
Boosting Sequential Consistency Checking
using Saturation

Rachid Zennou12, Mohamed Faouzi Atig3, Ranadeep Biswas1,
Ahmed Bouajjani1, Constantin Enea1, and Mohammed Erradi2

1 Université de Paris, France {ranadeep, abou, cenea}@irif.fr
2 ENSIAS, Mohammed V University, Rabat, Morocco, {rachid.zennou,

mohamed.erradi}@gmail.com
3 Uppsala University, Uppsala, Sweden mohamed faouzi.atig@it.uu.se

Abstract. We address the problem of checking that an execution of a
shared memory concurrent program is sequentially consistent (SC). This
problem is NP-hard due to the necessity of finding a total order between
the write operations that induces an acyclic happen-before relation. We
propose an approach allowing to avoid falling systematically in the worst
case, and to check SCness in polynomial-time in most cases in practice.
The approach is based on a simple yet powerful saturation-based proce-
dure for computing write constraints that must hold for SCness, allowing
on one hand fast detection of SC violations, and on the other hand re-
ducing drastically the search space for a total order witnessing SCness.

1 Introduction

Sequential Consistency (SC, for short) [19] is a fundamental model of shared
memory, where write and read operations are atomic, and operations issued by
different threads are interleaved arbitrarily while the order between operations
issued by a same thread is preserved. SC offers the best programming abstrac-
tion, since each write operation is considered to be immediately visible to all
threads. While adopting SC as a memory model is desirable by memory users as
it simplifies their task, implementing sequential consistency is extremely complex
and error prone due to various optimisations and complex caching mechanisms
that must be adopted in order to achieve acceptable performances. Therefore,
it is important to develop automated methods and tools for checking that the
executions of an implementation of the memory are sequentially consistent (for
every possible client, or for some given client). A crucial problem for develop-
ing SC conformance testing tools, is checking if a given single execution is SC.
This problem has been shown to be hard. Intuitively, it amounts in finding a
total order on write operations that explains the execution, in the sense that the
happen-before relation induced by this order (that includes causality and con-
flict constraints between writes and reads) is acyclic. It has been shown that the
problem is NP-complete [15, 17], which means that in the worst case, it is nec-
essary to enumerate the exponentially many possible store orderings in order to
solve the problem. Therefore, it is important to investigate methods that avoid



2 R. Zennou, M.F. Atig, R. Biswas, A. Bouajjani, C. Enea, M. Erradi

falling systematically in the worst case, and that are able to solve the problem
in polynomial time (in the size of the execution) as often as possible in practice.

In [25], we introduced gradual consistency checking (GCC, for short) to ad-
dress this issue. The approach consists in using weaker consistency models (than
SC) that are known to be polynomially checkable, such as causal consistency, in
two ways. First, finding violations for these “cheaper” models allows to detect
efficiently many of the SC violations. Second, and this is the important point,
GCC uses weak consistency models for which checking conformance is based on
computing, by a polynomial time fixpoint calculation, a set of order constraints
on writes that are included in every store order witnessing SC conformance,
if any. So, computing these constraints reduces the number of pairs of writes
for which an order must be found non-deterministically. In [25], we proposed
for that a model called Convergence Causal Memory (CCM, for short) that is
stronger than all known variants of causal consistency, constructed by combining
the constraints imposed by CCv [8] and CM [3, 20].

Then, a natural question is how far the GCC approach can be pushed (i.e.,
is CCM the strongest model that can be used in this approach)? This paper
tackles this question. Our main contribution is the definition of a new consistency
criterion called weak sequential consistency (wSC, for short) that can be used for
this purpose. wSC is defined using a simple saturation rule for introducing store
order constraints. Compared to the definition of CCM, the one of wSC is much
more natural and simpler. Interestingly, we prove that wSC is strictly stronger
than CCM. This is due to the fact that wSC saturation computes a larger set of
constraints on pairs of writes than CCM. Then, the question is still whether it
is possible to do better using a saturation-based approach. This question leads
to the following more general one: Given an execution that is SC, let us call the
SC-kernel of this execution the intersection of all store order relations allowing
to establish that the execution is SC (i.e., for which the induced happen-before
relation is acyclic). Then, is the store order imposed by wSC always equal to the
SC-kernel when the execution is SC? More generally, is it possible to compute
the SC-kernel of any execution using saturation when the execution is SC?4

First, we show that the wSC saturation rule does not compute the whole SC-
kernel in general. We analyze the reason of this by providing several families of
counterexamples. We show that there are order constraints that must be imposed
on pairs of writes to avoid happen-before cycles including not only one conflict
(as wSC saturation does), but several (actually any number) of conflicts involving
an arbitrary number of writes. Moreover, we show that in order to impose an
order constraint on pairs of writes, in some cases it is necessary to enumerate the
possible order of several other pairs of writes, and the number of these pairs can
be arbitrarily high. This shows that the design of a saturation-based schema for
computing the SC-kernel would require the addition of an unbounded number

4 The facts that checking SC conformance is NP-hard and that saturation-based com-
putations are polynomial-time do not imply P = NP: given an arbitrary execution,
the saturation-based computation would lead to a set of store order constraints, but
whether they can be extended to a total order witnessing SC-ness must be checked.



Boosting Sequential Consistency Checking using Saturation 3

of saturation rules. This provides and interesting insight on the hard instances
of the SC checking problem. (Though, this leaves open the theoretical question
of the complexity of computing the SC-kernel of an SC execution).

Nevertheless, an interesting question is how far is wSC saturation from com-
puting the SC-kernel in practice? We show experimentally that, interestingly, in
practice5, wSC allows to compute the full SC-kernel in most of the cases (more
than 74% of the considered executions), and in general it computes almost the
whole SC-kernel (around 99.9% of it). The experiments also show that CCM
computes 100% of the SC-kernel for only 0.7% of the executions of the consid-
ered benchmark. This shows that the wSC saturation rule is very powerful and
efficient in practice, despite its simplicity (and that it is theoretically not com-
plete). In fact, as discussed above, we could have considered other saturation
rules to define stronger and stronger consistency models approximating SC. But
our experiments show that the benefit would not be important w.r.t. what is
already achieved with wSC.

Furthermore, we compare the performances of GCC using CCM versus GCC
using wSC. In each case we apply the corresponding saturation procedure to
compute a partial order on writes (or partial store order), and then the comple-
tion of this order to a total order is done using a SAT solver. The two algorithms
obtained this way are called CCM+ENUM and wSC+ENUM. Our experiments
show that wSC+ENUM is significantly more efficient and more scalable than
CCM+ENUM.

Finally, we compare our methods with the approach implemented in DB-
COP [7] based on a polynomial search algorithm for checking SC-ness assuming
that the number of threads is fixed [1, 7]. While DBCOP is efficient for a small
number of threads, its performances degrade quite fast when this number grows,
whereas WSC+ENUM is efficient and scales very well in this case. Then, we
consider combining saturation with DBCOP. We use wSC saturation to com-
pute a large set of store order constraints that are given to DBCOP in order to
reduce the number of interleavings to be explored for SC conformance checking.
We obtain this way an efficient algorithm, called wSC+DBCOP, that has better
performances than both DBCOP and wSC+ENUM.

Related work. The problem of checking whether a history is SC has been
proved to be NP-hard by Gibbons and Korach [17]. In [7, 1], this problem is
shown to be polynomial in the size of the history when the number of threads is
fixed. The problem of verifying that a finite-state shared-memory implementa-
tions (over a bounded number of threads, variables, and values) has been shown
to be undecidable by Alur et al. [5].

Several static techniques have been developed to prove that a shared-memory
implementation (or cache coherence protocol) satisfies SC [2, 5, 9–12, 14, 16, 18,
21, 22], however only few have addressed dynamic techniques such as testing and
runtime verification (which scale to more realistic implementations).

5 We consider executions of 4 cache coherence protocols within the Gem5 platform.



4 R. Zennou, M.F. Atig, R. Biswas, A. Bouajjani, C. Enea, M. Erradi

The idea of using weaker approximations of a memory consistency model
(TSO) in order to detect violations has been used, e.g., in [23]. In that paper
the authors use a form of saturation that corresponds to a variant of causal
consistency (similar to convergence consistency [8]). However, their method is
not complete. This idea of saturation is generalized in the framework of gradual
consistency checking introduced in [25] where SC is approximated using several
variants of causal consistency (including a new one called CCM).

The McVerSi framework [13] addresses test generation (i.e., finding clients
that increase the probability of uncovering bugs in shared memory implementa-
tions). Their methodology for checking SC lies within the context of white-box
testing, i.e., the user is required to annotate the shared memory implementation
with events that define the store order in an execution. In the approach we follow,
the implementation is treated as a black-box requiring less user intervention.

2 Preliminaries

We introduce in this section basic notions that will be used throughout the
paper. We use similar notations and definitions as in [4, 25].

Binary Relations. For a binary relation r ⊆ 𝐴×𝐴 over a given set 𝐴, we use r+

(resp. r*) to denote the transitive (resp. reflexive transitive) closure of r. We use
r−1 to denote the inverse relation of r (i.e., (𝑎, 𝑏) ∈ r−1 iff (𝑏, 𝑎) ∈ r). We say that
r is a partial order if it is irreflexive (i.e., (𝑎, 𝑎) /∈ r for all 𝑎 ∈ 𝐴). We say that r is
total if, for every 𝑎, 𝑏 ∈ 𝐴, we have either (𝑎, 𝑏) ∈ r or (𝑏, 𝑎) ∈ r. For two binary
relations r1 and r2, we use r1 ∘ r2 (resp. r1 ∪ r2) to denote the composition (resp.
union) of r1 and r2, i.e., (𝑎, 𝑏) ∈ r1 ∘ r2 iff there is an 𝑐 ∈ 𝐴 such that (𝑎, 𝑐) ∈ r1
and (𝑐, 𝑏) ∈ r2 (resp. (𝑎, 𝑏) ∈ r1 ∪ r2 iff (𝑎, 𝑏) ∈ r1 or (𝑎, 𝑏) ∈ r2).

Programs. We consider multi-threaded programs over a set of shared variables
Var = {𝑥, 𝑦, . . .}. Let Val be an unspecified set of values and OId ⊆ N be a set
of operation identifiers. We assume that the set of (visible) operations issued
by the threads of the program are read and write operations. Formally, the set
Op of operations reading or writing a value 𝑣 to a variable 𝑥 is defined as Op =
{read𝑖(𝑥, 𝑣),write𝑖(𝑥, 𝑣) : 𝑖 ∈ OId, 𝑥 ∈ Var, 𝑣 ∈ Val}. We omit operation identifiers
when it is clear from the context. We use ℛ, (resp. 𝒲) to denote the set of read
(resp. write) operations. Given an operation 𝑜 ∈ Op, we use var(𝑜) to denote the
variable accessed by 𝑜. Let 𝑂 be a subset of Op. We use ℛ(𝑂) (resp. 𝒲(𝑂)) to
denote the set of read (resp. write) operations in 𝑂.

Histories. A history is an abstraction of a program execution. It consists of a
set of write or read operations ordered according to two relation: (1) a partial
program order po that totally orders operations issued by the same thread, and
(2) a write-read relation wr that identifies the write operation from which each
read operation gets it value. Formally, a history ⟨𝑂, po,wr⟩ is a set of opera-
tions 𝑂 along with a strict partial program order po and a write-read relation
wr ⊆ 𝒲(𝑂) × ℛ(𝑂), such that the inverse of wr is a total function and if
(write(𝑥, 𝑣), read(𝑥′, 𝑣′)) ∈ wr, then 𝑥 = 𝑥′ and 𝑣 = 𝑣′. We assume that ev-
ery history includes a write operation writing the initial value for each variable



Boosting Sequential Consistency Checking using Saturation 5

𝑡0:
write(𝑥, 1)
read(𝑦, 0)

𝑡1:
write(𝑦, 1)
read(𝑥, 1)

(a) CCM, wSC and SC

𝑡0:
write(𝑥, 1)
read(𝑦, 0)
write(𝑦, 1)
read(𝑥, 1)

𝑡1:
write(𝑥, 2)
read(𝑦, 0)
write(𝑦, 2)
read(𝑥, 2)

(b) CCM but not wSC nor SC
𝑡0:
read(𝑧, 2)
write(𝑦, 2)
read(𝑥, 1)

𝑡1:
write(𝑥, 1)
write(𝑦, 1)
write(𝑧, 1)

𝑡2:
write(𝑡, 1)
write(𝑠, 1)
write(𝑧, 2)

𝑡3:
read(𝑧, 2)
write(𝑥, 2)
read(𝑦, 1)

𝑡4:
read(𝑧, 1)
write(𝑡, 2)
read(𝑠, 1)

𝑡5:
read(𝑧, 1)
write(𝑠, 2)
read(𝑡, 1)

(c) wSC but not SC

Fig. 1: Comparison of different consistency models.

𝑥. These write operations precede all other operations in po. Mentioning these
initial write operations is omitted when it is clear from the context.

In the following, we assume also that each value is written at most once.
This is not a restriction since shared-memory implementations (or cache coher-
ence protocols) are data-independent [24] in practice, i.e., their behavior doesn’t
depend on the concrete values read or written in the program, and therefore
any potential buggy behavior can be exposed by executions where each value is
written at most once. Observe that in this case, the write-read relation can be
easily extracted by just looking to the value fetched by each read operation.

Sequential Consistency. In the following, we recall the formal definition of
the Sequential Consistency (SC) memory model [4]. A history ⟨𝑂, po,wr⟩
is sequentially consistent if there exists a total relation (called store order)
ww ⊆ 𝒲(𝑂)×𝒲(𝑂) such that the relation po∪wr∪ww∪ rw is acyclic, where rw
is the read-write relation defined by rw = wr−1∘ww. Intuitively, rw expresses the
fact that when a read operation read(𝑥, 𝑣) reads a value 𝑣 from a write operation
write(𝑥, 𝑣), and some other write operation write(𝑥, 𝑣′) comes after write(𝑥, 𝑣) in
the store order, then there is a conflict between read(𝑥, 𝑣) and write(𝑥, 𝑣′), and
read(𝑥, 𝑣) must happen before write(𝑥, 𝑣′).

Figure 1a shows a history that is SC. Since read(𝑦, 0) should precede
write(𝑦, 1), this history admits a total order where the operations of thread 𝑡0
are executed before thread 𝑡1 operations. Figure 1b presents a history that does
not satisfy SC. The reason is that a total order cannot be found. Since read(𝑥, 1)
reads the value from write(𝑥, 1) and read(𝑥, 2) reads the value from write(𝑥, 2),
all operations of 𝑡0 should be executed before the operations of 𝑡1, or vice versa.
This does not allow either 𝑡0 or 𝑡1 to read the value 0 on variable 𝑦.

Convergent Causal Memory. The gradual consistency checking approach for
checking SC in [25] relies on the use of a weak consistency model called Con-
vergent Causal Memory (CCM) as a polynomially checkable SC approximation.
CCM is defined as a strengthening of existing variants of causal consistency. We
omit here the definition of these variants and give directly the formal definition
of CCM as presented in [25] . For that, some preliminary notions must be intro-



6 R. Zennou, M.F. Atig, R. Biswas, A. Bouajjani, C. Enea, M. Erradi

𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑣) 𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑣′)

𝑟

𝑤𝑟

𝑅

𝑟𝑤[𝑅]

(a) Read-write rw[R]

𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑣) 𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑣′)

𝑟
𝑅

𝑐𝑓 [𝑅]

𝑤𝑟

(b) Conflict order cf[R]

𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑣) 𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑣′)

𝑟

𝑜

𝑙ℎ𝑏𝑜

𝑙ℎ𝑏𝑜

𝑤𝑟

𝑝𝑜*

(c) Local happen-before 𝑙ℎ𝑏𝑜

𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑣) 𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑣′)

𝑟
ℎ𝑏𝑖

𝑠𝑡′𝑖

𝑤𝑟

(d) Partial store order 𝑠𝑡′𝑖

Fig. 2: Definitions of relations used to define consistency models.

duced. Given a binary relation 𝑅 on the set of operations, let 𝑅WW (resp. 𝑅WR)
denotes the projection of 𝑅 on pairs of writes (resp. pairs of writes and reads)
on the same variable. We define also the parametric read-write relation rw[𝑅] as
follows: rw[𝑅] = wr−1 ∘𝑅WW (see Fig.2a), i.e.,

(read(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ rw[𝑅] iff (write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ 𝑅 and

(write(𝑥, 𝑣), read(𝑥, 𝑣)) ∈ wr

Let co be the causality relation defined as the transitive closure of the union
of the program order and the write-read relation (i.e., co = (po ∪ wr)+). Then,
we consider a local happen-before relation defined with respect to each operation.
Given a history ℎ = ⟨𝑂, po,wr⟩, for every operation 𝑜 in ℎ, lhb𝑜

6 is the smallest
transitive relation such that:

– if two operations are causally related, and each one is causally related to 𝑜,
then they are related by the local happen-before relation lhb𝑜, i.e., (𝑜1, 𝑜2) ∈
lhb𝑜 if (𝑜1, 𝑜2) ∈ co, (𝑜1, 𝑜) ∈ co, and (𝑜2, 𝑜) ∈ co*, and

– two writes 𝑤1 and 𝑤2 are related by the local happen-before relation lhb𝑜
(Fig.2c) if 𝑤1 is lhb𝑜-related to a read taking its value from 𝑤2, and that
read is issued before 𝑜 by the same thread executing 𝑜, i.e.,

(write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ lhb𝑜 if (write(𝑥, 𝑣), read(𝑥, 𝑣′)) ∈ lhb𝑜,

(write(𝑥, 𝑣′), read(𝑥, 𝑣′)) ∈ wr, and

(read(𝑥, 𝑣′), 𝑜) ∈ po*, for some read(𝑥, 𝑣′).

Finally, a history ⟨𝑂, po,wr⟩ is conform to CCM if po ∪ wr ∪ pww ∪ rw[pww]
is acyclic, where the partial store order pww is defined by

pww = (lhbWW ∪ cf[lhb])+ with lhb =
(︀ ⋃︁
𝑜∈𝑂

lhb𝑜
)︀+

6 This relation was denoted hb𝑜 in [25]. We denote it lhb𝑜 to avoid confusion with
other happen-before relations considered in the paper.



Boosting Sequential Consistency Checking using Saturation 7

where the conflict relation cf[𝑅] induced by a relation 𝑅 is defined as cf[𝑅] =
𝑅WR ∘ wr−1 (Fig.2b), i.e.,

(write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ cf[𝑅] iff (write(𝑥, 𝑣), read(𝑥, 𝑣′)) ∈ 𝑅 and

(write(𝑥, 𝑣′), read(𝑥, 𝑣′)) ∈ wr, for some read(𝑥, 𝑣′)

Notice that the relation rw used in the definition of SC corresponds to rw[ww]
according to this parametric definition.

3 Weak Sequential Consistency

We propose in this section a new consistency model (called Weak Sequential
Consistent) obtained by computing a partial store order using a simple saturation
rule. This partial store order is inductively defined unlike the SC case where the
total store order is existentially quantified. Formally, let st and hb be the smallest
relations such that:

st = ((hbWR ∘ wr−1) ∪ hbWW)+

hb = (po ∪ wr ∪ st ∪ rw[st])+

rw[st] = wr−1 ∘ st

Recall that hbWR (resp. hbWW) denote the projection of the relation hb on pairs
of writes and reads (resp. pairs of writes on the same variable). Intuitively,
the store order st contains the composition of the projection of happen-before
relation on pairs of writes and reads and write-read relation, union the projection
of happen-before on pairs of writes.

The happen-before relation is similar to the SC one (which corresponds to
po∪wr ∪ww ∪ rw), it is just that, the store order is deterministically computed
using the above saturation rule. Then, a history ⟨𝑂, po,wr⟩ is weakly sequentially
consistent (wSC) if hb is acyclic.

Our first contribution consists in showing that wSC is stronger than CCM
(which is already stronger than all known variants of causal consistency) [25].

Lemma 1. If a history satisfies wSC, then it satisfies CCM.

Proof. Let ℎ = ⟨𝑂, po,wr⟩ be a history satisfying wSC i.e., po ∪ wr ∪ st ∪ rw[st]
is acyclic. We prove that (po ∪ wr ∪ pww ∪ rw[pww])+ ⊆ hb (hence the history
satisfies also CCM). We will first show that for every operation 𝑜 in ℎ, lhb𝑜 ⊆ hb.
For that we will prove that hb satisfies the two properties of lhb𝑜:

– If (𝑜1, 𝑜2) ∈ co, (𝑜1, 𝑜) ∈ co, and (𝑜2, 𝑜) ∈ co* then (𝑜1, 𝑜2) ∈ hb trivially
holds (since co ⊆ hb), and

– if (write(𝑥, 𝑣), read(𝑥, 𝑣′)) ∈ hb and (write(𝑥, 𝑣′), read(𝑥, 𝑣′)) ∈ wr then
(write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ (hb ∘ wr−1) and hence (write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈
st and (write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ hb.



8 R. Zennou, M.F. Atig, R. Biswas, A. Bouajjani, C. Enea, M. Erradi

Thus, we have that lhb𝑜 ⊆ hb and hence lhb ⊆ hb.
Let us now show that pww = (lhbWW ∪ cf[lhb])+ ⊆ st. It is easy to see that

lhbWW ⊆ hbWW (since lhb ⊆ hb). By definition, we have also that cf[lhb] =
(lhbWR ∘ wr−1) and hence cf[lhb] ⊆ (hbWR ∘ wr−1). This implies that pww =
(lhbWW ∪ cf[lhb])+ ⊆ st = ((hbWR ∘wr−1)∪hbWW)+. Finally, it is easy to deduce
that (po ∪ wr ∪ pww ∪ rw[pww])+ ⊆ hb = (po ∪ wr ∪ st ∪ rw[st])+. ⊓⊔

The reverse of this lemma does not hold. Figure 1b presents a history that
satisfies CCM but not wSC. A possible partial store order for CCM is to con-
sider that the writes of each thread are not visible to the other thread. The
history does not satisfy wSC. Since rw[𝑠𝑡] is included in hb, read(𝑦, 0) is visible
to write(𝑦, 2) then write(𝑥, 1) precedes read(𝑥, 2) in hb. Thus, write(𝑥, 2) should
be executed before write(𝑥, 1). Similarly write(𝑥, 2) precedes read(𝑥, 1) in hb as
well and write(𝑥, 1) should be executed before write(𝑥, 2).

We prove now that wSC is indeed weaker than SC. For that, we need to
consider the subrelations of st and hb obtained by iterative least fixpoint cal-
culation. Let st =

⋃︀
𝑖 𝑠𝑡𝑖 and hb =

⋃︀
𝑖 ℎ𝑏𝑖 where 𝑠𝑡𝑖 = (ℎ𝑏𝑖WW ∪ 𝑠𝑡′𝑖)

+ and 𝑠𝑡′𝑖
(Fig.2d) is defined by:

(write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ 𝑠𝑡′𝑖 iff (write(𝑥, 𝑣), read(𝑥, 𝑣′)) ∈ ℎ𝑏𝑖 and

(write(𝑥, 𝑣′), read(𝑥, 𝑣′)) ∈ wr

where, for every 𝑖 ≥ 0, ℎ𝑏𝑖 is defined by:

ℎ𝑏0 = (po ∪ wr)+

ℎ𝑏𝑖+1 = (ℎ𝑏𝑖 ∪ 𝑠𝑡𝑖 ∪ rw[𝑠𝑡𝑖])
+

We now show that the partial store order 𝑠𝑡𝑖 is included in any store order
ww witnessing for SC satisfaction.

Lemma 2. Let ℎ = ⟨𝑂, po,wr⟩ be a history and ww be a total store order such
that po∪wr∪ww∪ rw is acyclic. Then, 𝑠𝑡𝑖 ⊆ ww and ℎ𝑏𝑖 ⊆ (po∪wr∪ww∪ rw)+.

Proof. The proof is by induction on the index 𝑖 of ℎ𝑏𝑖 and 𝑠𝑡𝑖.

Base Case (i=0). We have ℎ𝑏0=(po ∪ wr)+ is included in (po ∪ wr ∪ ww ∪
rw)+. Since ℎ𝑏0 ⊆ (po ∪ wr ∪ ww ∪ rw)+, if (write(𝑥, 𝑣), read(𝑥, 𝑣′)) ∈ ℎ𝑏0
and there exists a read(𝑥, 𝑣′) such that (write(𝑥, 𝑣′), read(𝑥, 𝑣′)) ∈ wr, then
(write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ ww. Otherwise, assuming by contradiction that
(write(𝑥, 𝑣′),write(𝑥, 𝑣)) ∈ ww, we get (read(𝑥, 𝑣′),write(𝑥, 𝑣)) ∈ rw. Since
write(𝑥, 𝑣), read(𝑥, 𝑣′)) ∈ ℎ𝑏0 ⊆ (po ∪ wr ∪ ww ∪ rw)+, this implies that
there is a cycle in (po ∪ wr ∪ ww ∪ rw)+ which is a contradiction. So,
(write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ ww. Thus, 𝑠𝑡′0 is included in ww and hence 𝑠𝑡0 =
(ℎ𝑏0WW ∪ 𝑠𝑡′0)+ is also in ww since ℎ𝑏0WW ⊆ ww (otherwise it leads to a contra-
diction since ℎ𝑏0 ⊆ (po ∪ wr ∪ ww ∪ rw)+ and (po ∪ wr ∪ ww ∪ rw)+ is acyclic).

Induction Step. Assume that ℎ𝑏𝑖 ⊆ (po ∪ wr ∪ ww ∪ rw)+ and 𝑠𝑡𝑖 ⊆ ww. Now,
let’s show that this holds for 𝑖 + 1 as well. By induction hypothesis, 𝑠𝑡𝑖 ⊆



Boosting Sequential Consistency Checking using Saturation 9

ww, so using the definition of rw[𝑠𝑡𝑖] we have rw[𝑠𝑡𝑖] ⊆ rw. Then, ℎ𝑏𝑖+1 =
(ℎ𝑏𝑖 ∪ 𝑠𝑡𝑖 ∪ rw[𝑠𝑡𝑖])

+ ⊆ (po ∪ wr ∪ ww ∪ rw)+. Now, we show that 𝑠𝑡′𝑖+1 ⊆
ww. If (write(𝑥, 𝑣), read(𝑥, 𝑣′)) ∈ ℎ𝑏𝑖 and (write(𝑥, 𝑣′), read(𝑥, 𝑣′)) ∈ wr, then
(write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ ww. Otherwise, using the same argument as in the
base case, we get that (read(𝑥, 𝑣′),write(𝑥, 𝑣)) ∈ rw and a contradiction of the
fact that (po∪wr∪ww∪rw)+ is acyclic. Hence, if (write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ 𝑠𝑡′𝑖+1

then (write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ ww and so 𝑠𝑡′𝑖+1 ⊆ ww. Furthermore, we have
hbi+1WW ⊆ ww since ℎ𝑏𝑖+1 ⊆ (𝑝𝑜 ∪ wr ∪ ww ∪ rw)+ (otherwise it leads to a
contradiction of the fact that (𝑝𝑜 ∪ wr ∪ ww ∪ rw)+ is acyclic). Since 𝑠𝑡𝑖+1 =
(hbi+1WW ∪ 𝑠𝑡′𝑖+1)+, 𝑠𝑡′𝑖+1 ⊆ ww and hbi+1WW ⊆ ww, we get that 𝑠𝑡𝑖+1 ⊆ ww (
since ww is a total store order). ⊓⊔

As an immediate corollary of Lemma 2, we get:

Lemma 3. If a history satisfies SC, then it satisfies wSC.

Proof. The proof is by contradiction. Assume that a history ℎ = ⟨𝑂, po,wr⟩
satisfies SC and it does not satisfy wSC. Since ℎ satisfies SC, then there exists
a total store order ww such that po ∪ wr ∪ ww ∪ rw is acyclic. Since ℎ does
not satisfy wSC, this means that ℎ𝑏 is cyclic. Since hb =

⋃︀
𝑖 ℎ𝑏𝑖 and ℎ𝑏𝑖 ⊆

(po∪wr ∪ww ∪ rw)+ (from Lemma 2), we can deduce that (po∪wr ∪ww ∪ rw)+

is also cyclic which constitutes a contradiction. ⊓⊔

The reverse of the above lemma doesn’t hold. Figure 1c shows a history which
satisfies wSC but it is not SC. To show that it satisfies wSC, one can consider a
partial store order 𝑠𝑡 where the writes write(𝑧, 1) and write(𝑧, 2) are not ordered.
In the other hand, since there is no valid store order for the writes write(𝑧, 1)
and write(𝑧, 2), this history does not satisfy SC.

Notice that, at each step of the calculation of hb and st, at least one pair of
operations is added to one of these two relations and that number of such pairs
is polynomially bounded (in the size of the computation). Thus, the acyclicity
of hb can be decided in polynomial time.

Theorem 1. Checking whether a history ℎ satisfies wSC can be done in poly-
nomial time in the size of the history.

4 The Sequential Consistency Kernel

Fig. 3: SC-Kernel counter example

Given a history ℎ = ⟨𝑂, po,wr⟩ that
satisfies SC, we define the SC-Kernel of
ℎ as the intersection of all store order
orders allowing to establish the SCness
of ℎ. We know already, from the previ-
ous section (Lemma 2), that the store
order st, computed by the wSC satura-
tion procedure, is included in any total



10 R. Zennou, M.F. Atig, R. Biswas, A. Bouajjani, C. Enea, M. Erradi

store order ww such that po∪wr ∪ww ∪ rw is acyclic. This means that the com-
puted st is always a subset of SC-Kernel. Then, the question is whether the
computed store order st is equal to SC-Kernel or not.

In the following, we show that the saturation procedure of wSC may in
some cases not be able to compute the SC-Kernel (but rather a strict sub-
set of it). To see why, consider the history given in Fig. 3. The wSC rules do
not generate any st relation and therefore the saturation procedure of wSC
returns that the store order st is empty while the happens-before relation
hb is equal to (po ∪ wr)+. However, any total store order ww that allows
to show the SCness of this history should order write(𝑥, 4) before write(𝑥, 2)
(and hence the pair (write(𝑥, 4),write(𝑥, 2)) is in the SC-Kernel). We prove that
(write(𝑥, 4),write(𝑥, 2)) belongs to the SC-Kernel by contradiction. Assume that
(write(𝑥, 4),write(𝑥, 2)) is not in SC-Kernel. Then, there is a total store order
ww such that (1) (write(𝑥, 2),write(𝑥, 4)) is in ww (represented in Fig. 3 by a
dashed arrow) and (2) (po∪wr∪ww∪ rw)+ is acyclic (since the history ℎ is SC).
However, if (write(𝑥, 2),write(𝑥, 4)) is in ww then (po ∪ wr ∪ ww ∪ rw)+ is not
acyclic (as shown in Fig. 3 by the dashed arrows) and which is a contradiction.

One way to overcome this problem is to include such a pattern in the defini-
tion of 𝑠𝑡′𝑖 used in the saturation procedure. Thus, the definition of 𝑠𝑡′𝑖 is updated
as follows: (write(𝑥, 𝑣′),write(𝑥, 𝑣)) ∈ 𝑠𝑡′𝑖 iff one of the following cases holds:

– (write(𝑥, 𝑣′), read(𝑥, 𝑣)) ∈ ℎ𝑏𝑖 and (write(𝑥, 𝑣), read(𝑥, 𝑣)) ∈ wr, or
– (write(𝑧, 𝑣𝑧),write(𝑥, 𝑣)), (write(𝑦, 𝑣𝑦),write(𝑥, 𝑣)), (write(𝑥, 𝑣′),write(𝑦, 𝑣′𝑦)),

(write(𝑦, 𝑣′𝑦), read(𝑧, 𝑣𝑧)), (write(𝑥, 𝑣′),write(𝑧, 𝑣′𝑧)), (write(𝑧, 𝑣′𝑧), read(𝑦, 𝑣𝑦))
are in ℎ𝑏𝑖 and (write(𝑧, 𝑣𝑧), read(𝑧, 𝑣𝑧)), (write(𝑦, 𝑣𝑦), read(𝑦, 𝑣𝑦)) are in wr.

Observe that the pattern added to 𝑠𝑡′𝑖 contains six write operations. Unfortu-
nately, this pattern is not enough to allow us to capture the SC-Kernel. In fact,
we can construct a family of counter-examples (see Fig. 4) such that in order
to capture all of them, we need to add to the relation 𝑠𝑡′𝑖 patterns involving a
strictly increasing number of writes (which is not feasible in practice).

One way to address the problem raised by the family of counter-examples
given in Fig. 4 is to guess for a given pair of writes write(𝑥, 𝑣) and write(𝑥, 𝑣′) that
are not related by the computed store relation st (i.e., (write(𝑥, 𝑣),write(𝑥, 𝑣′))
and (write(𝑥, 𝑣′),write(𝑥, 𝑣)) are not in st) one possible order and check if it
can make the history ℎ infeasible under SC and if it is the case we add the
other order to st. For instance, in the history given in Fig. 3, one would guess
that the (write(𝑥, 2),write(𝑥, 4)) is in st. This guess makes the history infeasible
under SC due to the existence of a cycle in (po ∪ wr ∪ ww ∪ rw)+ and hence
(write(𝑥, 4),write(𝑥, 2)) is added to st. Observe that this still results in a satu-
ration procedure which works in polynomial time since we are only allowed to
guess the order of at most two unrelated writes.

So the question is whether this extended saturation procedure calculates the
SC-Kernel. Alas, this is not true. Consider the history given in Fig. 5. The pre-
vious saturation procedure of wSC (augmented with the guessing of the order of
one pair of writes) results in an empty store order st. However, this history satis-
fies SC and (write(𝑥, 1),write(𝑥, 2)) and (write(𝑡, 2),write(𝑡, 1)) are in SC-Kernel.



Boosting Sequential Consistency Checking using Saturation 11

Fig. 4: SC-Kernel counter-examples with cycles involving an arbitrary number
of writes

In fact, ordering write(𝑥, 2) before write(𝑥, 1) and write(𝑡, 2) before write(𝑡, 1) cre-
ates a happens-before cycle in the top-left block of Figure 5 (in similar manner
to the example given in Fig. 3). While ordering write(𝑥, 2) before write(𝑥, 1) and
write(𝑡, 1) before write(𝑡, 2) creates a happens-before cycle in the top-right block
of Fig. 5. Finally, ordering write(𝑥, 1) before write(𝑥, 2) and write(𝑡, 1) before
write(𝑡, 2) creates a happens-before cycle in the top-middle block of Fig. 5. This
shows the necessity of augmenting the saturation procedure with the enumera-
tion of the order between two pairs of writes in order to compute the SC-Kernel.
Even worst, we can easily extend the history given in Figure 5 in order to force
the enumeration of the order between several pairs of writes in order to be able
to compute the SC-Kernel. The main idea is to add a number of blocks (in sim-
ilar manner to the examples given in Figure 3 and Figure 4) to forbid all order
combinations between certain pairs of write except one.

Fig. 5: SC-Kernel counter-example requiring the enumeration of the possible
order between two pairs of writes

5 Algorithms for checking SC conformance

We define in this section algorithms for SC checking that exploit the partial store
order st computed by the wSC saturation. Following the approach of gradual
consistency checking [25], we start by checking that the given history is wSC. If
not, then we conclude that it is not SC neither (by Lemma 3). If yes, we exploit st
in order to enhance the SC verification of the history. This verification amounts
in finding a total store order extending st. To solve this problem we adopt two



12 R. Zennou, M.F. Atig, R. Biswas, A. Bouajjani, C. Enea, M. Erradi

approaches, one is based on reducing the SC verification problem to SAT i.e., a
direct encoding of the axioms defining SC into a propositional formula, and the
second one is based on using the bounded-thread approach of [1, 7] implemented
in the tool DBCOP. Both of these approaches are enhanced by the fact that
they will use the st constraints in order to reduce their search space. The two
obtained algorithms are called wSC+ENUM and wSC+DBCOP, respectively.

The algorithm wSC+ENUM uses an encoding of SC conformance of a given
history (defined with its po and wr constraints) as the satisfaction of a Boolean
formula. The latter expresses the constraints on the relations involved in the
definition of SC, including the fact that the store oder ww is a total order relation
(so every pair of writes must be order in one direction or the other), and that
the happen-before relation (i.e., (po ∪wr ∪ww ∪ rw)+) is transitive and acyclic.
Moreover, the order constraints corresponding to the relation st computed for
wSC are added to the formula since st ⊆ ww.

The algorithm wSC+DBCOP is based on the algorithm implemented in DB-
COP [7]. Given a history (again defined by its po and wr relations), DBCOP
searches for an interleaving of all the operations of the history that respects the
constraints imposed by SC. Then, wSC+DBCOP is an adaptation of DBCOP
that exploits st in addition to po and wr as fixed constraints during its search.

For our experiments in next section, we will compare wSC+ENUM and
wSC+DBCOP to each other, to DBCOP, and also to CCM+ENUM which is
the analogous of wSC+ENUM using CCM saturation instead of wSC saturation.
CCM+ENUM is the algorithm proposed in [25].

6 Experimental results

We evaluate in this section the efficiency of our approach and its scalability. We
first report on the efficiency of the wSC saturation in computing the SC-kernel.
Then, we present an evaluation of the approach in checking SC conformance by
taking into account two parameters: the number of operations and the number of
threads. The experimental results consider three kinds of benchmarks: The first
one consists of only valid histories (i.e., satisfying SC). The second one consists of
invalid histories (i.e., violating SC). The third benchmark consists of mixture of
valid and invalid histories. These benchmarks are generated by running random
clients on realistic cache coherence protocols within the Gem5 simulator [6] in
system emulation mode. We use 4 cache coherence protocols that are available
in Gem5: MI, MEOSI Hammer, MESI Two Level, and MEOSI AMD Base.

Approximating the SC-kernel. We know already that the store orders com-
puted by the saturation procedures of CCM and wSC are part of the SC-kernel
(Lemma 2). The questions are then what is the computed proportion of the SC-
kernel, and what is the proportion of the set of pairs of writes in the execution
that are not ordered by the saturation procedures. Our experimental results show
that wSC computes the SC-kernel in 74.24% of all the 1742 tested histories, and
that for the rest of the histories, it computes in average 99.97% of their kernel.
For CCM, we found that it computes the SC-kernel only in 0.7% of the same set



Boosting Sequential Consistency Checking using Saturation 13

of executions. We also found that the wSC saturation procedure orders 98.51%
of the pairs of writes of a history in average, and that CCM orders in average
97,89% of the pairs of writes. This is interesting since in terms of coverage of
the sets of pairs of write, CCM is not far from wSC, however, only for very few
histories it can fully cover its SC-kernel.

SC conformance checking for valid histories. We consider in this section
the case of histories that satisfy SC. The experiments are made by varying the
number of operations and the number of threads. For each number of operations
(threads), we have tested 200 histories and computed the running time average.

Fig. 6: Checking SCness for valid
histories while varying the number
of operations.

Figure 6 reports the running time
(in seconds) of the 4 algorithms
wSC+ENUM, CCM+ENUM, DPCOP,
and wSC+DBCOP while increasing the
number of operations from 200 to 800 (by
an increase of 100) with a fixed number
of 6 threads. It shows that for a relatively
small number of threads, DBCOP has the
best performances, while wSC+ENUM
has good performances and is clearly
superior than CCM+ENUM. This can
be partly explained by the difference in
the coverage of store order constraints
between the two algorithms, but most
importantly by their time complexity. In
fact, the difference in the coverage in average between the two algorithms is
small (98.51% vs 97,89%). Thus, the time complexity of the two algorithms
plays also an important role: for CCM, the saturation schema requires com-
puting local happen-before relation for each operation, which is very expensive
compared with the much simpler saturation schema in wSC.

(a) Comparing all approaches. (b) Comparison of wSC+ENUM,
CCM+ENUM and wSC+DBCOP.

Fig. 7: Checking SC for valid histories while varying the number of threads.

Figure 7 reports the running time while increasing the number of threads
from 4 to 16, by steps of 4. We have considered 50 operations per thread. Notice



14 R. Zennou, M.F. Atig, R. Biswas, A. Bouajjani, C. Enea, M. Erradi

that increasing the number of threads increases also the total number of op-
erations. Figure 7(a) shows that the performances of DBCOP degrade beyond
8 threads, while the other algorithms exploiting saturation are more scalable.
wSC+DBCOP achieves the best performances while wSC+ENUM performs bet-
ter than CCM+ENUM. Figure 7(b) is a zoom of Figure 7(a) for a smaller time
scale in order to examine more closely the separation between CCM+ENUM,
wSC+ENUM, and wSC+DBCOP. It can be seen that the combination of wSC
saturation with DBCOP leads to an efficient procedure that takes advantage
from the DBCOP strategy for small number of threads, and exploits wSC satu-
ration to stay scalable when both the number of threads and operations increase.

(a) Comparing all approaches. (b) Comparison of wSC+ENUM,
CCM+ENUM and wSC+DBCOP.

Fig. 8: Checking SC for a set of 50% of valid and 50% of invalid histories.

SC conformance checking for (in)valid histories. We now consider a set of
histories containing 50% of violations. The violations are generated by randomly
changing the write-read relation: for some reads, chosen randomly, we modify
the writes from which they get their values. The new writes are chosen randomly
within a bounded distance from their corresponding reads. As in the previous
paragraph, we consider histories with 4 to 16 threads and we test 200 histories
for each number of threads. The experimental results are presented in Figure 8
and they are very similarly to the case with only valid histories.

SC conformance checking for invalid histories. In the following, we con-
sider invalide histories with 4 to 16 threads and 50 operations per thread. For
each number of threads, we consider 100 histories and compute the average run-
ning time. Since all found violations are already wSC violations, we only compare
the saturation steps of wSC, CCM, and DBCOP. Fig. 9b shows that wSC is more
efficient than CCM. In addition, wSC captures more SC violations: 1,25% of the
violations are not captured by CCM. Fig. 9 shows that wSC has better per-
formance, by factors of 70 times (in the 8 threads case) and higher, compared
to DBCOP. In fact, wSC terminates in less than 8 seconds for all the tested
histories. This shows the efficiency of wSC in detecting consistency violations.
Furthermore, wSC scales very well when increasing the number of threads (and
therefore the total number of operations).



Boosting Sequential Consistency Checking using Saturation 15

(a) Comparison of wSC, CCM and
DBCOP.

(b) Comparison of wSC and CCM.

Fig. 9: Checking SC for invalid histories.

7 Conclusion

We have proposed an efficient approach for verifying the conformance of an
execution to SC (known to be NP-hard). The approach is based on using a
powerful saturation rule for computing in polynomial time a large subset of
the SC-kernel of the given execution. Our experimental results show that in
practice (1) this allows to catch very quickly almost all SC-violations, and (2)
our method allows to compute almost always the whole SC-kernel, and leaves
only a very small number of store order constraints to be found in order to check
SC-ness. We considered two ways for finding the remaining constraints: either
using SAT-solving, or using the search procedure of DBCOP. The latter option,
exploiting saturation to enhance DBCOP, is the best one experimentally, leading
to a performant and scalable algorithm. An interesting problem for future work
is the development of similar approaches for other consistency models for which
the conformance verification problem is NP-hard, such as for instance the Total
Store Order (TSO) model.

References

1. Abdulla, P.A., Atig, M.F., Jonsson, B., L̊ang, M., Ngo, T.P., Sagonas, K.: Optimal
stateless model checking for reads-from equivalence under sequential consistency.
Proc. ACM Program. Lang. 3(OOPSLA) (2019)

2. Abdulla, P.A., Haziza, F., Hoĺık, L.: Parameterized verification through view ab-
straction. STTT 18(5), 495–516 (2016)

3. Ahamad, M., Neiger, G., Burns, J.E., Kohli, P., Hutto, P.W.: Causal memory:
definitions, implementation, and programming. Distributed Comput. 9(1), 37–49
(1995)

4. Alglave, J., Maranget, L., Tautschnig, M.: Herding cats: Modelling, simulation,
testing, and data mining for weak memory. ACM Trans. Program. Lang. Syst.
36(2), 7:1–7:74 (2014)

5. Alur, R., McMillan, K.L., Peled, D.A.: Model-checking of correctness conditions
for concurrent objects. Inf. Comput. 160(1-2), 167–188 (2000)



16 R. Zennou, M.F. Atig, R. Biswas, A. Bouajjani, C. Enea, M. Erradi

6. Binkert, N., Beckmann, B., Black, G., Reinhardt, S.K., Saidi, A., Basu, A., Hes-
tness, J., Hower, D.R., Krishna, T., Sardashti, S., Sen, R., Sewell, K., Shoaib,
M., Vaish, N., Hill, M.D., Wood, D.A.: The Gem5 Simulator. SIGARCH Comput.
Archit. News 39(2), 1–7 (Aug 2011)

7. Biswas, R., Enea, C.: On the complexity of checking transactional consistency.
Proc. ACM Program. Lang. 3(OOPSLA) (2019)

8. Burckhardt, S.: Principles of Eventual Consistency. now publishers (2014)
9. Clarke, E.M., Grumberg, O., Hiraishi, H., Jha, S., Long, D.E., McMillan, K.L.,

Ness, L.A.: Verification of the futurebus+ cache coherence protocol. In: Agnew,
D., Claesen, L.J.M., Camposano, R. (eds.) CHDL. IFIP Transactions, vol. A-32,
pp. 15–30. North-Holland (1993)

10. Delzanno, G.: Automatic verification of parameterized cache coherence protocols.
In: CAV. LNCS, vol. 1855, pp. 53–68. Springer (2000)

11. Delzanno, G.: Constraint-based verification of parameterized cache coherence pro-
tocols. Formal Methods in System Design 23(3), 257–301 (2003)

12. Eiŕıksson, Á.T., McMillan, K.L.: Using formal verification/analysis methods on
the critical path in system design: A case study. In: Wolper, P. (ed.) CAV. LNCS,
vol. 939, pp. 367–380. Springer (1995)

13. Elver, M., Nagarajan, V.: Mcversi: A test generation framework for fast memory
consistency verification in simulation. In: HPCA. pp. 618–630. IEEE Computer
Society (2016)

14. Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In:
LICS. pp. 352–359. IEEE Computer Society (1999)

15. Furbach, F., Meyer, R., Schneider, K., Senftleben, M.: Memory-model-aware test-
ing: A unified complexity analysis. ACM Trans. Embedded Comput. Syst. 14(4),
63:1–63:25 (2015)

16. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J. ACM
39(3), 675–735 (1992)

17. Gibbons, P.B., Korach, E.: Testing shared memories. SIAM J. Comput. 26(4),
1208–1244 (1997)

18. Ip, C.N., Dill, D.L.: Better verification through symmetry. Formal Methods in
System Design 9(1/2), 41–75 (1996)

19. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Computers 28(9), 690–691 (1979)

20. Perrin, M., Mostefaoui, A., Jard, C.: Causal consistency: beyond memory. In:
PPoPP. pp. 26:1–26:12. ACM (2016)

21. Pong, F., Dubois, M.: A new approach for the verification of cache coherence
protocols. IEEE Trans. Parallel Distrib. Syst. 6(8), 773–787 (1995)

22. Qadeer, S.: Verifying sequential consistency on shared-memory multiprocessors by
model checking. IEEE Trans. Parallel Distrib. Syst. 14(8), 730–741 (2003)

23. Roy, A., Zeisset, S., Fleckenstein, C.J., Huang, J.C.: Fast and generalized polyno-
mial time memory consistency verification. In: CAV. LNCS, vol. 4144, pp. 503–516.
Springer (2006)

24. Wolper, P.: Expressing interesting properties of programs in propositional temporal
logic. In: POPL. pp. 184–193. ACM Press (1986)

25. Zennou, R., Bouajjani, A., Enea, C., Erradi, M.: Gradual consistency checking. In:
CAV. LNCS, vol. 11562, pp. 267–285. Springer (2019)


