) is also enabled at this
state.



We define AbsQ with the abstract state machine given in Figure 3 which defines an
LTS over the alphabet C∪R∪Lin(deq). The state of AbsQ consists of several updatable
functions: loc indicates the abstract control point of a given operation; arg and ret
indicate the argument or return value of a given operation, respectively; present indi-
cates whether a given enqueue operation has yet to be removed, and pending indicates
whether it has yet to complete; before indicates the happens-before order between
operations. Initially, loc(k) = inv for all k, and present(k1) = pending(k1) =
before(k1,k2) = false for all k1, k2. Each rule determines the next state of AbsQ
for the corresponding action. For instance, the lin(deq,v,k) rule updates the state of
AbsQ for the linearization action of a dequeue operation with identifier k returning value
v: when v = EMPTY then AbsQ insists via an assertion that any still-present enqueue
must still be pending; otherwise, when v 6= k then AbsQ insists that a corresponding
enqueue is present, and that it is minimal in the happens-before order, before marking
that enqueue as not present. Updates to the loc function, implicit in Figure 3, ensure
that the invocation, linearization-point, and return actions of each operation occur in the
correct order.

The following result states that the library AbsQ has exactly the same set of histories
as the standard abstract library AbsQ0.

Theorem 3. AbsQ is a refinement of AbsQ0 and vice-versa.

A trace of a queue implementation is called Lin(deq)-complete when every com-
pleted dequeue has a linearization point, i.e., each return action ret(deq,d,k) is pre-
ceded by an action lin(deq,d,k). A queue implementation L over alphabet Σ, such that
C∪R∪Lin(deq)⊆ Σ, is called with fixed dequeue linearization points when every trace
τ ∈ Tr(L) is Lin(deq)-complete.

The following result shows that C∪R∪Lin(deq)-forward simulations are a sound
and complete proof method for showing the correctness of a queue implementation with
fixed dequeue linearization points (up to the correctness of the linearization points). It
is obtained from Theorem 3 and Theorem 2 using the fact that the alphabet of AbsQ is
exactly C∪R∪Lin(deq) and AbsQ is deterministic. The determinism of AbsQ relies on
the assumption that every value is added at most once. Without this assumption, AbsQ
may reach a state with two enqueues adding the same value being both minimal in
the happens-before. A transition corresponding to the linearization point of a dequeue
from this state can remove any of these two enqueues leading to two different states.
Therefore, AbsQ becomes non-deterministic. Note that this is independent of the fact
that AbsQ manipulates operation identifiers.

Corollary 1. A queue implementation L with fixed dequeue linearization points is a C∪
R∪Lin(deq)-refinement of AbsQ0 iff there exists a C∪R∪Lin(deq)-forward simulation
from L to AbsQ.

4.3 A Correctness Proof For Herlihy&Wing Queue

We describe a forward simulation F1 from HWQ to AbsQ. The description of HWQ
in Fig. 1 defines an LTS whose states contain the shared array items and the shared
counter back together with a valuation for the local variables i, x, and range, and the



control location of each operation. A transition is either a call or a return action, or a
statement in one of the two methods enq or deq.

An HWQ state s is related by F1 to AbsQ states t where the predicate present is
true for all the enqueues in s whose argument is stored in the array items, and all
the pending enqueues that have not yet written to the array items (and only for these
enqueues). We refer to such enqueues in s as present enqueues. Also, pending(k) is
true in t whenever k is a pending enqueue in s, arg(k) = d in t whenever the argument
of the enqueue k in s is d, and for every dequeue operation k such that x(k) = d 6= null,
we have that y(k) = d (recall that y is a local variable of the dequeue method in AbsQ).
The order relation before in t satisfies the following constraints:
(a) pending enqueues are maximal, i.e., for every two present enqueues k and k′ such

that k′ is pending, we have that ¬before(k′,k),
(b) before is consistent with the order in which positions of items have been reserved,

i.e., for every two present enqueues k and k′ such that i(k) < i(k′), we have that
¬before(k′,k),

(c) if the position i reserved by an enqueue k has been “observed” by a non-linearized
dequeue that in the current array traversal may “observe” a later position j reserved
by another enqueue k′, then k can’t be ordered before k′, i.e., for every two present
enqueues k and k′, and a dequeue kd , such that

canRemove(kd ,k
′)∧ (i(k)< i(kd)∨ (i(k) = i(kd)∧afterSwapNull(kd))) (1)

we have that ¬before(k,k′). The predicate canRemove(kd ,k′) holds when kd visited
a null item in items and the position i(k′) reserved by k′ is in the range of (kd) i.e.,
(x(kd) = null∧i(kd)< i(k′)≤ range(kd))∨(i(kd) = i(k′)∧beforeSwap(kd)∧
items[i(k′)] 6= null). The predicate afterSwapNull(kd) (resp., beforeSwap(kd))
holds when the dequeue kd is at the control point after a swap returning null (resp.,
before a swap).

The constraints on before ensure that a present enqueue whose argument is about to
be removed by a dequeue operation is minimal. Thus, let k′ be a present enqueue that
inserted its argument to items, and kd a pending dequeue such that canRemove(kd ,k′)
holds and kd is just before its swap action at the reserved position of k′ i.e., i(kd) =
i(k′). Another pending enqueue k cannot be ordered before k′ since pending enqueues
are maximal by (a). Regarding the completed and present enqueues k, we consider
two cases: i(k) > i(k′) and i(k) < i(k′). For the former case, the constraint (b) ensures
¬before(k,k′) and for the latter case the constraint (c) ensures ¬before(k,k′). Conse-
quently, k′ is a minimal element w.r.t. before just before kd removes its argument.

Next, we show that F1 is indeed a C∪R∪Lin(deq)-forward simulation. Let s and
t be states of HWQ and AbsQ, respectively, such that (s, t) ∈ F1. We omit discussing
the trivial case of transitions labeled by call and return actions which are simulated by
similar transitions of AbsQ.

We show that each internal step of an enqueue or dequeue, except a swap returning
a non-null value in dequeue (which represents its linearization point), is simulated by an
empty sequence of AbsQ transitions, i.e., for every state s′ obtained through one of these
steps, if (s, t) ∈ F1, then (s′, t) ∈ F1 for each AbsQ state t. Essentially, this consists in
proving the following property, called monotonicity: the set of possible before relations
associated by F1 to s′ doesn’t exclude any order before associated to s.



Concerning enqueue rules, let s′ be the state obtained from s when a pending en-
queue k reserves an array position. This enqueue must be maximal in both t and any state
t ′ related to s′ (since it’s pending). Moreover, there is no dequeue that can “observe” this
position before restarting the array traversal. Therefore, item (c) in the definition of F1
doesn’t constrain the order between k and some other enqueue neither in s nor in s′.
Since this transition doesn’t affect the constraints on the order between enqueues differ-
ent from k (their local variables remain unchanged), monotonicity holds. This property
is trivially satisfied by the second step of enqueue which doesn’t affect i.

To prove monotonicity in the case of dequeue internal steps different from its lin-
earization point, it is important to track the non-trivial instantiations of item (c) in the
definition of before over the two states s and s′, i.e., the triples (k,k′,kd) for which (1)
holds. Instantiations that are enabled only in s′ may in principle lead to a violation of
monotonicity (since they restrict the orders before associated to s′). For the two steps
that begin an array traversal, i.e., reading the index of the last used position and set-
ting i to 0, there exist no such new instantiations in s′ because the value of i is either
not set or 0. The same is true for the increment of i in a dequeue kd since the predi-
cate afterSwapNull(kd) holds in state s. The execution of swap returning null in a
dequeue kd enables new instantiations (k,k′,kd) in s′, thus adding potentially new con-
straints ¬before(k,k′). We show that these instantiations are however vacuous because
k must be pending in s and thus maximal in every order before associated by F1 to s.
Let k and k′ be two enqueues such that together with the dequeue kd they satisfy the
property (1) in s′ but not in s. We write is(k) for the value of the variable i of operation
k in state s. We have that is′(k) = is′(kd)≤ is′(k′) and items[is′(kd)] = null. The lat-
ter implies that the enqueue k didn’t execute the second statement (since the position it
reserved is still null) and it is pending in s′. The step that swaps the null item does not
modify anything except the control point of kd that makes afterSwapNull(kd) true in
s′ . Hence, is(k) = is(kd)≤ is(k′) and items[is(kd)] = null is also true. Therefore, k is
pending in s and maximal. Hence, before(k,k′) is not true in both s and s′.

Finally, we show that the linearization point of a dequeue k of HWQ, i.e., an ex-
ecution of swap returning a non-null value d, from state s and leading to a state s′ is
simulated by a transition labeled by lin(deq,d,k) of AbsQ from state t. By the defini-
tion of HWQ, there is a unique enqueue ke which filled the position updated by k, i.e.,
is(ke) = is(k) and xs′(k) = xs(ke).

We show that ke is minimal in the order before of t which implies that ke could be
chosen by lin(deq,d,k) step applied on t. As explained previously, instantiating item
(c) in the definition of before with k′ = ke and kd = k, and instantiating item (b) with
k = ke, we ensure the minimality of ke. Moreover, the state t ′ obtained from t through
a lin(deq,d,k) transition is related to s′ because the value added by ke is not anymore
present in items and present(ke) doesn’t hold in t ′.

5 Stacks With Fixed Pop Commit Points

The abstract implementation in Section 4 can be adapted to stacks, the main modifica-
tion being that the linearization point lin(pop,d,k) with d 6= EMPTY is enabled when k is
added by a push which is maximal in the happens-before order stored in the state. How-
ever, there are stack implementations, e.g., Time-Stamped Stack [10] (TSS, for short),



struct Node{
int data;
int ts;
Node* next;
bool taken;

};

bool CAS(bool data , bool a, bool b);

Node* pools[maxThreads];
int TS = 0;

void push(int x) {
Node* n =
new Node(x,MAX_INT , null ,false);

n->next = pools[myTID];
pools[myTID] = n;
int i = TS++;
n->ts = i;

}

int pop() {
bool success = false;
int maxTS = -1;
Node* youngest = null;
while ( !success ) {

maxTS = -1; youngest = null;
for(int i=0; i<maxThreads; i++) {

Node* n = pools[i];
while (n->taken && n->next != n)

n = n->next;
if(maxTS < n->ts) {

maxTS = n->ts; youngest = n;
}

}
if (youngest != null)

success =
CAS(youngest ->taken , false, true);

}
return youngest ->data;

}

Fig. 4. The Time-Stamped Stack [10].

which cannot be proved correct using forward simulations to this abstract implemen-
tation because the linearization points of the pop operations are not fixed. Exploiting
particular properties of the stack semantics, we refine the ideas used in AbsQ and define
a new abstract implementation for stacks, denoted as AbsS, which is able to simulate
such implementations. Forward simulations to AbsS are complete for proving the cor-
rectness of stack implementations provided that the point in time where the return value
of a pop operation is determined, called commit point, corresponds to a fixed statement
in the pop method.

5.1 Pop Methods With Fixed Commit Points

We explain the meaning of the commit points on a simplified version of the Time-
Stamped Stack [10] (TSS, for short) given in Fig. 4. This implementation maintains an
array of singly-linked lists, one for each thread, where list nodes contain a data value
(field data), a timestamp (field ts), the next pointer (field next), and a Boolean flag
indicating whether the node represents a value removed from the stack (field taken).
Initially, each list contains a sentinel dummy node pointing to itself with timestamp −1
and the flag taken set to false.

Pushing a value to the stack proceeds in several steps: adding a node with maximal
timestamp in the list associated to the thread executing the push (given by the special
variable myTID), asking for a new timestamp (given by the shared variable TS), and
updating the timestamp of the added node. Popping a value from the stack consists
in traversing all the lists, finding the first element which doesn’t represent a removed
value (i.e., taken is false) in each list, and selecting the element with the maximal
timestamp. A compare-and-swap (CAS) is used to set the taken flag of this element to
true. The procedure restarts if the CAS fails.

The push operations don’t have a fixed linearization point because adding a node
to a list and updating its timestamp are not executed in a single atomic step. The nodes



thread 0

thread 1

CAS ) true

thread 0

thread 1

thread 2

thread 2

pools

(?,�1)

(?,�1)

(?,�1)

pools

(?,�1)

(?,�1)

(?,�1)

(y, 1)

(x, 0)

(z, 2)

pop(x, 1)

push(y, 3)

push(x, 2)

push(z, 4)

CAS ) true

pop(z, 5)

pop(y, 6)

pools

(?,�1)

(?,�1)

(?,�1)

(y, 1)

(x, 0)

pools

(?,�1)

(?,�1)

(?,�1)

(y, 1)

CAS ) true

pools

(?,�1)

(?,�1)

(?,�1)

i(1) i(1)i(1)

Fig. 5. An execution of TSS. An operation is pictured by a line delimited by two circles denoting
the call and respectively, the return action. Pop operations with identifier k and removing value
d are labeled pop(d,k). Their representation includes another circle that stands for a successful
CAS which is their commit point. The library state after an execution prefix delimited at the right
by a dotted line is pictured in the bottom part (the picture immediately to the left of the dotted
line). A pair (d, t) represents a list node with data= d and ts= t, and i(1) denotes the value of
i in the pop with identifier 1. We omit the nodes where the field taken is true.

can be added in an order which is not consistent with the order between the timestamps
assigned later in the execution. Also, the value added by a push that just added an
element to a list can be popped before the value added by a completed push (since it
has a maximal timestamp). The same holds for pop operations: The only reasonable
choice for a linearization point is a successful CAS (that results in updating the field
taken). Fig. 5 pictures an execution showing that this action doesn’t correspond to
a linearization point, i.e., an execution for which the pop operations in every correct
linearization are not ordered according to the order between successful CASs. In every
correct linearization of that execution, the pop operation removing x is ordered before
the one removing z although they perform a successful CAS in the opposite order.

An interesting property of the successful CASs in pop operations is that they fix
the return value, i.e., the return value is youngest->data where youngest is the node
updated by the CAS. We call such actions commit points. More generally, commit points
are actions that access shared variables, from which every control-flow path leads to the
return control point and contains no more accesses to the shared memory (i.e., after a
commit point, the return value is computed using only local variables).

When the commit points of pop operations are fixed to particular implementation
actions (e.g., a successful CAS) we assume that the library is an LTS over an alphabet
that contains actions com(pop,d,k) with d ∈ V and k ∈ O (denoting the commit point
of the pop with identifier k and returning d). Let Com(pop) be the set of such actions.

5.2 Abstract stack implementation

We define an abstract stack AbsS over alphabet C∪R∪Com(pop) that essentially, simi-
larly to AbsQ, maintains the happens-before order of the pushes whose value has not yet
been removed by a matching pop. Pop operations are treated differently since the com-
mit points are not necessarily linearization points. Intuitively, a pop can be linearized
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Fig. 6. Simulating stack histories with AbsS.

before its commit point. Each pop operation starts by taking a snapshot of the completed
push operations which are maximal in the happens-before, more precisely, which don’t
happen before another completed push operation. Also, the library maintains the set of
push operations overlapping with each pop operation. The commit point com(pop,d,k)
with d 6= EMPTY is enabled if either d was added by one of the push operations in the
initial snapshot, or by a push happening earlier when arguments of pushes from the
initial snapshot have been removed, or by one of the push operations that overlaps with
pop k. The commit point com(pop,EMPTY,k) is enabled if all the values added by push
operations happening before k have been removed. The effect of the commit points is
explained below through examples.

Fig. 6 pictures two executions of AbsS for two extended histories (that include pop
commit points). For readability, we give the state of AbsS only after several execution
prefixes delimited at the right by a dotted line. We focus on pop operations – the effect
of push calls and returns is similar to enqueue calls and returns in AbsQ. Let us first
consider the history on the top part. The first state we give is reached after the call of
pop with identifier 3. This shows the effect of a pop invocation: the greatest completed
pushes according to the current happens-before (here, the push with identifier 1) are
marked as maxAtInvoc(3), and the pending pushes are marked as overlap(3). As a
side remark, any other push operation that starts after pop 3 would be also marked
as overlap(3). The commit point com(pop,x,3) (pictured with a red circle) is enabled
because x was added by a push marked as maxAtInvoc(3). The effect of the commit
point is that push 1 is removed from the state (the execution on the bottom shows a
more complicated case). For the second pop, the commit point com(pop,y,4) is enabled
because y was added by a push marked as overlap(4). The execution on the bottom
shows an example where the marking maxAtInvoc(k) for some pop k is updated at
commit points. The pushes 3 and 4 are marked as maxAtInvoc(5) and maxAtInvoc(6)
when the pops 5 and 6 start. Then, com(pop, t,5) is enabled since t was added by
push(t,4) which is marked as maxAtInvoc(5). Besides removing push(t,4), the commit



function loc: O→{inv,com,ret,⊥}
function arg, ret: O→ V
function present , pending: O→ B
function before: O×O→ B
function maxAtInvoc: O→℘(O)
function overlap: O→℘(O)

rule inv(push ,x,k):
present(k) := true
pending(k) := true
arg(k) := x
forall k1 with present(k1):

if ¬pending(k1):
before(k1,k) := true

forall k1:
overlap(k1) := overlap(k1)∪{k}

rule ret(push ,k):
pending(k) := false

rule ret(pop,y,k):
assert ret(k) = y

rule inv(pop,k):
forall k1 with present(k1):

if pending(k1):
overlap(k) := overlap(k) ∪ {k1}

else:
if ∀k2.present(k2)∧before(k1,k2)⇒pending(k2):

maxAtInvoc(k) = maxAtInvoc(k) ∪ {k1}

rule com(pop,y,k):
ret(k) := y
if y = EMPTY:

assert maxAtInvoc(k) = /0

else:
let k1 := arg−1(y)
assert present(k1)
assert k1 ∈ maxAtInvoc(k) ∪ overlap(k)
present(k1) := false
forall k2 with k1 ∈ maxAtInvoc(k2):

maxAtInvoc(k2) := maxAtInvoc(k2) \ {k1}
forall k3 with before1(k3,k1):
if ∀k4 6=k1.before1(k3,k4) ⇒ k4∈overlap(k2):

maxAtInvoc(k2) := maxAtInvoc(k2) ∪ {k3}

Fig. 7. The AbsS implementation; each rule α(_,k) implicitly begins with assert loc(k)=α and
ends with the appropriate loc(k):=β; and before1 denotes the transitive reduction of before.

point produces a state where a pop committing later, e.g., pop 6, can remove y which
was added by a predecessor of push(t,4) in the happens-before (y could become the
top of the stack when t is removed). This history is valid because push(y,2) can be
linearized after push(x,1) and push(z,3). Thus, push 2, a predecessor of the push which
is removed, is marked as maxAtInvoc(6). Push 1 which is also a predecessor of the
removed push is not marked as maxAtInvoc(6) because it happens before another push,
i.e., push 3, which is already marked as maxAtInvoc(6) (the value added by push 3
should be removed before the value added by push 1 could become the top of the stack).

The description of AbsS as an abstract state machine is given in Fig. 7. Compared
to AbsQ, the state contains two more updatable functions maxAtInvoc and overlap.
For each pop operation k, maxAtInvoc(k) records the set of completed push operations
which were maximal in the happens-before (defined by before) when pop k was in-
voked, or happening earlier provided that the values of all the pushes happening later
than one of these maximal ones and before pop k have been removed. Also, overlap(k)
contains the push operations overlapping with a pop k. Initially, loc(k) = inv for all k,
present(k1) = pending(k1) = before(k1,k2) = false, and maxAtInvoc(k1) =
overlap(k1) = /0, for all k1, k2. The rules for actions of push methods are similar
to those for enqueues in AbsQ, except that every newly invoked push operation k is
added to the set overlap(k1) for all pop operations k1 (since k overlaps with all the
currently pending pops). The rule inv(pop,k), marking the invocation of a pop, sets
maxAtInvoc(k) and overlap(k) as explained above. The rule com(pop,EMPTY,k) is
enabled when the set maxAtInvoc(k) is empty (otherwise, there would be push oper-
ations happening before pop k which makes the return value EMPTY incorrect). Also,
com(pop,y,k) with y 6=EMPTY is enabled when y was added by a push k1 which be-
longs to maxAtInvoc(k)∪ overlap(k). This rule may also update maxAtInvoc(k2) for



other pending pops k2. More precisely, whenever maxAtInvoc(k2) contains the push
k1, the latter is replaced by the immediate predecessors of k1 (according to before) that
are followed exclusively by pushes overlapping with k2.

The abstract state machine in Fig. 7 defines an LTS over the alphabet C ∪ R ∪
Com(pop). Let AbsS0 be the standard abstract implementation of a stack where ele-
ments are stored in a sequence, push and pop operations adding and removing an el-
ement from the beginning of the sequence in one atomic step, respectively. For M =
{push, pop}, the alphabet of AbsS0 is C∪R∪Lin. The following result states that the
library AbsS has exactly the same set of histories as AbsS0.

Theorem 4. AbsS is a refinement of AbsS0 and vice-versa.

A trace of a stack implementation is called Com(pop)-complete when every com-
pleted pop has a commit point, i.e., each return ret(pop,d,k) is preceded by an action
com(pop,d,k). A stack implementation L over Σ, such that C∪R∪Com(pop) ⊆ Σ, is
called with fixed pop commit points when every trace τ∈ Tr(L) is Com(pop)-complete.

As a consequence of Theorem 2, C∪R∪Com(pop)-forward simulations are a sound
and complete proof method for showing the correctness of a stack implementation with
fixed pop commit points (up to the correctness of the commit points).

Corollary 2. A stack L with fixed pop commit points is a C∪R∪Com(pop)-refinement
of AbsS iff there is a C∪R∪Com(pop)-forward simulation from L to AbsS.

Linearization points can also be seen as commit points and thus the following holds.

Corollary 3. A stack implementation L with fixed pop linearization points where tran-
sition labels lin(pop,d,k) are substituted with com(pop,d,k) is a C∪R∪Com(pop)-
refinement of AbsS0 iff there is a C∪R∪Com(pop)-forward simulation from L to AbsS.

5.3 A Correctness Proof For Time-Stamped Stack

We describe a forward simulation F2 from TSS to AbsS, which is similar to the one
from HWQ to AbsQ for the components of an AbsS state which exist also in AbsQ (i.e.,
different from maxAtInvoc and overlap).

Thus, a TSS state s is related by F2 to AbsS states t where present(k) is true for
every push operation k in s such that k has not yet added a node to pools or its node is
still present in pools (i.e., the node created by the push has taken set to false). Also,
pending(k) is true in t iff k is pending in s.

To describe the constraints on the order relation before and the sets maxAtInvoc
and overlap in t, we consider the following notations: tss(k), resp., TIDs(k), denotes
the timestamp of the node created by the push k in state s (the ts field of this node),
resp., the id of the thread executing k. By an abuse of terminology, we call tss(k) the
timestamp of k in state s. Also, k ;s k′ when intuitively, a traversal of pools would
encounter the node created by k before the one created by k′. More precisely, k ;s k′

when TIDs(k)< TIDs(k′), or TIDs(k) = TIDs(k′) and the node created by k′ is reachable
from the one created by k in the list pointed to by pools[TIDs(k)].

The order relation before satisfies the following: (1) pending pushes are maximal,
(2) before is consistent with the order between node timestamps, i.e., tss(k)≤ tss(k′)



implies ¬before(k′,k), and (3) before includes the order between pushes executed in the
same thread, i.e., TIDs(k) = TIDs(k′) and tss(k)< tss(k′) implies before(k,k′).

The components maxAtInvoc and overlap satisfy the following constraints (their
domain is the set of identifiers of pending pops):

Frontiers: By the definition of T SS, a pending pop p in s could, in the future, re-
move the value added by a push k which is maximal (w.r.t. before) or a push k
which is completed but followed only by pending pushes (in the order relation
before). Therefore, for all pop operations p which are pending in s, we have that k ∈
overlap(p)∪maxAtInvoc(p), for every push k such that present(k)∧(pending(k)∨
(∀k′.present(k′)∧before(k,k′)→ pending(k′)).

TraverseBefore: a pop p with youngest(p) 6= null that reached the node n over-
laps with every present push that created a node with a timestamp greater than
youngest(p)→ts and which occurs in pools before the node n. Formally, if
youngests(p)= ns(k) 6= null, ns(p)= ns(k1), k2 ;s k1, present(k2), and tss(k2)≥
tss(k), then k2 ∈ overlap(p), for each p,k1,k2.

TraverseBeforeNull: a pop p with youngest(p) = null overlaps with every push
that created a node which occurs in pools before the node reached by p, i.e.,
youngests(p) = null, ns(p) = ns(k1), k2 ;s k1, and present(k2) implies k2 ∈
overlap(p), for each p,k1,k2.

TraverseAfter: if the variable youngest of a pop p points to a node which is not
taken, then this node was created by a push in maxAtInvoc(p)∪ overlap(p) or
the node currently reached by p is followed in pools by another node which was
created by a push in maxAtInvoc(p)∪ overlap(p). Formally, for each p,k1,k2, if
youngests(p) = ns(k1), ns(k1)->taken= false, and ns(p) = ns(k2), then one of
the following holds:

– k1 ∈maxAtInvoc(p)∪overlap(p), or
– there exists a push k3 in s such that present(k3), k3 ∈maxAtInvoc(p)∪overlap(p),
tss(k3)> tss(k1), and either k2 ;s k3 or ns(k2) = ns(k3) and p is at a control
point before the assignment statement that changes the variable youngest.

The functions maxAtInvoc and overlap satisfy more constraints which can be seen as
invariants of AbsS, e.g., maxAtInvoc(p) and overlap(p) do not contain predecessors of
pushes from maxAtInvoc(p) (for each p,k1,k2, before(k1,k2) and k2 ∈maxAtInvoc(p)
implies k1 6∈maxAtInvoc(p)∪overlap(p)). They can be found in [8].

Note that F2 cannot satisfy the reverse of Frontiers, i.e., every push in overlap(p)∪
maxAtInvoc(p), for some p, is maximal or followed only by pending pushes (w.r.t.,
before). This is because the linearization points of pop operations are not fixed and
they can occur anywhere in between their invocation and commit points. Hence, any
push operation which was maximal or followed only by pending pushes in the happens-
before in between the invocation and the commit can be removed by a pop. And such a
push may no longer satisfy the same properties in the state s.

Based on the values stored in youngests(p) and ns(p), for some pop p, the other
three constraints identify other push operations that overlap with p, or they were fol-
lowed only by pending pushes when p was invoked. TraverseBefore and TraverseBe-
foreNull state that pushes which add new nodes to the pools seen by p in the past,
are overlapping with p. TraverseAfter states that either the push adding the current



youngest node youngests(p) is in overlaps(p)∪maxAtInvocs(p), or there is a node that
p will visit in the future which is in overlaps(p)∪maxAtInvocs(p).

The proof that F2 is indeed a forward simulation from TSS to AbsS follows the same
lines as the one given for the Herlihy&Wing Queue. It can be found in [8].

6 Related Work

Many techniques for linearizability verification, e.g., [28, 4, 27, 2], are based on forward
simulation arguments, and typically only work for libraries where the linearization point
of every invocation of a method m is fixed to a particular statement in the code of m. The
works in [25, 9, 11, 29] deal with external linearization points where the action of an op-
eration k can be the linearization point of a concurrently executing operation k′. We say
that the linearization point of k′ is external. This situation arises in read-only methods
like the contains method of an optimistic set [23], libraries based on the elimination
back-off scheme, e.g., [15], or flat combining [16, 13]. In these implementations, an
operation can do an update on the shared state that becomes the linearization point of a
concurrent read-only method (e.g., a contains returning true may be linearized when
an add method adds a new value to the shared state) or an operation may update the
data structure on behalf of other concurrently executing operations (whose updates are
published in the shared state). In all these cases, every linearization point can still be
associated syntactically to a statement in the code of a method and doesn’t depend on
operations executed in the future (unlike HWQ and TSS). However, identifying the set
of operations for which such a statement is a linearization point can only be done by
looking at the whole program state (the local states of all the active operations). This
poses a problem in the context of compositional reasoning (where auxiliary variables
are required), but still admits a forward simulation argument. For manual proofs, such
implementations with external linearization points can still be defined as LTSs that pro-
duce Lin-complete traces and thus still fall in the class of implementations for which
forward simulations are enough for proving refinement. These proof methods are not
complete and they are not able to deal with implementations like HWQ or TSS.

There also exist linearizability proof techniques based on backward simulations or
alternatively, prophecy variables, e.g., [26, 24, 20]. These works can deal with imple-
mentations where the linearization points are not fixed, but the proofs are conceptually
more complex and less amenable to automation.

The works in [17, 6] propose reductions of linearizability to assertion checking
where the idea is to define finite-state automata that recognize violations of concur-
rent queues and stacks. These automata are simple enough in the case of queues and
there is a proof of HWQ based on this reduction [17]. However, in the case of stacks,
the automata become much more complicated and we are not aware of a proof for an
implementation such as TSS which is based on this reduction.
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