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Joris van der Hoeven1, Grégoire Lecerf2, Arnaud Minondo3

Laboratoire d’informatique de l’Ecole Polytechnique (LIX, UMR 7161 CNRS)
CNRS, Ecole polytechnique, Institut Polytechnique de Paris

Batiment Alan Turing, CS35003
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Motivation: Dynamical systems
▶ u0 ∈ Am, uk+1 = f (uk) with f : Am → Am any kind of

function.
▶ Approximation f◦ of f . Ensure that uk is enclosed in some set.
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Speed of certified computations
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Figure 1: Time to compute: det(A) =
∑

σ∈Sn
ε(σ)

∏n
i=1 ai,σ(i) in

millisecond with double and interval of double. See boost: Brönnimann,
Melquiond, and Pion 2006, p1788:Nehmeier 2014
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Problem

▶ Given a numerical program, that uses basic arithmetic
operations, how accurate is the result? Can we bound
rounding errors?

▶ Assume that it is required to perform multiple certified
evaluations of the same program. Can we improve the speed
of the process while preserving a small enough error bound?
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Ball arithmetic

▶ (A, | · |) normed algebra (typically, A = R or A =)

▶ B(a, r) := {z ∈ A, |z − a| ≤ r}.
▶ A real number is represented by a ball : x ∈ B(a, r).
▶ Set of balls B(A,R)
▶ Enclosure relation: x ◦— x ⇐⇒ x ∈ x .
▶ Vectorial enclosure relation:

x ◦— x ⇐⇒ ∀i = 1, . . . ,m, x i ◦— xi
▶ Inclusion principle: for all input sets, the resulting set encloses

the image of the input sets.
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Ball arithmetic

▶ Ball lift of f : Am → An is a function
f : B(A,R)m → B(A,R)n that satisfies the inclusion principle:

∀x ∈ Am,∀x ∈ B(A,R)m, (x ◦— x =⇒ f (x) ◦— f (x))

B(x , r)
B(y , s)

B(x + y , r + s)
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Floating point arithmetic

▶ Ap machine numbers.

▶ ex: Rp floating point numbers, Cp = Rp[i] ∼= R2
p.

▶ Assume ϵ ∈ R ∩ 2Z with ϵ ≤ 1/16 such that for all operations
∗ ∈ {+,−, ·} and all machine numbers a, b ∈ Ap:

|a ∗ b − a ∗◦ b| ≤ϵ|a ∗◦ b|
||a| − |a|◦| ≤ϵ|a|◦

▶ If A = R then ϵ = 2−p. If A = C then ϵ = 4 · 2−p.
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Floating point arithmetic

▶ Implementation of ball arithmetic using floating point
arithmetic:

B(a, r)± B(b, s) = B(a±◦ b, ↑ [r + s + ϵ|(a+◦ b)|]
B(a, r) · B(b, s) = B(a ·◦ b, ↑ [(|a|+ r) · s + |b| · r + ϵ|a ·◦ b|])

Rp

x y
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Matryoshki

Figure 2: On the left matryoshki. On the right a matryoshka.
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Matryoshki
▶ A matryoshka is a generalized ball for which the center is itself

a ball.

▶ Let A ∈ A,R, r ∈ R≥, a matryoshka A := B(A,R, r)
▶ Let a := B(a, s),

A ◦— a ⇐⇒ B(A,R) ◦— a and s ⩽ r .
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Matryoshki

Figure 3: A matryoshka B(A,R, r) encloses a ball.
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Matryoshki

Figure 4: Example of a ball enclosed by the matryoshka B(A,R, r)
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Matryoshki

s > r

Figure 5: Example of a ball not enclosed by the matryoshka B(A,R, r).
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Matryoshki

Figure 6: Example of a ball not enclosed by the matryoshka B(A,R, r).
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Matryoshka lift

▶ Matryoshka lift of a function f : Am → An is a function
f : B(A,R,R)m → B(A,R,R)n that satisfies the inclusion
principle

A ◦— a =⇒ f (A) ◦— f (a)

B(x ,R, r) B(y ,S , s)

B(x + y ,R + S , r + s)
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Matryoshka arithmetic

Let |B(a, r)|B(A,R) = |a|+ r . Ring operations admit lifts:

B(a, r)± B(b, s) = B(a ± b, r + s)

B(a, r) · B(b, s) = B(a · b, (|a|+ r) · s + |b| · r).

▶ For all normed algebra, (A, | · |), G = (B(A,R), | · |B(A,R))
formally implements the structure of a normed algebra.

▶ Matryoshka can be seen as balls over the formal normed
algebra B(A,R).

▶ Let |B(a, r)|B(A,R,R) = |a|B(A,R) + r . Consequently,
(B(A,R,R), | · |B(A,R,R)) formally implements the structure of
a normed algebra.
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Matryoshki
B(a, r1, r2, ..., rk) can be seen as a ball whose center is itself a ball
whose center... is itself a ball, where the dots repeat the sentence
k − 1 times.

Figure 7: Matryoshki
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Matryoshki

▶ Let a = B(a, r),b = B(b, s) be two balls, define
a −vec b = B(a− b, r − s).

▶ Let ϵ ∈ R ∩ 2Z with ϵ ≤ 1/16. Corresponding last bit error for
balls:

|a ∗ b −vec a ∗◦ b| ≤ ϵ|a ∗◦ b|

▶ Implementation in computer needs to take care of the
rounding errors:

B(a, r)± B(b, s) = B(a ±◦ b, ↑ [r + s + ϵ̄◦(a ± b)])
B(a, r) · B(b, s) = B(a ·◦ b, ↑ [(|a|+ r) · s + |b| · r + ϵ̄◦(|a| · |b|))

20 / 30



Straight Line Programs

All simple functions built of arithmetic operations (+,−, ·) can be
computed using straight line programs.

Figure 8: Example of a straight line program that computes 5a1a2 + a1.
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Static rounding errors: step by step

B(a,R, 0)B(b, S , 0)

δ = upper bound on rounding errors

B(a+ b,R + S , δ)

Figure 9: Sum of two particular matryoshka
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Static rounding errors

Proposition 1

▶ f : Am → An any straight line program.

▶ Ball domain: A = (A1, . . . ,Am) ∈ B(Ap,Rp)
m

▶ Matryoshka B(A, 0) := (B(A1, 0), . . . ,B(Am, 0))

▶ Ball lift: f .
▶ Matryoshka lift: F .

▶ Assume F (B(A, 0)) = (B(C 1,E1), . . . ,B(Cn,En))

▶ Then for all a ∈ Am
p where A ◦— a, we have

|f◦,i (a)− fi (a)| ⩽ Ei .
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Static rounding errors: proof

▶ Ball lift property: B(a, 0) ◦— a then f (B(a, 0)) ◦— f (a).

▶ Matryoshka lift property: B(A, 0) ◦—B(a, 0) then
F (B(A, 0)) ◦— f (B(a, 0)).

▶ Since f (B(a, 0)) = B(f◦(a), r) and F (B(A, 0) = B(C ,E ),

▶ Then ri ≤ Ei .

▶ Then |f◦(a)− f (a)| ≤ ri ≤ Ei .
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Efficient ball lifts

Compute bounds (Bi ,j)1≤i≤m,1≤j≤n on the Jacobian matrix:∥∥∥∥ ∂fi
∂xj

∥∥∥∥
A
:= sup

A ◦— a

∣∣∣∣ ∂fi∂xj
(a)

∣∣∣∣ ⩽ Bi ,j .

Evaluate a ball lift of the Jacobian of f at A, which yields a matrix
J ∈ B(Ap,Rp)

n·m, after which let Bi ,j := |J i ,j |.

Proposition 2

▶ Ball domain: A = (A1, . . . ,Am)

▶ Assume F (B(A, 0)) = (B(C 1,E1), . . . ,B(Cn,En))

▶ Then for all a = B(a, r) ∈ B(Ap,Rp)
m such that

a1 ⊆ A1, . . . , am ⊆ Am

f ∗(a) := B (f◦(a),E + Br) .

Then f ∗ defines a ball lift of f|A.
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Efficient ball lifts: rounding

Proposition 3

Let lgm = ⌈log2(m)⌉, ϵ := 2−p, η := 2Emin−p+1, and ball domain:
A = (A1, . . . ,Am).
Assume that:

▶ (lgm)2 < ϵ−1

▶ F (B(A, 0)) = (B(C 1,E1), . . . ,B(Cn,En)

Then for all a = B(a, r) ∈ B(Ap,Rp)
m such that

a1 ⊆ A1, . . . , am ⊆ Am,

f ∗(a) := B (f◦(a), ◦[(E + Br)(1 + (lgm + 8)ϵ) + (m + 1)η]) .

defines a ball lift of f|A.
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Application to polynomial evaluation: Homogenization

▶ P ∈ K[x1, . . . , xm]

▶ Phom ∈ K(x1, . . . , xm, t) such that all its monomials are of
same degree and Phom(x1, . . . , xm, 1) = P(x1, . . . , xm).

Ex: P = XY + Z + X 2ZY ,
then Phom = XYT 2 + ZT 3 + X 2ZY .
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Application to polynomial evaluation: Projective bounds

For all x ∈ Km, let λ := maxi=1,...,m(|xi |, 1). Then
(x , 1)/λ ∈ B(0, 1). Apply Proposition 3 with f = Phom and
domain A = B(0, 1).

x xhom Phom(xhom) P(x)
λ Phom λd

Figure 10: Scheme for certifying a polynomial evaluation
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Benchmark

slp prefp prelip preball fp lip ball

test1 21.782 510.672 382 0.011 0.012 0.030
det 2 20.381 444.718 149 0.010 0.013 0.513
det 3 30.147 800.342 183 0.010 0.031 0.054
det 4 32.157 1676.93 304 0.013 0.030 0.109
det 5 55.217 4435.34 442 0.027 0.031 0.729
det 6 97.460 12342.2 723 0.068 0.066 0.333
det 7 297.25 39931.9 1463 0.219 0.225 0.928
det 8 491.46 102470 2794 0.369 0.374 6.797
det 9 1128.5 264722 5961 0.830 1.301 10.64
det 10 2365.3 687691 10907 2.504 5.126 17.70
det 11 4717.3 1791649 21818 5.601 11.79 37.01

Table 1: Time to compute: det(A) =
∑

σ∈Sn
ε(σ)

∏n
i=1 ai,σ(i) in

microsecond
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