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Abstract

In this paper, we seek for a single best represen-
tative of a set of statistical multivariate normal
distributions. To define the “best” center, we con-
sider either minimizing the average or the maxi-
mum relative entropy of the center to the given set
of normal distributions. Since the relative entropy
is an asymmetric divergence, this yields the notion
of left- and right-sided, and symmetrized entropic
centroids and circumcenters along with their re-
spective information radii. We show how to in-
stantiate and implement for this special case of
multivariate normals very recent work that tack-
led the broader case of finding centers of point
sets with respect to Bregman divergences.

1 Information-theoretic centers

Consider a set of n multivariate normal dis-
tributions D = {N(µ1, Σ1), ..., N(µn, Σn)} with
µi ∈ R

d denoting the mean vector and Σi the
d × d symmetric positive semi-definite variance-
covariance matrix (i.e., xT Σix ≥ 0 for all
x ∈ R

d). The probability density func-
tion Pr(X = x) = p(x; µ, Σ) of a normal
random variable X ∼ N(µ, Σ) is given as:

p(x;µ, Σ) = 1

(2π)
d

2

√
detΣ

exp
(

−

(x−µ)T Σ−1(x−µ)
2

)

.

A normal distribution N(µ, Σ) can thus be
uniquely characterized by a parameter point Λ̃ =

(µ, Σ) in dimension D = d + d(d+1)
2 = d(d+3)

2 by
stacking the d mean coordinates of µ with the
d(d+1)

2 matrix coefficients of Σ. We use the tilde
notation ˜ to emphasize on the mixed-type na-
ture vector/matrix of the parameter. For exam-
ple, bivariate parametric distributions are repre-
sented by 5D points lying in the parameter space
X = R

2×Cone(R2×2), where Cone(R2×2) denotes
the convex cone of positive semi-definite matrices.
Given a set of n d-variate distributions D handled
as D-dimensional point set S = {Λ̃1, ..., Λ̃n} with
Λ̃i = (µi, Σi), we seek to define a proper center.
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Ignoring for a while the fact that S is a point set
lying in a parameter space X , we may consider the
two usual centers in Euclidean geometry E

D: (1)
The centroid that is commonly called and defined

as the center of mass ¯̃Λ = 1
n

∑n

i=1 Λ̃i of S, and

(2) The circumcenter Λ̃∗ that defines the smallest
radius enclosing ball of S.

Both the centroid and the circumcenter are
appropriate centers for simplifying the point set
down to its best single representative. In other
words, these centers solve the 1-clustering task
for the following respective minimization criteria:

(1) The centroid c+ is found as the unique min-
imizer of the minimum average for the squared

Euclidean distance:
c+ = arg minx∈RD

∑n

i=1
1
n
||xΛ̃i||2.

(2) The circumcenter C∗ is defined as the cen-
ter that minimizes the radius of enclosing balls:

C∗ = argminx∈RD maxn
i=1 ||xΛ̃i||.

While these minimization problems look quite
similar at first glance, they bear in fact very
different mathematical properties. Although it
could be tempting to consider “as is” these Eu-
clidean centers for the parameter space Λ, this
may not yield meaningful centers properly char-
acterizing well the normal sets. The reason is
that the Euclidean distance (or its squared dis-
tance) does not make sense1 for normals. Indeed,
consider two univariate normals X1 ∼ N(µ, σ2

1)
and X2 ∼ N(µ, σ2

2) centered on the same mean
µ. Applying straightforwardly the Euclidean dis-
tance on the parameter points λ1 = (µ, σ2

1) and
λ2 = (µ, σ2

2), we get a large distance
√

(σ2
2 − σ2

1)2

for σ1 deviating much from σ2, a clearly wrong
notion of statistical distance since the bell shape
distributions get closer to each other in that case.
An appropriate distance between statistical dis-
tributions is the Kullback-Leibler divergence (KL)
better known as relative entropy. The KL diver-
gence is an asymmetric measure of dissimilarity
of probability distributions defined as KL(p||q) =
∫

x
p(x) log p(x)

q(x)dx. The KL divergence relates

the Shannon entropy H(p) = −
∫

p(x) log p(x)dx

with the cross-entropy H(p; q) =
∫

p(x) log 1
q(x)dx

as follows: KL(p||q) = −H(p) −
∫

p log qdx =

1Except iff. all covariance matrices are the same.
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H(p; q) − H(p). For multivariate normal dis-
tributions, the closed-form formula for the en-
tropy and relative entropy are obtained after
carrying out fastidious integral computations as
H(p(x; µ, Σ)) = d

2 + 1
2 log(2π)ddetΣ, (indepen-

dent of µ) and KL(p(x; µi, Σi)||p(x; µj , Σj)) =
1
2 (µi − µj)

T Σ−1
j (µi − µj) + 1

2 log det(Σ−1
i Σj) +

1
2 tr

(

Σ−1
j Σi

)

− d
2 (*), where tr(Σ) =

∑d

i=1 Σi,i

denotes the matrix trace (i.e. the sum of the di-
agonal elements Σi,i). Observe that the relative
entropy of normals with identity covariance ma-
trices collapses to the squared Euclidean distance.

2 Relative entropy of exponential families

It turns out that the normal distributions be-
long to the (full regular) exponential families [2,
5] in statistics. Besides normal distributions,
exponential families include many familiar dis-
crete or continuous distributions such as Pois-
son, Bernoulli, Beta, Gamma but do not fully
cover the spectrum of usual distributions either
(e.g., uniform, Lévy SαS or Cauchy distribu-
tions). Let λ denote the usual parameters of
parametric distributions. Exponential families
admit the following canonical decomposition of
their probability measures: p(x; λ) = p(x; θ) =
exp {< θ, t(x) > −F (θ) + C(x)}, where θ ∈ R

D

are the natural parameters associated with the
sufficient statistics t(x) (t : R

d 7→ R
D). The real-

valued log normalizer function F (θ) is a strictly
convex and differentiable function that specifies
uniquely the exponential family, and the function
C(x) is the base counting or Lebesgue measure.
Once this canonical decomposition is figured out,
we can apply the key equivalence theorem [2, 5]
Kullback-Leibler of distributions of the same ex-

ponential family⇐⇒Bregman divergence for the
log normalizer F : KL(p(x; µi, Σi)||p(x; µj , Σj)) =
DF (θj ||θi), to get without integral computations
the closed-form formula (notice that parameter
order swaps). The Bregman divergence [2, 5]
DF is defined as the tail of a Taylor expan-
sion for a strictly convex and differentiable func-
tion F as DF (θj ||θi) = F (θj) − F (θi)− < θj −
θi,∇F (θi) >, where < ·, · > denotes the vec-

tor inner product (< p, q >= pT q =
∑d

i=1 piqi)
and ∇F is the gradient operator. For multivari-
ate normals, we get the mixed-type natural pa-
rameters Θ̃ = (θ, Θ) = (Σ−1µ, 1

2Σ−1), F (Θ̃) =
1
4 tr(Θ−1θθT )− 1

2 log detΘ + d
2 log 2π and the one-

to-one mapping from the source Λ̃ = (µ, Σ) to

natural parameters Θ̃: Λ̃ =

(

λ = µ

Λ = Σ

)

⇐⇒ Θ̃ =

(

θ = Σ−1µ

Θ = 1
2Σ−1

)

. The inner product < Θ̃p, Θ̃q >

in the corresponding Bregman divergence DF is
a composite inner product obtained as the sum
of two inner products for vectors and matrices:
< Θ̃p, Θ̃q >=< Θp, Θq > + < θp, θq >. For
matrices, the inner product < Θp, Θq > is de-
fined by the trace of the matrix product ΘpΘ

T
q :

< Θp, Θq >= Tr(ΘpΘ
T
q ). One can check by hand

that KL(p(x; µi, Σi)||p(x; µj , Σj)) = DF (Θ̃j ||Θ̃i)
yields formula (∗) by elementary calculus, bypass-
ing complex integral computations.

3 Legendre transformation and duality

We refer to [2, 5] for detailed explanations that
we quickly summarize here: Any Bregman gener-
ator function F admits a dual Bregman genera-
tor function G = F ∗ via the Legendre transfor-
mation G(y) = supx∈X{< y, x > −F (x)}. The
supremum is reached at the unique point where
the gradient of G(x) =< y, x > −F (x) van-
ishes, that is when y = ∇F (x). Writing X ′

F

for the gradient space {x′ = ∇F (x)|x ∈ X}, the
convex conjugate G = F ∗ of F is the function
defined by F ∗(x′) =< x, x′ > −F (x). It fol-
lows from Legendre transformation that any Breg-
man divergence DF admits a dual Bregman diver-
gence DF∗ related to DF as follows: DF (p||q) =
F (p) + F ∗(∇F (q))− < p,∇F (q) >= F (p) +
F ∗(q′)− < p, q′ >= DF∗(q′||p′). Yoshizawa and
Tanabe [10] carried out that non-trivial Legen-
dre transformation for multivariate normals. The
strictly convex and differentiable dual Bregman
generator function F ∗ (ie., potential function in
information geometry) is F ∗(H̃) = − 1

2 log(1 +

ηT H−1η) − 1
2 log det(−H) − d

2 log(2πe). The

H̃ ⇔ Θ̃ coordinate transformations obtained from
the Legendre transformation are given by H̃ =

∇Θ̃F (Θ̃) =

(

1
2Θ−1θ

− 1
2Θ−1 − 1

4 (Θ−1θ)(Θ−1θ)T

)

,

and Θ̃ = ∇H̃F ∗(H̃) =

(

−(H + ηηT )−1η

− 1
2 (H + ηηT )−1

)

.

This yields the dual expectation coordinate sys-
tems arising from the canonical decomposition:

H̃ =

(

η = µ

H = −(Σ + µµT )

)

⇐⇒ Λ̃ =

(

λ = µ

Λ = Σ

)

.

These formulas simplify when we restrict our-
selves to diagonal-only covariance matrices Σi,
spherical Gaussians Σi = σiI, or univariate nor-
mals N (µi, σ

2
i ). The expectation parameter H̃

plays an important role for infering the source
parameters Λ̃ from a sequence of identically and
independently distributed observations x1, ..., xv.
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Figure 1: Right-sided (red), left-sided (blue) and
symmetrized centroids (green) for 2D normals.

Indeed, the maximum likelihood estimator (MLE)

of exponential families is ˆ̃
H = 1

v

∑v

i=1 t(xi),
where t(xi) is the sufficient statistics evaluated
at xi. This yields a simple procedure to in-
fer from raw data x1, ..., xv ∈ R

d the multivari-

ate normal parameters Λ̂ ⇔ ˆ̃
H ∈ R

D by tak-
ing the centroid on the sufficient statistics for
t(x) = x̃ = (x,− 1

2xxT ). (This MLE is biased.)
Gaussian distribution modeling abound in prac-
tice as explicited for three applications in [3].

4 Entropic centroids of multivariate normals

The entropic centroids e+ of normals are
defined similarly to the Euclidean geometry
case by considering minimizing the average

distance: the information radius r+. Be-
cause the relative entropy is asymmetric,
we consider three entropic centroids defined
as the following unique minimizers: e+

L =

arg minΛ̃

∑n

i=1
1
n
KL(p(x; Λ̃)||p(x; Λ̃i)), e

+
R =

arg minΛ̃

∑n

i=1
1
n
KL(p(x; Λ̃i||p(x; Λ̃)), and

e∗ = argminΛ̃

∑n

i=1
1
2n

KL(p(x; Λ̃i||p(x; Λ̃)) +

KL(p(x; Λ̃)||p(x; Λ̃i). The latter symmetrical
KL divergence is also called J-divergence and
plays an important role in signal processing [4].
Using the equivalence theorem KL ↔ DF ,
it follows that the minimizers match up to
source↔natural parameter conversions the
following Bregman centroids c+ for the log
normalizer F by the swapping argument or-
der: e+

L ↔ c+
R = arg minΘ̃

∑n

i=1
1
n
DF (Θ̃i||Θ̃),

e+
R ↔ c+

L = arg minΘ̃

∑n

i=1
1
n
DF (Θ̃||Θ̃i), and

e+ ↔ c+ = arg minΘ̃

∑n

i=1
1
n

DF (Θ̃i||Θ̃)+DF (Θ̃||Θ̃i)
2 .

It has been shown in [7] that the sided Breg-
man centroids admit closed-form formulas
that are generalized means2: c+

R is simply

the center of mass c+
R = ¯̃Θ (independent of

2A f -mean is defined as f−1( 1
n

∑n
i=1 f(xi)).

Figure 2: The circumcenter of the smallest enclos-
ing disk is lying on the furthest Voronoi diagram.

F , a mean for the identity function) and
c+
L = ∇F−1(

∑n

i=1 ∇F (Θ̃i)), a ∇F -mean. The
information radius [7] r+ coincides for the sided
centroid, and is expressed as a Burbea-Rao
divergence (i.e., a generalized F -Jensen re-

minder): r+(S) = 1
n

∑n

i=1 F (Θ̃i) − F ( ¯̃Θ) ≥ 0.
These results extend to barycenters as well, and
allow one to perform interpolation and model
merging on statistical normal manifolds [9].
(Note that centroids are robust to outliers.)
Further, the symmetrized entropic centroid

e+ does not admit closed-form solution but
is characterized geometrically exactly as the
intersection of the geodesic linking the left-sided
and right-sided Bregman centroids (say, cL and
cR respectively) with the mixed-type bisector:
MF (cF

R, cF
L) = {x ∈ X | DF (cF

R||x) = DF (x||cF
L )}.

This yields an efficient approximation algorithm
by walking dichotomically on the geodesic (wrt.
the relative entropy) linking the two sided
Bregman (c+

L and c+
R) or equivalently entropic

centroids (e+
L and e+

R). Figure 1 depicts the
sided and symmetrized KL entropic centroids
derived from Bregman centroids. The geodesic
walk algorithm [7] simplifies and generalizes
a former complex and time consuming ad-hoc

method [4], and allows one to extend the k-means
algorithm [2] to hard sided and symmetrized
entropic clustering of normals [3]. The Bregman
loss function of sided k-means monotonously
decreases. (k-means is a Bregman k-means [2] in
disguise for the generator F (x) = x2.)

5 Entropic circumcenters of normals

The MinMax optimization problem differs from
the MinAvg optimization in the sense that it
further optimizes the KL radius r+ to its small-
est possible value r∗ but becomes sensitive to
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outliers. The MinMax optimization problem is
not differentiable on the furthest Voronoi dia-
gram [5] (see Figure 2). We similarly define the
sided and symmetrized entropic circumcenters:
E∗

L ↔ C∗
R = arg minΘ̃ maxn

i=1 DF (Θ̃i||Θ̃), E∗
R ↔

C∗
L = arg minΘ̃ maxn

i=1 DF Θ̃||(Θ̃i), and E∗ ↔

C∗ = argminΘ̃ maxn
i=1

DF (Θ̃i||Θ̃)+DF (Θ̃||Θ̃i)
2 . We

showed that Welzl’s MiniBall algorithm extends
to arbitrary Bregman divergences [8] allowing us
to compute exactly the sided entropic circumcen-
ters E∗

R and E∗
L on the plane. The basis computa-

tions relies on using the fact that the right-sided

Bregman Voronoi bisector [5] is a straight line.
(In small dimensions, computing these bases pro-
ceed by dimension reduction by constructing the
Bregman generator restricted to affine subspaces.)
Note that the circumcenter of the entropic ball
passing through exactly three points may not ex-
ist as this circumcenter obtained as the common
intersection point of three linear bisectors may
potentially fall out of domain X . However, this
never happens for the recursive generalization of
Welzl’s algorithm [8]. As dimension increases, it is
not possible to compute in practice the exact cir-
cumcenter as Welzl’s algorithm exhibits the curse

of dimensionality: an exponential time depen-
dence with the dimension. We considered in [6] a
generalization of the approximation of the small-
est enclosing ball based on the notion of core-sets

working in very large dimensions (d ∼ 10000). As
mentioned above, the computation of the smallest
enclosing entropic balls rely on the property that
right-type Bregman bisector are hyperplanes [5],
and therefore the right-type Bregman Voronoi is
an affine diagram that can be computed equiva-
lently using a power diagram [5]. This allows us to
define entropic Voronoi diagrams for multivariate
normals with corresponding dual regular/geodesic
entropic Delaunay triangulations.

6 Concluding remarks

We have concisely presented in view of our results
on information-theoretic Bregman centers [7, 8, 6]
the entropic centers of statistical multivariate nor-
mal distributions, i.e. the Kullback-Leibler en-
tropic centroids and circumcenters. We have
described the Legendre transformation for the
mixed-type vector/matrix log normalizer of that
exponential family and reported on our imple-
mentation. We can reinterpret these entropic
centers under the auspices of information geome-
try [1] by considering the dually flat Riemannian
manifolds where Bregman divergences arise natu-
rally as the canonical divergences [10].

Probability density functions Natural parameter points

Expectation parameter points
Source parameter points

λ∗ = arg minλ∈Λ maxi∈{1,...,n} KL(p(x;λ)||p(x;λi)) (left-sided)

θ∗ = arg minθ∈Θ maxi∈{1,...,n} DF (θi||θ) (right-sided)

η∗ = arg minη∈H maxi∈{1,...,n} DF∗(η||ηi) (left-sided)

F ∗(η) = − 1
2 log(η2 − η2

1)

F ∗(λ) = − log σ

λ = (µ, σ)

Sufficient statistics
t(x) = (x, x2)

MLE estimators: expectation parameters
=

centroids of sufficient statistics

Legendre transformation
F ←→ F ∗ =

∫

∇
−1F

∇F ∗ = ∇
−1F

η = ∇θF (θ) = (µ, µ2 + σ2)

p(x;µ, σ) = 1√
2πσ

exp
(

− (x−µ)2

2σ2

)

Θ = R× R
−

Λ = R× R
+

H = R× R
+

η = ∇θF (θ) = (− θ1

2θ2

,
θ2

1

4θ2

2

− 1
2θ2

)

θ = ∇ηF ∗ = ( 1
η2−η1

, 1
2(η2−η2

1
)
)

F (θ) = −
θ2

1

4θ2

+ 1
2 log− π

θ2

F (λ) = µ2

2σ2 + 1
2 log 2πσ2

θ = ∇ηF ∗(η) = ( µ
σ2 ,− 1

2σ2 )

Legendre transformation
F ←→ F ∗ =

∫

∇
−1F

∇F ∗ = ∇
−1F

θ = ∇ηF ∗(η) = ( µ
σ2 ,− 1

2σ2 )

F (λ) = µ2

2σ2 + 1
2 log 2πσ2

F (θ) = −
θ2

1

4θ2

+ 1
2 log− π

θ2

Figure 3: The left KL circumcenter of a set of 1D
normals. (Zoom in pdf please for explanations.)
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