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Abstract

We analyze data from flight sectors. The
questions are whether there are differences between
weekend and weekdays and among sectors. We
compare expected prediction errors of linear logistic
regression and of linear and non linear kernel
classifiers. Linear decision boundaries impose an
average prediction error of around around 26 % for
the weekend data and around 15 % for the sector
name data. Non linear boundaries do not improve the
predictive accuracy by more than 4 %. Thus, there is
some characteristic in the data which is identified by
both methods.

General Background

Airspace is divided into geographical regions,
called sectors. For safety reasons, no more than a
certain number of aircraft is allowed to enter certain
sectors during one hour. Such numbers are called
sector capacities. Airlines pose a demand to enter
sectors before take-off by submitting a flight plan to
a control center. A flight plan is essentially a time
stamped list of way-points. When demand is higher
than capacity either take-off is delayed or aircraft are
rerouted. We speak of initial demand and regulated
demand of a sector.

Although pilots have to follow their flight plans,
there are differences between the number of aircraft
planned to enter sectors and the number that really
entered them (the real demand). By consequence,
safety is not always guaranteed and available
capacity is not always optimally used.

We call these differences planning differences.
They are consequences of uncertain events like
weather conditions, delays, en-air reroutings or more.
Such events are not taken into account by the current
traffic planning. If there are regularities in planning
differences, they can be used to improve current
traffic planning.

Data Description

We focus on four sectors in the upper Berlin
airspace where planning differences are reported to
occur. The sectors are roughly equal in size. The
average traversal time of a sector is ten minutes. We
use regulated demand (number of aircraft planned to
enter a sector) and real demand data (number of
aircraft that really entered a sector) counted in
intervals of 60 minutes for a total of 141 weekdays
and 68 weekend days in the period June 2003-April
2004 of the four sectors EDBBUR1-4.

Approach to Uncertainty

We consider the data as a finite number of
realizations of random variables '. More precisely,

we define REALZSI, , = ‘mnumber of aircraft

entering sector S between tl and t2' for the real
demand. Similarly, we define REG for regulated

DIFF=REAL—REG for the
planning differences. A sector is thus represented by
a vector of random variables, one variable for each
time interval.

demand and

Hypothesis of the paper

Planning differences show irregular patterns in
every sector: Figures 1 and 3 display eleven days of
planning differences for the sectors EDBBUR?2 and 3
respectively. However, their empirical probability
distributions turn out to have similar shapes
invariantly of time and sector [1] (figure 2 shows
histograms of the first twelve hours of the day of
planning differences for sector EDBBUR2, the
shapes of distributions of the other three sectors are
similar). Our hypothesis is that planning
differences have the same characteristics between
sectors and on various days. If this is the case, we

'for a definition of terms from probability
theory and statistics we refer to [4] or any
introductory book of the subject
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can reasonably simplify any future model of
planning differences. We formulate the question as a
binary classification problem. If we find classes, the
hypothesis is unlikely to be true. We are in an
exploratory phase of analysis. Formal statistical
inference is not intended.

This paper is organized as follows: in the next
section we explain briefly the ideas behind logistic
regression and support vector machines and why we
compare these two classification techniques against
each other. We then explain the experimental settings
and our results. Finally, we give conclusions and
ideas for future work.
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Binary Classification

In a binary classification problem, one has a set
of known items belonging to one of two classes 1 and
-1 and one likes to predict for a new item, to which
class it might belong. We speak of the vector of
predictor variables X (the 24 hourly variables
representing a sector) and the class variable Y
(representing the question whether a vector is from a
weekday or weekend or from a given sector). There
are different approaches to this problem. Some of
them refer to a probabilistic and others to a geometric
interpretation.

In this section we review the ideas behind one
out of each; logistic regression and support vector
machines. The different approaches are related to
each other. For more detailed information about
classification we refer to [2] or [3].

Logistic Regression

Logistic regression explicitly assumes a

functional form for class probabilities:
- - _ eF(X)
P(Y=1|X=x)=-"7x

The equation means that a functional
relationship F between an item x and the probability,
that it belongs to class 1 is assumed. Since there are
only two classes, the probability for class -1 follows
directly. The fraction on the right side is a
transformation that guarantees that the probability



estimates lie in [0,1] for any value of F(x). This
transformation is well known in statistics and
discussed for example in [5], [6]. Linear logistic
regression [7] is a special case, where

F (x) =B x ischosen to be a linear function. The
parameters of the linear model are usually estimated
by binomial maximum likelihood. Other forms for F
are studied in [4]. Prediction with logistic regression
models translates into the question: given a new
measurement, what is the probability that it belongs
to class 1?

Logistic regression is a popular technique in
data analysis and known since the early 19th century
[5]. The goal is to understand the role of the
predictor variables in explaining the class.

Support Vector Machines (SVMs)

It is also possible to characterize classes by their
boundaries that they draw in Euclidean space. For the
binary classification problem, only one boundary
characterizes the whole solution. Class 1 lies on the
one side and class -1 on the other side of the
boundary.

The idea behind support vector machines is to
directly estimate decision boundaries as a function of
the predictor variables. The result is a classifier
mapping input values to the one or the other side of
the boundary.

SVMs overcome a number of limitations of
other related techniques, namely the linearity of the
decision boundaries and the problem of overlapping
classes [2].

We only characterize informally how SVMs
work and refer to literature for detailed information
(e.g. [2],[8]). Nonlinear decision boundaries are
found by a transformation of the predictor variables
in a high, sometimes infinite dimensional space in
which a linear boundary 1is sought. This
transformation is calculated efficiently by the use of a
kernel function. In the case of overlapping classes,
the condition that points of one class have to lie on
the one side and those of the other class on the other
side of the boundary can be relaxed. In both cases,
finding an optimally classifying boundary is
formulated as a quadratic optimization problem and
solved by standard techniques. Model selection is
originally based on the Vapnik-Chernovenkis theory
[8]. It is not known, however, whether this technique
has an advantage over cross validation [2]. Prediction
with SVMs is done by evaluating the obtained

classifier on a new point, with class -1 or 1 as a direct
result. This classifier generally depends only on few
training examples; the support vectors. Since their
invention in 1988 [8], Support vector machines have
been successfully applied in different domains [9].
Despite their promising technical strength, they are
sometimes criticized. Their results cannot be easily
interpreted and one does not know the role of the
predictor variables [9].

Comparison between Logistic Regression
and Support Vector Machines

Logistic regression and SVMs are related: a
SVM can be seen as an estimator of the class
probabilities  [2]. When a linear separation is
possible, logistic regression will always find it [2].
Logistic  regression implies linear decision
boundaries, which can be seen by equaling the two
class equations. It is not the scope of this report to
elaborate this relationship.

We are mainly interested in the question
whether these two approaches - a traditional, linear
approach, and a newer, non linear approach - can
give us different insight in hidden structures in the
sector data.

Experiments

We conduct several classification experiments
in order to gain insight into how planning differences
behave in different sectors and on different days. For
this, we create data in three stages: the randomly
permuted sector data, sector data where the number
of positive and negative instances is balanced and
data, where only a subset of variables is selected. As
described above, predictive accuracy of SVMs is
critical to free parameters used. We combine thus a
large number of SVM parameters systematically.
These are the Kernel Functions: linear, Gaussian,
polynomial, each in raw and in centered and
normalized form, their associated parameters and the
loss functions (one norm and two norm). In total,
more than 800 SVM models are estimated per
experiment. Parameters of the SVMs are estimated
by cross validation and of the logistic regression by
standard techniques [10]. Expected prediction errors
for both are estimated by cross validation. For this,
we split our data into 15 parts of equal size, train a
model on 14 parts and calculate prediction error for
the remaining one. To obtain an estimate of the
prediction error, the average for 15 runs for each
model is taken. We compare our results with a



Wilcoxon-Mann-Whitney test. We use the best 10
runs for the Logistic regression and for the SVM.

Two categories of classification experiments
have been carried out:

Weekend/Weekday Experiment

Data from one sector is classified according to
whether it is from a weekday or the weekend. Best
classification results are obtained on the raw data,
that is, unbalanced. Here, performance of logistic
regression and SVM do not differ significantly. EPE
are around 26 %. In more detail, SVM perform
significantly worse on balanced data and on data with
variable selection. Logistic regression performance
does not differ between raw data and balanced data
but is significantly better on raw data than on data
with variable selection. As a baseline, we assigned
class attributes arbitrarily with EPE ~ 50 % (tables
1,2,3).

Sector Name Experiment

In this experiment we are interested whether
data from a sector S differs from that of the other
sectors. Data is attributed to group 1 if belonging to
sector S and to group O otherwise. The classification
experiment is run for each of the sectors. Best SVM
performs significantly better than best Logistic
Regression but no more than 4 % (on a 10 % level).
Average EPE for logistic regression is 18.4 % and
12.8 % for SVM. Kernel Statistics: The top ten
performances in the raw data are achieved
exclusively by Gauss and Gauss CN Kernels. For the
balanced dataset, the situation is similar, but 3 Poly
CN appear in the list, as well. No linear kernel
appears in the list. Balancing the sample decreases
quality significantly for logistic regression and has no
impact on SVM. As above, our baseline resulted in
EPE ~ 50 % (tables 4,5).

Conclusions and Future Work

We conducted 20 classification experiments on
the two datasets "'Weekend/Weekday' and 'Sector
Name'. Taking the best results of each method tells us
that the expected prediction errors lie around 26 %
for the weekend data and around 15 % for the sector
name data. Thus, there is some characteristic in the
data, which is identified by both methods.

Comparing logistic regression and SVM tells us
that there is no significant difference in predictive
accuracy on the weekend data and less than 4 % of

better accuracy for the SVM than for the logistic
regression in the sector name experiment. The best
kernels are Gauss and Gauss CN in 98 % and Poly
CN in the remaining. No linear kernel appears in the
top ten performances of every experiment. We
conclude that SVMs do not promise a major
improvement on predictive accuracy, even if more
parameter tuning experiments should follow.

For future work, we shall identify the reasons
for the differences, such as traffic density or sector
complexity. The implication of the existence of
classifiers for the hypothesis of different underlying
probability distributions has to be studied in further
detail.
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Annex

The following tables contain the expected
prediction errors in columns LReg and SVM and the
result of the comparison in the column Comp. Here,
the symbol ~ is used for no significant difference.

WE LReg SVM Comp
raw
UR1 27.6 223 SVM
UR2 25.9 22.3 SVM
UR3 27.1 27.1 ~
UR4 25.9 26.4 ~

Table 1 Results Weekend raw

WE LReg SVM Comp
balanced
URI1 24 254 ~
UR2 36 20.1 SVM

UR3 27 488 LReg

WE LReg SVM Comp
balanced

UR4 28 29.7 ~
Table 2 Results Weekend balanced

WE LReg SVM Comp

6-19
URI1 32 33.6 LReg
UR2 40 51 LReg
UR3 36 31.1 SVM
UR4 20 31 LReg
Table 3 Results Weekend 6-19 h
Name LReg SVM Comp
raw
UR1 13.5 12.1 SVM
UR2 13.95 12.1 SVM
UR3 15.3 14.6 ~
UR4 214 19.8 ~
Table 4 Results Named raw
Name LReg SVM Comp
balanced

URI 18.5 4.1 SVM
UR2 159 13.1 ~
UR3 19.1 17.1 ~
UR4 359 17.2 SVM

Table 5 Results Named balanced



