
Master Parisien de Recherche en Informatique 2011�2012

Exam course 2-7-2 Proof assistants

February 29th 2012

The subject is 4 pages long. The exam lasts 3 hours. Hand-written course notes
and other course material distributed this year are the only documents that you can
use. The exercises can be solved independently.

The exercises require to write Coq terms; we allow �exibility regarding the syntax
used as long as there is no ambiguity on its meaning.

1 Programming with Coq: Lists and Paths (7 points)

We recall that the standard library of Coq provides a polymorphic type for lists:

Inductive list (A : Type) : Type :=

nil : list A | cons : A -> list A -> list A

The parameter A is implicit throughout this exercise. The empty list is denoted [] and the
cons constructor has an in�x notation _ :: _. The library provides a concatenation operation
app, equipped with an in�x notation _ ++ _.

1. Program in Coq a function rcons of type:

rcons : forall A : Type, A -> list A -> list A

such that (rcons x l) adds x at the end of the list l.

2. Program in Coq a function drop of type

drop : forall A : Type, nat -> list A -> list A

such that (drop n l) returns a copy the list l minus its n-th �rst items, and the empty
list if n exceeds the length of l.

3. Program in Coq a function take of type

take : forall A : Type, nat -> list A -> list A

such that (take n l) returns the pre�x of length n of the list l, and the list if n exceeds
the length of l.

4. What is the simple property relating (take n l), (drop n l) and l itself? State this
property in Coq and write a recursive function (mimicking the de�nitions of drop and
take), that proves this statement.

5. Program in Coq a function rot of type

rot : forall A : Type, nat -> list A -> list A

1

such that (rot n l) rotates left the list l n times: (rot 1 [a, b, c]) should evaluate
to [b, c, a], (rot 2 [a, b, c]) should evaluate to [c, a, b] and (rot 5 [a, b,

c]) should evaluate to [a, b, c].

6. Program in Coq a boolean predicate path of type:

path : forall A : Type, forall e : A -> A -> bool, A -> list A -> bool

such that (path e x p) tests whether two consecutive elements of (x :: p) are always
related by the relation e, with default value true if p is empty.

7. Use path and rcons to de�ne a boolean predicate cycle of type

cycle : forall A : Type, forall e : A -> A -> bool, list A -> bool

such that(cycle e p) tests whether p is a cycle for the relation e.

8. State in Coq the property expressing that an arbitrarily rotated cycle remains a cycle.

2 Modelization in Coq: a Tiny Programming Language (5

points)

We de�ne the following toy language:

Inductive tm : Type :=

| tm_cst : nat -> tm

| tm_plus : tm -> tm -> tm.

1. Fill the complete induction scheme generated by Coq at de�nition time for this type:

tm_ind : forall P : tm -> Prop, ...

2. Informally, what are the expression modelled by tm? Program an evaluation function eval

: tm -> nat. We recall that the standard library of Coq de�nes an addition operation
plus : nat -> nat -> nat, equipped with the + in�x notation.

3. Write an inductive predicate step : tm -> tm -> Prop modelling a small step evalua-
tion for this language. The statement (step t1 t2) expresses that t1 evaluates to t2

in a single step, with a left to right strategy. This inductive predicate should have three
constructors corresponding to the three situations where a reduction step is possible:

• when t1 is (tm_plus (tm_cst n1) (tm_cst n2)),

• when t1 is (tm_plus t1' t2') and a reduction step is possible in t1',

• or when t1 is (tm_plus (tm_cst n1) t2) and a reduction step is possible in t2.

4. State in Coq the property that if t1 evaluates to t2 and t2' in a single step, then t2 and
t2' should be equal. Give a scheme of the proof (no proof script required!).

2

3 Encoding Zermelo Set Theory (8 points)

In set theory, a set is characterized by its elements. Also, sets are well-founded: for any set
x there is no in�nite sequence (xn)n∈N such that . . . xn+1 ∈ xn ∈ . . . x1 ∈ x. This gives the
idea that a set can be encoded as a well-founded tree. The sons of a node represent the direct
elements of a set. The arity is characterized by the number of elements of the sets. At each
stage of the construction the arity may be di�erent.

This suggests to use the following inductive de�nition and accessor functions:

Inductive set : Type :=

Elts : forall X:Type, (X->set) -> set.

Definition idx (x:set) : Type := let (X,f) := x in X.

Definition elt (x:set) : idx x -> set :=

match x return idx x -> set with Elts X f => f end.

A set x is therefore a pair (X, f) where X is the index type, and f is a function such that
the image of X by f describes exactly the elements of x.

1. Give the dependent elimination scheme of set.

Two sets are equal if they contain exactly the same elements, regardless of the way they are
indexed. This means that x = (X, f) and y = (Y, g) are the same set i� for every index i : X
there is an index j : Y such that f(i) is the same set as g(j), and conversely, for every index
of j : Y there is an index of i : X such that g(j) is equal to f(i). It might be the case that
X and Y are nor the same type. Membership can be de�ned using equality: x ∈ y i� there is
an element of y which is equal to x. We recall the de�nition of some logical connectives of the
standard library:

Inductive and (A B:Prop) : Prop :=

conj : A -> B -> and A B. (* A/\B is a notation for (and A B) *)

Inductive ex (A:Type) (P:A->Prop) : Prop :=

ex_intro : forall x:A, P x -> ex A P.

(* (exists x:A, P x) is a notation for (ex A P) *)

2. Write a recursive function of type set->set->Prop that indicates whether two sets are
equal, and the membership function, of the same type.

3. Suggest how, naively, we could try to build the set of all sets. Explain why it is not
possible (i.e. why Coq will reject this attempt).

Now the goal is to give a representation for all the constructions of Zermelo set-theory. They
are the following:

• The empty set ∅ which contains no element.

• The (unordered) pair {x; y} which contains exactly x and y.

• The union:
⋃

x is the union of all the sets belonging to x. In other words, the elements
of

⋃
x are exactly the elements of the elements of x.

• The comprehension scheme {y ∈ x | P (y)}: the set of the elements of x that satisfy P (of
type set->Prop).

3

• The power-set: Px is the set of all the sets y ⊆ x. Each element y of the power-set can
be identi�ed by its characteristic function, which is the predicate on the elements of x
that holds for only for the elements of y.

• An in�nite set, for instance the set of natural numbers where 0 is the empty set, and the
successor of n is {x; {x}}.

4. De�ne a function for each of the set constructors of Zermelo set theory. For the power-set
case, beware not to be too close to the counter-example of question 3. For the set of natural
numbers, �rst write a recursive function that translates a nat into a set. In several cases, using
the following Σ-type (type of dependent pairs) will be useful:

Inductive sigT (A:Type) (P:A->Type) : Type := (* also applies to P:A->Prop *)

existT : forall x:A, P x -> sigT.

(* { x:A & P x} is a notation for (sigT A P) *)

4

