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Objectives

We show the convergence towards Nash equilib-
ria of the HEDGE algorithm in generic potential
cames. We focus on the bandit case, where
players only observe their realized payofis.

Introduction

Motivated by current challenges (network, bi-
ology,...) we study algorithms that can be applied
to a large number of players that only have a lim-
ited knowledge of the game. In such games, no-
regret algorithms are broadly used. Nash equi-
libria (NE), have the desirable property that no
player would benefit from changing alone her strat-
egy. Recent studies 1] show that the long-term limit
of play of certain no-regret algorithms is arbitrarily
close to a NI with probability close to 1.

Can Nash equilibria (NFE) almost surely be
the limit result of a no-regret learning algorithm?
We positively answered this question focusing on the
Hedge algorithm [2| that has the property of no-
regret. We studied a low-information frame-
work where players have only access to a estimate
of the pure strategy they played (bandit). We show
that when HEDGE is applied to generic potential
games [3|, the induced sequence of play con-
verges towards NNE regardless of initialization.

Method

Steps of the proof based on the dynamics of stochas-
tic approximation algorithms:

® X is an asymptotic pseudo trajectory of the
replicator dynamics [4];

® The potential function is a strict Lyapunov
function of the dynamics;

® X converges toward a rest point of the dynamics
n
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olf X converges it converges to a NE.
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Setup

Game:

« We focus on potential games:

« N players N ={1,..., N};

« finite set of strategies per player §;:

- mixed strategies X, = AS;;

= payoff functions u;(x) = (v;(z), x), with
vi(x) = (Ui 8i, 7)) e

Payoff information: u;(s(n)).

Bandit estimator:
o _ ui(si,8(n)-i)
Ul(n) — (]187;(71>:S7; Xi75i(n_1) )SiESi.
Step size: 7, x -5 for some § € (3, 1].
— (exp(yz’si))sieé’i
ZSZ'ESZ' eXp<y’iSi> .

Logit map: A;(y;)

Algorithm

A variant of the Exponential Weights [2], with:

Algorithm 1 «-HEDGE with bandit feedback

Require: step-size sequence 7, > 0, exploration
factor sequence ¢, € |0, 1], initial scores Y; &
R> i e N.

- forn=1,2,... do
for every player i € N do
set strategy: X; < €,/|Si| + (1 — €,)\i(Y});
choose action s; ~ X;:
compute the bandit estimator ;(n);
update scores: Y; < Y, + v, 0;;
end for

end for
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Main Result

With an adapted exploration factor, the sequence of play converges to a Nash equilibrium (a.s.).
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Results

Convergence to 0-NE with 0 —._ 0 if ¢, is
constant.

And convergence to NE almost surely it the
exploration factor €, decreases so that:

2
. In SN : €n — €En+1
lim — =0, ) —“ <ooand lim = 0.
n— 00 62 — € n— 00
n n=1 tn Yn

Convergence rate

Semi-bandit 9;(n) = (u;(si, s(n)-;) + &), e
Noise hypotheses: for some ¢ > 2, A > 0, and
foralln =1,2,... (a.s.):

- Pll&(n) 15 = 2|Fn-1) < A/,

- E[&(n)| Fus] = 0

We obtain an exponential convergence rate

Xig(n) > 1—be 217 for some positive b, ¢ > 0.
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