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What is a clustering program?

Definition

Clustering is the task of grouping a set of objects in such a way
that objects in the same group (cluster) are more similar to each
other than those in different groups.

Example of a clustering program

We aim at finding k groups by positioning k group centers
{c1, . . . , ck} such that data points {x1, . . . , xn} minimize
minc1,...,ck

∑n
i=1 mink

j=1 d(xi , cj)
2

But, what is the distance d between two random walk time series?
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What are clusters of Random Walk Time Series?

French banks and building materials
CDS over 2006-2015
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Geometry of RW TS ≡ Geometry of Random Variables

i.i.d. observations:

X1 : X 1
1 , X 2

1 , . . . , XT
1

X2 : X 1
2 , X 2

2 , . . . , XT
2

. . . , . . . , . . . , . . . , . . .
XN : X 1

N , X 2
N , . . . , XT

N

Which distances d(Xi ,Xj) between dependent random variables?
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Pitfalls of a basic distance

Let (X ,Y ) be a bivariate Gaussian vector, with X ∼ N (µX , σ
2
X ),

Y ∼ N (µY , σ
2
Y ) and whose correlation is ρ(X ,Y ) ∈ [−1, 1].

E[(X − Y )2] = (µX − µY )2 + (σX − σY )2 + 2σXσY (1− ρ(X ,Y ))

Now, consider the following values for correlation:

ρ(X ,Y ) = 0, so E[(X − Y )2] = (µX − µY )2 + σ2
X + σ2

Y .
Assume µX = µY and σX = σY . For σX = σY � 1, we
obtain E[(X − Y )2]� 1 instead of the distance 0, expected
from comparing two equal Gaussians.

ρ(X ,Y ) = 1, so E[(X − Y )2] = (µX − µY )2 + (σX − σY )2.
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Pitfalls of a basic distance
Let (X , Y ) be a bivariate Gaussian vector, with X ∼ N (µX , σ

2
X ), Y ∼ N (µY , σ

2
Y ) and whose correlation is

ρ(X , Y ) ∈ [−1, 1].

E[(X − Y )2] = (µX − µY )2 + (σX − σY )2 + 2σXσY (1− ρ(X , Y ))

Now, consider the following values for correlation:

ρ(X , Y ) = 0, so E[(X − Y )2] = (µX − µY )2 + σ2
X + σ2

Y . Assume µX = µY and σX = σY . For

σX = σY � 1, we obtain E[(X − Y )2]� 1 instead of the distance 0, expected from comparing two
equal Gaussians.

ρ(X , Y ) = 1, so E[(X − Y )2] = (µX − µY )2 + (σX − σY )2.
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Sklar’s Theorem

Theorem (Sklar’s Theorem (1959))

For any random vector X = (X1, . . . ,XN) having continuous
marginal cdfs Pi , 1 ≤ i ≤ N, its joint cumulative distribution P is
uniquely expressed as

P(X1, . . . ,XN) = C (P1(X1), . . . ,PN(XN)),

where C, the multivariate distribution of uniform marginals, is
known as the copula of X .
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Sklar’s Theorem

Theorem (Sklar’s Theorem (1959))

For any random vector X = (X1, . . . , XN ) having continuous marginal cdfs Pi , 1 ≤ i ≤ N, its joint cumulative
distribution P is uniquely expressed as P(X1, . . . , XN ) = C(P1(X1), . . . , PN (XN )), where C, the multivariate
distribution of uniform marginals, is known as the copula of X .
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The Copula Transform

Definition (The Copula Transform)

Let X = (X1, . . . ,XN) be a random vector with continuous
marginal cumulative distribution functions (cdfs) Pi , 1 ≤ i ≤ N.
The random vector

U = (U1, . . . ,UN) := P(X ) = (P1(X1), . . . ,PN(XN))

is known as the copula transform.

Ui , 1 ≤ i ≤ N, are uniformly distributed on [0, 1] (the probability
integral transform): for Pi the cdf of Xi , we have
x = Pi (Pi

−1(x)) = Pr(Xi ≤ Pi
−1(x)) = Pr(Pi (Xi ) ≤ x), thus

Pi (Xi ) ∼ U [0, 1].

Gautier Marti, Frank Nielsen Clustering Random Walk Time Series



Introduction
Geometry of Random Walk Time Series

The Hierarchical Block Model
Conclusion

The Copula Transform

Definition (The Copula Transform)

Let X = (X1, . . . , XN ) be a random vector with continuous marginal cumulative distribution functions (cdfs) Pi ,
1 ≤ i ≤ N. The random vector U = (U1, . . . ,UN ) := P(X ) = (P1(X1), . . . , PN (XN )) is known as the copula
transform.
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The Copula Transform invariance to strictly increasing transformation
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Deheuvels’ Empirical Copula Transform

Let (X t
1 , . . . , X

t
N ), 1 ≤ t ≤ T , be T observations from a random vector (X1, . . . , XN ) with continuous margins.

Since one cannot directly obtain the corresponding copula observations (Ut
1, . . . ,U

t
N ) = (P1(X t

1 ), . . . , PN (X t
N )),

where t = 1, . . . ,T , without knowing a priori (P1, . . . , PN ), one can instead

Definition (The Empirical Copula Transform)

estimate the N empirical margins PT
i (x) = 1

T

∑T
t=1 1(X t

i ≤ x),
1 ≤ i ≤ N, to obtain the T empirical observations

(Ũt
1, . . . , Ũ

t
N) = (PT

1 (X t
1 ), . . . ,PT

N (X t
N)).

Equivalently, since Ũt
i = R t

i /T , R t
i being the rank of observation

X t
i , the empirical copula transform can be considered as the

normalized rank transform.

In practice

x_transform = rankdata(x)/len(x)
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Generic Non-Parametric Distance

d2
θ (Xi ,Xj) = θ3E

[
|Pi (Xi )− Pj(Xj)|2

]
+ (1− θ)

1

2

∫
R

(√
dPi

dλ
−
√

dPj

dλ

)2

dλ

(i) 0 ≤ dθ ≤ 1, (ii) 0 < θ < 1, dθ metric,
(iii) dθ is invariant under diffeomorphism
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Generic Non-Parametric Distance

d2
0 : 1

2

∫
R

(√
dPi
dλ −

√
dPj

dλ

)2

dλ = Hellinger2

d2
1 : 3E

[
|Pi (Xi )− Pj(Xj)|2

]
=

1− ρS
2

= 2−6

∫ 1

0

∫ 1

0
C (u, v)dudv

Remark:
If f (x , θ) = cΦ(u1, . . . , uN ; Σ)

∏N
i=1 fi (xi ; νi ) then

ds2 = ds2
GaussCopula +

N∑
i=1

ds2
margins
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The Hierarchical Block Model

A model of nested partitions

The nested partitions defined by the
model can be seen on the distance
matrix for a proper distance and the
right permutation of the data points

In practice, one observe and work
with the above distance matrix
which is identitical to the left one
up to a permutation of the data
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Results: Data from Hierarchical Block Model

Adjusted Rand Index
Algo. Distance Distrib Correl Correl+Distrib

HC-AL

(1− ρ)/2 0.00 ±0.01 0.99 ±0.01 0.56 ±0.01

E[(X − Y )2] 0.00 ±0.00 0.09 ±0.12 0.55 ±0.05

GPR θ = 0 0.34 ±0.01 0.01 ±0.01 0.06 ±0.02

GPR θ = 1 0.00 ±0.01 0.99 ±0.01 0.56 ±0.01

GPR θ = .5 0.34 ±0.01 0.59 ±0.12 0.57 ±0.01

GNPR θ = 0 1 0.00 ±0.00 0.17 ±0.00

GNPR θ = 1 0.00 ±0.00 1 0.57 ±0.00

GNPR θ = .5 0.99 ±0.01 0.25 ±0.20 0.95 ±0.08

AP

(1− ρ)/2 0.00 ±0.00 0.99 ±0.07 0.48 ±0.02

E[(X − Y )2] 0.14 ±0.03 0.94 ±0.02 0.59 ±0.00

GPR θ = 0 0.25 ±0.08 0.01 ±0.01 0.05 ±0.02

GPR θ = 1 0.00 ±0.01 0.99 ±0.01 0.48 ±0.02

GPR θ = .5 0.06 ±0.00 0.80 ±0.10 0.52 ±0.02

GNPR θ = 0 1 0.00 ±0.00 0.18 ±0.01

GNPR θ = 1 0.00 ±0.01 1 0.59 ±0.00

GNPR θ = .5 0.39 ±0.02 0.39 ±0.11 1
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Results: Application to Credit Default Swap Time Series

Distance matrices
computed on CDS
time series exhibit a
hierarchical block
structure

Marti, Very, Donnat,

Nielsen IEEE ICMLA 2015

(un)Stability of
clusters with L2

distance

Stability of clusters
with the proposed
distance
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Consistency

Definition (Consistency of a clustering algorithm)

A clustering algorithm A is consistent with respect to the Hierarchical
Block Model defining a set of nested partitions P if the probability that
the algorithm A recovers all the partitions in P converges to 1 when
T →∞.

Definition (Space-conserving algorithm)

A space-conserving algorithm does not distort the space, i.e. the distance
Dij between two clusters Ci and Cj is such that

Dij ∈
[

min
x∈Ci ,y∈Cj

d(x , y), max
x∈Ci ,y∈Cj

d(x , y)

]
.

Gautier Marti, Frank Nielsen Clustering Random Walk Time Series



Introduction
Geometry of Random Walk Time Series

The Hierarchical Block Model
Conclusion

Consistency

Theorem (Consistency of space-conserving algorithms (Andler,
Marti, Nielsen, Donnat, 2015))

Space-conserving algorithms (e.g., Single, Average, Complete
Linkage) are consistent with respect to the Hierarchical Block
Model.

T = 100 T = 1000 T = 10000
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Discussion and questions?

Avenue for research:

distances on (copula,margins)
clustering using multivariate dependence information
clustering using multi-wise dependence information

Optimal Copula Transport for Clustering Multivariate Time Series,
Marti, Nielsen, Donnat, 2015
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