
Online k-MLE for mixture modelling with
exponential families

Christophe Saint-Jean Frank Nielsen

Geometry Science Information 2015

Oct 28-30, 2015 - Ecole Polytechnique, Paris-Saclay



Application Context

2/27

2/27

We are interested in building a system (a model) which evolves
when new data is available:

x1, x2, . . . , xN , . . .

The time needed for processing a new observation must be
constant w.r.t the number of observations.

The memory required by the system is bounded.

Denote π the unknown distribution of X
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Reminder : (Regular) Exponential Family
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Firstly, π will be approximated by a member of a (regular)
exponential family (EF):

EF = {f (x ; θ) = exp {〈s(x), θ〉+ k(x)− F (θ)|θ ∈ Θ}

Terminology:

λ source parameters.

θ natural parameters.

η expectation parameters.

s(x) sufficient statistic.

k(x) auxiliary carrier measure.

F (θ) the log-normalizer:
differentiable, strictly
convex

Θ = {θ ∈ RD |F (θ) <∞}
is an open convex set

Almost all common distributions are EF members but uniform,
Cauchy distributions.



Reminder : Maximum Likehood Estimate (MLE)
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Maximum Likehood Estimate for general p.d.f:

θ̂(N) = argmax
θ

N∏
i=1

f (xi ; θ) = argmin
θ
− 1

N

N∑
i=1

log f (xi ; θ)

assuming a sample χ = {x1, x2, ..., xN} of i.i.d observations.

Maximum Likehood Estimate for an EF:

θ̂(N) = argmin
θ

(
−

〈
1

N

∑
i

s(xi ), θ

〉
− cst(χ) + F (θ)

)
which is exactly solved in H, the space of expectation parameters:

η̂(N) = ∇F (θ̂(N)) =
1

N

∑
i

s(xi ) ≡ θ̂(N) = (∇F )−1

(
1

N

∑
i

s(xi )

)



Exact Online MLE for exponential family
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A recursive formulation is easily obtained

Algorithm 1: Exact Online MLE for EF

Input: a sequence S of observations

Input: Functions s and (∇F )−1 for some EF

Output: a sequence of MLE for all observations seen before

η̂(0) = 0; N = 1;

for xN ∈ S do
η̂(N) = η̂(N−1) + N−1(s(xN)− η̂(N−1));

yield η̂(N) or yield (∇F )−1(η̂(N));

N = N + 1;

Analytical expressions of (∇F )−1 exist for most EF (but not all)



Case of Multivariate normal distribution (MVN)
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Probability density function of MVN:

N (x ;µ,Σ) = (2π)−
d
2 |Σ|−

1
2 exp−

1
2

(x−µ)T Σ−1(x−µ)

One possible decomposition:

N (x ; θ1, θ2) = exp{〈θ1, x〉+ 〈θ2,−xxT 〉F

− 1

4
tθ1θ

−1
2 θ1 −

d

2
log(π) +

1

2
log |θ2|}

=⇒
{

s(x) = (x ,−xxT )
(∇F )−1(η1, η2) =

(
(−η1η

T
1 − η2)−1η1,

1
2 (−η1η

T
1 − η2)−1

)



Case of the Wishart distribution
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See details in the paper.



Finite (parametric) mixture models
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Now, π will be approximated by a finite (parametric) mixture
f (·; θ) indexed by θ:

π(x) ≈ f (x ; θ) =
K∑
j=1

wj fj(x ; θj), 0 ≤ wj ≤ 1,
K∑
j=1

wj = 1

where wj are the mixing proportions, fj are the component
distributions.

When all fj ’s are EFs, it is called a Mixture of EFs (MEF).

−5 0 5 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

x

0.
1 

* 
dn

or
m

(x
) 

+
 0

.6
 *

 d
no

rm
(x

, 4
, 2

) 
+

 0
.3

 *
 d

no
rm

(x
, −

2,
 0

.5
)

Unknown true distribution f*
Mixture distribution f
Components density functions f_j



Incompleteness in mixture models
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incomplete
observable

χ = {x1, . . . , xN}

deterministic←
complete

unobservable
χc = {y1 = (x1, z1), . . . , yN}

Zi ∼ catK (w)

Xi |Zi = j ∼ fj(·; θj)

For a MEF, the joint density p(x , z ; θ) is an EF:

log p(x , z ; θ) =
K∑
j=1

[z = j ]{log(wj) + 〈θj , sj(x)〉+ kj(x)− Fj(θj)}

=
K∑
j=1

〈(
[z = j ]

[z = j ] sj(x)

)
,

(
logwj − Fj(θj)

θj

)〉
+ k(x , z)



Expectation-Maximization (EM) [1]
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The EM algorithm maximizes iteratively Q(θ; θ̂(t), χ).

Algorithm 2: EM algorithm

Input: θ̂(0) initial parameters of the model

Input: χ(N) = {x1, . . . , xN}
Output: A (local) maximizer θ̂(t∗) of log f (χ; θ)

t ← 0;

repeat

Compute Q(θ; θ̂(t), χ) := Eθ̂(t) [log p(χc ; θ)|χ] ; // E-Step

Choose θ̂(t+1) = argmaxθQ(θ; θ̂(t), χ) ; // M-Step

t ← t +1;

until Convergence of the complete log-likehood ;



EM for MEF
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For a mixture, the E-Step is always explicit:

ẑ
(t)
i ,j = ŵ

(t)
j f (xi ; θ̂

(t)
j )/

∑
j ′

ŵ
(t)
j ′ f (xi ; θ̂

(t)
j ′ )

For a MEF, the M-Step then reduces to:

θ̂(t+1) = argmax
{wj ,θj}

K∑
j=1

〈( ∑
i ẑ

(t)
i ,j∑

i ẑ
(t)
i ,j sj(xi )

)
,

(
logwj − Fj(θj)

θj

)〉

ŵ
(t+1)
j =

N∑
i=1

ẑ
(t)
i ,j /N

η̂
(t+1)
j = ∇F (θ̂

(t+1)
j ) =

∑
i ẑ

(t)
i ,j sj(xi )∑
i ẑ

(t)
i ,j

(weighted average of SS)



k-Maximum Likelihood Estimator (k-MLE) [2]
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The k-MLE introduces a geometric split χ =
⊔K

j=1 χ̂
(t)
j to

accelerate EM :

z̃
(t)
i ,j = [argmax

j ′
wj ′f (xi ; θ̂

(t)
j ′ ) = j ]

Equivalently, it amounts to maximize Q over partition Z [3]

For a MEF, the M-Step of the k-MLE then reduces to:

θ̂(t+1) = argmax
{wj ,θj}

K∑
j=1

〈(
|χ̂(t)

j |∑
xi∈χ̂

(t)
j

sj(xi )

)
,

(
logwj − Fj(θj)

θj

)〉

ŵ
(t+1)
j = |χ̂(t)

j |/N η̂
(t+1)
j = ∇F (θ̂

(t+1)
j ) =

∑
xi∈χ̂

(t)
j

sj(xi )

|χ̂(t)
j |

(cluster-wise unweighted average of SS)



Online learning of mixtures
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Consider now the online setting

x1, x2, . . . , xN , . . .

Denote θ̂(N) or η̂(N) the parameter estimate after dealing N
observations

Denote θ̂(0) or η̂(0) their initial values

Remark: For a fixed-size dataset χ, one may apply multiple
passes (with shuffle) on χ.

The increase in the likelihood function is no more guaranteed
after an iteration.



Stochastic approximations of EM(1)
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Two main approaches to online EM-like estimation:

Stochastic M-Step : Recursive EM (1984) [5]

θ̂(N) = θ̂(N−1) + {NIc(θ̂(N−1)}−1∇θ log f (xN ; θ̂(N−1))

where Ic is the Fisher Information matrix for the complete
data:

Ic(θ̂(N−1)) = −E
θ̂

(N−1)
j

[
log p(x , z ; θ)

∂θ∂θT

]
A justification for this formula comes from the Fisher’s
Identity:

∇ log f (x ; θ) = Eθ[log p(x , z ; θ)|x ]

One can recognize a second order Stochastic Gradient Ascent
which requires to update and invert Ic after each iteration.



Stochastic approximations of EM(2)
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Stochastic E-Step : Online EM (2009) [7]

Q̂(N)(θ) = Q̂(N−1)(θ)+α(N)
(
Eθ̂(N−1) [log p(xN , zN ; θ)|xN ]− Q̂(N−1)(θ)

)
In case of a MEF, the algorithm works only with the cond.
expectation of the sufficient statistics for complete data.

ẑN,j = Eθ(N−1) [zN,j |xN ](
Ŝ

(N)
wj

Ŝ
(N)
θj

)
=

(
Ŝ

(N−1)
wj

Ŝ
(N−1)
θj

)
+ α(N)

((
ẑN,j

ẑN,j sj(xN)

)
−

(
Ŝ

(N−1)
wj

Ŝ
(N−1)
θj

))
The M-Step is unchanged:

ŵ
(N)
j = η̂

(N)
wj = Ŝ

(N)
wj

θ̂
(N)
j = (∇Fj)−1(η̂

(N)
θj

= Ŝ
(N)
θj

/Ŝ
(N)
wj )



Stochastic approximations of EM(3)
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Some properties:

Initial values Ŝ (0) may be used for introducing a ”prior”:

Ŝ
(0)
wj = wj , Ŝ

(0)
θj

= wjη
(0)
j

Parameters constraints are automatically respected

No matrix to invert !

Policy for α(N) has to be chosen (see [7])

Consistent, asymptotically equivalent to the recursive EM !!



Stochastic approximations of k-MLE(1)
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In order to keep previous advantages of online EM for an online
k-MLE, our only choice concerns the way to affect xN to a cluster.

Strategy 1 Maximize the likelihood of the complete data
(xN , zN)

z̃N,j = [argmax
j ′

ŵ
(N−1)
j ′ f (xN ; θ̂

(N−1)
j ′ ) = j ]

Equivalent to Online CEM and similar to Mac-Queen
iterative k-Means.



Stochastic approximations of k-MLE(2)
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Strategy 2 Maximize the likelihood of the complete data
(xN , zN) after the M-Step:

z̃N,j = [argmax
j ′

ŵ
(N)
j ′ f (xN ; θ̂

(N)
j ′ ) = j ]

Similar to Hartigan’s method for k-means.
Additional cost: pre-compute all possible
M-Steps for the Stochastic E -Step.



Stochastic approximations of k-MLE(3)
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Strategy 3 Draw z̃N,j from the categorical distribution

z̃N sampled from CatK ({pj = log(ŵ
(N−1)
j fj(xN ; θ̂

(N−1)
j ))}j)

Similar to sampling in Stochastic EM [3]
The motivation is to try to break the
inconsistency of k-MLE.

For strategies 1 and 3, the M-Step reduces the update of the
parameters for a single component.



Experiments
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True distribution π = 0.5N (0, 1) + 0.5N (µ2, σ
2
2)

Different values for µ2, σ2 for more or less overlap between
components.

A small subset of observations has be taken for initialization
(k-MLE++ / k-MLE).

Video illustrating the inconsistency of online k-MLE.



Experiments on Wishart
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Conclusions - Future works
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On consistency:

EM, Online EM are consistent
k-MLE, online k-MLE (Strategies 1,2) are inconsistent
(due to the Bayes error in maximizing the classification
likelihood)
Online stochastic k-MLE (Strategy 3) : consistency ?

So, when components overlap, online EM > k-MLE > online
k-MLE for parameter learning.

Need to study how the dimension influences the
inconstancy/convergence rate for online k-MLE.

Convergence rate is lower for online methods (sub-linear
convergence of the SGD)

Time for an update vs sample size:
online k-MLE (1,3) < online EM < online k-MLE (2) << k-MLE
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online EM appears to be the best compromise !!
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