
Compositional Entailment Checking for a Fragment of
Separation Logic

Constantin Enea1, Ondřej Lengál2, Mihaela Sighireanu1, and Tomáš Vojnar2

1 Univ. Paris Diderot, LIAFA CNRS UMR 7089
2 FIT, Brno University of Technology, IT4Innovations Centre of Excellence, Czech Republic

Abstract. We present a (semi-)decision procedure for checking entailment be-
tween separation logic formulas with inductive predicates specifying complex
data structures corresponding to finite nesting of various kinds of linked lists:
acyclic or cyclic, singly or doubly linked, skip lists, etc. The decision procedure
is compositional in the sense that it reduces the problem of checking entailment
between two arbitrary formulas to the problem of checking entailment between
a formula and an atom. Subsequently, in case the atom is a predicate, we reduce
the entailment to testing membership of a tree derived from the formula in the
language of a tree automaton derived from the predicate. We implemented this
decision procedure and tested it successfully on verification conditions obtained
from programs using singly and doubly linked nested lists as well as skip lists.

1 Introduction

Automatic verification of programs manipulating dynamic linked data structures is
highly challenging since it requires one to reason about complex program configura-
tions having the form of graphs of an unbounded size. For that, a highly expressive
formalism is needed. Moreover, in order to scale to large programs, the use of such
a formalism within program analysis should be highly efficient. In this context, separa-
tion logic (SL) [14,21] has emerged as one of the most promising formalisms, offering
both high expressiveness and scalability. The latter is due to its support of composi-
tional reasoning based on the separating conjunction ∗ and the frame rule, which states
that if a Hoare triple {φ}P{ψ} holds and P does not alter free variables in σ, then
{φ ∗σ}P{ψ ∗σ} holds too. Therefore, when reasoning about P , one has to manipulate
only specifications for the heap region altered by P .

Usually, SL is used together with higher-order inductive definitions that describe
the data structures manipulated by the program. If we consider general inductive defi-
nitions, then SL is undecidable [5]. Various decidable fragments of SL have been intro-
duced in the literature [1,13,18,3] by restricting the syntax of the inductive definitions
and the boolean structure of the formulas.

In this work, we focus on a fragment of SL with inductive definitions that allows one
to specify program configurations (heaps) containing finite nestings of various kinds
of linked lists (acyclic or cyclic, singly or doubly linked, skip lists, etc.), which are
common in practice. This fragment contains formulas of the form ∃

−→
X.Π ∧ Σ where

X is a set of variables, Π is a conjunction of (dis)equalities, and Σ is a set of spatial

2

atoms connected by the separating conjunction. Spatial atoms can be points-to atoms,
which describe values of pointer fields of a given heap location, or inductively defined
predicates, which describe data structures of an unbounded size. We propose a novel
(semi-)decision procedure for checking the validity of entailments of the form ϕ ⇒ ψ
where ϕ may contain existential quantifiers and ψ is a quantifier-free formula. Such
a decision procedure can be used in Hoare-style reasoning to check inductive invariants
but also in program analysis frameworks to decide termination of fixpoint computations.
As usual, checking entailments of the form

∨
i ϕi ⇒

∨
j ψj can be soundly reduced to

checking that for each i there exists j such that ϕi ⇒ ψj .
The key insight of our decision procedure is an idea to use the semantics of the sep-

arating conjunction in order to reduce the problem of checking ϕ ⇒ ψ to the problem
of checking a set of simpler entailments where the right-hand side is an inductively-
defined predicate P (. . .). This reduction shows that the compositionality principle holds
not only for deciding the validity of Hoare triples but also for deciding the validity of
entailments between two formulas. To infer (dis)equalities implied by spatial atoms, our
reduction to checking simpler entailments is based on boolean unsatisfiability checking,
which is in co-NP but can usually be checked efficiently by current SAT solvers.

Further, to check entailments ϕ ⇒ P (. . .) resulting from the above reduction, we
define a decision procedure based on the membership problem for tree automata (TA).
In particular, we reduce the entailment to testing membership of a tree derived from ϕ
in the language of a TA A[P] derived from P (. . .). The tree encoding of ϕ preserves
some edges of the graph, called backbone edges, while others are re-directed to new
nodes, related to the original destination by special symbols. Roughly, such a symbol
may be a variable represented by the original destination, or it may show how to reach
the original destination using backbone edges only.

Our procedure is complete for formulas speaking about non-nested singly as well as
doubly linked lists. Moreover, it runs in polynomial time modulo an oracle for deciding
validity of a boolean formula. The procedure is incomplete for nested list structures
because it does not consider all possible ways in which targets of inner pointer fields of
nested list predicates can be aliased. The construction can be easily extended to become
complete even in such cases, but then it becomes exponential. However, even in this
case, it is exponential in the size of the definition of the inductive predicates, and not in
the size of the formulas, which remains acceptable in practice.

We implemented our decision procedure and tested it successfully on verification
conditions obtained from programs using singly and doubly linked nested lists as well
as skip lists. The results show that our procedure does not only have a theoretically
favorable complexity (for the given context), but it also behaves nicely in practice, at
the same time offering the additional benefit of compositionality that can be exploited
within larger verification frameworks caching the simpler entailment queries.

Contribution. Overall, the contribution of this paper is a novel (semi-)decision proce-
dure for a rich class of verification conditions with singly as well as doubly linked lists,
nested lists, and skip lists. As discussed in more detail in Section 9, existing works that
can efficiently deal with fragments of SL capable of expressing verification conditions
for programs handling complex dynamic data structures are still rare. Indeed, we are not
aware of any technique that could decide the class of verification conditions considered

3

in this paper at the same level of efficiency as our procedure. In particular, compared
with other approaches using TAs [13,12], our procedure is compositional as it uses TAs
recognizing models of predicates, not models of entire formulas (further differences are
discussed in the related work section). Moreover, our TAs recognize in fact formulas
that entail a given predicate, reducing SL entailment to the membership problem for
TAs, not the more expensive inclusion problem as in other works.

2 Separation Logic Fragment

Let Vars be a set of program variables, ranged over using x, y, z, and LVars a set of
logical variables, disjoint from Vars , ranged over usingX , Y , Z. We assume that Vars
contains a distinguished variable nil. Also, let F be a set of fields.

We consider the fragment of separation logic whose syntax is given below:

x, y ∈ Vars program variables X,Y ∈ LVars logical variables E,F ::= x | X
f ∈ F fields ρ ⊆ F× (Vars ∪ LVars) P ∈ P predicates

−→
B ∈ (Vars ∪ LVars)∗ vectors of variables

Π ::= E = F | E 6= F | Π ∧Π pure formulas

Σ ::= emp | E 7→ ρ | P (E,F,
−→
B) | Σ ∗Σ spatial formulas

ϕ , ∃
−→
X.Π ∧Σ formulas

W.l.o.g., we assume that existentially quantified logical variables have unique names.
The set of program variables used in a formula ϕ is denoted by pv(ϕ). By ϕ(

−→
E) (resp.

ρ(
−→
E)), we denote a formula (resp. a set of field-variable couples) whose set of free vari-

ables is
−→
E . Given a formula ϕ, pure(ϕ) denotes its pure partΠ . We allow set operations

to be applied on vectors. Moreover, E 6=
−→
B is a shorthand for

∧
Bi∈
−→
B
E 6= Bi.

The points-to atom E 7→ {(fi, Fi)}i∈I specifies that the heap contains a location
E whose fi field points to Fi, for all i. W.l.o.g., we assume that each field fi appears
at most once in a set of pairs ρ. The fragment is parameterized by a set P of inductively
defined predicates; intuitively, P (E,F,

−→
B) describes a possibly empty nested list seg-

ment delimited by its arguments, i.e., all the locations it represents are reachable from
E and allocated on the heap except the locations in {F} ∪

−→
B .

Inductively defined predicates. We consider predicates defined as

P (E,F,
−→
B) , (E = F ∧ emp) ∨(

E 6= {F} ∪
−→
B ∧ ∃Xtl. Σ(E,Xtl,

−→
B) ∗ P (Xtl, F,

−→
B)
) (1)

where Σ is an existentially-quantified formula, called the matrix of P , of the form:

Σ(E,Xtl,
−→
B) , ∃

−→
Z .E 7→ ρ({Xtl} ∪

−→
V) ∗Σ′ where

−→
V ⊆

−→
Z ∪
−→
B and

Σ′ ::= Q(Z,U,
−→
Y) | 	1+ Q[Z,

−→
Y] | Σ′ ∗Σ′

for Z ∈
−→
Z , U ∈

−→
Z ∪
−→
B ∪ {E,Xtl},

−→
Y ⊆

−→
B ∪ {E,Xtl}, and

	1+ Q[Z,
−→
Y] , ∃Z′. ΣQ(Z,Z′,

−→
Y) ∗Q(Z′, Z,

−→
Y) where ΣQ is the matrix of Q.

(2)

4

singly linked lists:
ls(E,F) , lemp(E,F) ∨ (E 6= F ∧ ∃Xtl. E 7→ {(f,Xtl)} ∗ ls(Xtl, F))

lists of acyclic lists:
nll(E,F,B) , lemp(E,F) ∨ (E 6= {F,B} ∧ ∃Xtl, Z. E 7→ {(s,Xtl), (h, Z)} ∗

ls(Z,B) ∗ nll(Xtl, F,B))lists of cyclic lists:
nlcl(E,F) , lemp(E,F) ∨ (E 6= F ∧ ∃Xtl, Z. E 7→ {(s,Xtl), (h, Z)} ∗

	1+ ls[Z] ∗ nlcl(Xtl, F))skip lists with three levels:
skl3(E,F) , lemp(E,F) ∨ (E 6= F ∧ ∃Xtl, Z1, Z2. E 7→ {(f3, Xtl), (f2, Z2),

(f1, Z1)} ∗ skl1(Z1, Z2) ∗ skl2(Z2, Xtl) ∗ skl3(Xtl, F))

skl2(E,F) , lemp(E,F) ∨ (E 6= F ∧ ∃Xtl, Z1. E 7→ {(f3,nil), (f2, Xtl),
(f1, Z1)} ∗ skl1(Z1, Xtl) ∗ skl2(Xtl, F))

skl1(E,F) , lemp(E,F) ∨ (E 6= F ∧ ∃Xtl. E 7→ {(f3,nil), (f2,nil),
(f1, Xtl)} ∗ skl1(Xtl, F))

Fig. 1. Examples of inductive definitions (lemp(E,F) , E = F ∧ emp)

The formula Σ specifies the values of the fields defined in E (using the atom E 7→
ρ({Xtl}∪

−→
V), where the fields in ρ are constants in F) and the (possibly cyclic) nested

list segments starting at the locations
−→
Z referenced by fields of E. We assume that Σ

contains a single points-to atom in order to simplify the presentation. Notice that the
matrix of a predicate P does not contain applications of P .

The macro 	1+ Q[Z,
−→
Y] is used to represent a non-empty cyclic (nested) list seg-

ment on Z whose shape is described by the predicate Q.
We consider several restrictions on Σ which are defined using its Gaifman graph

Gf [Σ]. The set of vertices of Gf [Σ] is given by the set of free and existentially quan-
tified variables in Σ, i.e., {E,Xtl} ∪

−→
B ∪

−→
Z . The edges in Gf [Σ] represent spatial

atoms: for every (f,X) in ρ, Gf [Σ] contains an edge from E to X labeled by f ; for
every predicate Q(Z,U,

−→
Y), Gf [Σ] contains an edge from Z to U labeled by Q; and

for every macro 	1+ Q[Z,
−→
Y], Gf [Σ] contains a self-loop on Z labeled by Q.

The first restriction is that Gf [Σ] contains no cycles other than self-loops built
solely of edges labeled by predicates. This ensures that the predicate is precise, i.e.,
for any heap, there exists at most one sub-heap on which the predicate holds. Precise
assertions are very important for concurrent separation logic [11].

The second restriction requires that all the maximal paths of Gf [Σ] start in E and
end either in a self-loop or in a node from

−→
B ∪ {E,Xtl}. This restriction ensures that

(a) all the heap locations in the interpretation of a predicate are reachable from the
head of the list and that (b) only the locations represented by variables in F ∪

−→
B are

dangling. Moreover, for simplicity, we require that every vertex of Gf [Σ] has at most
one outgoing edge labeled by a predicate.

For example, the predicates defined in Fig. 1 describe singly linked lists, lists of
acyclic lists, lists of cyclic lists, and skip lists with three levels.

We define the relation ≺P on the set of predicates P by P1 ≺P P2 iff P2 occurs
in the matrix of P1. The reflexive and transitive closure of ≺P is denoted by ≺∗P. For
example, if P = {skl1, skl2, skl3}, then skl3 ≺P skl2 and skl3 ≺∗P skl1.

5

(S,H) |= P (E,F,
−→
B) iff there exists k ∈ N s.t. (S,H) |= P k(E,F,

−→
B) and

ldom(H) ∩ ({S(F)} ∪ {S(B) | B ∈
−→
B}) = ∅

(S,H) |= P 0(E,F,
−→
B) iff (S,H) |= E = F ∧ emp

(S,H) |= P k+1(E,F,
−→
B) iff (S,H) |= E 6= {F} ∪

−→
B ∧

∃Xtl. Σ(E,Xtl,
−→
B) ∗ P k(Xtl, F,

−→
B)

Fig. 2. The semantics of predicate atoms

Given a predicate P of the matrix Σ as in (2), let F7→(P) denote the set of fields
f occurring in a pair (f,X) of ρ. For example, F7→(nll) = {s, h} and F7→(skl3) =
F7→(skl1) = {f3, f2, f1}. Also, let F∗7→(P) denote the union of F7→(P ′) for all P ≺∗P
P ′. For example, F∗7→(nll) = {s, h, f}.

We assume that≺∗P is a partial order, i.e., there are no mutually recursive definitions
in P. Moreover, for simplicity, we assume that for any two predicates P1 and P2 which
are incomparable w.r.t.≺∗P, it holds that F7→(P1)∩F7→(P2) = ∅. This assumption avoids
predicates named differently but having exactly the same set of models.

Semantics. Let Locs be a set of locations. A heap is a pair (S,H) where S : Vars ∪
LVars → Locs maps variables to locations and H : Locs × F ⇀ Locs is a partial
function that defines values of fields for some of the locations in Locs . The domain
of H is denoted by dom(H) and the set of locations in the domain of H is denoted
by ldom(H). As usual, we assume that nil is interpreted to a location S(nil) 6∈
ldom(H). We say that a location ` (resp., a variable E) is allocated in the heap (S,H)
or that (S,H) allocates ` (resp., E) iff ` (resp., S(E)) belongs to ldom(H).

The set of heaps satisfying a formula ϕ is defined by the relation (S,H) |= ϕ. For
brevity, we define in Fig. 2 the relation |= for predicate atoms only. The complete defini-
tion of |= can be found in [8]. Note that a heap satisfying a predicate atom P (E,F,

−→
B)

doesn’t allocate any variable in F ∪
−→
B ; the locations represented by these variables

don’t belong to its domain. A heap satisfying this property is called well-formed w.r.t.
the atom P (E,F,

−→
B). The set of models of a formula ϕ is denoted by [[ϕ]]. Given two

formulas ϕ1 and ϕ2, we say that ϕ1 entails ϕ2, denoted by ϕ1 ⇒ ϕ2, iff [[ϕ1]] ⊆ [[ϕ2]].
By an abuse of notation, ϕ1 ⇒ E = F (resp., ϕ1 ⇒ E 6= F) denotes the fact that E
and F are interpreted to the same location (resp., different locations) in all models of
ϕ1.

3 Compositional Entailment Checking

We define a procedure for reducing the problem of checking the validity of an entail-
ment between two formulas to the problem of checking the validity of an entailment
between a formula and an atom. We assume that the right-hand side of the entailment is
a quantifier-free formula (which usually suffices for checking verification conditions in
practice). The reduction can be extended to the general case, but it becomes incomplete.

6

ϕ1 ← norm(ϕ1); ϕ2 ← norm(ϕ2); // normalization
if ϕ1 = false then return true;
if ϕ2 = false then return false;
if pure(ϕ1) 6⇒ pure(ϕ2) then return false; // entailment of pure parts
foreach a2 : points-to atom in ϕ2 do // entailment of shape parts

ϕ1[a2]← select(ϕ1, a2);
if ϕ1[a2] 6⇒ a2 then return false;

for P2 ← max≺(P) down to min≺(P) do
forall the a2 = P2(E,F,

−→
B) : predicate atom in ϕ2 s.t. pure(ϕ1) 6⇒ E = F do

ϕ1[a2]← select(ϕ1, a2);
if ϕ1[a2] 6⇒sh a2 then return false;

return isMarked(ϕ1);

Fig. 3. Compositional entailment checking (≺ is any total order compatible with ≺∗P)

3.1 Overview of the Reduction Procedure

We consider the problem of deciding validity of entailments ϕ1 ⇒ ϕ2 with ϕ2

quantifier-free. We assume pv(ϕ2) ⊆ pv(ϕ1); otherwise, the entailment is not valid.
The main steps of the reduction are given in Fig. 3. The reduction starts by a nor-

malization step (described in Sec. 3.2), which adds to each of the two formulas all
(dis-)equalities implied by spatial sub-formulas and removes all atoms P (E,F,

−→
B)

representing empty list segments, i.e., those where E = F occurs in the pure part.
The normalization of a formula outputs false iff the input formula is unsatisfiable.

In the second step, the procedure tests the entailment between the pure parts of the
normalized formulas. This can be done using any decision procedure for quantifier-free
formulas in the first-order theory with equality.

For the spatial parts, the procedure builds a mapping from spatial atoms of ϕ2 to
sub-formulas of ϕ1. Intuitively, the sub-formula ϕ1[a2] associated to an atom a2 of ϕ2,
computed by select, describes the region of a heap modeled by ϕ1 that should sat-
isfy a2. For predicate atoms a2 = P2(E,F,

−→
B), select is called (in the second loop)

only if there exists a model of ϕ1 where the heap region that should satisfy a2 is non-
empty, i.e., E = F does not occur in ϕ1. In this case, select does also check that
for any model of ϕ1, the sub-heap corresponding to the atoms in ϕ1[a2] is well-formed
w.r.t. a2 (see Sec. 3.3). This is needed since all heaps described by a2 are well-formed.

Note that in the well-formedness check above, one cannot speak about ϕ1[a2] alone.
This is because without the rest of ϕ1, ϕ1[a2] may have models which are not well-
formed w.r.t. a2 even if the sub-heap corresponding to ϕ1[a2] is well-formed for any
model of ϕ1. For example, let ϕ1 = ls(x, y) ∗ ls(y, z) ∗ z 7→ {(f, t)}, a2 = ls(x, z),
and ϕ1[a2] = ls(x, y) ∗ ls(y, z). If we consider only models of ϕ1, the sub-heaps
corresponding to ϕ1[a2] are all well-formed w.r.t. a2, i.e., the location bound to z is not
allocated in these sub-heaps. However, ϕ1[a2] alone has lasso-shaped models where the
location bound to z is allocated on the path between x and y.

Once ϕ1[a2] is obtained, one needs to check that all sub-heaps modeled by ϕ1[a2]
are also models of a2. For points-to atoms a2, this boils down to a syntactic identity
(modulo some renaming given by the equalities in the pure part of ϕ1). For predicate
atoms a2, a special entailment operator ⇒sh (defined in Sec. 3.5) is used. We cannot
use the usual entailment ⇒ since, as we have seen in the example above, ϕ1[a2] may

7

have models which are not sub-heaps of models of ϕ1. Thus, ϕ1[a2] ⇒sh a2 holds iff
all models of ϕ1[a2], which are well-formed w.r.t. a2, are also models of a2.

If there exists an atom a2 of ϕ2, which is not entailed by the associated sub-formula,
then ϕ1 ⇒ ϕ2 is not valid. By the semantics of the separating conjunction, the sub-
formulas of ϕ1 associated with two different atoms of ϕ2 must not share spatial atoms.
Due to this, the spatial atoms obtained from each application of select are marked and
cannot be reused in the future. Note that the mapping is built by enumerating the atoms
of ϕ2 in a particular order: first, the points-to atoms and then the inductive predicates,
in a decreasing order wrt ≺P. This is important for completeness (see Sec. 3.3).

The procedure select is detailed in Sec. 3.3. It returns emp if the construction of
the sub-formula of ϕ1 associated with the input atom fails (this implies that also the
entailment ϕ1 ⇒ ϕ2 is not valid). If all entailments between formulas and atoms are
valid, then ϕ1 ⇒ ϕ2 holds provided that all spatial atoms of ϕ1 are marked (tested by
isMarked). In Sec. 3.5, we introduce a procedure for checking entailments between
a formula and a spatial atom.
Graph representations. Some of the sub-procedures mentioned above work on a graph
representation of the input formulas, called SL graphs (which are different from the
Gaifman graphs of Sec. 2). Thus, a formula ϕ is represented by a directed graph G[ϕ]
where each node represents a maximal set of variables equal w.r.t. the pure part of ϕ,
and each edge represents a disequalityE 6= F or a spatial atom. Every node n is labeled
by the set of variables Var(n) it represents; for every variable E, Node(E) denotes the
node n s.t. E ∈ Var(n). Next, (1) a disequality E 6= F is represented by an undirected
edge from Node(E) to Node(F), (2) a spatial atom E 7→ {(f1, E1), . . . , (fn, En)}
is represented by n directed edges from Node(E) to Node(Ei) labeled by fi for each
1 ≤ i ≤ n, and (3) a spatial atom P (E,F,

−→
B) is represented by a directed edge from

Node(E) to Node(F) labeled by P (
−→
B). Edges are referred to as disequality, points-to,

or predicate edges, depending on the atom they represent. For simplicity, we may say
that the graph representation of a formula is simply a formula.
Running example. In the following, we use as a running example the entailment ψ1 ⇒
ψ2 between the following formulas:
ψ1 ≡ ∃Y1, Y2, Y3, Y4, Z1, Z2, Z3. x 6= z ∧ Z2 6= z ∧ (3)

x 7→ {(s, Z2), (h, Z1)} ∗ Z2 7→ {(s, y), (h, Z3)} ∗ ls(Z1, z) ∗ ls(Z3, z) ∗
ls(y, Y1) ∗ skl2(y, Y3) ∗ ls(Y1, Y2) ∗
Y3 7→ {(f2, t), (f1, Y4)} ∗ Y4 7→ {(f2,nil), (f1, t)} ∗ t 7→ {(s, Y2)}

ψ2 ≡ y 6= t ∧ nll(x, y, z) ∗ skl2(y, t) ∗ t 7→ {(s, y)} (4)

The graph representations of these formulas are drawn in the top part of Fig. 4.

3.2 Normalization

To infer the implicit (dis-)equalities in a formula, we adapt the boolean abstraction
proposed in [10] for our logic. Therefore, given a formulaϕ, we define an equisatisfiable
boolean formula BoolAbs[ϕ] in CNF over a set of boolean variables containing the
boolean variable [E = F] for every two variables E and F occuring in ϕ and the
boolean variable [E, a] for every variable E and spatial atom a of the form E 7→ ρ or

8

Initially: ψ1 ⇒ ψ2

x

z

y Y3

t

Y4

Y1 Y2

s s

h h

ls ls

skl2 f2

f1 f1

ls

ls

s

⇒ x y tnll(z) skl2

s

After normalization: norm(ψ1)⇒ norm(ψ2)

x

z

y
Y1, Y2

Y3

t

Y4

s s

h h

ls ls

skl2 f2

f1 f1

s

⇒ x y tnll(z) skl2

s

select(ψ1, nll(x, y, z))

select(ψ1, skl2(y, t))

Fig. 4. An example of applying compositional entailment checking. Points-to edges are repre-
sented by simple lines, predicate edges by double lines, and disequality edges by dashed lines. For
readability, we omit the points-to edge from Y4 to nil, some of the labeling with existentially-
quantified variables, and some of the disequality edges in the normalized graphs.

P (E,F,
−→
B) in ϕ. The variable [E = F] denotes the equality between E and F while

[E, a] denotes the fact that the atom a describes a heap where E is allocated.
Given ϕ , ∃

−→
X.Π ∧Σ, BoolAbs[ϕ] , F (Π)∧F (Σ)∧F= ∧F∗ where F (Π) and

F (Σ) encode the atoms of ϕ (using⊕ to denote xor), F= encodes reflexivity, symmetry,
and transitivity of equality, and F∗ encodes the semantics of the separating conjunction:

F (Π) ,
∧

E=F∈Π

[E = F] ∧
∧

E 6=F∈Π

¬[E = F] F (Σ) ,
∧

a=E 7→ρ∈Σ

[E, a] ∧
∧

a=P (E,F,
−→
B)∈Σ

[E, a]⊕ [E = F]

F= ,
∧

E1 variable in ϕ

[E1 = E1] ∧
∧

E1,E2 variables in ϕ

([E1 = E2]⇔ [E2 = E1]) ∧∧
E1,E2,E3 variables in ϕ

([E1 = E2] ∧ [E2 = E3]⇒ [E1 = E3])

F∗ ,
∧

E,F variables in ϕ
a,a′different atoms in Σ

([E = F] ∧ [E, a])⇒ ¬[F, a′]

(5)

For the formula ψ1 in our running example (Eq. 3), BoolAbs[ψ1] is a conjunction
of several formulas including:

1. [y, skl2(y, Y3)]⊕ [y = Y3], which encodes the atom skl2(y, Y3),
2. [Y3, Y3 7→ {(f1, Y4), (f2, t)}] and [t, t 7→ {(s, Y2)}], encoding points-to atoms,

9

3. ([y = t] ∧ [t, t 7→ {(s, Y2)}]) ⇒ ¬[y, skl2(y, Y3)], which encodes the separating
conjunction between t 7→ {(s, Y2)} and skl2(y, Y3),

4. ([Y3 = t] ∧ [t, t 7→ {(s, Y2)}]) ⇒ ¬[Y3, Y3 7→ {(f1, Y4), (f2, t)}], which encodes
the separating conjunction between t 7→ {(s, Y2)} and Y3 7→ {(f1, Y4), (f2, t)}.

Proposition 1. Let ϕ be a formula. Then, BoolAbs[ϕ] is equisatisfiable with ϕ, and for
any variablesE and F of ϕ, BoolAbs[ϕ]⇒ [E = F] (resp., BoolAbs[ϕ]⇒ ¬[E = F])
iff ϕ⇒ E = F (resp. ϕ⇒ E 6= F).

For example, BoolAbs[ψ1] ⇒ ¬[y = t], which is a consequence of the sub-formulas
we have given above together with F=.

If BoolAbs[ϕ] is unsatisfiable, then the output of norm(ϕ) is false . Otherwise, the
output of norm(ϕ) is the formula ϕ′ obtained from ϕ by (1) adding all (dis-)equalities
implied by BoolAbs[ϕ] and (2) removing all predicates P (E,F,

−→
B) s.t. E = F oc-

curs in the pure part. For example, the normalizations of ψ1 and ψ2 are given in the
bottom part of Fig. 4. Note that the ls atoms reachable from y are removed because
BoolAbs[ψ1]⇒ [y = Y1] and BoolAbs[ψ1]⇒ [Y1 = Y2].

The following result is important for the completeness of the select procedure.

Proposition 2. Let norm(ϕ) be the normal form of a formula ϕ. For any two distinct
nodes n and n′ in the SL graph of norm(ϕ), there cannot exist two disjoint sets of atoms
A and A′ in norm(ϕ) s.t. both A and A′ represent paths between n and n′.

If we assume for contradiction that norm(ϕ) contains two such sets of atoms, then,
by the semantics of the separating conjunction, ϕ ⇒ E = F where E and F label n
and n′, respectively. Therefore, norm(ϕ) does not include all equalities implied by ϕ,
which contradicts its definition.

3.3 Selection of Spatial Atoms

Points-to atoms. Let ϕ1 , ∃
−→
X.Π1 ∧ Σ1 be a normalized formula. The procedure

select(ϕ1, E2 7→ ρ2) outputs the sub-formula ∃
−→
X.Π1 ∧ E1 7→ ρ1 s.t. E1 = E2

occurs in Π1 if it exists, or emp otherwise. The procedure select is called only if
ϕ1 is satisfiable and consequently, ϕ1 cannot contain two different atoms E1 7→ ρ1
and E′1 7→ ρ′1 such that E1 = E′1 = E2. Also, if there exists no such points-to atom,
then ϕ1 ⇒ ϕ2 is not valid. Indeed, since ϕ2 does not contain existentially quantified
variables, a points-to atom in ϕ2 could be entailed only by a points-to atom in ϕ1.

In the running example, select(ψ1, t 7→ {(s, y)}) = ∃Y2. y = Y2 ∧ . . . ∧ t 7→
{(s, Y2)} (we have omitted some existential variables and pure atoms).

Predicate atoms. Given an atom a2 = P2(E2, F2,
−→
B2), select(ϕ1, a2) builds a sub-

graph G′ of G[ϕ1], and then it checks whether the sub-heaps described by G′ are well-
formed w.r.t. a2. If this is not true or if G′ is empty, then it outputs emp. Otherwise, it
outputs the formula ∃

−→
X.Π1 ∧Σ′ where Σ′ consists of all atoms represented by edges

of the sub-graph G′. Let Dangling[a2] = Node(F2) ∪ {Node(B) | B ∈
−→
B2}.

The sub-graph G′ is defined as the union of all paths of G[ϕ1] that (1) consist of
edges labeled by fields in F∗7→(P2) or predicates Q with P2 ≺∗P Q, (2) start in the node

10

labeled by E2, and (3) end either in a node from Dangling[a2] or in a cycle, in which
case they must not traverse nodes in Dangling[a2]. The paths in G′ that end in a node
from Dangling[a2] must not traverse other nodes from Dangling[a2]. Therefore, G′

does not contain edges that start in a node from Dangling[a2]. The instances of G′ for
select(ψ1, nll(x, y, z)) and select(ψ1, skl2(y, t)) are emphasized in Fig. 4.

Next, the procedure select checks that in every model of ϕ1, the sub-heap de-
scribed by G′ is well-formed w.r.t. a2. Intuitively, this means that all the cycles in
the sub-heap are explicitly described in the inductive definition of P2. For example,
if ϕ1 = ls(x, y) ∗ ls(y, z) and ϕ2 = a2 = ls(x, z), then the graph G′ corresponds to
the entire formula ϕ1 and it may have lasso-shaped models (z may belong to the path
between x and y) that are not well-formed w.r.t. ls(x, z) (whose inductive definition
describes only acyclic heaps). Therefore, the procedure select returns emp, which
proves that the entailment ϕ1 ⇒ ϕ2 does not hold. For our running example, for any
model of ψ1, in the sub-heap modeled by the graph select(ψ1, skl2(y, t)) in Fig. 4,
t should not be (1) interpreted as an allocated location in the list segment skl2(y, Y3)
or (2) aliased to one of nodes labeled by Y3 and Y4.

The well-formedness test is equivalent to the fact that for every variable V ∈
{F2} ∪

−→
B2 and every model of ϕ1, the interpretation of V is different from all allo-

cated locations in the sub-heap described by G′. This is in turn equivalent to the fact
that for every variable V ∈ {F2} ∪

−→
B2, the two following conditions hold:

1. For every predicate edge e included in G′ that does not end in Node(V), V is
allocated in all models of E 6= F ∧ (ϕ1 \G′) where E and F are variables labeling
the source and the destination of e, respectively, and ϕ1 \ G′ is obtained from ϕ1

by deleting all spatial atoms represented by edges of G′.
2. For every variable V ′ labeling the source of a points-to edge of G′, ϕ1 ⇒ V 6= V ′.

The first condition guarantees that V is not interpreted as an allocated location in
a list segment described by a predicate edge of G′ (this trivially holds for predicate
edges ending in Node(V)). If V was not allocated in some model (S,H1) of E 6=
F ∧ (ϕ1 \ G′), then one could construct a model (S,H2) of G′ where e would be
interpreted to a non-empty list and S(V) would equal an allocated location inside this
list. Therefore, there would exist a model of ϕ1, defined as the union of (S,H1) and
(S,H2), in which the heap region described by G′ would not be well-formed w.r.t. a2.

For example, in the graph select(ψ1, skl2(y, t)) in Fig. 4, t is not interpreted as
an allocated location in the list segment skl2(y, Y3) since t is allocated (due to the atom
t 7→ {(s, Y2)}) in all models of y 6= Y3 ∧ (ψ1 \ select(ψ1, skl2(y, t))).

To check that variables are allocated, we use the following property: given a formula
ϕ , ∃

−→
X.Π ∧Σ, a variable V is allocated in every model of ϕ iff ∃

−→
X.Π ∧Σ ∗ V 7→

{(f, V1)} is unsatisfiable. Here, we assume that f and V1 are not used in ϕ. Note that,
by Prop. 1, unsatisfiability can be decided using the boolean abstraction BoolAbs.

The second condition guarantees that V is different from all allocated locations
represented by sources of points-to edges inG′. For the graph select(ψ1, nll(x, y, z))
in Fig. 4, the variable z must be different from all existential variables labeling a node
which is the source of a points-to edge. These disequalities appear explicitly in the
formula. In general, by Prop. 1, ϕ1 ⇒ V 6= V ′ can be decided using the boolean
abstraction.

11

3.4 Soundness and Completeness

The following theorem states that the procedure given in Fig. 3 is sound and complete.
The soundness is a direct consequence of the semantics. The completeness is a conse-
quence of Prop. 1 and 2. In particular, Prop. 2 implies that the sub-formula returned by
select(ϕ1, a2) is the only one that can describe a heap region satisfying a2.

Theorem 1. Let ϕ1 and ϕ2 be two formulas s.t. ϕ2 is quantifier-free. Then, ϕ1 ⇒ ϕ2

iff the procedure in Fig. 3 returns true.

3.5 Checking Entailments between a Formula and an Atom

Given a formula ϕ and an atom P (E,F,
−→
B), we define a procedure for checking that

ϕ ⇒sh P (E,F,
−→
B), which works as follows: (1) G[ϕ] is transformed into a tree T [ϕ]

by splitting nodes that have multiple incoming edges, (2) the inductive definition of
P (E,F,

−→
B) is used to define a TAA[P] s.t. T [ϕ] belongs to the language ofA[P] only

if ϕ⇒sh P (E,F,
−→
B). Notice that we do not require the reverse implication in order to

keep the size ofA[P] polynomial in the size of the inductive definition of P . Thus,A[P]
does not recognize the tree representations of all formulas ϕ s.t. ϕ ⇒sh P (E,F,

−→
B).

The transformation of graphs into trees is presented in Sec. 4 while the definition of the
TA is introduced in Sec. 5. In Sec. 6, we also discuss how to obtain a complete method
by generating a TA A[P] of an exponential size.

4 Representing SL Graphs as Trees

We define a canonical representation of SL graphs in the form of trees, which we use
for checking⇒sh . In this representation, the disequality edges are ignored because they
have been dealt with previously when checking entailment of pure parts.

Rootf1

f2

f3

f3

g1

g2 g2

(a) A labeled graph G

Root

alias ↑↓[f1 f2]

alias ↑[g1]

f1

f2

f3

f3

g1

g2

g2

(b) A tree representation of G

Fig. 5. The tree representation
of a generic graph

We start by explaining the main concepts of the tree
encoding using the generic labeled graph in Fig. 5(a).
We consider a graph G where all nodes are reachable
from a distinguished node called Root (this property is
satisfied by all SL graphs returned by the select pro-
cedure). To construct a tree representation ofG, we start
with its spanning tree (emphasized using bold edges)
and proceed with splitting any node with at least two
incoming edges, called a join node, into several copies,
one for each incoming edge not contained in the span-
ning tree. The obtained tree is given in Fig. 5(b).

Not to loose any information, the copies of nodes
should be labeled with the identity of the original node,
which is kept in the spanning tree. However, since the
representation does not use node identities, we label ev-
ery original node with a representation of the path from
Root to this node in the spanning tree, and we assign ev-
ery copied node a label describing how it can reach the

12

original node in the spanning tree. For example, if a node n has the label alias ↑[g1],
this denotes the fact that n is a copy of some join node, which is the first ancestor of
n in the spanning tree that is reachable from Root by a path formed of a (non-empty)
sequence of g1 edges. Further, n labelled by alias ↑↓[f1 f2] denotes roughly that (1) the
original node is reachable from Root by a path formed by a (non-empty) sequence of
f1 edges followed by a (non-empty) sequence of f2 edges, and (2) the original node can
be reached from n by going up in the tree until the first node that is labelled by a prefix
of f1 f2 and then down until the first node labelled with f1 f2. The exact definition of
these labels can be found later in this section. In general, a label of the form alias ↑[. . .]
will be used when breaking loops while a label of the form alias ↑↓[. . .] will be used
when breaking parallel paths between nodes. Moreover, if the original node is labeled
by a variable, e.g., x, then we will use a label of the form alias [x]. This set of labels
is enough to obtain a tree representation from SL graphs that can entail a spatial atom
from the considered fragment; for arbitrary graphs, this is not the case.

When applying this construction to an SL graph, the most technical part consists in
defining the spanning tree. Based on the inductive definition of predicates, we consider
a total order on fields≺F that is extended to sequences of fields,≺F∗ , in a lexicographic
way. Then, the spanning tree is defined by the set of paths labeled by sequences of fields
which are minimum according to the order ≺F∗ .

Intuitively, the order ≺F reflects the order in which the unfolding of the inductive
definition of P is done: (1) Fields used in the atom E 7→ ρ of the matrix of P are
ordered before fields of any other predicate called by P . (2) Fields appearing in ρ and
going “one-step forward” (i.e., occurring in a pair (f,Xtl)) are ordered before fields
going “down” (i.e., occurring in a pair (f, Z) with Z ∈

−→
Z), which are ordered before

fields going to the “border” (i.e., occurring in a pair (f,X) with X ∈
−→
B \ {nil}).

Formally, given a predicate P with the matrix Σ as in (2), we identify in the set
F7→(P) three disjoint sets: (a) F7→Xtl

(P) is the set of fields f occurring in a pair
(f,Xtl) of ρ, (b) F7→−→Z (P) the set of fields f occurring in a pair (f, Z) of ρ with

Z ∈
−→
Z , and (c) F7→−→B (P) the set of fields f occurring in a pair (f,X) of ρ with

X ∈
−→
B \ {nil}. Then, we assume that there exists a total order ≺F on fields s.t., for

all P , P1, P2 in P:

∀f1 ∈ F7→Xtl
(P) ∀f2 ∈ F 7→−→Z (P) ∀f3 ∈ F7→−→B (P). f1 ≺F f2 ≺F f3 and

(f1 ∈ F7→(P1) ∧ f2 ∈ F7→(P2) ∧ f1 6= f2 ∧ P1 ≺P P2)⇒ f1 ≺F f2.

For example, if P = {nll, ls} or P = {nlcl, ls}, then s ≺F h ≺F f ; and if P =
{skl2, skl1}, then f2 ≺F f1. The order ≺F is extended to a lexicographic order ≺F∗

over sequences in F∗. Note that the pointer fields going to nil are not involved in the
constraints above (they are not included in neither one of the sets F7→Xtl

(P), F7→−→Z (P),
or F7→−→B (P)). They are treated differently because, by definition, there is no pointer
field defined in nil. For example, if P = {skl1}, then f2 ≺F f1 and f1 ≺F f2 are
both valid total orderings on fields.

An f -edge of an SL graph is a points-to edge labeled by f or a predicate edge
labeled by P (

−→
N) s.t. the minimum field in F7→(P) w.r.t. ≺F is f .

Let G be an SL graph and P (E,F,
−→
B) an atom for which we want to prove that

G⇒sh P (E,F,
−→
B). We assume that all nodes of G are reachable from the node Root

13

labeled by E, which is ensured when G is constructed by select. The tree encod-
ing of G is computed by the procedure toTree(G,P (E,F,

−→
B)) that consists of four

consecutive steps that are presented below (see also [8]).
Node marking. First, toTree computes a mapping M, called node marking, which
defines the spanning tree of G. Intuitively, for each node n, M(n) is the sequence of
fields labeling a path reaching n from Root that is minimal w.r.t. ≺F∗ . Formally, let π
be a path in G starting in Root and consisting of the sequence of edges e1 e2 . . . en.
The labeling of π, denoted by L(π), is the sequence of fields f1 f2 . . . fn s.t. for all i,
ei is an fi-edge. The node marking is defined by

∀n ∈ G M(n) , Reduce(min≺F(F7→(P)) · Lmin(n)), (6)
Lmin(n) , min≺F∗{L(π) | Root

π−→n} (7)

where Reduce rewrites the sub-words of the form f+ to f , for any field f . For technical
reasons, we add the minimum field (w.r.t. ≺F) in F7→(P) at the beginning of all M(n).

Fig. 6(b)–(c) depicts two graphs and the markings of their nodes. (For readability,
we omit the markings of the nodes labeled by y and t.)
Splitting join nodes. The join nodes are split in two consecutive steps, denoted as
splitLabeledJoin and splitJoin, depending on whether they are labeled by vari-
ables in {E,F} ∪

−→
B or not. In both cases, only the edges of the spanning tree are kept

in the tree, the other edges are redirected to fresh copies labeled by some alias [..].
For any join node n, the spanning tree edge is the f -edge (m,n) such that

Reduce(M(m) f) = M(n), i.e., (m,n) is at the end of the minimum path leading
to n. (For Root , all incoming edges are not in the spanning tree.)

In splitLabeledJoin, a graph G′ is obtained by replacing in G any edge (m,n)

such that n is labeled by some V ∈ {E,F}∪
−→
B and (m,n) is not in the spanning tree by

an edge (m,n′) with the same label, where n′ is a fresh copy of n labeled by alias [V].
Moreover, for uniformity, all (even non-join) nodes labeled by a variable V ∈ F ∪

−→
B

are labeled by alias [V] in G′. Fig. 6(a) gives the output graph of splitLabeledJoin
on the SL graphs returned in our running example by select(ψ1, nll(x, y, z)) and
select(ψ1, skl2(y, t)).

Subsequently, splitJoin builds from G′ a tree by splitting unlabeled join nodes
as follows. Let n be a join node and (m,n) an edge not in the spanning tree of G′ (and
G). The edge (m,n) is replaced in the tree by an edge (m,n′) with the same edge label,
where n′ is a fresh copy of n labeled by:

– alias ↑[M(n)] ifm is reachable from n and all predecessors ofm (by a simple path)
marked by M(n) are also predecessors of n. Intuitively, this label is used to break
loops, and it refers to the closest predecessor of n′ having the given marking. The
use of this labeling is illustrated in Fig. 6(b).

– alias ↑↓[M(n)] if there is a node p which is a predecessor of m s.t. all predecessors
of m that have a unique successor marked by M(n) are also predecessors of p, and
n is the unique successor of p marked by M(n). Intuitively, this transformation is
used to break multiple paths between p and n as illustrated in Fig. 6(c).3

3 The combination of up and down arrows in the label corresponds to the need of going up and
then down in the resulting tree—whereas in the previous case, it suffices to go up only.

14

x

alias [z] alias [z]

alias [y]
s s

h h

ls ls

y alias [t]

alias [t]

skl2 f2

f1 f1

x
M : s

M : s h

M : s

M : s h

M : s h f M : s h f

y
s s

h h

f ff f

x

alias ↑[sh] alias ↑[sh]

alias [y]
s s

h h

f f

f f

(a) Tree encodings for the selected sub-
graphs in the bottom left part of Fig. 4

(b) Tree encodings for graphs satisfying nlcl

y

M : f2

M : f2

M : f2 f1

M : f2

M : f2 f1

t
skl2 f2 f2

f1 f1 f1 f1

y

alias ↑↓[f2]

alias [t]

alias [t]

skl2 f2 f2

f1

f1

f1 f1

(c) Tree encodings for graphs satisfying skl2

Fig. 6. Tree encodings

If the relation between n and n′ does not satisfy the constraints mentioned above, the
result of splitJoin is an error, i.e., the ⊥ tree.

At the end of these steps, we obtain a tree with labels on edges (using fields f ∈ F
or predicates Q(

−→
B)) and labels on nodes of the form alias [..].

Updating the labels. In the last step, two transformations are done on the tree. First,
the labels of predicate edges are changed in order to replace each argument X different
from {F} ∪

−→
B by a label alias ↑[M(n)] or alias ↑↓[M(n)], which describes the position

of the node n labeled by X w.r.t. the source node of the predicate edge.
Finally, as the generated trees will be tested for membership in the language of a TA

which accepts node-labelled trees only, the labels of edges are moved to the labels of
their source nodes and concatenated in the order given by ≺F (predicates in the labels
are ordered according to the minimum field in their matrix).

The following property ensures the soundness of the entailment procedure:

Proposition 3. Let P (E,F,
−→
B) be an atom and G an SL graph. If

toTree(G,P (E,F,
−→
B)) = ⊥, then G 6⇒ P (E,F,

−→
B).

5 Tree Automata Recognizing Tree Encodings of SL Graphs

Next, we proceed to the construction of tree automata A[P (E,F,
−→
B)] that recognize

tree encodings of SL graphs that imply atoms of the form P (E,F,
−→
B). Due to space

constraints, we cannot provide a full description of the TA construction (which we give
in [8]). Instead, we give an intuitive description only and illustrate it on two typical
examples (for now, we leave our running examples, TAs for which are given in [8]).
Tree automata. A (non-deterministic) tree automaton recognizing tree encodings of SL
graphs is a tuple A = (Q, q0, ∆) where Q is a set of states, q0 ∈ Q is the initial state,
and ∆ is a set of transition rules of the form q ↪→ a1(q1), . . . , an(qn) or q ↪→ a, where

15

n > 0, q, q1, . . . , qn ∈ Q, ai is an SL graph edge label (we assume them to be ordered
w.r.t. the ordering of fields as for tree encodings), and a is alias ↑[m], alias ↑↓[m], or
alias [V]. The set of trees L(A) recognized by A is defined as usual.

Definition of A[P (E,F,
−→
B)]. The tree automaton A[P (E,F,

−→
B)] is defined starting

from the inductive definition of P . If P does not call other predicates, the TA simply
recognizes the tree encodings of the SL graphs that are obtained by “concatenating”
a sequence of Gaifman graphs representing the matrix Σ(E,Xtl,

−→
B) and predicate

edges P (E,Xtl,
−→
B). In these sequences, occurrences of the Gaifman graphs repre-

senting the matrix and the predicate edges can be mixed in an arbitrary order and in
an arbitrary number. Intuitively, this corresponds to a partial unfolding of the predi-
cate P in which there appear concrete segments described by points-to edges as well as
(possibly multiple) segments described by predicate edges. Concatenating two Gaifman
graphs means that the node labeled by Xtl in the first graph is merged with the node
labeled by E in the other graph. This is illustrated on the following example.

q0 q3

q2

q1

f1

f1

P1(B)

P1(B)

alias [F]

alias ↑↓[f1]

alias [B]
f3

f2

f2f3

(1) q0 ↪→ f1(q0), f2(q1), f3(q2)
(2) q1 ↪→ alias ↑↓[f1]
(3) q2 ↪→ alias [B]
(4) q0 ↪→ f1(q3), f2(q3), f3(q2)
(5) q3 ↪→ alias [F]
(6) q0 ↪→ P1(B)(q0)
(7) q0 ↪→ P1(B)(q3)

Fig. 7. A[P1(E,F,B)]

Consider a predicate P1(E,F,B) that does not call
other predicates and that has the matrix

Σ1 , E 7→ {(f1, Xtl), (f2, Xtl), (f3, B)}.
The tree automaton A1 for P1(E,F,B) has transition
rules given in Fig. 7. Rules (1)–(3) recognize the tree
encoding of the Gaifman graph of Σ1, assuming the
following total order on the fields: f1 ≺F f2 ≺F f3.
Rule (4) is used to distinguish the “last” instance of
this tree encoding, which ends in the node labeled by
alias [F] accepted by Rule (5). Finally, Rules (6) and (7)
recognize predicate edges labeled by P1(B). As in the
previous case, we distinguish the predicate edge that
ends in the node labeled by alias [F].

Note that the TA given above exhibits the simple and
generic skeleton of TAs accepting tree encodings of list
segments defined in our SL fragment: The initial state
q0 is used in a loop to traverse over an arbitrary number
of folded (Rule 6) and unfolded (Rule 1) occurrences
of the list segments, and the state q3 is used to recog-
nize the end of the backbone (Rule 5). The other states
(here, q2) are used to accept alias labels only. The same
skeleton can be observed in the TA recognizing tree en-
codings of singly linked lists, which is given in Fig. 8.

q0 q1

ff

ls

ls

alias [F]

Fig. 8. A[ls(E,F)]
When P calls other predicates, the automaton recognizes tree encodings of concate-

nations of more general SL graphs, obtained from Gf [Σ] by replacing predicate edges
with unfoldings of these predicates. On the level of TAs, this operation corresponds to
a substitution of transitions labelled by predicates with TAs for the nested predicates.
During this substitution, alias [..] labels occurring in the TA for the nested predicate
need to be modified. Labels of the form alias ↑[m] and alias ↑↓[m] are adjusted by pre-
fixing m with the marking of the source state of the transition. Moreover, labels of the
form alias [V] are substituted by the marking of Node(V) w.r.t. the higher-level matrix.

16

Let us consider a predicate P2(E,F) that calls P1 and that has the matrix
Σ2 , ∃Z.E 7→ {(g1, Xtl), (g2, Z)}∧ 	1+ P1[Z,E].

(1′) qq0 ↪→ g1(qq0), g2(q0)
(2′) qq0 ↪→ g1(qq1), g2(q0)
(3′) qq1 ↪→ alias [F]
(4′) qq0 ↪→ P2(qq0)
(5′) qq0 ↪→ P2(qq1)

Fig. 9. A[P2(E,F)]

The TA A2 for P2(E,F) includes the transition rules
given in Fig. 9. These rules are complemented by
the rules of A1 where alias [F] is substituted by
alias ↑[g1 g2], alias [B] by alias ↑[g1], and alias ↑↓[f1] is
substituted by alias ↑↓[g1 g2 f1]. Rule (1′) and the ones
imported (after renaming of the labels) fromA1 describe
trees obtained from the tree encoding of Gf [Σ2] by re-
placing the edge looping in Z with a tree recognized by A1. According to Gf [Σ2],
the node marking of Z is g1 g2, and so the label alias [F] shall be substituted by
alias ↑[g1 g2], and the marking alias ↑↓[f1] shall be substituted by alias ↑↓[g1 g2 f1].

The following result states the correctness of the tree automata construction.

Theorem 2. For any atom P (E,F,
−→
B) and any SL graph G, if the tree generated by

toTree(G,P (E,F,
−→
B)) is recognized by A[P (E,F,

−→
B)], then G⇒ P (E,F,

−→
B).

6 Completeness and Complexity

In general, there exist SL graphs that entail P (E,F,
−→
B) whose tree encodings are not

recognized by A[P (E,F,
−→
B)]. The models of these SL graphs are nested list segments

where inner pointer fields specified by the matrix of P are aliased. For example, the TA
for skl2 does not recognize tree encodings of SL graphs modeling heaps where Xtl

and Z1 are interpreted to the same location.
The construction of TAs explained above can be easily extended to cover such SL

graphs (cf. [8]), but the size of the obtained automata may become exponential in the
size of P (defined as the number of symbols in the matrices of all Q with P ≺∗P Q)
as the construction considers all possible aliasing scenarios of targets of inner pointer
fields permitted by the predicate definition.

For the verification conditions that we have encountered in our experiments, the TAs
defined above are precise enough in the vast majority of the cases. In particular, note
that the TAs generated for the predicates for ls and dll (defined below) are precise.
We have, however, implemented even the above mentioned extension and realized that
it also provides acceptable performance.

In conclusion, the overall complexity of the semi-decision procedure (where aliases
between variables in the definition of a predicate are ignored) runs in polynomial time
modulo an oracle for deciding validity of a boolean formula (needed in normalization
procedure). The complete decision procedure is exponential in the size of the predicates,
and not of the formulas, which remains acceptable in practice.

7 Extensions

The procedures presented above can be extended to a larger fragment of SL that uses
more general inductively defined predicates. In particular, they can be extended to cover

17

finite nestings of singly or doubly linked lists (DLL). To describe DLL segments be-
tween two locations E and F where P is the predecessor of E and S is the successor
of F , one can use the predicate

dll(E,F, P, S) , (E = S ∧ F = P ∧ emp) ∨
(
E 6= S ∧ F 6= P ∧

∃Xtl. E 7→ {(next,Xtl), (prev, P)} ∗ dll(Xtl, F, E, S)
)
.

(8)

Finite nestings of such list segments can be defined by replacing the matrix E 7→
{(next,Xtl), (prev, P)} with more general formulas that include other predicates.

The key point in this extension is the definition of the tree encoding. Basically, one
needs to consider two more types of labels for the tree nodes: alias ↑2[α] with α ∈ F∗,
which denotes the fact that the node is a copy of its second predecessor of marking α,
and alias ↑↓last[α] with α ∈ F∗, which denotes the fact that the node is a copy of the
last successor of marking α of its first predecessor that has a successor of marking α.
The first label is needed to handle inner nodes of doubly linked lists, which have two
incoming edges, one from their successor and one from their predecessor, while the
second label is needed to “break” cyclic doubly linked lists. In the latter case, the label
is used for the copy of the predecessor of the head of the list (cf. [8] for more details).

8 Implementation and Experimental Results

We implemented our decision procedure in a solver called SPEN (SeParation logic EN-
tailment). The tool takes as input an entailment problem ϕ1 ⇒ ϕ2 (including the defini-
tion of the used predicates) encoded in the SMTLIB2 format. For non-valid entailments,
SPEN prints the atom of ϕ2 which is not entailed by a sub-formula of ϕ1. The tool is
based on the MINISAT solver for deciding unsatisfiability of boolean formulas and the
VATA library [15] as the tree automata backend.

We applied SPEN to entailment problems that use various recursive predicates. First,
we considered the benchmark provided in [16], which uses only the ls predicate. This
benchmark has been used in the ls division of the first competition of Separation
Logic solvers, SL-COMP 20144. It consists of 292 problems split into three classes:
the first two classes contain problems generated randomly according to the rules spec-
ified in [16], whereas the last class contains problems obtained from the verification
conditions generated by the tool SMALLFOOT [2]. SPEN solved the full benchmark in
less than 8 seconds (CPU time), which is the second time of the division; the winner of
the division was a specialized solver for the ls predicate, Asterix [17], which spent less
than 4 seconds for the ls benchmark. An explanation for this result is that in the current
version of SPEN, a new TA has to be built for each ls edge, which is time-consuming
for problems with several ls edges (this issue will be remedied in future versions).

Moreover, the TA for ls is quite small, and so the above experiments did not eval-
uate thoroughly the performance of our procedure for checking entailments between
formulas and atoms. For that, we further considered the experiments listed in Table 1,

4 The participants in this competition are available at http://smtcomp.sourceforge.
net/2014/participants.shtml, and the benchmarks for all divisions of the competi-
tion are available at https://github.com/mihasighi/smtcomp14-sl.

http://smtcomp.sourceforge.net/2014/participants.shtml
http://smtcomp.sourceforge.net/2014/participants.shtml
https://github.com/mihasighi/smtcomp14-sl

18

Table 1. Running SPEN on entailments between formulas and atoms.
ϕ2 nll nlcl skl3 dll

ϕ1 tc1 tc2 tc3 tc1 tc2 tc3 tc1 tc2 tc3 tc1 tc2 tc3

Time [ms] 344 335 319 318 316 317 334 349 326 358 324 322
Status vld vld inv vld vld inv vld vld inv vld vld inv
States/Trans. of A[ϕ2] 6/17 6/15 80/193 9/16
Nodes/Edges of T (Gf [ϕ1]) 7/7 7/7 6/7 10/9 7/7 6/6 7/7 8/8 6/6 7/7 7/7 5/5

among which skl3 required the extension of our approach to a full decision procedure
as discussed in Sec. 6. The full benchmark is available with our tool [9] and it includes
the 43 problems of the division “fixed definitions” of SL-COMP 2014. The entailment
problems are extracted from verification conditions of operations like adding or delet-
ing an element at the start, in the middle, or at the end of various kinds of list segments.
Table 1 gives for each example the running time, the valid/invalid status, and the size
of the tree encoding and TA for ϕ1 and ϕ2, respectively. SPEN was the winner in this
division of SL-COMP 2014 (in front of [4,6]) and it was the only tool that solved all
problems of this division.

9 Related Work

Several decision procedures for fragments of SL have been introduced in the literature
[1,5,7,10,13,12,16,18,19,4].

Some of these works [1,5,7,16] consider a fragment of SL that uses only one predi-
cate describing singly linked lists, which is a much more restricted setting than what
is considered in this paper. In particular, Cook et al [7] prove that the satisfiabil-
ity/entailment problem can be solved in polynomial time. Piskac et al [18] show that the
boolean closure of this fragment can be translated to a decidable fragment of first-order
logic, and this way, they prove that the satisfiability/entailment problem can be decided
in NP/co-NP. Furthermore, they consider the problem of combining SL formulas with
constraints on data using the Nelson-Oppen theory combination framework. Adding
constraints on data to SL formulas is considered also in Qiu et al [20].

A fragment of SL covering overlaid nested lists was considered in our previous
work [10]. Compared with it, we currently do not consider overlaid lists, but we have
enlarged the set of inductively-defined predicates to allow for nesting of cyclic lists
and doubly linked lists (DLLs). We also provide a novel and more efficient TA-based
procedure for checking simple entailments.

Brotherston et al [4] define a generic automated theorem prover relying on the no-
tion of cyclic proofs and instantiate it to prove entailments in a fragment of SL with
inductive definitions and disjunctions more general than what we consider here. How-
ever, they do not provide a fragment for which completeness is guaranteed. Iosif et
al [13] also introduce a decidable fragment of SL that can describe more complex data
structures than those considered here, including, e.g., trees with parent pointers or trees
with linked leaves. However, [13] reduces the entailment problem to MSO on graphs
with a bounded tree width, resulting in a multiply-exponential complexity.

19

The recent work [12] considers a more restricted fragment than [13], incompara-
ble with ours. The work proposes a more practical, purely TA-based decision proce-
dure, which reduces the entailment problem to language inclusion on TAs, establish-
ing EXPTIME-completeness of the considered fragment. Our decision procedure deals
with the boolean structure of SL formulas using SAT solvers, thus reducing the entail-
ment problem to the problem of entailment between a formula and an atom. Such sim-
pler entailments are then checked using a polynomial semi-decision procedure based on
the membership problem for TAs. The approach of [12] can deal with various forms of
trees and with entailment of structures with skeletons based on different selectors (e.g.,
DLLs viewed from the beginning and DLLs viewed from the end). On the other hand,
it currently cannot deal with structures of zero length and with some forms of structure
concatenation (such as concatenation of two DLL segments), which we can handle.

10 Conclusion

We proposed a novel (semi-)decision procedure for a fragment of SL with inductive
predicates describing various forms of lists (singly or doubly linked, nested, circular,
with skip links, etc.). The procedure is compositional in that it reduces the given en-
tailment query to a set of simpler queries between a formula and an atom. For solving
them, we proposed a novel reduction to testing membership of a tree derived from the
formula in the language of a TA derived from a predicate. We implemented the proce-
dure, and our experiments show that it not only has a favourable theoretical complexity,
but that it also efficiently handles practical verification conditions.

In the future, we plan to investigate extensions of our approach to formulas with
a more general boolean structure or using more general inductive definitions. Concern-
ing the latter, we plan to investigate whether some ideas from [12] could be used to ex-
tend our decision procedure for entailments between formulas and atoms. From a prac-
tical point of view, apart from improving the implementation of our procedure, we plan
to integrate it into a complete program analysis framework.

Acknowledgement. This work was supported by the Czech Science Foundation (project
14-11384S), the BUT FIT projects FIT-S-12-1 and FIT-S-14-2486, and the EU/Czech
IT4Innovations Centre of Excellence project CZ.1.05/1.1.00/02.0070.

References

1. Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. A decidable fragment of separation
logic. In Proc. of FSTTCS’04, volume 3328 of LNCS, pages 97–109. Springer, 2005.

2. Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Smallfoot: Modular automatic
assertion checking with separation logic. In Proc. of FMCO’05, volume 4111 of LNCS,
pages 115–137. Springer, 2006.

3. James Brotherston, Carsten Fuhs, Nikos Gorogiannis, and Juan Navarro Pérez. A decision
procedure for satisfiability in separation logic with inductive predicates. In Proceedings of
CSL-LICS. ACM, 2014. To appear.

4. James Brotherston, Nikos Gorogiannis, and Rasmus Lerchedahl Petersen. A generic cyclic
theorem prover. In APLAS, volume 7705 of LNCS, pages 350–367. Springer, 2012.

20

5. Cristiano Calcagno, Hongseok Yang, and Peter W. O’Hearn. Computability and complexity
results for a spatial assertion language for data structures. In Proc. of FSTTCS’01, volume
2245 of LNCS, pages 108–119, 2001.

6. Wei-Ngan Chin, Cristina David, Huu Hai Nguyen, and Shengchao Qin. Automated verifi-
cation of shape, size and bag properties via user-defined predicates in separation logic. Sci.
Comput. Program., 77(9):1006–1036, 2012.

7. Byron Cook, Christoph Haase, Joël Ouaknine, Matthew J. Parkinson, and James Worrell.
Tractable reasoning in a fragment of separation logic. In Proc. of CONCUR’11, volume
6901 of LNCS, pages 235–249. Springer, 2011.

8. Constantin Enea, Ondřej Lengál, Mihaela Sighireanu, and Tomáš Vojnar. Compositional en-
tailment checking for a fragment of separation logic. Technical Report FIT-TR-2014-01, FIT
BUT, 2014. http://www.fit.vutbr.cz/˜ilengal/pub/FIT-TR-2014-01.
pdf.

9. Constantin Enea, Ondřej Lengál, Mihaela Sighireanu, and Tomáš Vojnar. SPEN, 2014.
http://www.liafa.univ-paris-diderot.fr/spen.

10. Constantin Enea, Vlad Saveluc, and Mihaela Sighireanu. Compositional invariant checking
for overlaid and nested linked lists. In Proc. of ESOP’13, volume 7792 of LNCS, pages
129–148. Springer, 2013.

11. Alexey Gotsman, Josh Berdine, and Byron Cook. Precision and the conjunction rule in
concurrent separation logic. Electronic Notes in Theoretical Computer Science, 276:171–
190, 2011.

12. Radu Iosif, Adam Rogalewicz, and Tomáš Vojnar. Deciding entailments in inductive separa-
tion logic with tree automata. In Proc. of ATVA’14, LNCS, 2014. Technical Report available
at http://arxiv.org/pdf/1402.2127v2.pdf.

13. Radu Iosif, Adam Rogalewicz, and Jiřı́ Šimáček. The tree width of separation logic with
recursive definitions. In Proc. of CADE-24, volume 7898 of LNCS, pages 21–38. Springer,
2013.

14. S. Ishtiaq and P.W. O’Hearn. BI as an assertion language for mutable data structures. In
POPL, pages 14–26. ACM, 2001.

15. Ondřej Lengál, Jiřı́ Šimáček, and Tomáš Vojnar. VATA: A library for efficient manipulation
of non-deterministic tree automata. In Proc. of TACAS’12, volume 7214 of LNCS, pages
79–94. Springer, 2012.

16. J.A. Navarro Pérez and A. Rybalchenko. Separation logic + superposition calculus = heap
theorem prover. In Proc. of PLDI’11, pages 556–566. ACM, 2011.

17. Juan Antonio Navarro Pérez and Andrey Rybalchenko. Separation logic modulo theories. In
APLAS, volume 8301 of LNCS, pages 90–106. Springer, 2013.

18. Ruzica Piskac, Thomas Wies, and Damien Zufferey. Automating separation logic using
SMT. In Proc. of CAV’13, volume 8044 of LNCS, pages 773–789. Springer, 2013.

19. Ruzica Piskac, Thomas Wies, and Damien Zufferey. Automating separation logic with trees
and data. In Proc. of CAV’14, volume 8559 of LNCS, pages 711–728. Springer, 2014.

20. Xiaokang Qiu, Pranav Garg, Andrei Stefanescu, and Parthasarathy Madhusudan. Natural
proofs for structure, data, and separation. In PLDI, pages 231–242. ACM, 2013.

21. John C. Reynolds. Separation logic: A logic for shared mutable data structures. In Proc. of
LICS’02, pages 55–74. IEEE, 2002.

http://www.fit.vutbr.cz/~ilengal/pub/FIT-TR-2014-01.pdf
http://www.fit.vutbr.cz/~ilengal/pub/FIT-TR-2014-01.pdf
http://www.liafa.univ-paris-diderot.fr/spen
http://arxiv.org/pdf/1402.2127v2.pdf

	Compositional Entailment Checking for a Fragment of Separation Logic*-3.5mm

