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Abstract. We present a type theory with some proof-irrelevance built
into the conversion rule. We argue that this feature is particularly useful
when type theory is used as the logical formalism underlying a theorem
prover. We also show a close relation with the subset types of the theory
of PVS. Finally we show that in these theories, because of the additional
extentionality, the axiom of choice implies the decidability of equality,
that is, almost classical logic.

1 Introduction

A formal proof system, or proof assistant, implements a formalism in a similar
way a compiler implements a programming language. Among existing systems,
dependent type systems are quite widespread. This can be related to various
pleasant features; among them :

1. Proofs are objects of the formalism. The syntax is therefore smoothly uni-
form, and proofs can be rechecked at will. Also, only the correctness of the
type-checker, a relatively small and well-identi�ed piece of software, is critical
for the reliability of the system (�de Bruijn principle�).

2. The objects of the formalism are programs (typed λ-terms) and are identi�ed
modulo computation (β-conversion). This makes the formalism well-adapted
for problems dealing with program correctness. But also the conversion rule
allows the computation steps not to appear in the proof; for instance 2+2 = 4
is simply proved by one re�exivity step, since this proposition is identi�ed
with 4 = 4 by conversion. In some cases this can lead to a dramatic space
gain, using the result of certi�ed computations inside a proof; spectacular
recent applications include the formal proof of the four-color theorem [11] or
formal primality proofs [14].

3. Finally, type theories are naturally constructive. This makes stating decid-
ability results much easier. Furthermore, combining this remark with the two
points above, one comes to program extraction: taking a proof of a propo-
sition ∀x : A.∃y : B.P (x, y), one can erase pieces of the λ-term in order to
obtain a functional program of type A → B, whose input and result are
certi�ed to be related by P . Up to now however, program extraction was
more an external feature of implemented proof systems1: programs certi�ed
by extraction are not anymore objects of the formalism and cannot be used
anymore to assert facts like in the point above.

1 Except NuPRL; see related work.



Some related formalisms only build on some of the points above. For example
PVS implements a theory whose objects are functional programs, but where
proofs are external to the formalism.

An important remark about (2) is that the more terms are identi�ed by the
conversion rule, the more powerful this rule is. In order to identify more terms it
is therefore a tempting step to combine points (2) and (3) by integrating program
extraction into the formalism so that the conversion rule does not require the
computationally irrelevant parts of terms to be convertible.

In what follows, we present and argue in favor of a type-theory along this
line. More precisely, we claim that such a feature is useful in at least two re-
spects. For one, it gives a more comfortable type theory, especially in the way
it handles equality. Furthermore it is a good starting point to build a platform
for programming with dependent types, that is to use the theorem prover also
as a programming environment. Finally, on a more theoretical level, we will also
see that by making the theory more extensional, proof-irrelevance brings type
theory closer to set-theory regarding the consequences of the axiom of choice.

The central idea of this work is certainly simple enough to be adjusted to
various kinds of type theories, whether they are predicative or not, with various
kinds of inductive types, more re�ned mechanisms to distinguish the compu-
tational parts of the proofs etc. . . . In what follows we illustrate it by using a
marking of the computational content which is as simple as possible. We de�ne
it precisely, but omit most meta-theoretical proofs and do not detail the model
construction.

Related work Almost surprisingly, proof-irrelevant type theories do not
seem to enjoy wide use yet. In the literature, they are often not studied for
themselves, but as a mean for proving properties of other systems. This is the
case for the work of Altenkirch [2] and Barthe [4]. One very interesting work
is Pfenning's modal type theory which involves proof-irrelevance and a sophis-
ticated way to pinpoint which de�nitional equality is to be used for each part
of a term; in comparision we here stick to much simpler extraction mechanism.
Finally the NuPRL approach using a squash type [6] is very close to ours, but
the extentional setting gives sometimes di�erent results.

2 The Theory

2.1 The λ-terms

The core of our theory is a Pure Type System (PTS) extended with Σ-types
and some inductive type de�nitions. As in PTS's, the type of types are sorts;
the set of sorts is:

S ≡ {Prop} ∪ {Type(i)|i ∈ N}.

As one can see, we keep the sort names of Coq. As usual, Prop is the impredicative
sort and the sorts Type(i) give the hierarchy of predicative universes. It comes
as no surprise that the system contains the usual syntactic constructs of PTSs;
however it is comfortable, both for de�ning the conversion rule and constructing a



model to tag the variables indicating whether they correspond to a computational
piece of code or not; in our case this means whether they live in the impredicative
or a predicative level (i.e. whether the type of their type is Prop or a Type(i)).
A similar tagging is done on the projections of Σ-types. Except for this detail,
the backbone of the theory considered hereafter is essentially Luo's Extended
Calculus of Constructions (ECC) [16].

The syntax of the ECC fragment is therefore:

s ::= Prop | Type(i) s ::= ∗ | �

t ::= s | xs | λxs : t.t | (t t) | Πxs : t.t | Σsxs : t.t | < t, t >Σx:t.t

| πs1(t) | πs2(t)

Γ ::= [] | Γ (x : t).

We will sometimes write x for xs, Σx : A.B for Σsx : A.B or π2(t) for πs
2(t)

omitting the tag s when it is not relevant or can be infered from the context.

The binding of variables is as usual. We write t[x \ u] for the substitution of
the free occurrences of variable x in t by u. As has become custom, we will not
deal with α-conversion here, and leave open the choice between named variables
and de Bruijn indices.

We also use the common practice of writing A → B (resp. A×B) for Πx : A.B
(resp. Σx : A.B) when x does not appear free in B. We also write Πx, y : A.B
(resp. λx, y : A.t) for Πx : A.Πy : A.B (resp. λx : A.λy : A.t).

2.2 Relaxed conversion

The aim of this work is the study of a relaxed conversion rule. While the idea
is to identify terms with respect to typing information, the tagging of impred-
icative vs. predicative variables is su�cient to de�ne such a conversion in a
simple syntactic way. A variable is computationally irrelevant when tagged with
the ∗ mark. The tag on the Σ-type construction are there to indicate whether
the second component of pairs is irrelevant or not. This leads to the following
de�nition.

De�nition 1 (Extraction). We can simply de�ne the extraction relation →ε

as the contextual closure of the following rewriting equations:

x∗ →ε ε λx : A.ε →ε ε
(ε t) →ε ε π∗

2(t) →ε ε.

We write →∗
ε for the re�exive-transitive closure of →ε. We say that a term is of

tag ∗ if t →∗
ε ε and of tag � if not. We write s(t) for the tag of t.



De�nition 2 (Reduction). The β-reduction Bβ is de�ned as the contextual
closure of the following equations:

(λxs : A.t u) Bβ t[xs \ u] if s(u) = s

πs1(< a, b >Σx:A.B) Bβ a if s(a) = �

πs2(< a, b >Σx:A.B) Bβ b if s(b) = s.

The restrictions on the right-hand side are there in order to ensure that the
tag is preserved by reduction. Without them (λx� : Prop.x� Prop) can reduce
either to ε or to Prop which would falsify the Church-Rosser property. Actually
these restrictions later appear to be always satis�ed on well-typed terms, but are
necessary in order to assert the meta-theoretic properties below. While they are
speci�c to our way of marking computational terms, other methods will probably
yield similar technical di�culties.

The relaxed reduction Bε is the union of Bβ and→ε. We write =ε for the re-
�exive, symmetric and transitive closure of Bε and B∗

ε for the transitive-re�exive
closure of Bε.

Lemma 1 (β-postponement). If tB∗
ε t′, then there exists t′′ such that t →∗

ε t′′

and t′′ B∗
β t′.

Lemma 2 (Church-Rosser). For t a raw term, if t B∗
ε t1 and t B∗

ε t2, then
there exists t3 such that t2 B∗

ε t3 and t2 B∗
ε t3.

Proof. By a slight adaptation of the usual Tait�Martin-Löf method.

Furthermore, →ε is obviously strongly normalizing. One therefore can "pre-
cook" all terms by →ε when checking relaxed convertibility:

Lemma 3 (pre-cooking of terms). Let t1 and t2 be terms. Let t′1 and t′2 be
their respective →ε-normal forms. Then, t1 =ε t2 if and only if t′1 =β t′2.

While this property is important for implementation, its converse is also true and
semantically understandable. Computationally relevant β-reductions are never
blocked by not-yet-performed ε-reductions:

Lemma 4. Let t1 be any raw term. Suppose t1 →ε t2 Bβ t3. Then there exists
t4 such that t1 Bβ t4 →∗

ε t3.

Proof. It is easy to see that→ε cannot create new β-redexes, nor does it duplicate
existing ones.

It is a good feature to have the predicative universes to be embedded in each
other. It has been observed (Pollack, McKinna, Barras. . . ) that a smooth way
to present this is to de�ne a syntactic subtyping relation which combines this
with =β (or here =ε). Note that this notion of subtyping should not be confused
with, for instance, subtyping of subset types in the style of PVS.



De�nition 3 (Syntactic subtyping). The subtyping relation is de�ned on
raw-terms as the transitive closure of the following equations:

Type(i) ≤ Type(i + 1) T =ε T ′ ⇒ T ≤ T ′

B ≤ B′ ⇒ Πx : A.B ≤ Πx : A.B′.

2.3 Functional fragment typing rules

The typing rules for the kernel of our theory are given in PTS-style [3] and corre-
spond to Luo's ECC. The di�erences are the use of subtyping in the conversion
rule and the tagging of variables when they are �pushed� into the context.

The rules are given in �gure 1. In the rule Prod, max is the maximum of
two sorts for the order Prop < Type(1) < Type(2) < . . .

(Prop)
Γ ` wf

Γ ` Prop : Type(i)
(Type)

Γ ` wf
Γ ` Type(i) : Type(i + p)

(Base)
[] ` wf

(Var)
Γ ` wf

Γ ` x : A
if (x : A) ∈ Γ

(Cont)
Γ ` A : Type(i)

Γ (x� : A) ` wf
(Cont*)

Γ ` A : Prop

Γ (x∗ : A) ` wf

(Conv)
Γ ` t : A Γ ` B : s

Γ ` t : B
if A ≤ B

(Prod)
Γ ` A : s Γ (xs : A) ` B : Type(i)

Γ ` Πxs : A.B : max(s,Type(i))

(Prod*)
Γ ` A : s Γ (xs : A) ` B : Prop

Γ ` Πxs : A.B : Prop

(Lam)
Γ ` Πx : A.B : s Γ (x : A) ` t : B

Γ ` λx : A.t : Πx : A.B
(App)

Γ ` t : Πx : A.B Γ ` u : A
Γ ` (t u) : B[x \ u]

(Sig)
Γ ` A : Type(i) Γ (x : A) ` B : Type(i)

Γ ` Σ�x : A.B : Type(i)

(Sig∗)
Γ ` A : Type(i) Γ (x : A) ` B : Prop

Γ ` Σ∗x : A.B : Prop

(Pair)
Γ ` a : A Γ (x : A) ` b : B Γ ` Σsx : A.B : Type(i)

Γ `< a, b >Σx:A.B : Σsx : A.B

(Proj1)
Γ ` t : Σsx : A.B

Γ ` πs1(t) : A
(Proj2)

Γ ` t : Σsx : A.B

Γ ` πs2(t) : B[x \ πs1(t)]

Fig. 1. The ECC fragment



We sketch the basic meta-theory of the calculus de�ned up to here. As men-
tioned above, we cannot detail the proofs and the intermediate lemmas here.
The proof techniques are relatively traditional, even if one has to take care of
the more delicate behavior of relaxed reduction for the �rst lemmas (similarly
to [21]).

Lemma 5 (Substitution). If Γ (x : A)∆ ` t : T and Γ ` a : A are derivable,
then Γ∆[x \ a] ` t[x \ a] : T [x \ a] is derivable.

Of course, subject reduction holds only for Bβ-reduction, since ε is not meant
to be typable.

Lemma 6 (Subject reduction). If Γ ` t : T is derivable, if t Bβ t′ (resp.
T Bβ T ′, Γ Bβ Γ ′) by a well-sorted reduction, then Γ ` t′ : T (resp. Γ ` t :
T ′, Γ ′ ` t : T ).

Lemma 7. If Γ ` t : T is derivable, then there exists a sort s such that Γ ` T :
s; furthermore Γ ` T : Prop if and only if t is of tag ∗.
A most important property is of course normalization. We do not claim any
proof here, although we very strongly conjecture it. A smooth way to prove it is
probably to build on top of a simple set-theoretical model using an interpretation
of types as saturated Λ-sets as �rst proposed by Altenkirch [1, 20].

Conjecture 1 (Strong Normalization). If Γ ` t : T is derivable, then t is strongly
normalizing.

Stating strong normalization is important in the practice of proof-checker, since
it entails decidability of type-checking and type-inference.

Corollary 1. Given Γ , it is decidable whether Γ ` wf. Given Γ and a raw term
t, it is decidable whether there exists T such that Γ ` t : T holds.

The other usual side-product of normalization is a syntactic assessement of con-
structivity.

Corollary 2. If [] ` t : Σx : A.B, then tB∗
β < a, b >Σx:A.B with [] ` a : A and

[] ` b : B[x \ a].

2.4 Data Types

In order to be practical, the theory needs to be extended by inductive de�ni-
tions in the style of Coq, Lego and others. We do not detail the typing rules
and liberally use integers, booleans, usual functions and predicates ranging over
them. We refer to the coq documentation [8, 10]; for a possible more modern
presentation [5] is interesting.

Two points are important though:

1. Data types live in Type. That is, for instance, nat : Type(1); thus, their
elements are of tag �.

2. There is no primary need for inductive de�nitions in Prop. Logical connectors
and inductive properties can be encoded using impredicativity. For instance,
we write:

A ∧B ≡ ΠP : Prop.(A → B → P ) → P.



2.5 Treatment of propositional equality

Propositional equality is a �rst example whose treatment changes when switching
to a proof-irrelevant type theory. The de�nition itself is unchanged; two objects
a and b of a given type A are equal if and only if they enjoy the same properties:

a =A b ≡ ΠP : A → Prop.(P a) → (P b).

It is well-known that re�exivity, symmetry and transitivity of equality can
easily be proved. When seen as an inductive de�nition, the de�nition of �=A� is
viewed as its own elimination principle.

Let us write re� for the canonical proof of re�exivity:

re� ≡ λA : Type(i).λx : A.λP : A → Prop.λp : (P x).p

In many cases, it is useful to extend this elimination over the computational
levels:

Eq_reci : ΠA : Type(i).ΠP : A → Type(i).Πa, b : A.(P a) → a =A b → (P b).

There is however a particularity to Eq_rec: in Coq, it is de�ned by case anal-
ysis and therefore comes with a computation rule. The term (Eq_rec A P a b p e)
of type (P b) reduces to p in the case where e is a canonical proof by re�exivity;
in this case, a and b are convertible and thus coherence and normalization of the
type theory are preserved.

As shown in the next section, such a reduction rule is useful, especially when
programming with dependent types. In our proof-irrelevant theory however, we
cannot rely on the information given by the equality proof e, since all equality
proofs are treated as convertible. Furthermore, allowing, for any e, the reduction
rule (Eq_rec A P a b p e)Bp is too permissive, since it easily breaks the subject
reduction property in incoherent contexts.

We therefore put the burden of checking convertibility between a and b on the
reduction rule of Eq_rec by extending reduction with the following, non-linear
rule:

(Eq_rec A P a a p e) B p

or the equivalent conditional rule:

(Eq_rec A P a b p e) B p if a =ε b

.
Again, we do not detail meta-theory here, but the various lemmas of the

previous section still hold when =ε is enriched with this new reduction.

3 Programming with dependent types

We now list some applications of the relaxed conversion rule, which all follow
the slogan that proof-irrelevance makes programming with dependent types more
convenient and e�cient. From now on, we will write {x : A|P} for Σ∗x : A.P ,



that is for a Σ-type whose second component is non-computational.

3.1 Dependant equality

Programming with dependent types means that terms occur in the type of com-
putational objects (i.e. not only in propositions). The way equality is handled
over such families of types is thus a crucial point which is often problematic in
intensional type theories.

Let us take a simple example. Consider we have de�ned a data-type of arrays
over some type A. If n is a natural number, (tab n) is the type of arrays of size
n. That is tab : nat→ Type(i).

Commutativity of addition can be proved in the theory: com : Πm, p :
nat.(m + p) = (p + m) is inhabited. Yet tab (m + p) and tab (p + m) are two
distinct types with distinct inhabitants; the operator Eq_rec described above
only allows to construct a translation function from one to the other:

tr : Πn : nat.(tab (m + p)) → (tab (p + m)).

The problem is proving that this function indeed ultimately behaves like the
identity; typically proving:

Πi : nat.Πx : i < p + m → (t i x) = (tr n t i (com m p x)).

It is known [18, 15], that to do so, one needs the reduction rule for Eq_rec

together with a proof that equality proofs are unique. The latter property being
generally established by a variant of what Streicher calls the �K axiom�:

K : ΠA : Type.Πa : A.ΠP : a =A a → Prop.(P (re� a)) → Πe : a =A a.(P e)

where re� stands for the canonical proof by re�exivity.
Here since equality proofs are also irrelevant to conversion, this axiom be-

comes trivial. Actually, since (P e) and (P (re� a)) are convertible, this statement
does not even need to be mentioned anymore, and the associated reduction rule
becomes super�uous.

In general, it should be interesting to transpose McBride's work [18] in the
framework of proof-irrelevant theories.

3.2 partial functions and equality over subset types

In the literature of type theory, subset types come in many �avors; they designate
the restriction of a type to the elements verifying a certain predicate. The type
{x : A|P} can be viewed as the constructive statement "there exists an element
of A verifying P", but also as the data-type A restricted to elements verifying
P . In most current type theories, the latter approach is not very practical since
equality is de�ned over it in a too narrow way. We have < a, p > =β < a′, p′ >
only if a =β a′ and p =β p′; the problem is that one would like to get rid of the



second condition. The same is true for propositional Leibniz equality and one
can establish:

< a, p > ={x:A|P} < a, p′ > → p =P [x\a] p′.

In general however, one is only interested in the validity of the assertion (P a),
not the way it is proved. A program awaiting an argument of type {x : A|P}
will behave identically if fed with < a, p > or < a, p′ > .

Therefore, each time a construct {x : A|P} is used indeed as a data-type, one
cannot use Leibniz equality in practice. Instead, one has to de�ne a less restrictive
equivalence relation 'A,P which simply states that the two �rst components of
the pair are equal:

< a, p > 'A,P < a′, p′ > ≡ a = a′.

But using 'A,P instead of ={x:A|P} quickly becomes very tedious; typically, for
every function f : {x : A|P} → B one has to prove

Πc, c′ : {x : A|P} . c 'A,P c′ → (f c) =B (f c′)

and even more speci�c statements if B is itself a subset type.
In our theory one can prove without di�culties that ={x:A|P} and 'A,P are

equivalent, and there is indeed no need anymore for de�ning 'A,P . Furthermore,
one has < a, p > =ε < a, p′ > , so the two terms are computationally identi�ed
which is stronger than Leibniz equality, avoiding the use of the deductive level
and makes proofs and developments more concise.

Array bounds A typical example of the phenomenon above is observed when
dealing with partial functions. For instance when an array t of size n is viewed
as a function taking an index i as argument, together with a proof that i is less
than n. That is:

t : (tab n) with tab ≡ Πi : nat.i < n → A.

In traditional type theory, this de�nition is cumbersome to use, since one has
to state explicitly that the values (t i pi), where pi : i < n do not depend upon
pi. The type above is therefore not su�cient to describe an array; instead one
needs the additional condition:

Tirr : Πi : nat.Πpi, p
′
i : i < n.(t i pi) =A (t i p′i)

where =A stands for the propositional Leibniz equality.
This is again verbose and cumbersome since Tirr has to be invoked repeatedly.

In our theory, not only the condition Tirr becomes trivial, since for any pi and p′i
one has (t i pi) =ε (t i p′i), but this last coercion is stronger than propositional
equality: there is no need anymore to have recourse to the deductive level and
prove this equality. The proof terms are therefore clearer and smaller.



3.3 On-the-�y extraction

An important point, which we can only brie�y mention here is the consequence
for the implementation when switching to a proof-irrelevant theory. In a proof-
checker, the environment consists of a sequence of de�nitions or lemmas which
have been type-checked. If the proof-checker implements a proof-irrelevant the-
ory, it is reasonable to keep two versions of each constant: the full proof-term,
which can be printed or re-checked, and the extracted one (that is→ε-normalized)
which is used for conversion check. This would be even more natural when build-
ing on recent Coq implementations which already use a dual storing of constants,
the second representation being non-printable compiled code precisely used for
fast conversion check.

In other words, a proof-system built upon a theory as the one presented
here would allow the user to e�ciently exploit the computational behavior of a
constructive proof in order to prove new facts. This makes the bene�ts of program
extraction technology available inside the system and helps transforming proof-
system into viable programming environments.

4 Relating to PVS

Subset types also form the core of PVS. In this formalism the objects of type
{x : A|P} are also of type A. This makes type checking undecidable and is
thus impossible in our setting. But we show that it is possible to build explicit
coercions between the corresponding types of our theory which basically behave
like the identity.

The following lemma states that the construction and destruction operations
of our subset types can actually be omitted when checking conversion:

Lemma 8 (Singleton simpli�cation). The typing relation of our theory re-
mains unchanged if we extend the →ε reduction of our theory by :

< a, p > Σ∗x:A.P →ε a

π∗
1(c) →ε c.

The following de�nition is directly transposed2 from PVS [23]. We do not
treat dependent types in full generality (see chapter 3 of [23]).

De�nition 4 (Maximal super-type). The maximal super-type is a partial
function µ from terms to terms, recursively de�ned by the following equations.
In all these equations, A and B are of type Type(i) in a given context.

µ(A) ≡ A if A is a data-type µ({x : A|P}) ≡ µ(A)

µ(A → B) ≡ A → µ(B) µ(A×B) ≡ µ(A)× µ(B).

2 A di�erence is that in PVS, propositions and booleans are identi�ed; but this point
is independent with this study. It is however possible to do the same in our theory
by assuming a computational version of excluded-middle.



De�nition 5 (η-reduction). The generalized η-reduction, written Bη, is the
contextual closure of:

λx : A.(t x) Bη t if x is not free in t

< π1(t), π2(t) > Bη t.

We can now construct the coercion function between A and µ(A):

Lemma 9. If Γ ` A : Type(i) and µ(A) is de�ned, then:

� Γ ` µ(A) : Type(i),
� there exists a function µ(A) which is of type A → µ(A) in Γ ,
� furthermore, when applying the singleton simpli�cation S to µ one obtains

an η-expansion of the identity function; to be precise: S(µ) →∗
εη λx : B.x.

Proof. It is almost trivial to check that Γ ` µ(A) : Type(i). The two other clauses
are proved by induction over the structure of A.

� If f : A → µ(A), then g ≡ λx : {x : A|P}.(f π1(x)) : {x : A|P} → µ(A).
Furthermore π1(x) is here simpli�ed to x, since P : Prop. Since (S(f) x)B∗

εηx,
S(g) B∗

εη λ : x : {x : A|P}.x.
� If f : B → µ(B), then g ≡ λh : A → B.λx : A.(f (h x)) : A → µ(B). Since

(S(f) (h x)) B∗
εη (h x), we have g B∗

εη λh : A → B.h.
� If fA : A → µ(A) and fB : B → µ(B), then

g ≡ λx : A × B. < (fA π1(x)), (fB π2(x)) >A×B is of the expected type.
Again, the induction hypotheses assure that g B∗

εη λx : A×B.x.

The opposite operation, going from from µ(A) to A, can only be performed
when some conditions are veri�ed (TCC's in PVS terminology). We can also
transpose this to our theory, still keeping the simple computational behavior of
the coercion function. This time however, our typing is less �exible than PVS', we
have to de�ne the coercion function and its type simultaneously; furthermore, in
general, this operation is well-typed only if the type-theory supports generalized
η-reduction.

This unfortunate restriction is typical when de�ning transformations over
programs with dependent types. It should however not be taken too seriously,
and we believe this cosmetic imperfection can generally be tackled in practice3.

Lemma 10 (subtype constraint). Given Γ ` A : Type(i), if µ(A) is de�ned,
then one can de�ne π(A) and π(A) such that, in the theory where conversion is
extended with Bη, one has:

Γ ` π(A) : µ(A) → Prop and Γ ` π(A) : Πx : µ(A).(π(A) x) → A.

Furthermore, π(A) Bεη-normalizes to λx : µ(A).λp : (π(A) x).x.

Proof. By straightforward induction. We only detail some the case where A =
B → C. Then π(A) ≡ λf : A → µ(B).∀x : A.(π(B) (f x)) and π(A) ≡ λf : A →
µ(B).λp : ∀x : A.(π(B) (f x)).λx : A.(π(B) (f x) (p x)).
3 For one, in practical cases, η-does not seem necessary very often (only with some
nested existentials). And even then, it should be possible to tackle the problem with
by proving the corresponding equality on the deductive level.



5 A more extensional theory

Especially during the 1970ies and 1980ies, there was an intense debate about
the respective advantages of intensional versus extensional type theories. The
latter denomination seems to cover various features like replacing conversion
by propositional equality in the conversion rule or adding primitive quotient
types. In general, these features provide a more comfortable construction of
some mathematical concepts and are closer to set-theoretical practice. But they
break other desirable properties, like decidability of type-checking and strong
normalization.

The theory presented here should therefore be considered as belonging to
the intentional family. However, we retrieve some features usually understood as
extensional.

5.1 The axiom of choice

Consider the usual form of the (typed) axiom of choice (AC):

(∀x : A.∃y : B.R(x, y)) ⇒ ∃f : A → B.∀x : A.R(x, f x).

When we transpose it into our type theory, we can chose to translate the
existential quanti�er either by a Σ-type, or the existential quanti�er de�ned in
Prop :

∃x : A.P ≡ ΠQ : Prop.(Πx : A.P → Q) → Q : Prop

If we use a Σ-type, we get a type which obviously inhabited, using the projec-
tions π1 and π2. However, if we read the existential quanti�ers of AC as de�ned
above, we obtain a (non-computational) proposition which is not provable in
type theory.

Schematically, this propositions states that if Πx : A.∃y : B.R(x, y) is prov-
able, then the corresponding function from A to B exists �in the model�. This as-
sumption is strong and allows to encode IZF set theory into type theory (see [26]).

What is new is that our proof-irrelevant type theory is extensional enough
to perform the �rst part of Goodman and Myhill's proof based on Diaconescu's
observation. Assuming AC, we can prove the decidability of equality. Consider
any type A and two objects a and b of type A. We de�ne:

{a, b} ≡ {x : A|x = a ∨ x = b}

Let us write a′ (resp. b′) for the element of {a, b} corresponding to a (resp. b);
so π1(a′) =ε a and π1(b′) =ε b. It is the easy to prove that

Πz : {a, b}.∃e : bool.(e = true ∧ π1(z) = a) ∨ (e = false ∧ π1(z) = b)

and from the axiom of choice we deduce:

∃f : {a, b} → bool.Πz : {a, b}.(f z = true∧π1(z) = a)∨ (f z = false∧π1(z) = b)



Finally given such a function f , one can compare (f a′) and (f b′), since both
are booleans over which equality is decidable.

The key point is then that, thanks to proof-irrelevance, the equivalence be-
tween a′ = b′ and a = b is provable in the theory. Therefore, if (f a′) and (f b′)
are di�erent, so are a and b. On the other hand, if (f a′) = (f b′) = true then
π1(b′) = a and so b = a. In the same way, (f a′) = (f b′) = false entails b = a.

We thus deduce a = b∨ a 6= b and by generalizing with respect to a, b and A
we obtain:

ΠA : Type(i).Πa, b : A.a = b ∨ a 6= b

which is a quite classical statement. We have formalized this proof in Coq, as-
suming proof-irrelevance as an axiom.

Note of course that this �decidability� is restricted to a disjunction in Prop

and that it is not possible to build an actual generic decision function. Indeed,
constructivity of results in the predicative fragment of the theory are preserved,
even if assuming the excluded-middle in Prop.

5.2 Other classical non-computational axioms

At present, we have not been able to deduce the excluded middle from the
statement above4. We leave this theoretical question to future investigations but
it seems quite clear that in most cases, when admitting AC one will also be willing
to admit EM. In fact both axioms are validated by the simple set-theoretical
model and give a setting where the Type(i)'s are inhabited by computational
types (i.e. from {x : A|P} we can compute x of type A) and Prop allows classical
reasoning about those programs.

Another practical statement which is validated by the set-theoretical model
is the axiom that point-wise equal functions are equal :

ΠA,B : Type(i).Πf, g : A → B.Πx : A.f x = g x → f = g.

Note that combining this axiom with AC (and thus decidability of equality) is
already enough to prove (in Prop) the existence of a function deciding whether
a Turing machine halts.

5.3 Quotients and normalized types

Quotient sets are a typically extensional concept whose adaptation to type theory
has always been problematic. Again, one has to chose between �e�ective� quo-
tients and decidability of type-checking. Searching for a possible compromise,
Courtieu [9] ended up with an interesting notion of normalized type5. The idea
is remarkably simple: given a function f : A → B, we can de�ne {(f x)|x : A}
4 In set theory, decidability of equality entails the excluded middle, since {x ∈ N|P}
is equal to N if and only if P holds.

5 A similar notion has been developped for NuPRL [22].



which is the subtype of B corresponding to the codomain of f . His rules are
straightforwardly translated into our theory by simply taking:

{f(x)|x : A} ≡ {y : B|∃x : A.y = f x}

Courtieu also gives the typing rules for functions going from A to {f(x)|x :
A}, and back in the case where f is actually of type A → A.

The relation with quotients being that in the case f : A → A we can under-
stand {f(x)|x : A} as the type A quotiented by the relation

x R y ⇐⇒ f x = f y

In practice this appears to be often the case, and Courtieu describes several
applications.

6 Conclusion and further work

We have tried to show that a relaxed conversion rule makes type theories more
practical, without necessarily giving up normalization or decidable type checking.
In particular, we have shown that this approach brings together the world of PVS
and type theories of the Coq family.

We also view this as a contribution to closing the gap between proof systems
like Coq and safe programming environments like Dependant ML or ATS [7, 27].
But this will only be assessed by practice; the �rst step is thus to implement
such a theory.
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