Joris van der Hoeven¹, Grégoire Lecerf², Arnaud Minondo³

Laboratoire d'informatique de l'Ecole Polytechnique (LIX, UMR 7161 CNRS) CNRS, Ecole polytechnique, Institut Polytechnique de Paris Batiment Alan Turing, CS35003 1, rue Honoré d'Estienne d'Orves 91120 Palaiseau, France {¹vdhoeven,²lecerf,³minondo}@lix.polytechnique.fr Article preliminary version available on HAL Hoeven, Lecerf, and Minondo 2025.

A↑

• $u_0 \in \mathbb{A}^m$, $u_{k+1} = f(u_k)$ with $f : \mathbb{A}^m \to \mathbb{A}^m$ any kind of function.

• Approximation f_{\circ} of f. Ensure that u_k is enclosed in some set.

*u*₀

• $u_0 \in \mathbb{A}^m$, $u_{k+1} = f(u_k)$ with $f : \mathbb{A}^m \to \mathbb{A}^m$ any kind of function.

• Approximation f_{\circ} of f. Ensure that u_k is enclosed in some set.

• $u_0 \in \mathbb{A}^m$, $u_{k+1} = f(u_k)$ with $f : \mathbb{A}^m \to \mathbb{A}^m$ any kind of function.

• Approximation f_{\circ} of f. Ensure that u_k is enclosed in some set.

2/30

• $u_0 \in \mathbb{A}^m$, $u_{k+1} = f(u_k)$ with $f : \mathbb{A}^m \to \mathbb{A}^m$ any kind of function.

• Approximation f_{\circ} of f. Ensure that u_k is enclosed in some set.

Speed of certified computations

Figure 1: Time to compute: $det(A) = \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) \prod_{i=1}^n a_{i,\sigma(i)}$ in millisecond with double and interval of double. See boost: Brönnimann, Melquiond, and Pion 2006, p1788:Nehmeier 2014, $\alpha \in \mathfrak{S}_{+}$

Problem

Given a numerical program, that uses basic arithmetic operations, how accurate is the result? Can we bound rounding errors?

Problem

- Given a numerical program, that uses basic arithmetic operations, how accurate is the result? Can we bound rounding errors?
- Assume that it is required to perform multiple certified evaluations of the same program. Can we improve the speed of the process while preserving a small enough error bound?

• $(\mathbb{A}, |\cdot|)$ normed algebra (typically, $\mathbb{A} = \mathbb{R}$ or $\mathbb{A} =$)

(A, | · |) normed algebra (typically, A = R or A =)
 B(a, r) := {z ∈ A, |z − a| ≤ r}.

5/30

- $(\mathbb{A}, |\cdot|)$ normed algebra (typically, $\mathbb{A} = \mathbb{R}$ or $\mathbb{A} =$)
- $\blacktriangleright \ \mathcal{B}(a,r) := \{z \in \mathbb{A}, |z-a| \leq r\}.$
- A real number is represented by a ball : $x \in \mathcal{B}(a, r)$.

• $(\mathbb{A}, |\cdot|)$ normed algebra (typically, $\mathbb{A} = \mathbb{R}$ or $\mathbb{A} =$)

$$\blacktriangleright \ \mathcal{B}(a,r) := \{z \in \mathbb{A}, |z-a| \leq r\}.$$

- A real number is represented by a ball : $x \in \mathcal{B}(a, r)$.
- ▶ Set of balls $\mathcal{B}(\mathbb{A}, \mathbb{R})$

- $(\mathbb{A}, |\cdot|)$ normed algebra (typically, $\mathbb{A} = \mathbb{R}$ or $\mathbb{A} =$)
- $\blacktriangleright \ \mathcal{B}(a,r) := \{z \in \mathbb{A}, |z-a| \leq r\}.$
- A real number is represented by a ball : $x \in \mathcal{B}(a, r)$.
- ► Set of balls B(A, R)
- Enclosure relation: $\mathbf{x} \longrightarrow x \iff x \in \mathbf{x}$.

- $(\mathbb{A}, |\cdot|)$ normed algebra (typically, $\mathbb{A} = \mathbb{R}$ or $\mathbb{A} =$)
- $\blacktriangleright \ \mathcal{B}(a,r) := \{z \in \mathbb{A}, |z-a| \leq r\}.$
- A real number is represented by a ball : $x \in \mathcal{B}(a, r)$.
- ► Set of balls B(A, R)
- Enclosure relation: $\mathbf{x} \rightarrow \mathbf{x} \iff \mathbf{x} \in \mathbf{x}$.
- Vectorial enclosure relation: $\mathbf{x} \frown \mathbf{x} \iff \forall i = 1, \dots, m, \mathbf{x}_i \frown \mathbf{x}_i$

- $(\mathbb{A}, |\cdot|)$ normed algebra (typically, $\mathbb{A} = \mathbb{R}$ or $\mathbb{A} =$)
- $\blacktriangleright \ \mathcal{B}(a,r) := \{z \in \mathbb{A}, |z-a| \leq r\}.$
- A real number is represented by a ball : $x \in \mathcal{B}(a, r)$.
- Set of balls $\mathcal{B}(\mathbb{A},\mathbb{R})$
- Enclosure relation: $\mathbf{x} \rightarrow \mathbf{x} \iff \mathbf{x} \in \mathbf{x}$.
- ► Vectorial enclosure relation: $\mathbf{x} \frown \mathbf{x} \iff \forall i = 1, \dots, m, \mathbf{x}_i \frown \mathbf{x}_i$
- Inclusion principle: for all input sets, the resulting set encloses the image of the input sets.

5/30

▶ Ball lift of $f : \mathbb{A}^m \to \mathbb{A}^n$ is a function $f : \mathcal{B}(\mathbb{A}, \mathbb{R})^m \to \mathcal{B}(\mathbb{A}, \mathbb{R})^n$ that satisfies the inclusion principle:

 $\forall x \in \mathbb{A}^m, \forall x \in \mathcal{B}(\mathbb{A}, \mathbb{R})^m, (x \multimap x \Longrightarrow f(x) \multimap f(x))$

Ball lift of f : A^m → Aⁿ is a function f : B(A, R)^m → B(A, R)ⁿ that satisfies the inclusion principle:

 $\forall x \in \mathbb{A}^{m}, \forall x \in \mathcal{B}(\mathbb{A}, \mathbb{R})^{m}, (x \longrightarrow x \Longrightarrow f(x) \longrightarrow f(x))$ B(x + y, r + s) B(x, r) B(x, r) B(y, s)

 \blacktriangleright \mathbb{A}_p machine numbers.

• ex: \mathbb{R}_p floating point numbers, $\mathbb{C}_p = \mathbb{R}_p[i] \cong \mathbb{R}_p^2$.

- \blacktriangleright \mathbb{A}_p machine numbers.
- ex: \mathbb{R}_p floating point numbers, $\mathbb{C}_p = \mathbb{R}_p[i] \cong \mathbb{R}_p^2$.
- Assume $\epsilon \in \mathbb{R} \cap 2^{\mathbb{Z}}$ with $\epsilon \leq 1/16$ such that for all operations $* \in \{+, -, \cdot\}$ and all machine numbers $a, b \in \mathbb{A}_p$:

$$\begin{aligned} |a * b - a *_{\circ} b| &\leq \epsilon |a *_{\circ} b| \\ ||a| - |a|_{\circ}| &\leq \epsilon |a|_{\circ} \end{aligned}$$

- \blacktriangleright \mathbb{A}_p machine numbers.
- ex: \mathbb{R}_p floating point numbers, $\mathbb{C}_p = \mathbb{R}_p[i] \cong \mathbb{R}_p^2$.
- Assume e ∈ ℝ ∩ 2^ℤ with e ≤ 1/16 such that for all operations * ∈ {+, -, ·} and all machine numbers a, b ∈ A_p:

$$|a * b - a *_\circ b| \le \epsilon |a *_\circ b|$$

 $||a| - |a|_\circ| \le \epsilon |a|_\circ$

• If $\mathbb{A} = \mathbb{R}$ then $\epsilon = 2^{-p}$. If $\mathbb{A} = \mathbb{C}$ then $\epsilon = 4 \cdot 2^{-p}$.

$$\begin{aligned} \mathcal{B}(a,r) \pm \mathcal{B}(b,s) &= \mathcal{B}(a \pm_{\circ} b, \uparrow [r + s + \epsilon | (a +_{\circ} b) |] \\ \mathcal{B}(a,r) \cdot \mathcal{B}(b,s) &= \mathcal{B}(a \cdot_{\circ} b, \uparrow [(|a| + r) \cdot s + |b| \cdot r + \epsilon |a \cdot_{\circ} b|]) \end{aligned}$$

$$\begin{aligned} \mathcal{B}(a,r) \pm \mathcal{B}(b,s) &= \mathcal{B}(a \pm_{\circ} b, \uparrow [r + s + \epsilon | (a +_{\circ} b) |] \\ \mathcal{B}(a,r) \cdot \mathcal{B}(b,s) &= \mathcal{B}(a \cdot_{\circ} b, \uparrow [(|a| + r) \cdot s + |b| \cdot r + \epsilon |a \cdot_{\circ} b|]) \end{aligned}$$

$$\begin{split} \mathcal{B}(a,r) \pm \mathcal{B}(b,s) &= \mathcal{B}(a \pm_{\circ} b, \uparrow [r+s+\epsilon | (a+_{\circ} b)|] \\ \mathcal{B}(a,r) \cdot \mathcal{B}(b,s) &= \mathcal{B}(a \cdot_{\circ} b, \uparrow [(|a|+r) \cdot s+|b| \cdot r+\epsilon | a \cdot_{\circ} b|]) \end{split}$$

$$\begin{split} \mathcal{B}(a,r) \pm \mathcal{B}(b,s) &= \mathcal{B}(a \pm_{\circ} b, \uparrow [r + s + \epsilon | (a +_{\circ} b) |] \\ \mathcal{B}(a,r) \cdot \mathcal{B}(b,s) &= \mathcal{B}(a \cdot_{\circ} b, \uparrow [(|a| + r) \cdot s + |b| \cdot r + \epsilon | a \cdot_{\circ} b |]) \end{split}$$

$$\begin{split} \mathcal{B}(\mathsf{a},\mathsf{r}) \pm \mathcal{B}(\mathsf{b},\mathsf{s}) &= \mathcal{B}(\mathsf{a} \pm_{\circ} \mathsf{b},\uparrow [\mathsf{r} + \mathsf{s} + \epsilon | (\mathsf{a} +_{\circ} \mathsf{b}) |]) \\ \mathcal{B}(\mathsf{a},\mathsf{r}) \cdot \mathcal{B}(\mathsf{b},\mathsf{s}) &= \mathcal{B}(\mathsf{a} \cdot_{\circ} \mathsf{b},\uparrow [(|\mathsf{a}| + \mathsf{r}) \cdot \mathsf{s} + |\mathsf{b}| \cdot \mathsf{r} + \epsilon | \mathsf{a} \cdot_{\circ} \mathsf{b} |]) \end{split}$$

Figure 2: On the left matryoshki. On the right a matryoshka.

 A matryoshka is a generalized ball for which the center is itself a ball.

- A matryoshka is a generalized ball for which the center is itself a ball.
- ▶ Let $A \in \mathbb{A}, R, r \in \mathbb{R}^{\geq}$, a matryoshka $A := \mathcal{B}(A, R, r)$

- A matryoshka is a generalized ball for which the center is itself a ball.
- Let A ∈ A, R, r ∈ ℝ[≥], a matryoshka A := B(A, R, r)
 Let a := B(a, s),

 $\boldsymbol{A} \circ - \boldsymbol{a} \quad \Longleftrightarrow \quad \mathcal{B}(A, R) \circ - \boldsymbol{a} \text{ and } \boldsymbol{s} \leqslant r.$

Figure 3: A matryoshka $\mathcal{B}(A, R, r)$ encloses a ball.

Figure 4: Example of a ball enclosed by the matryoshka $\mathcal{B}(A, R, r)$

Figure 5: Example of a ball not enclosed by the matryoshka $\mathcal{B}(A, R, r)$.

Figure 6: Example of a ball not enclosed by the matryoshka $\mathcal{B}(A, R, r)$.

Matryoshka lift

Matryoshka lift of a function f : A^m → Aⁿ is a function f : B(A, ℝ, ℝ)^m → B(A, ℝ, ℝ)ⁿ that satisfies the inclusion principle

$$A \circ - a \implies T(A) \circ - T(a)$$

B(x, R, r) B(y, S, s)

Let $|\mathcal{B}(a,r)|_{\mathcal{B}(\mathbb{A},\mathbb{R})} = |a| + r$. Ring operations admit lifts:

$$\mathcal{B}(\boldsymbol{a}, r) \pm \mathcal{B}(\boldsymbol{b}, s) = \mathcal{B}(\boldsymbol{a} \pm \boldsymbol{b}, r + s) \\ \mathcal{B}(\boldsymbol{a}, r) \cdot \mathcal{B}(\boldsymbol{b}, s) = \mathcal{B}(\boldsymbol{a} \cdot \boldsymbol{b}, (|\boldsymbol{a}| + r) \cdot s + |\boldsymbol{b}| \cdot r).$$

For all normed algebra, (A, | · |), G = (B(A, R), | · |_{B(A,R)}) formally implements the structure of a normed algebra.

Let $|\mathcal{B}(a, r)|_{\mathcal{B}(\mathbb{A},\mathbb{R})} = |a| + r$. Ring operations admit lifts:

$$\mathcal{B}(\boldsymbol{a}, r) \pm \mathcal{B}(\boldsymbol{b}, s) = \mathcal{B}(\boldsymbol{a} \pm \boldsymbol{b}, r + s) \\ \mathcal{B}(\boldsymbol{a}, r) \cdot \mathcal{B}(\boldsymbol{b}, s) = \mathcal{B}(\boldsymbol{a} \cdot \boldsymbol{b}, (|\boldsymbol{a}| + r) \cdot s + |\boldsymbol{b}| \cdot r).$$

- For all normed algebra, (A, | · |), G = (B(A, R), | · |_{B(A,R)}) formally implements the structure of a normed algebra.
- Matryoshka can be seen as balls over the formal normed algebra B(A, ℝ).

Let $|\mathcal{B}(a, r)|_{\mathcal{B}(\mathbb{A},\mathbb{R})} = |a| + r$. Ring operations admit lifts:

$$\mathcal{B}(\boldsymbol{a}, r) \pm \mathcal{B}(\boldsymbol{b}, s) = \mathcal{B}(\boldsymbol{a} \pm \boldsymbol{b}, r + s) \\ \mathcal{B}(\boldsymbol{a}, r) \cdot \mathcal{B}(\boldsymbol{b}, s) = \mathcal{B}(\boldsymbol{a} \cdot \boldsymbol{b}, (|\boldsymbol{a}| + r) \cdot s + |\boldsymbol{b}| \cdot r).$$

- For all normed algebra, (A, | · |), G = (B(A, R), | · |_{B(A,R)}) formally implements the structure of a normed algebra.
- Matryoshka can be seen as balls over the formal normed algebra B(A, ℝ).
- Let |B(a, r)|_{B(A,R,R)} = |a|_{B(A,R)} + r. Consequently, (B(A, R, R), | · |_{B(A,R,R)}) formally implements the structure of a normed algebra.

 $\mathcal{B}(a, r_1, r_2, ..., r_k)$ can be seen as a ball whose center is itself a ball whose center... is itself a ball, where the dots repeat the sentence k - 1 times.

Figure 7: Matryoshki

イロト 不得 トイヨト イヨト 二日

Let
$$\boldsymbol{a} = \mathcal{B}(a, r), \boldsymbol{b} = \mathcal{B}(b, s)$$
 be two balls, define
 $\boldsymbol{a} -_{\text{vec}} \boldsymbol{b} = \mathcal{B}(a - b, r - s).$

▶ Let $\epsilon \in \mathbb{R} \cap 2^{\mathbb{Z}}$ with $\epsilon \leq 1/16$. Corresponding last bit error for balls:

$$|oldsymbol{a} * oldsymbol{b} -_{\mathsf{vec}} oldsymbol{a} *_\circ oldsymbol{b}| \leq \epsilon |oldsymbol{a} *_\circ oldsymbol{b}|$$

Implementation in computer needs to take care of the rounding errors:

$$\begin{split} \mathcal{B}(\boldsymbol{a},r) \pm \mathcal{B}(\boldsymbol{b},s) &= \mathcal{B}(\boldsymbol{a} \pm_{\circ} \boldsymbol{b},\uparrow [r+s+\bar{\epsilon}_{\circ}(\boldsymbol{a} \pm \boldsymbol{b})]) \\ \mathcal{B}(\boldsymbol{a},r) \cdot \mathcal{B}(\boldsymbol{b},s) &= \mathcal{B}(\boldsymbol{a} \cdot_{\circ} \boldsymbol{b},\uparrow [(|\boldsymbol{a}|+r) \cdot s+|\boldsymbol{b}| \cdot r+\bar{\epsilon}_{\circ}(|\boldsymbol{a}|\cdot|\boldsymbol{b}|)) \end{split}$$

Straight Line Programs

All simple functions built of arithmetic operations $(+, -, \cdot)$ can be computed using straight line programs.

Figure 8: Example of a straight line program that computes $5a_1a_2 + a_1$.

Static rounding errors: step by step

Figure 9: Sum of two particular matryoshka

Static rounding errors

Proposition 1

- $f : \mathbb{A}^m \to \mathbb{A}^n$ any straight line program.
- ▶ Ball domain: $\mathbf{A} = (\mathbf{A}_1, \dots, \mathbf{A}_m) \in \mathcal{B}(\mathbb{A}_p, \mathbb{R}_p)^m$
- $\blacktriangleright Matryoshka \ \mathcal{B}(\boldsymbol{A},0) := (\mathcal{B}(\boldsymbol{A}_1,0),\ldots,\mathcal{B}(\boldsymbol{A}_m,0))$
- Ball lift: f.
- Matryoshka lift: F.
- Assume $\boldsymbol{F}(\mathcal{B}(\boldsymbol{A},0)) = (\mathcal{B}(\boldsymbol{C}_1, E_1), \dots, \mathcal{B}(\boldsymbol{C}_n, E_n))$
- Then for all $a \in \mathbb{A}_p^m$ where **A** \sim a, we have

$$|f_{\circ,i}(a)-f_i(a)|\leqslant E_i.$$

Static rounding errors: proof

- ▶ Ball lift property: $\mathcal{B}(a,0) \circ a$ then $f(\mathcal{B}(a,0)) \circ f(a)$.
- Matryoshka lift property: $\mathcal{B}(\mathbf{A}, 0) \circ \mathcal{B}(a, 0)$ then $\mathbf{F}(\mathcal{B}(\mathbf{A}, 0)) \circ \mathcal{F}(\mathcal{B}(a, 0))$.
- Since $f(\mathcal{B}(a,0)) = \mathcal{B}(f_{\circ}(a),r)$ and $F(\mathcal{B}(A,0) = \mathcal{B}(C,E),$
- Then $r_i \leq E_i$.
- Then $|f_{\circ}(a) f(a)| \leq r_i \leq E_i$.

Efficient ball lifts

Compute bounds $(B_{i,j})_{1 \le i \le m, 1 \le j \le n}$ on the Jacobian matrix:

$$\left\|\frac{\partial f_i}{\partial x_j}\right\|_{\boldsymbol{A}} := \sup_{\boldsymbol{A} \circ - \boldsymbol{a}} \left|\frac{\partial f_i}{\partial x_j}(\boldsymbol{a})\right| \leqslant B_{i,j}.$$

Evaluate a ball lift of the Jacobian of f at \boldsymbol{A} , which yields a matrix $\boldsymbol{J} \in \mathcal{B}(\mathbb{A}_p, \mathbb{R}_p)^{n \cdot m}$, after which let $B_{i,j} := |\boldsymbol{J}_{i,j}|$.

Proposition 2

$$\blacktriangleright \quad Ball \ domain: \ \mathbf{A} = (\mathbf{A}_1, \dots, \mathbf{A}_m)$$

Assume
$$\boldsymbol{F}(\mathcal{B}(\boldsymbol{A},0)) = (\mathcal{B}(\boldsymbol{C}_1, E_1), \dots, \mathcal{B}(\boldsymbol{C}_n, E_n))$$

▶ Then for all
$$\boldsymbol{a} = \mathcal{B}(\boldsymbol{a}, r) \in \mathcal{B}(\mathbb{A}_p, \mathbb{R}_p)^m$$
 such that $\boldsymbol{a}_1 \subseteq \boldsymbol{A}_1, \dots, \boldsymbol{a}_m \subseteq \boldsymbol{A}_m$

$$\boldsymbol{f}_*(\boldsymbol{a}) := \mathcal{B}(f_\circ(\boldsymbol{a}), E + Br).$$

Then f_* defines a ball lift of $f_{|A}$.

・ロト ・四ト ・ヨト ・ヨト - ヨ

Efficient ball lifts: rounding

Proposition 3 Let $\lg m = \lceil \log_2(m) \rceil$, $\epsilon := 2^{-p}$, $\eta := 2^{E_{\min}-p+1}$, and ball domain: $\boldsymbol{A} = (\boldsymbol{A}_1, \ldots, \boldsymbol{A}_m).$ Assume that: (lg m)² < ϵ^{-1} $\blacktriangleright \mathbf{F}(\mathcal{B}(\mathbf{A},0)) = (\mathcal{B}(\mathbf{C}_1, E_1), \dots, \mathcal{B}(\mathbf{C}_n, E_n))$ Then for all $\mathbf{a} = \mathcal{B}(a, r) \in \mathcal{B}(\mathbb{A}_p, \mathbb{R}_p)^m$ such that $a_1 \subset A_1, \ldots, a_m \subset A_m$ $f_{*}(a) := \mathcal{B}(f_{0}(a), \circ[(E+Br)(1+(\lg m+8)\epsilon)+(m+1)\eta]).$

defines a ball lift of $f_{|A}$.

Application to polynomial evaluation: Homogenization

Application to polynomial evaluation: Projective bounds

For all $x \in \mathbb{K}^m$, let $\lambda := \max_{i=1,...,m}(|x_i|, 1)$. Then $(x, 1)/\lambda \in \mathcal{B}(0, 1)$. Apply Proposition 3 with $f = P^{\text{hom}}$ and domain $\mathbf{A} = \mathcal{B}(0, 1)$.

 $x \xrightarrow{\lambda} x^{\text{hom}} \xrightarrow{P^{\text{hom}}} P^{\text{hom}}(x^{\text{hom}}) \xrightarrow{\lambda^d} P(x)$

Figure 10: Scheme for certifying a polynomial evaluation

Benchmark

slp	prefp	prelip	preball	fp	lip	ball
test1	21.782	510.672	382	0.011	0.012	0.030
det 2	20.381	444.718	149	0.010	0.013	0.513
det 3	30.147	800.342	183	0.010	0.031	0.054
det 4	32.157	1676.93	304	0.013	0.030	0.109
det 5	55.217	4435.34	442	0.027	0.031	0.729
det 6	97.460	12342.2	723	0.068	0.066	0.333
det 7	297.25	39931.9	1463	0.219	0.225	0.928
det 8	491.46	102470	2794	0.369	0.374	6.797
det 9	1128.5	264722	5961	0.830	1.301	10.64
det 10	2365.3	687691	10907	2.504	5.126	17.70
det 11	4717.3	1791649	21818	5.601	11.79	37.01

Table 1: Time to compute: det(A) = $\sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) \prod_{i=1}^n a_{i,\sigma(i)}$ in microsecond

Références

Brönnimann, Hervé, Guillaume Melquiond, and Sylvain Pion (2006). "The design of the Boost interval arithmetic library". In: Theoretical Computer Science 351.1. Real Numbers and Computers, pp. 111-118. ISSN: 0304-3975. DOI: https://doi.org/10.1016/j.tcs.2005.09.062. URL: https://www.sciencedirect.com/science/article/pii/ S0304397505006110.

Hoeven, Joris van der, Grégoire Lecerf, and Arnaud Minondo (June 2025). "Static bounds for straight-line programs". working paper or preprint. URL: https://hal.science/hal-05105518.

 Nehmeier, Marco (2014). "libieeep1788: A C++
 Implementation of the IEEE interval standard P1788". In: 2014
 IEEE Conference on Norbert Wiener in the 21st Century (21CW), pp. 1–6. DOI: 10.1109/NORBERT.2014.6893854.