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Introduction Models

Motivations

Why a model of CIC ?
I Currently no model of the full formalism of Coq:

features studied separately: Streicher, Coquand, Luo, Werner,
H. Goguen

I No strong intuition of which axioms are consistent with CIC
(Chicli-Pottier-Simpson paradox)

Why formally ?
I To be “sure”
I To make it simpler (for both the designer and the reader)
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Introduction Models

Which model do we want ?

I Smallest model vs
Model with smallest number of assumptions
(or: studying the proof theoretic strength of CIC vs
supporting more axioms)

In particular, we do not limit ourselves to continuous or computable
functions (countable model). We want to be able to support classical reals,
powerful description axioms, extentionality and what not...

Set-theoretical model:

A→ B set of all set-theoretical function from A to B .
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Introduction Coq as an IZF prover

Set theory: IZF

Axiomatized Zermelo-Fraenkel without excluded-middle:
I a carrier type set with equality = and membership ∈,
I pair {a; b},
I union

⋃
a,

I powerset P(a),
I separation {x ∈ A | P(x)}, (predicate in HOAS)
I replacement {y | ∃x ∈ A.R(x , y)} (R functional relation, HOAS),
I infinity
I unused: well-foundation (instead of regularity in ZF)

Library: couples, relations, functions, plump ordinals, fixpoint theorem,
Grothendieck universes, ...
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Method

Method
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Method

The Playground

MLTT CC ECC

CICCC+NAT CC+W

CCUT ECIC

(Imp) (Univ)

(Ind)

(Ext)

Three independent features:
I Predicative universes
I Inductive types
I Extentional theory
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Method Shallow embedding

Semantics first

Usual scheme:
I Introduce the syntax: terms and judgements
I Define the interpretation (recursion over the syntax)
I Prove soundness of the interpretation

Many systems: better avoid to start from the syntax!
I Shallow embedding

(expression constructors and judgements directly build their semantics)
I Naturally extendable

(just define new constructors and derive new rules)
I “Pick” the syntax once done with the semantics
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Method Abstract model

Abstract model

Describes the world of ground expressions

Consists of:
I A setM of denotations (for both objects and types)
I Judgement: [M : T ] or M ∈ El(T )

I Calculus-specific operations and properties (e.g.: Λ,Π,@, β)

Two tasks:
I Building an instance of the abstract model
I Dealing with free variables and substitution [routine]
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Method Abstract model

Model construction

Dealing with free variables (de Bruijn):
I constr .= (N→M)→M (valuations .= N→M)
I substitution M[0\N] .= ρ 7→ M (Nρ :: ρ)

I context .= constr∗

Judgements:
I [Γ] = set of valid valuations: ρ s.t. (x : T ) ∈ Γ⇒ [xρ : Tρ]

I Typing: [Γ ` M : T ] .= ∀ρ ∈ [Γ], [Mρ : Tρ]

I Equality: [Γ ` M = N] .= ∀ρ ∈ [Γ].Mρ = Nρ

Derive all necessary typing rules (so we have soundness)

Γ ` M : T ⇒ [Γ ` M : T ]
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Method Abstract model

Calculus of Constructions
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Calculus of Constructions Consistency model

Abstract model of Martin Löf’s Type Theory

Structure:
I A setoid (M,=), membership _ ∈ El(_)
I Operations: Λ,@,Π

I Λ(A,F ): function F with domain A A :M F :M→M
I @(M,N): application M,N :M
I Π(A,B): set of dependent functions A :M B :M→M

I Properties:
I Π-intro: (∀x ∈ El(A). F (x) ∈ El(B(x))) ⇒ Λ(A,F ) ∈ El(Π(A,B))

(cf x : A ` F : B ⇒ ` λx :A.F : Πx :A.B)
I Π-elim: M ∈ El(Π(A,B)) ∧ N ∈ El(A) ⇒ @(M,N) ∈ El(B(N))

(cf ` M : Πx :A.B ∧ ` N : A ⇒ ` M N : B[x\N])
I β-equality: N ∈ El(A) ⇒ @(Λ(A,F ),N) = F (N)

Straightforward implementation:
I M = set and El is the identity (alternative: HF)
I Π dependent product (usual encoding of functions)
I Note: Λ uses the domain argument
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Calculus of Constructions Consistency model

Abstract model of CC

Additional constants and properties:
I Prop: ∗
I Impredicativity: (∀x ∈ El(A). B(x) ∈ El(∗)) ⇒ Π(A,B) ∈ El(∗)

Note: topsort Kind is the proper classM:

[M : T ] .= M 6= Kind ∧ (T = Kind ∨M ∈ El(T ))

Implementation:
I Aczel’s encoding Λ(A,F ) .= {(x , y) | x ∈ A ∧ y ∈ F (x)}

@(M,N) .= {y | (N, y) ∈ M}
I But this is incompatible with Streicher’s method because functions do

not carry their domain.
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Calculus of Constructions Strong normalization

Translation of CC terms towards pure lambda-calculus:
I preserving all reductions
I preserving strong normalization

Example:

λx :T .M 7→ (λxy .x) (λx .M) T
Πx :T .M 7→ (λxy .x) (λx .M) T
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Calculus of Constructions Strong normalization

Universes
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Predicative universes

Inductive types
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Inductive types

Overview

Model construction
I Induction: constructors and pattern-matching
I Type with stages
I Recursive functions
I Strict positivity

Judgements
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Inductive types Recursive functions

Rule samples

(Not: Γ ` M : (x :T ) U .= Γ ` M : Πx :T .U ∧ Γ ` M (dom T ))

(β<α+); (x : Iβ) ` U ↑ (β<α+); (f : (x : Iβ) Uβ,x) ` M : (x : Iβ
+

) Uβ+,x

` Fix(βf .M, α) : (x : Iα) Uα,x

` T ↑ (x :T ) `= M : U
` λx :T .M : (x :T ) U

` M : (x : T ) U `= N : T
`= M N : U{x\N}

(β < α) ∈ Γ

Γ ` β ↑
` O ↑
` O+ ↑

` O ↑
` IO ↑

` T = (x :T ) ` U ↑
` Πx :T .U ↑
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Inductive types Recursive functions

Expressivity: examples

I Recursor:
[` Nrec : ΠP :nat→ Prop.P(0)→ (Πk .P(k)→ P(S(k)))→
Πn.P(n)]

I Annotated subtraction: [α <∞ ` minusα : natα → nat→ natα]

I Cannot deal with min : natα → natα → natα
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Inductive types Strict positivity

Conclusion
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