Clustering Random Walk Time Series GSI 2015 - Geometric Science of Information

Gautier Marti, Frank Nielsen, Philippe Very, Philippe Donnat

Hellebore Capital Management

29 October 2015

Introduction

Geometry of Random Walk Time Series The Hierarchical Block Model Conclusion

2 Geometry of Random Walk Time Series

3 The Hierarchical Block Model

Context (data from www.datagrapple.com)

What is a clustering program?

Definition

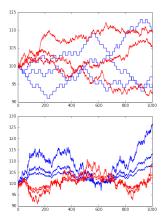
Clustering is the task of grouping a set of objects in such a way that objects in the same group (cluster) are more similar to each other than those in different groups.

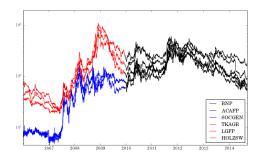
Example of a clustering program

We aim at finding k groups by positioning k group centers $\{c_1, \ldots, c_k\}$ such that data points $\{x_1, \ldots, x_n\}$ minimize $\min_{c_1, \ldots, c_k} \sum_{i=1}^n \min_{j=1}^k d(x_i, c_j)^2$

But, what is the distance d between two random walk time series?

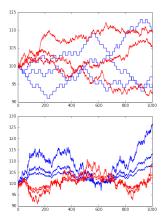
What are clusters of Random Walk Time Series?

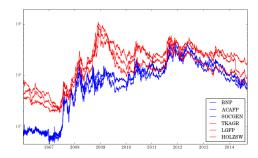




French banks and building materials CDS over 2006-2015

What are clusters of Random Walk Time Series?





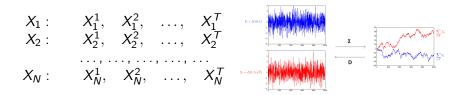
French banks and building materials CDS over 2006-2015

2 Geometry of Random Walk Time Series

3 The Hierarchical Block Model

Geometry of RW TS \equiv Geometry of Random Variables

i.i.d. observations:



Which distances $d(X_i, X_i)$ between dependent random variables?

Pitfalls of a basic distance

Let (X, Y) be a bivariate Gaussian vector, with $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$, $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$ and whose correlation is $\rho(X, Y) \in [-1, 1]$. $\mathbb{E}[(X - Y)^2] = (\mu_X - \mu_Y)^2 + (\sigma_X - \sigma_Y)^2 + 2\sigma_X\sigma_Y(1 - \rho(X, Y))$

Now, consider the following values for correlation:

 ρ(X, Y) = 0, so E[(X - Y)²] = (μ_X - μ_Y)² + σ²_X + σ²_Y. Assume μ_X = μ_Y and σ_X = σ_Y. For σ_X = σ_Y ≫ 1, we obtain E[(X - Y)²] ≫ 1 instead of the distance 0, expected from comparing two equal Gaussians.

•
$$\rho(X, Y) = 1$$
, so $\mathbb{E}[(X - Y)^2] = (\mu_X - \mu_Y)^2 + (\sigma_X - \sigma_Y)^2$.

Pitfalls of a basic distance

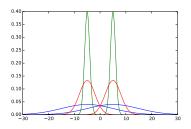
Let (X, Y) be a bivariate Gaussian vector, with $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$, $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$ and whose correlation is $\rho(X, Y) \in [-1, 1]$.

$$\mathbb{E}[(X - Y)^{2}] = (\mu_{X} - \mu_{Y})^{2} + (\sigma_{X} - \sigma_{Y})^{2} + 2\sigma_{X}\sigma_{Y}(1 - \rho(X, Y))$$

Now, consider the following values for correlation:

• $\rho(X, Y) = 0$, so $\mathbb{E}[(X - Y)^2] = (\mu_X - \mu_Y)^2 + \sigma_X^2 + \sigma_Y^2$. Assume $\mu_X = \mu_Y$ and $\sigma_X = \sigma_Y$. For $\sigma_X = \sigma_Y \gg 1$, we obtain $\mathbb{E}[(X - Y)^2] \gg 1$ instead of the distance 0, expected from comparing two equal Gaussians.

•
$$\rho(X, Y) = 1$$
, so $\mathbb{E}[(X - Y)^2] = (\mu_X - \mu_Y)^2 + (\sigma_X - \sigma_Y)^2$.



Probability density functions of Gaussians $\mathcal{N}(-5,1)$ and $\mathcal{N}(5,1)$, Gaussians $\mathcal{N}(-5,3)$ and $\mathcal{N}(5,3)$, and Gaussians $\mathcal{N}(-5,10)$ and $\mathcal{N}(5,10)$. Green, red and blue Gaussians are equidistant using L_2 geometry on the parameter space (μ, σ) . Hellebore Capital Management

Sklar's Theorem

Theorem (Sklar's Theorem (1959))

For any random vector $X = (X_1, ..., X_N)$ having continuous marginal cdfs P_i , $1 \le i \le N$, its joint cumulative distribution P is uniquely expressed as

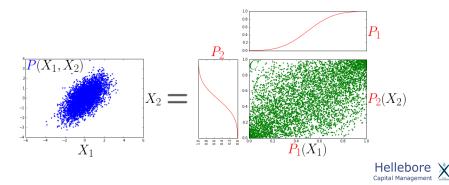
$$P(X_1,\ldots,X_N)=C(P_1(X_1),\ldots,P_N(X_N)),$$

where C, the multivariate distribution of uniform marginals, is known as the copula of X.

Sklar's Theorem

Theorem (Sklar's Theorem (1959))

For any random vector $X = (X_1, \ldots, X_N)$ having continuous marginal cdfs P_i , $1 \le i \le N$, its joint cumulative distribution P is uniquely expressed as $P(X_1, \ldots, X_N) = C(P_1(X_1), \ldots, P_N(X_N))$, where C, the multivariate distribution of uniform marginals, is known as the copula of X.



The Copula Transform

Definition (The Copula Transform)

Let $X = (X_1, ..., X_N)$ be a random vector with continuous marginal cumulative distribution functions (cdfs) P_i , $1 \le i \le N$. The random vector

$$U = (U_1, \ldots, U_N) := P(X) = (P_1(X_1), \ldots, P_N(X_N))$$

is known as the copula transform.

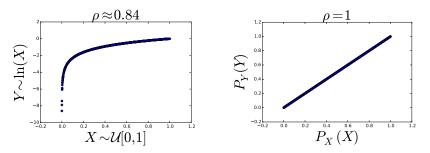
 U_i , $1 \le i \le N$, are uniformly distributed on [0, 1] (the probability integral transform): for P_i the cdf of X_i , we have $x = P_i(P_i^{-1}(x)) = \Pr(X_i \le P_i^{-1}(x)) = \Pr(P_i(X_i) \le x)$, thus $P_i(X_i) \sim \mathcal{U}[0, 1]$.

Capital Management

The Copula Transform

Definition (The Copula Transform)

Let $X = (X_1, \ldots, X_N)$ be a random vector with continuous marginal cumulative distribution functions (cdfs) P_i , $1 \le i \le N$. The random vector $U = (U_1, \ldots, U_N) := P(X) = (P_1(X_1), \ldots, P_N(X_N))$ is known as the copula transform.



The Copula Transform invariance to strictly increasing transformation Hellebore

Deheuvels' Empirical Copula Transform

Let (X_1^t, \ldots, X_N^t) , $1 \le t \le T$, be T observations from a random vector (X_1, \ldots, X_N) with continuous margins. Since one cannot directly obtain the corresponding copula observations $(U_1^t, \ldots, U_N^t) = (P_1(X_1^t), \ldots, P_N(X_N^t))$, where $t = 1, \ldots, T$, without knowing a priori (P_1, \ldots, P_N) , one can instead

Definition (The Empirical Copula Transform)

Gautier Marti, Frank Nielsen

• estimate the N empirical margins $P_i^T(x) = \frac{1}{T} \sum_{t=1}^T \mathbf{1}(X_i^t \le x), 1 \le i \le N$, to obtain the T empirical observations

$$(\tilde{U}_1^t,\ldots,\tilde{U}_N^t)=(P_1^T(X_1^t),\ldots,P_N^T(X_N^t)).$$

Equivalently, since U
^t_i = R^t_i/T, R^t_i being the rank of observation X^t_i, the empirical copula transform can be considered as the normalized rank transform.

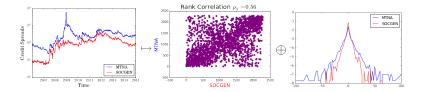
In practice

```
x_transform = rankdata(x)/len(x)
```

Hellebore

Capital Management

Generic Non-Parametric Distance



$$egin{aligned} &d^2_ heta(X_i,X_j) &= & heta 3\mathbb{E}\left[|P_i(X_i)-P_j(X_j)|^2
ight] \ &+ &(1- heta)rac{1}{2}\int_{\mathbf{R}}\left(\sqrt{rac{dP_i}{d\lambda}}-\sqrt{rac{dP_j}{d\lambda}}
ight)^2d\lambda \end{aligned}$$

(i) $0 \le d_{\theta} \le 1$, (ii) $0 < \theta < 1$, d_{θ} metric, (iii) d_{θ} is invariant under diffeomorphism

Generic Non-Parametric Distance

$$d_0^2: \frac{1}{2} \int_{\mathbf{R}} \left(\sqrt{\frac{dP_i}{d\lambda}} - \sqrt{\frac{dP_j}{d\lambda}} \right)^2 d\lambda = \mathrm{Hellinger}^2$$

$$d_1^2: 3\mathbb{E}\left[|P_i(X_i) - P_j(X_j)|^2\right] = \frac{1 - \rho_S}{2} = 2 - 6 \int_0^1 \int_0^1 C(u, v) \mathrm{d}u \mathrm{d}v$$

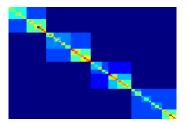
<u>Remark:</u> If $f(x,\theta) = c_{\Phi}(u_1,\ldots,u_N;\Sigma) \prod_{i=1}^N f_i(x_i;\nu_i)$ then

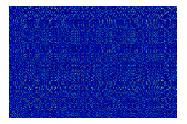
$$ds^2 = ds^2_{GaussCopula} + \sum_{i=1}^N ds^2_{margins}$$

2 Geometry of Random Walk Time Series

The Hierarchical Block Model

A model of nested partitions





The nested partitions defined by the In practice, one observe and work model can be seen on the distance with the above distance matrix matrix for a proper distance and the which is identitical to the left one right permutation of the data points up to a permutation of the data

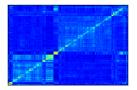
Hellebore

Capital Management

Results: Data from Hierarchical Block Model

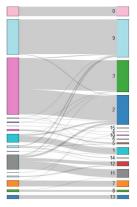
		Adjusted Rand Index		
Algo.	Distance	Distrib	Correl	Correl+Distrib
HC-AL	$(1 - \rho)/2$	0.00 ± 0.01	0.99 ± 0.01	0.56 ± 0.01
	$\mathbb{E}[(X - Y)^2]$	0.00 ± 0.00	0.09 ± 0.12	0.55 ± 0.05
	GPR $\theta = 0$	0.34 ± 0.01	0.01 ± 0.01	0.06 ± 0.02
	GPR $\theta = 1$	0.00 ± 0.01	0.99 ± 0.01	0.56 ± 0.01
	GPR $\theta = .5$	0.34 ± 0.01	0.59 ± 0.12	0.57 ± 0.01
	GNPR $\theta = 0$	1	0.00 ± 0.00	0.17 ±0.00
	GNPR $\theta = 1$	0.00 ± 0.00	1	0.57 ±0.00
	GNPR $\theta = .5$	0.99 ± 0.01	0.25 ± 0.20	0.95 ±0.08
AP	$(1 - \rho)/2$	0.00 ± 0.00	0.99 ±0.07	0.48 ±0.02
	$\mathbb{E}[(X - Y)^2]$	0.14 ± 0.03	0.94 ± 0.02	0.59 ± 0.00
	GPR $\theta = 0$	0.25 ± 0.08	0.01 ± 0.01	0.05 ± 0.02
	GPR $\theta = 1$	0.00 ± 0.01	0.99 ± 0.01	0.48 ±0.02
	GPR $\theta = .5$	0.06 ± 0.00	0.80 ± 0.10	0.52 ±0.02
	GNPR $\theta = 0$	1	0.00 ± 0.00	0.18 ± 0.01
	GNPR $\theta = 1$	0.00 ± 0.01	1	0.59 ± 0.00
	GNPR $\theta = .5$	0.39 ± 0.02	0.39 ± 0.11	1

Results: Application to Credit Default Swap Time Series

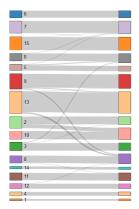


Distance matrices computed on CDS time series exhibit a hierarchical block structure

Marti, Very, Donnat, Nielsen IEEE ICMLA 2015



(un)Stability of clusters with L_2 distance



Stability of clusters with the proposed distance Hellebore Capital Management

Consistency

Definition (Consistency of a clustering algorithm)

A clustering algorithm \mathcal{A} is consistent with respect to the Hierarchical Block Model defining a set of nested partitions \mathcal{P} if the probability that the algorithm \mathcal{A} recovers all the partitions in \mathcal{P} converges to 1 when $T \to \infty$.

Definition (Space-conserving algorithm)

A space-conserving algorithm does not distort the space, i.e. the distance D_{ij} between two clusters C_i and C_j is such that

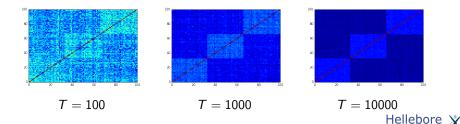
$$D_{ij} \in \left[\min_{x \in C_i, y \in C_j} d(x, y), \max_{x \in C_i, y \in C_j} d(x, y)\right].$$

Hellebore Capital Management

Consistency

Theorem (Consistency of space-conserving algorithms (Andler, Marti, Nielsen, Donnat, 2015))

Space-conserving algorithms (e.g., Single, Average, Complete Linkage) are consistent with respect to the Hierarchical Block Model.



Capital Management

Introduction

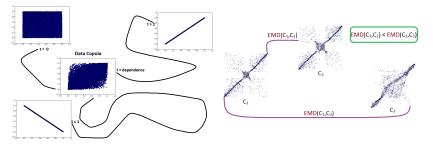
2 Geometry of Random Walk Time Series

3 The Hierarchical Block Model

Discussion and questions?

Avenue for research:

- distances on (copula, margins)
- clustering using multivariate dependence information
- clustering using multi-wise dependence information



Optimal Copula Transport for Clustering Multivariate Time Series, Marti, Nielsen, Donnat, 2015