
Accurate Invariant Checking for Programs
Manipulating Lists and Arrays with Infinite Data?

A. Bouajjani1, C. Drăgoi2, C. Enea1, and M. Sighireanu1

1 Univ Paris Diderot, Paris Sorbone Cité, LIAFA CNRS UMR 7089, France,
{abou,cenea,sighirea}@liafa.univ-paris-diderot.fr

2 IST Austria, cezarad@ist.ac.at

Abstract. We propose a logic-based framework for automated reasoning about
sequential programs manipulating singly-linked lists and arrays with unbounded
data. We introduce the logic SLAD, which allows combining shape constraints,
written in a fragment of Separation Logic, with data and size constraints. We ad-
dress the problem of checking the entailment between SLAD formulas, which is
crucial in performing pre-post condition reasoning. Although this problem is un-
decidable in general for SLAD, we propose a sound and powerful procedure that
is able to solve this problem for a large class of formulas, beyond the capabilities
of existing techniques and tools. We prove that this procedure is complete, i.e.,
it is actually a decision procedure for this problem, for an important fragment
of SLAD including known decidable logics. We implemented this procedure and
shown its preciseness and its efficiency on a significant benchmark of formulas.

1 Introduction
Programs can manipulate dynamic data structures carrying data over infinite domains.
Reasoning about the behaviors of such programs is a challenging problem due to the
difficulty of representing (potentially infinite) sets of configurations, and of manipulat-
ing these representations for the analysis of the execution of program statements. For
instance, pre/post-condition reasoning (checking the validity of Hoare triples) requires
being able, given pre- and post-conditions φ and ψ, and a program statement τ, (1) to
compute the strongest post-condition of executing τ starting from φ, denoted post(τ,φ),
and (2) to check that it entails ψ. Moreover, showing that τ is executable starting from φ

amounts in checking that post(τ,φ) is satisfiable (i.e., corresponds to a nonempty set of
configurations). Therefore, an important issue is to investigate logic-based formalisms
where pre/post conditions are expressible for the class of programs under interest, and
for which it is possible to compute effectively (strongest) post-conditions, and to check
satisfiability and entailment. (Notice that both of these problems have to be considered
since it is not required that the logic is closed under negation.)

In this paper, we propose such a framework for the case of programs manipulating
singly-linked lists and arrays with data. Several works have addressed this issue, propos-
ing various decidable logics for reasoning about programs with data structures, e.g. [4,
8, 9, 13–15, 17]. Some of these logics [1, 3, 2, 9, 17] focus mainly on shape constraints
assuming a bounded data domain, e.g. the Separation logic fragment in [3, 9] for which
the entailment problem has a polynomial time complexity. The works in [4, 8, 13–15]

? This work has been partially supported by the French ANR project Veridyc.

focus on reasoning about programs manipulating data structures with unbounded data.
They introduce decidability results concerning the satisfiability problem for logics that
describe the shape and the data of heap configurations. The formulas in these logics
have a quantifier prefix of the form ∃∗∀∗. They are different w.r.t. the type of the vari-
ables which are quantified or the basic predicates which are allowed. The validity of an
entailment φ1 ⇒ φ2 is reduced to the unsatisfiability of φ1 ∧¬φ2. It can be performed
only between boolean combinations of formulas with quantifier prefixes ∃∗ or ∀∗.

We define a logic, called SLAD, allowing to express the specifications of all com-
mon programs manipulating lists and arrays. This logic combines shape constraints,
written in Separation Logic [17], and universally-quantified first-order formulas ex-
pressing constraints on the size and the values of the data sequences associated with
arrays or sharing-free list segments in the heap. The logic is parametrized by a logic on
data; for simplicity, we suppose that data is of integer type and that the logic on data
is Presburger arithmetics. The Separation logic formulas are in a fragment that extends
the one in [3, 9] with existential quantification and disjunction. Existential quantifica-
tion is useful to describe for instance lasso-shaped lists, and disjunction is crucial for
specifications that involve data. For example, the post-condition of a loop that searches
an integer val in a list pointed to by x, where the variable xi is used to traverse the list,
states that: either val is not in the list, e.g., xi = NULL, or val is in the list and xi points to
the corresponding element, e.g., xi 6= NULL, xi is reachable from x, and xi−→data = val.

In general, SLAD formulas have quantifier prefixes of the form ∃∗∀∗ (e.g., the for-
mula in Fig.1 that describes a sorted lasso-shaped list). The validity of entailments
between such formulas can not be reduced to the satisfiability of an ∃∗∀∗ formula and
thus, it can not be decided using approaches like in [4, 8, 13–15]. Also, in many cases,
relevant program assertions are beyond the identified decidable fragments (e.g., rela-
tions between the values of the data fields and the size of the allocated list). We define
a procedure for checking entailments between SLAD formulas, which exploits their
syntax. The entailment between shape constraints is checked using a slightly modified
version of the decision procedure for Separation Logic in [9]. If this entailment holds,
the procedure reduces the entailment between the data constraints to the validity of a
formula in the data logic. The novelty of this procedure is that (1) it does not reduce
entailment checking in SLAD to satisfiability checking in the same logic, (2) it is ap-
plied to ∃∗∀∗ formulas, and (3) it is sound when applied to any SLAD formulas and
complete for a relevant fragment of SLAD. Note that the same procedure is also a sound
decision procedure for unsatisfiability. The fragment of SLAD, called SLAD≤, for which
the unsatisfiability check is complete includes for instance, the logic APF [8] and the
restriction of LISBQ [14] to singly-linked lists. The decision procedure for SLAD≤ has
the same complexity as the decision procedures in [8, 14] (NP-complete, if we fix the
number of universal quantifiers). The entailment problems for which our procedure is
complete consider SLAD≤ formulas (satisfying some syntactic restrictions) and are be-
yond the scope of all existing decision procedures that we are aware of.

Besides decidability results, we show that our approach deals efficiently with a vari-
ety of examples, including programs whose specifications are given by SLAD formulas
that are not in SLAD≤ and which can’t be handled by existing tools. This is an important
feature of our approach: it provides uniform and efficient techniques that are applicable
to a large class of formulas, and that are complete for a significant set of formulas.

For the simplicity of the exposition, we begin by defining SLD, a logic on singly-
linked lists, and then, in Section 6, we define its extension to arrays, SLAD.

2 Logic SLD, a logic for programs with singly-linked lists
We introduce hereafter the class of programs with singly-linked lists considered in this
paper and the syntax of Singly-linked list with Data Logic (SLD, for short), a logic
to describe sets of program configurations (we relegate the definition of the formal
semantics to the long version [5]). Then, we introduce fragments of SLD relevant for
the results presented in the following sections. Finally, we give the properties of SLD
relevant for program verification. In the following, PVar and DVar are disjoint sets of
pointer resp. integer program variables. NULL is a distinguished pointer variable in PVar.

2.1 Programs with singly-linked lists
We consider sequential programs manipulating singly-linked lists of the same type, i.e.,
pointer to a record called list formed of one recursive pointer field next and one data
field data of integer type. However, the results presented in this paper work also for
lists with multiple data fields of different types. As usual, the allocated memory (heap) is
represented by a directed labeled graph where nodes represent list cells and edges repre-
sent values of the field next. The constant NULL is represented by a distinguished node
] with no output edge. Nodes are labeled with values of the field data and pointer vari-
ables. For example, Fig. 1(a) represents a heap containing a lasso-shaped list pointed
to by x. Formally, a program configuration consists of a directed graph representing the
heap and a valuation of the integer program variables in DVar.

Definition 1 (Program configuration). A program configuration is a tuple H =
(V,En, `P, `D,D), where (1) V is a finite set of nodes containing a distinguished node
], (2) En : V ⇀ V is a partial function s.t. En(]) is undefined, (3) `P : PVar ⇀ V is
a partial function labeling nodes with pointer variables such that `P(NULL) =], (4)
`D : (V \{]})→ Z is a function labeling nodes with integers, and (5) D : DVar→ Z is
a valuation of the integer variables. 2

Definition 2 (Simple/Crucial node). A node labeled with a pointer variable or which
has at least 2 predecessors is called crucial. Otherwise, it’s called a simple node. 2

For example, in the program configuration from Fig. 1(a) (DVar is empty) the circled
nodes are crucial nodes and the other nodes are simple.

2.2 Syntax of SLD

The main features of SLD are introduced through an example. (A detailed presentation
of SLD is given [5]). The heap in Fig. 1(a) consists of a lasso shaped list whose cyclic
part is equal in size and values of the data fields to the non-cyclic part. The data in the
cyclic part is strictly sorted. These properties are expressed in SLD as follows:
Shape formulas: The shape of the heap is characterized using the formula ϕ1

S in
Fig. 1(b), written in a fragment of Separation logic (SL) [17], where (1) n and m are
node variables interpreted as nodes in the heap, (2) ls(n,m) denotes a possibly-empty
path between the nodes denoted by n and m; such a path is called a list segment, (3)
the separating conjunction ∗ expresses the fact that the two list segments are disjoint
except for their end nodes, and (4) x(n) says that the pointer variable x labels n.

Let NVar be a set of node variables interpreted as nodes in program configurations.
The syntax of shape formulas is given in Fig. 2. The node] is represented by a constant

2
x

4 6 2

4

6

H :

(a)

ϕ1
S := ls(n,m)∗ls(m,m)∧ x(n)

ϕ2
S := ls(u,v)∗ls(v,w)∧ x(u)

(b)

n
x

mS1 :

u
x

v wS2 :

(c)

h h h

ϕ1
D := dt(n) = dt(m)∧len(n) = len(m)

∧∀y,y′.
(

0 < y < len(n)∧0 < y′ < len(m)∧ y = y′︸ ︷︷ ︸
Gm,n(y,y′)

)
⇒ n[y] = m[y′] list equality

∧∀y1,y2. 0 < y1 < y2 < len(m)︸ ︷︷ ︸
Gm(y1,y2)

⇒ dt(n) = dt(m)< m[y1]< m[y2] strict sortedness

ϕ2
D := ∀y1,y2. 0 < y1 < y2 < len(v)⇒ dt(v)≤ v[y1]≤ v[y2]︸ ︷︷ ︸

sorted(v)

sortedness

(d)

Fig. 1: A program configuration (a) specified by two SLD formulas ϕ1 := ∃n,m.
(
ϕ1

S∧
ϕ1

D
)

and ϕ2 := ∃u,v,w.
(
ϕ2

S∧ϕ2
D
)

given in (b) and (d) such that ϕ1 ` ϕ2. In (c), S1 and
S2 are homomorphic SL-graphs representing the SLD graph formulas ϕ1

S resp. ϕ2
S.

with the same name in the syntax. For simplicity, we consider the intuitionistic model
of Separation logic [17]: if a formula is true on a graph then it remains true for any
extension of that graph with more nodes. Our techniques can be adapted to work also
for the non-intuitionistic model. Inequalities are important to express properties like list
disjointness. For example, the formula ls(n,u)∗ls(m,v)∧ x(n)∧ z(m) has as model a
heap with only one list when m,u,v are interpreted in the same node, while ls(n,u) ∗
ls(m,v)∧ x(n)∧ z(m)∧ n 6= m∧ u 6= v specifies models that contain two disjoint lists.

The restriction Det from Fig. 2 and the omission of the “points to” predicate u 7→ v
from Separation logic [9] (which denotes the fact that v is the successor of the node u)
are adopted only for simplicity.

x ∈ PVar program pointer variables n,m ∈ NVar node variables
u,v ∈ NVar∪{]} node variables or]

ϕE ::= ls(n,u) | ϕE ∗ϕE

ϕP ::= x(u) | m 6= u | ϕP∧ϕP

ϕS ::= ϕE ∧ϕP, where ϕE satisfies Det

Det : “ϕE does not contain two predicates
ls(n,u) and ls(n,v)

where n,u,v are pairwise distinct.”

Fig. 2: Syntax of shape formulas.

To simplify the presentation, a shape formula is represented by an SL-graph, which is a
slight adaptation of the notion introduced in [9]. Each node of an SL-graph corresponds
to a node variable, each edge corresponds to an ls predicate, and nodes are labeled
by pointer variables. For example, the graphs S1 and S2 in Fig. 1(c) are the SL-graphs
associated to the formulas ϕ1

S resp. ϕ2
S in Fig. 1(b).

Definition 3 (SL-graphs). The SL-graph associated to a shape formula ϕS is either
⊥ or a graph S = (N ∪ {]},E`, `P,Ed), where N is the set of node variables in ϕS,
E` : N ⇀ N ∪{]} defines a set of directed edges by E`(n) = m iff ls(n,m) appears in
ϕS, `P : PVar ⇀ N∪{]} is defined by `P(x) = u iff x(u) appears in ϕS, and Ed ⊆ N×N

is a disequality relation which defines a set of undirected edges such that (n,u) ∈ Ed iff
n 6= u appears in ϕS. A path in an SL-graph is formed only of directed edges.

The SL-graph⊥ represents unsatisfiable shape formulas for which an SL-graph can not
be built. For an SL-graph S 6=⊥, we use superscripts to denote their components, e.g.,
ES
` , and we note NS

+ for NS ∪{]}. Also, VarsS(n) denotes the set of pointer variables
labeling n, {x ∈ PVar | `S

P(x) = n}, and Vars(S) denotes the set of pointer variables in
S, dom(`P). The notions of simple and crucial node are defined similarly for SL-graphs.
Sequence formulas: Consider again the formula ϕ1

S in Fig. 1(b). The size and the data
values of the list segments specified by ϕ1

S are characterized by ϕ1
D in Fig. 1(d), which

is a first-order formula over integer sequences. The equality between the list segments
corresponding to ls(n,m) and ls(m,m) is stated using (1) len(n) = len(m), where
len(n) (len(m)) denotes the length, i.e., the number of edges, of the list segment asso-
ciated to ls(n,m) (ls(m,m)), (2) dt(n) = dt(m), where dt(n) represents the integer la-
beling the node n, and (3) a universally quantified formula of the form ∀y.G(y)⇒U(y),
where the variables in the set y, called position variables, are interpreted as integers and
n[y] is interpreted as the integer labeling the node at distance y from n.

For every predicate ls(n,m) we call integer sequence associated with n, for short
sequence of n, the element of Z∗ obtained by concatenating the integers labeling all
the nodes except the last one (i.e., the one represented by m) in the list segment cor-
responding to ls(n,m). A term n[y] appears in U(y) only if the guard G(y) contains
the constraint 0 < y < len(n). This restriction is used to avoid undefined terms. (For
instance, if the length of the list segment starting in n equals 2 then the term n[y] with
y interpreted as 3 is undefined.) The strict sortedness is specified using a universal for-
mula of the same form. Intuitively, U(y) constrains the integers labeling a set of nodes
determined by the guard G(y). A formula ρ = ∀y. G(y)⇒ U(y) is called a guarded
formula and G(y) is the guard of ρ. The syntax of sequence formulas is given in Fig. 3.

N∪{n,ny} ⊆ NVar node variables d ∈ DVar integer variable
y∪{y} ⊆ Pos position variables k ∈ Z integer constant

Position terms: E-terms: U-terms:
p ::= k | y | len(n) | p+ p e ::= k | d | dt(n) | len(n) | e+ e t ::= e | y | n[y] | t + t

Existential constraints: E ::= e≤ e′ | ¬E | E ∧E | ∃d. E, where e and e′ are E-terms
Constraints on positions: C ::= p≤ p′ | ¬C |C∧C where p and p′ are position terms
Guards: G(y) ::= C∧

∧
y∈y 0 < y < len(ny),

Data properties: U(y) ::= t ≤ t ′ | ¬U |U ∧U | ∃d.U, where t and t ′ are U-terms
containing position variables from y

Sequence formulas: ϕD ::= E | ∀y. G(y)⇒U(y) | ϕD∧ϕD

Fig. 3: Syntax of sequence formulas.

SLD formulas: A formula in SLD is a disjunction of formulas of the form ∃N1. (ϕ
1
S ∧

ϕ1
D) ∗ · · · ∗ ∃Nk. (ϕ

k
S ∧ϕk

D), where each Ni is the set of all node variables in ϕi
S (which

include all the node variables in ϕi
D). Note that such a formula is equivalent to ∃N1 ∪

·· ·∪Nk. (ϕ
1
S ∗ · · · ∗ϕk

S∧ϕ1
D∧·· ·∧ϕk

D). W.l.o.g, in the following, we will consider only
SLD formulas which are disjunctions of formulas of the form ∃N. ϕS∧ϕD.

The set of program configurations which are models of a formula ψ is denoted [ψ].

2.3 Fragments of SLD

Succinct SLD formulas: An SLD formula ψ is succinct if every SL-graph associated
to a disjunct of ψ has no simple nodes. For example, ϕ1 := ∃n,m. ϕ1

S ∧ϕ1
D in Fig. 1 is

succinct, but the formula ϕ5 whose SL-graph is given in the top of Fig. 4 is not succinct.
SLD≤ formulas: A guard G(y) is called a ≤-guard if it has the following syntax:∧

1≤ j≤q
p j ≤ p′j ∧

∧
y∈y

0 < y < len(ny), (i)

where p j and p′j are either position variables or position terms that do not contain
position variables. That is, a ≤-guard contains only inequalities of the form y1 ≤ y2,
y1≤ p, p≤ y1, or p≤ p′, where y1,y2 ∈Pos and p, p′ are position terms without position
variables. Thus, a ≤-guard can define only ordering or equality constraints between
positions variables in one or several sequences; it can not define, e.g., the successor
relation between positions variables. The fragment SLD≤ is the set of all SLD formulas
ψ such that for any sub-formula ∀y. G(y)⇒U(y) of ϕ, (1) G(y) is a ≤-guard and (2)
any occurrence of a position variable y in U(y) belongs to a term n[y] with n ∈ NVar.

2.4 Closure under post image computation
For any program statement St and any set of program configurations H, post(St,H)
denotes the postcondition operator. The closure of SLD under the computation of the
strongest postcondition w.r.t. basic statements (which don’t contain “while” loops and
deallocation statements) is stated in the following theorem (the proof is given in [5]).
Theorem 1. Let St be a basic statement and ψ an SLD formula. Then, post(St, [ψ])
is SLD-definable and it can be computed in linear time. Moreover, if ψ is an SLD≤
formula then post(St, [ψ]) is SLD≤-definable and it can be computed in linear time.

3 Checking entailments between SLD formulas
For any ψ1 and ψ2 two SLD formulas, ψ1 semantically entails ψ2 (denoted ψ1 ` ψ2) iff
[ψ1]⊆ [ψ2]. The following result states that checking the semantic entailment between
SLD formulas is undecidable. It is implied by the fact that even the satisfiability problem
for SLD is undecidable (by a reduction to the halting problem of 2-counter machines).
Theorem 2. The satisfiability problem for SLD is undecidable. The problem of check-
ing the semantic entailment between (succinct) SLD formulas is also undecidable.

We present a procedure for checking entailments between SLD formulas, called
simple syntactic entailment and denoted vS, which in general is only sound.
Checking entailments of shape formulas: For SLD formulas without data constraints
(i.e., disjunctions of shape formulas), the simple syntactic entailment is a slight exten-
sion to disjunctions and existential quantification of the decision procedure for Sepa-
ration logic introduced in [9]. Thus, given two shape formulas ϕ and ϕ′, ϕ vS ϕ′ iff
the SL-graph of ϕ is ⊥ or there exists an homomorphism from the SL-graph of ϕ′ to
the SL-graph of ϕ. This homomorphism preserves the labeling with program variables,
the edges that denote inequalities, and it maps edges of ϕ′ to (possibly empty paths)
of ϕ such that any two disjoint edges of ϕ′ are mapped to two disjoint paths of ϕ. For
example, the dotted edges Fig. 1(c) represent the homomorphism h which proves that
∃n,m. ϕ1

S ` ∃u,v,w. ϕ2
S. This holds because v is not required to be different from w.

We have that ϕ ` ϕ′ iff ϕ vS ϕ′. Formally, the homomorphism between SL-graphs is
defined as follows:

Definition 4 (Homomorphic shape formulas). Given two SL-graphs S1 and S2, S1 is
homomorphic to S2, denoted by S1 7→h S2, if S1 = S2 = ⊥ or there exists a function
h : NS1

+ → NS2
+ , called homomorphism, such that: (1) h(]) =]; (2) for any n ∈ NS1

+ ,
VarsS1(n)⊆VarsS2(h(n)); (3) for any e = (n,u) ∈ ES1

` , there is a (possibly empty) path
πe in S2 starting in h(n) and ending in h(u); (4) for any two distinct edges e1 = (n,u) ∈
ES1
` and e2 = (m,v) ∈ ES1

` (m,v), the corresponding paths πe1 and πe2 associated by h
in S2 don’t share any edge; (5) for any e = (n,u) ∈ ES1

d , (h(n),h(u)) ∈ ES2
d . 2

For any two SLD formulas ψ and ψ′, which are disjunctions of shape formulas,
ψ vS ψ′ iff for any disjunct ϕ of ψ there exists a disjunct ϕ′ of ψ′ such that ϕ vS ϕ′.
One can prove that vS is sound, i.e., for any ψ and ψ′, if ψvS ψ′ then ψ ` ψ′.

Adding data constraints: For SLD formulas with data constraints, the definition of
the simple syntactic entailment is guided by the syntax of SLD. We illustrate it on the
formulas from Fig. 1(b),(d). First, the procedure checks if the simple syntactic en-
tailment holds between the SL-formulas ϕ1

S and ϕ2
S. Then, because the homomorphism

in Fig. 1(c) maps every edge in S2 to an edge in S1, it checks that ϕ1
D entails ϕ2

D[h],
where ϕ2

D[h] is obtained from ϕ2
D by applying the substitution [u 7→ n,v 7→ m,w 7→ m]

defined by the homomorphism h (if the homomorphism h does not satisfy this condi-
tion then the simple syntactic entailment does not hold). The entailment between two
sequence formulas ϕD and ϕ′D is reduced to the entailment in the logic on data by
checking that for any guarded formula ∀y. G(y)⇒U ′(y) in ϕ′D there exists a guarded
formula ∀y. G(y)⇒ U(y) in ϕD such that U(y)⇒ U ′(y). This entailment check be-
tween sequence formulas is also denoted by vS. In Fig. 1(d), this test is satisfied for
the guarded formula in ϕ2

D[h] by the last guarded formula in ϕ1
D (i.e., strict sortedness

implies sortedness). This procedure is efficient because it requires no transformation on
the input formulas and the decision procedure on data is applied on small instances and
a number of times which is linear in the size of the input formulas.

The simple syntactic entailment for disjunctions of formulas of the form ∃N. ϕS ∧
ϕD is defined as in the case of disjunctions of shape formulas. Clearly,vS is only sound.
In the following, we will introduce a more precise procedure for checking entailments
between SLD formulas, denoted v and called syntactic entailment. The presentation is
done in two steps depending on the class of homomorphisms discovered while proving
the entailment between shape formulas. First, we will consider edge homomorphisms,
that map edges of an SL-graph to edges of another SL-graph (i.e., for any edge (u,v),
(h(u),h(v)) is an edge) and then, we will consider the case of arbitrary homomorphisms.

4 Syntactic entailment w.r.t. edge homomorphisms

The simple syntactic entailment fails to prove some relevant entailments encountered
in practice, e.g, the equality of two lists pointed to by x and z, resp., and the fact that the
list pointed to by z is sorted implies that the list pointed to by x is also sorted:

∃n,m. (ls(n,])∗ls(m,])∧x(n)∧z(m)∧ϕ
1
D) ` ∃u.

(
ls(u,])∧x(u)∧sorted(u)

)
. (ii)

Above, ϕ1
D is the formula in Fig. 1(c) and the entailment between the shape formulas is

proven by the homomorphism h defined by h(u) = n. Checking the entailment between
ϕ1

D and sorted(u)[h] fails because the sets of guards in the two formulas are different.

More precisely, ϕ1
D does not contain a guarded formula of the form ∀y1,y2.Gn(y1,y2)⇒

U , where Gn(y1,y2) := 0 < y1 < y2 < len(n).
Saturation procedure: The problem is that SLD does not have a normal form in the
sense that the same property can be expressed using SLD formulas over different sets
of guards. In our example, one can add to ϕ1

D the guarded formula ρ := ∀y1,y2. 0 <
y1 < y2 < len(n)⇒ dt(n) < n[y1] < n[y2] while preserving the same set of models.
Adding this guarded formula makes explicit the constraints on the integer values in the
list segment starting in n, which are otherwise implicit in ϕ1

D. If all constraints were
explicit then, the simple syntactic entailment would succeed in proving the entailment.

Based on these remarks, we extend the simple syntactic entailment such that be-
fore applying the syntactic check between two sequence formulas ϕD and ϕ′D presented
above, we apply a saturation procedure to the SLD formula in the left hand side of
the entailment, called saturate. This procedure makes explicit in ϕD all the prop-
erties expressed with guards that appear in ϕ′D. For example, by applying this proce-
dure the formula ρ is added to ϕ1. More precisely, we add to ϕD a trivial formula
∀y. G(y)⇒ true, for every guard in ϕ′D, and then, we call saturate which strength-
ens every guarded formula in ϕD. Roughly, the strengthening of ∀y. G(y)⇒ UG(y)
relies on the following principle: to find a formula U such that G⇒U is implied by
E ∧ (G1 ⇒U1)∧ . . .∧ (Gk ⇒Uk), one has to find a (negation-free) boolean combina-
tion C[G1, . . . ,Gk] of G1,. . .,Gk such that (E ∧G)⇒ C[G1, . . . ,Gk], and then set U to
C[U1, . . . ,Uk]. This principle is extended to boolean combinations of guards where some
position variables are existentially-quantified (see [5] for more details). Going back to
the example in (ii), we add to ϕ1

D the formula ρ0 := ∀y1,y2. Gn(y1,y2)⇒ true. Then,
following the principle described above, we have that(
len(n) = len(m)∧Gn(y1,y2)

)
⇒∃y′1,y′2.

(
Gm(y′1,y

′
2)∧Gm,n(y1,y′1)∧Gm,n(y2,y′2)

)
,

where Gm and Gm,n are the guards from ϕ1
D given in Fig. 1(d). Therefore, the right part

of the implication in ρ0 can be replaced by

∃y′1,y′2.
(
dt(n) = dt(m)< m[y′1]< m[y′2]∧m[y′1] = n[y1]∧m[y′2] = n[y2]

)
,

which is equivalent to the right hand side of ρ, dt(n)< n[y1]< n[y2].
Correctness and precision results: The next result shows that the saturation procedure
returns a formula equivalent to the input one and that, for the fragment SLD≤ of SLD,
saturate computes the strongest guarded formulas which are implied by the input
formula. The precision result holds because for the class of ≤-guards, it suffices to
reason only with representatives for the set of tuples of positions satisfying some guard.

Theorem 3. Let ϕ = ∃N. ϕS ∧ ϕD be a disjunction-free SLD formula. Then,
saturate(ϕ) is equivalent to ϕ and saturate(ϕ)vS ϕ. Moreover, for any SLD≤ for-
mula ϕ, saturate(ϕ) = ∃N. ϕS∧ϕ′D such that the following hold:

– the existential constraint of ϕ′D, E ′, is the strongest existential constraint such that
ϕ ` (∃N. ϕS∧E ′), and

– for any guard G(y) in ϕD, ϕ′D contains the strongest universal formula of the form
∀y. G(y)⇒U(y) such that ϕ ` (∃N. ϕS∧∀y. G(y)⇒U(y)). 2

This procedure will be used to define a sound and complete decision procedure for
the satisfiability of SLD≤ and a sound and complete decision procedure for checking
entailments between formulas in a fragment of SLD≤ (see Th. 6 for more details).

5 Syntactic entailment w.r.t arbitrary homomorphisms

Suppose that we want to check the entailment between two SLD formulas ϕ = ∃N. ϕS∧
ϕD and ϕ′ = ∃N′. ϕ′S ∧ ϕ′D and that h is an homomorphism that is a witness for the
fact that ϕS ` ϕ′S. If h is not an edge homomorphism then, when proving the entailment
between ϕD and ϕ′D[h], one encounters two difficulties: (1) edges of ϕ′S mapped to nodes
of ϕS (i.e., edges (u,v) such that h(u) = h(v)) and (2) edges of ϕ′S mapped to paths in
ϕS containing at least two edges (i.e., edges (u,v) such that the nodes h(u) and h(v) are
connected by a path of length at least 2).
Procedure split: In the first case, the edges of ϕ′S mapped to nodes of ϕS pose the
following problem: the sequence formula ϕ′D[h] may contain guarded formulas that
describe list segments that don’t have a correspondent in ϕD. For example, let

ϕ3 := ∃n. x(n) ∧ dt(n) = 3 and
ϕ4 := ∃u,v. ls(u,v)∧ x(u)∧ dt(u)≥ 2∧∀y. 0 < y < len(u)⇒ u[y]≥ 1

Note that ϕ3 ` ϕ4 and that there exists an homomorphism h between the shape
formula of ϕ4 and the shape formula of ϕ3 given by h(u) = h(v) = n. In order to be able
to use the same approach as before (i.e., applying saturate on ϕ3 and then checking
the entailment between guarded formulas with similar guards), we define a procedure
split that transforms the formula ϕ3 such that the homomorphism h becomes injective.
That is, split transforms ϕ3 into:

ϕ3 := ∃n,nn. x(n)∧ls(n,nn)∧dt(n) = 3∧len(n) = 0,

where the new node variable nn is added such that h′(u) = n and h′(v) = nn is an
injective homomorphism. Note that the two formulas ϕ3 and ϕ3 are equivalent. Now, as
described in the previous section, we can add the trivial formula ∀y. 0 < y < len(n)⇒
true to ϕ3 and then apply saturate, which strengthens it into ∀y. 0 < y < len(n)⇒
false because the list segment starting in n is empty. Now, dt(n) = 3⇒ dt(n) ≥ 2 and
false⇒ n[y]≥ 1 which is enough to prove that ϕ3 ` ϕ4.

If the SL-graph of ϕS and ϕ′S do not contain cycles then split returns a triple
(ϕ,h′,ϕ′). The formula ϕ is obtained by (1) adding to ϕS a new node variable denoted
nn for every two node variables n and m in ϕ′S such that h(n) = h(m), (2) placing nn
between h(n) and its successor in ϕS (i.e., ls(h(n),x) is replaced by ls(h(n),nn) ∗
ls(nn,x)) (3) substituting h(n) with nn in the sequence formula ϕD (in this way, all
constraints on h(n) are transferred to the node nn) (4) adding the constraint that the
length of the list segment starting in h(n) is 0. The homomorphism h′ is injective and it is
defined like h except for n and m where h′(n)= h(n) and h′(m)= nn. In the general case,
split(ϕ,h,ϕ′) returns a set of triples (ϕ,h′,ϕ′) with h′ an injective homomorphism
between the shape formula of ϕ′ and the shape formula of ϕ (ϕ is an over-approximation
of ϕ and ϕ′ is an under-approximation of ϕ′). We have that ϕ ` ϕ′ iff ϕ ` ϕ′, for some
triple (ϕ,h,ϕ′) ∈ split(ϕ,h,ϕ′) (see [5] for a complete definition of split).
Procedure fold: The second case is illustrated on the entailment ϕ5 ` ϕ6, where

ϕ5 := ∃n,m, p.
(
ϕ5

S∧ sorted(n)∧ sorted(m)∧ ∀y. 0 < y < len(n)⇒ n[y]≤ dt(m)
)

ϕ6 := ∃u,v.
(
ϕ6

S∧ sorted(u)
)

and the graph formulas ϕ5
S and ϕ6

S are given by the SL-graphs S5 and S6 in Fig. 4.

n
x

m p
z

S5 :

u
x

v
z

S6 :

h h

Fig. 4

The homomorphism h from S6 to S5 defined by h(u) = n and
h(v) = p maps the edge (u,v) to the path (n,m),(m, p). Intu-
itively, the entailment ϕ5 ` ϕ6 holds because, in any model of
ϕ5, the concatenation between the sequence of integers in the
list segment from n to m and the sequence of integers in the list
segment from m to p is sorted (i.e., it satisfies the property of

the list segment from u to v in ϕ6.)
Let ϕ = ∃N. ϕS ∧ϕD and ϕ′ = ∃N′. ϕ′S ∧ϕ′D be two SLD formulas and h an homo-

morphism from ϕ′S to ϕS that maps edges of ϕ′S to non-empty paths of ϕS. We denote by
ϕ′DJhK the sequence formula obtained from ϕ′D by (1) substituting u by h(u) in all terms
except for len(u) and (2) substituting len(u) by ∑

(n,m)∈
−−−−−→
h(u),h(v)

len(n) with v being the

successor of u in ϕ′S and
−−−−−−−→
(h(u),h(v)) the path between h(u) and h(v) in the SL-graph of

ϕS. For example, sorted(u)JhK is the formula:

sorted(n+m) := ∀y1,y2. 0 < y1 < y2 < len(n)+len(m)︸ ︷︷ ︸
Gn+m(y1,y2)

⇒ dt(n)≤ n[y1]≤ n[y2].

Remark that the substitution of len(u) by len(n) + len(m) makes the formula
sorted(u)JhK contain properties of concatenations of list segments.

Note that the entailment ϕ ` ϕ′ holds if ϕD entails ϕ′DJhK. For example, ϕ5 ` ϕ6

holds because the sequence formula of ϕ5, denoted ϕ5
D, entails sorted(u)JhK.

The difficulty in proving the entailment between ϕ5
D and sorted(n+m) is that ϕ5

D
does not contain a guarded formula having as guard 0 < y1 < y2 < len(n)+len(m). In
the following, we describe a procedure called fold which computes properties of such
concatenations of list segments. In this particular case, we add to ϕ5

D the trivial formula
∀y1,y2. 0 < y1 < y2 < len(n)+len(m)⇒ true which is strengthened by fold into a
formula equivalent to sorted(n+m).

For every G(y) as above, fold begins by computing a set of auxiliary guards, one
for every way of placing positions that satisfy G(y) on the list segments that are con-
catenated. Then, for every such satisfiable guard G′(y′), it calls the saturation procedure
saturate to compute a guarded formula of the form ∀y′. G′(y′)⇒U ′(y′) implied by
ϕ. Finally, it defines U(y) as the disjunction of all formulas which are in the right hand
side of a guarded formula computed in the previous step (see [5] for more details).

We exemplify the procedure fold on the formula ϕ5
D ∧ ∀y1,y2. 0 < y1 < y2 <

len(n)+ len(m)⇒ true involved in proving the entailment ϕ5 ` ϕ6 above. A value
for y1 or y2 that satisfies the constraints in Gn+m(y1,y2), i.e. it is a position between 1
and len(n)+len(m)−1 on the list starting in n, can either correspond to (1) a position
on the sequence associated with the list segment ls(n,m) (when it is less than len(n))
or to (2) the first element of the sequence associated with the list segment ls(m, p)
(when it equals len(n)) or to (3) a position on the tail of the sequence associated with
the list segment ls(m, p) (when it is greater than len(n)). In each case, an auxiliary
guard is computed by adding some constraints to Gn+m(y1,y2) and by substituting the
variables y1 and y2 as follows. If yi is considered to be a position on the tail of some
list segment α then the constraint 0 < yi < len(α) is added to Gn+m(y1,y2) and yi is
substituted by yi +∑ j len(n j), where n j are all the list segments from n to the prede-
cessor of α. Concretely, if yi corresponds to a position on the tail of the list segment
ls(n,m) then 0 < yi < len(n) is added to Gn+m(y1,y2) and yi remains unchanged. If yi
corresponds to a position on the tail of the list segment ls(m, p) then 0 < yi < len(m)

is added to Gn+m(y1,y2) and yi is substituted by yi + len(n). If yi is considered to be
the first element of the list segment ls(m, p) then it is substituted by the exact value of
this position, i.e. len(n). Below, we consider three cases and give the auxiliary guard
computed in each case:
“y1 is the first element of πm,p”, “y2 is a position on the tail of πm,p”

0 < len(n)< y2 +len(n)< len(n)+len(m)∧0 < y2 < len(m)

≡ 0 < y2 < len(m)

“y1 is a position on the tail of πn,m”, “y2 is a position on the tail of πm,p”
0 < y1 < y2 +len(n)< len(n)+len(m)∧0 < y1 < len(n)∧0 < y2 < len(m)

≡ 0 < y1 < len(n)∧0 < y2 < len(m)

“y1 is a position on the tail of πm,p”, “y2 is the first element of πm,p”
0 < y1 +len(n)< len(n)< len(n)+len(m)∧0 < y1 < len(m)

≡ f alse
Notice that the third situation is not possible and it corresponds to an unsatisfiable

guard which will be ignored in the following. The procedure saturate infers from ϕ5
D

the following properties: γ1 := ∀y2. 0 < y2 < len(m)⇒ dt(n) ≤ dt(m) ≤ m[y2] and
γ2 := ∀y1,y2. (0 < y1 < len(n)∧0 < y2 < len(m))⇒ dt(n)≤ dt(n)≤ n[y1]≤m[y2].
The other possible cases for the placement of the positions denoted by y1 and y2 are
handled in a similar manner.

The right parts of all the generated guarded formulas are “normalized” such that
they characterize the terms n[y1] and n[y2], where y1 and y2 satisfy the constraints in
Gn+m(y1,y2). For example, in the right part of γ1, dt(m) is substituted by n[y1] (because
y1 was considered to be the first element of the list segment starting in m) and m[y2] is
substituted by n[y2] (because y2 was considered to be a position on the tail of the list
segment starting in m) and in the right part of γ2, n[y1] remains unchanged and m[y2]
is substituted by n[y2]. The procedure fold returns ∀y1,y2. Gn+m(y1,y2)⇒U(y1,y2),
where U(y1,y2) is the disjunction of all the obtained formulas. In this case, U(y1,y2) is
equivalent to dt(n)≤ n[y1]≤ n[y2].
Syntactic entailment: Given two SLD formulas ψ and ψ′, the syntactic entailment
ψ v ψ′ is defined as follows: for any disjunct ϕ of ψ there exists a disjunct ϕ′ of ψ′

such that ϕv ϕ′ holds, where the relation v is defined in Fig. 5.
Correctness and precision results: The following theorem gives precision and cor-
rectness results for fold. The precision result is implied by the precision of saturate
for SLD≤ formulas.
Theorem 4. Let ϕ = ∃N. ϕS ∧ϕD be a disjunction-free SLD formula. Then, fold(ϕ)
is equivalent to ϕ and fold(ϕ) vS ϕ. Moreover, for any SLD≤ formula ϕ, fold(ϕ) =
∃N. ϕS∧ϕ′D such that for any guard G(y) in ϕD, which describes concatenations of list
segments, ϕ′D contains the strongest universal formula of the form ∀y. G(y)⇒ U(y)
such that ϕ ` (∃N. ϕS∧∀y. G(y)⇒U(y)).
The correctness result for fold and saturate implies that v is sound. Next, we iden-
tify entailment problems ψ1 ` ψ2, where ψ1 and ψ2 belong to SLD≤, for which the
procedure v is complete. Roughly, we impose restrictions on ψ1 and ψ2 such that a
disjunction-free SLD formula in ψ1 may entail at most one disjunct in ψ2. For example,
we require that ψ2 is unambiguous. An SLD formula ψ is called unambiguous if for any
disjunct ϕ of ψ, the SL-graph of ϕ contains an undirected (inequality) edge between
every two nodes.

Theorem 5 (Soundness). Let ψ1 and ψ2 be SLD formulas. If ψ1 v ψ2 then ψ1 ` ψ2.

Theorem 6 (Completeness). Let ψ1 and ψ2 be two SLD≤ formulas. If ψ1 is unambigu-
ous, ψ2 is succinct, and for every disjunct ϕ1 of ψ1 there exists at most one disjunct ϕ2
of ψ2 homomorphic to ϕ1 then ψ1 ` ψ2 implies saturate(ψ1)v ψ2.

ALGORITHM Syntactic entailment ϕv ϕ′

Require: ϕ := ∃N. ϕS∧ϕD, ϕ′ := ∃N′. ϕ′S∧ϕ′D
1: choose h an homomorphism from ϕ′S to ϕS

2: choose (ϕ,h,ϕ′) in split(ϕ,h,ϕ′)
3: add to ϕ missing guards from ϕ′JhK
4: ϕ1 := fold(ϕ)
5: ϕ2 := saturate(ϕ1)

6: check ϕ2
D vS ϕ′D, where ϕ2

D and ϕ′D is the
sequence formula of ϕ2 and ϕ′, respectively.

Fig. 5

The procedure saturate can also be
used to check satisfiability of SLD for-
mulas. Notice that an SLD formula ϕ :=
∃N. ϕS∧ϕD is unsatisfiable iff either the
SL-graph of ϕS is ⊥ or the sequence for-
mula ϕD is unsatisfiable. The latter con-
dition means that the strongest existen-
tial constraint E s.t. ϕ ` ∃N. (ϕS ∧E) is
equivalent to false.

Theorem 7. An SLD formula ψ is unsat-
isfiable iff for any disjunct ϕ of ψ either
the SL-graph of ϕ is ⊥ or the existential

constraint E of saturate(ϕ) is unsatisfiable.

We give in [5] an extension of these results to more general SLD formulas that
contain guarded formulas describing concatenations of list segments.

6 Logic SLAD, extension of SLD with arrays
The class of programs considered in Section 2 can be extended to manipulate, besides
lists, a fixed set of arrays. We consider that the arrays are not overlapping (e.g., like in
Java), and that they are manipulated by operations like allocation, read/write an element,
and read the length. A configuration of such programs is also represented by a directed
graph and a valuation for the integer program variables. For lack of space, we present
here the main ideas of this extension, a detailed presentation of is provided in [5].

Let AVar be a set of array variables, disjoint from the sets PVar and DVar. Also,
let IVar be the set of integer program variables in DVar used in order to access array
elements. A variable in IVar is called an index variable. The syntax of shape formulas
in SLAD is the one given in Fig. 2 for SLD; only sequence formulas are specifying array
properties. The syntax of sequence formulas in SLAD extends the one given in Fig. 3
by allowing the following new terms and guards:

Position terms: E-terms: U-terms: Guards:
p ::= ... | i e ::= ... | a[p] t ::= ... | a[y] G(y) ::=C∧

∧
y∈y 0 < y < `(y)

i ∈ IVar a,ay ∈ AVar `(y) ::= len(ny) | len(ay)

The definition of the SLAD guards includes constraints on position variables y ∈ y used
with arrays. The same condition for U-terms n[y] is applied to terms a[y]: they appear
in U(y) only if the guard includes the constraint 0 < y < len(ay).

The procedure for checking the syntactic entailment ϕ1 v ϕ2 between two
disjunction-free formulas ϕ1,ϕ2 ∈ SLAD translates ϕ1 and ϕ2 into equivalent SLD for-
mulas and then, it applies the syntactic entailment for SLD defined in Fig. 5. Roughly,
the translation procedure applied on an SLAD formula ϕ adds to the shape formula
the list segments corresponding to array variables used in the sequence formula, and

it soundly translates the terms and guards over arrays into terms and guards over lists.
The resulting SLD formula ϕ is equivalent to ϕ and of size polynomial in the size of ϕ.

The fragment SLAD≤ of SLAD is defined similarly to the fragment SLD≤ of SLD
(the only difference is that, for any guarded formula ∀y. G(y)⇒U(y), any occurrence
of a position variable y in U(y) belongs to a term of the form n[y] or a[y]). The following
results are straightforward consequences of Th. 6.

Corollary 1. Let ψ1,ψ2 be two formulas in SLAD. If ψ1 v ψ2 then ψ1 ` ψ2. Moreover,
if ψ1,ψ2 are SLAD≤ formulas satisfying the restrictions in Th. 6, then ψ1 ` ψ2 implies
saturate(ψ1)v ψ2.

Corollary 2. Checking the semantic entailment ψ1 ` ψ2, where ψ1 and ψ2 are two
SLAD≤ formulas satisfying the restrictions in Th. 6, is decidable. Also, checking the
satisfiability of an SLAD≤ formula is decidable. If we consider SLAD≤ formulas with a
fixed number of universal quantifiers s.t. the logic on data is quantifier-free Presburger
arithmetics then the two problems are NP-complete.

7 Experimental results
We have implemented in CELIA [6] the algorithm v and the postcondition operator for
SLAD, and we have applied the tool to the verification of a significant set of programs
manipulating lists and arrays. These programs need invariants and pre/post conditions
beyond the decidable fragment SLAD≤. For example, we have verified a C library im-
plementing sets of integers using strictly sorted lists (procedures/clients of the library
are named setlist-* in Tab. 1). The guarded formulas used by the specifications of this
library need guards of the form y2 = y1 + 1 or y1 < y2 which are not ≤-guards. The
verification of the clients is done in a modular way by applying an extension for SLAD
of the frame rule from Separation logic.

The verification tool extends the implementation of the abstract domain of uni-
versal formulas defined in [6] to which we have added the procedures saturate,
split, fold, and the computation of SL-graph homomorphism. The decision pro-
cedures v and saturate are also available in an independent tool SLAD whose in-
put are formulas in the SMTLIB2 format. Table 1 provides the characteristics and
the experimental results obtained (on a Pentium 4 Xeon at 4 GHz) for an illustra-
tive sample of the verified programs. The full list of verified programs is available at
www.liafa.jussieu.fr/celia/verif/.

8 Related work and conclusions
Various frameworks have been developed for the verification of programs based on
logics for reasoning about data structures, e.g., [1, 4, 6–9, 12–18].
Decidable logics for unbounded data domains: Several works have addressed the
issue of reasoning about programs manipulating data structures with unbounded data,
e.g. [4, 8, 13–15, 19]. The logics in [8, 13] allow to reason about arrays and they are
fragments of SLAD (see [5]). The fragment SLAD≤, for which the satisfiability problem
is decidable, includes the Array Property Fragment [8] when defined over finite arrays
but, it is incomparable to the logic LIA [13].

The logics in [4, 14] to reason about composite data structures are more expressive
concerning the shape constraints but they are less expressive than SLAD when restricted

Program pre-cond inv post(inv) post-cond Verif.
size logic size logic size logic size logic time

copyaddV 1∨× 0∀ SLD≤ 3∨× 1∀ SLD≤ 2∨× 1∀ SLD≤ 1∨× 1∀ SLD≤ < 1s

initSeq 1∨× 0∀ SLD≤ 3∨× 1∀ SLD 2∨× 1∀ SLD 1∨× 1∀ SLD < 1s

initFibo 1∨× 0∀ SLD≤ 3∨× 2∀ SLD 4∨× 2∀ SLD 1∨× 1∀ SLD≤ < 1s

setlist-contains 1∨× 2∀ SLD 3∨× 4∀ SLD 4∨× 4∀ SLD 2∨× 3∀ SLD < 1s

setlist-add 1∨× 2∀ SLD 3∨× 7∀ SLD 4∨× 7∀ SLD 1∨× 1∀ SLD < 1s

setlist-union 1∨× 4∀ SLD 4∨× 13∀ SLD 5∨× 13∀ SLD 1∨× 6∀ SLD < 2s

setlist-intersect 1∨× 4∀ SLD 3∨× 13∀ SLD 4∨× 13∀ SLD 1∨× 6∀ SLD < 2s

setlist-client 0∨× 0∀ SLD 2∨× 2∀ SLD 3∨× 2∀ SLD 1∨× 2∀ SLD < 1s

svcomp-list-prop 1∨× 0∀ SLD≤ 3∨× 2∀ SLD 4∨× 2∀ SLD 1∨× 1∀ SLD < 1s

array2list 1∨× 0∀ SLAD≤ 2∨× 1∀ SLAD≤ 2∨× 1∀ SLAD≤ 1∨× 1∀ SLAD≤ < 1s

array-insertsort 1∨× 4∀ SLAD≤ 3∨× 5∀ SLAD≤ 2∨× 5∀ SLAD≤ 1∨× 4∀ SLAD≤ < 3s

Table 1: Experimental results. Size of formulas n∨×m∀means n disjuncts (i.e., shape formulas)
with at most m guarded formulas per disjunct. copyAddV creates a list from an input list with
all data increased by some data parameter. initSeq initializes data in a list with consecutive
values starting from some data parameter. initFibo initializes data in a list with the Fibonacci
sequence. setlist-* are procedures/clients of a library implementing sets as strictly sorted lists.
svcomp-list-prop is an example from the SV-COMP competition. array2list creates a list
from an array.

to heaps formed of singly-linked lists and arrays. The restriction of LISBQ [14] to
this class of heaps is included in SLAD≤ but, the similar restriction of CSL [4] is not
included in SLAD≤; the latter does not permit guards that contain strict inequalities. The
decidable fragment of STRAND [15] can describe other recursive data structures than
lists but, its restriction to lists is incomparable to SLD: it does not include properties on
data expressed using the immediate successor relation between nodes in the lists.
Sound decision procedures: Decision procedures which are sound but, in general, not
complete, have been proposed in [11, 16, 10, 18]. The work in [18] targets functional
programs and it is not appropriate for imperative programs that mutate the heap.

The framework in [16] considers recursive programs on trees and it defines a sound
decision procedure for proving Hoare triples. The validity of the Hoare triple is reduced
through some abstraction mechanism to the validity of a formula in a decidable logic. In
this paper, we describe a sound procedure for checking entailments between formulas
in SLAD, which is independent of the fact that these entailments are obtained from some
Hoare triples. Moreover, SLAD is incomparable to the logic used in [16].

Current state of the art SMT solvers do not include a theory for lists having the
same expressiveness as SLD. For arrays, most of the SMT solvers deal with formulas in
the Array Property Fragment [8]. However, they may prove entailments between array
properties in SLAD but not in SLAD≤ by using heuristics for quantifier instantiation, see
e.g. Z3 [11, 10]. Our entailment procedure, which is based on the saturation procedure
saturate, is more powerful because it is independent of the type of constraints that
appear in the right hand side of the guarded formulas. The heuristics used in Z3 work
well when the entailment can be proved using some boolean abstraction of the formulas
or when the right hand side of the guarded formulas contains only equalities.

In our previous work [6, 7], we introduced a logic on lists called SL3, which is in-
cluded in SLAD. In SL3, data properties are also described by universal implications
∀y. G(y)⇒U(y) but the guard G(y) is not as expressive as in SLAD. Any two node
variables in an SL3 formula denote distinct vertices in the heap. This can lead to an
exponential blow-up for the size of the formulas which implies a blow-up in the com-

plexity of the decision procedure. Checking an entailment between SL3 formulas is
reduced to the abstract analysis of a program that traverses the allocated lists and thus,
it is impossible to characterize its preciseness using completeness results.
Conclusions: We have defined an approach for checking entailment and satisfiability
of formulas on lists and arrays with data. Our approach deals with complex assertions
that are beyond the reach of existing techniques and decision procedures. Although
we have considered only programs with singly-linked lists and arrays, our techniques
can be extended to other classes of data structures (doubly-linked lists, trees) using
appropriate embeddings of heap graphs into finite abstract graphs.

References
1. I. Balaban, A. Pnueli, and L.D. Zuck. Shape analysis of single-parent heaps. In VMCAI,

volume 4349 of LNCS, pages 91–105. Springer, 2007.
2. M. Benedikt, T.W. Reps, and S. Sagiv. A decidable logic for describing linked data structures.

In ESOP, volume 1576 of LNCS, pages 2–19. Springer, 1999.
3. J. Berdine, C. Calcagno, and P.W. O’Hearn. A decidable fragment of separation logic. In

FSTTCS, volume 3328 of LNCS, pages 97–109. Springer, 2004.
4. A. Bouajjani, C. Dragoi, C. Enea, and M. Sighireanu. A logic-based framework for reason-

ing about composite data structures. In CONCUR, volume 5710 of LNCS, pages 178–195.
Springer, 2009.

5. A. Bouajjani, C. Dragoi, C. Enea, and M. Sighireanu. Accurate invariant checking for pro-
grams manipulating lists and arrays with infinite data. Technical report, LIAFA, 2011. At
http://www.liafa.univ-paris-diderot.fr/∼cenea/SLAD.pdf.

6. A. Bouajjani, C. Dragoi, C. Enea, and M. Sighireanu. On inter-procedural analysis of pro-
grams with lists and data. In PLDI, pages 578–589. ACM, 2011.

7. A. Bouajjani, C. Dragoi, C. Enea, and M. Sighireanu. Abstract domains for automated rea-
soning about list-manipulating programs with infinite data. In VMCAI, volume 7148 of
LNCS, pages 1–22. Springer, 2012.

8. A.R. Bradley, Z. Manna, and H.B. Sipma. What’s decidable about arrays? In VMCAI, volume
3855 of LNCS, pages 427–442. Springer, 2006.

9. B. Cook, C. Haase, J. Ouaknine, M. J. Parkinson, and J. Worrell. Tractable reasoning in a
fragment of separation logic. In CONCUR, volume 6901 of LNCS, pages 235–249, 2011.

10. L. de Moura and N. Bjørner. Efficient e-matching for smt solvers. In CADE, volume 4603
of LNCS, pages 183–198. Springer, 2007.

11. Y. Ge and L. de Moura. Complete instantiation for quantified formulas in satisfiabiliby
modulo theories. In CAV, volume 5643 of LNCS, pages 306–320. Springer, 2009.

12. S. Gulwani, B. McCloskey, and A. Tiwari. Lifting abstract interpreters to quantified logical
domains. In POPL, pages 235–246. ACM, 2008.

13. P. Habermehl, R. Iosif, and T. Vojnar. What else is decidable about integer arrays? In
FoSSaCS, volume 4962 of LNCS, pages 474–489. Springer, 2008.

14. S.K. Lahiri and S. Qadeer. Back to the future: revisiting precise program verification using
SMT solvers. In POPL, pages 171–182. ACM, 2008.

15. P. Madhusudan, G. Parlato, and X. Qiu. Decidable logics combining heap structures and data
d. In POPL, pages 283–294. ACM, 2011.

16. P. Madhusudan, X. Qiu, and A. Stefanescu. Recursive proofs for inductive tree data-
structures. In POPL, pages 123–136. ACM, 2012.

17. J.C. Reynolds. Separation logic: A logic for shared mutable data structures. In LICS, 2002.
18. P. Suter, M. Dotta, and V. Kuncak. Decision procedures for algebraic data types with ab-

stractions. In POPL, pages 199–210. ACM, 2010.
19. T. Wies, M. Muñiz, and V. Kuncak. An efficient decision procedure for imperative tree data

structures. In CADE, volume 6803 of LNCS, pages 476–491. Springer, 2011.

