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Introduction: Euclidean Smallest Enclosing Balls
Given d -dimensional P = {p1, ..., pn}, find the “smallest”
(with respect to the volume ≡ radius ≡ inclusion)
ball B = Ball(c , r) fully covering P:

c∗ = min
c∈Rd

n
max
i=1
‖c − pi‖.

◮ unique Euclidean circumcenter c∗, SEB [19].
◮ optimization problem non-differentiable [10]

c∗ lie on the farthest Voronoi diagram
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Euclidean smallest enclosing balls (SEBs)

◮ 1857: d = 2, Smallest Enclosing Ball? of P = {p1, ..., pn}
(Sylvester [16])

◮ Randomized expected linear time algorithm [19, 5] in fixed

dimension (but hidden constant exponential in d)

◮ Core-set [3] approximation: (1 + ǫ)-approximation in
O(dn

ǫ2
)-time in arbitrary dimension, O(dnǫ + 1

ǫ4.5
log 1

ǫ ) [7]

◮ Many other algorithms and heuristics [14, 9, 17], etc.

SEB also known as Minimum Enclosing Ball (MEB), minimax
center, 1-center, bounding (hyper)sphere, etc.

→ Applications in computer graphics (collision detection with ball
cover proxies [15]), in machine learning (Core Vector
Machines [18]), etc.
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Optimization and core-sets [3]

Let c(P) denote the circumcenter of the SEB and r(P) its radius

Given ǫ > 0, ǫ-core-set C ⊂ P, such that

P ⊆ Ball(c(C), (1 + ǫ)r(C))

⇔ Expanding SEB(C) by 1 + ǫ fully covers P

Core-set of optimal size ⌈1ǫ ⌉, independent of the dimension d ,
and n. Note that combinatorial basis for SEB is from 2 to
d + 1 [19].

→ Core-sets find many applications for problems in
large-dimensions.
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Euclidean SEBs from core-sets [2]

Bădoiu-Clarkson algorithm based on core-sets [2, 3]:

BCA:

◮ Initialize the center c1 ∈ P = {p1, ..., pn}, and
◮ Iteratively update the current center using the rule

ci+1 ← ci +
fi − ci
i + 1

where fi denotes the farthest point of P to ci :

fi = ps , s = argmaxnj=1‖ci − pj‖

⇒ gradient-descent method
⇒ (1 + ǫ)-approximation after ⌈ 1

ǫ2
⌉ iterations: O(dn

ǫ2
) time

⇒ Core-set: f1, ..., fl with l = ⌈ 1
ǫ2
⌉
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Euclidean SEBs from core-sets: Rewriting with #
a#tb: point (1− t)a+ tb = a+ t(b− a) on the line segment [ab].
D(x , y) = ‖x − y‖2, D(x ,P) = miny∈P D(x , y)

Algorithm 1: BCA(P, l).
c1 ← choose randomly a point in P ;
for i = 2 to l − 1 do

// farthest point from ci

si ← argmaxnj=1D(ci , pj);

// update the center: walk on the segment [ci , psi ]

ci+1 ← ci# 1
i+1

psi ;

end

// Return the SEB approximation

return Ball(cl , r
2
l = D(cl ,P)) ;

⇒ (1 + ǫ)-approximation after l = ⌈ 1
ǫ2
⌉ iterations.

c© 2013-14 Frank Nielsen, École Polytechnique & Sony Computer Science Laboratories 6/39



Bregman divergences (incl. squared Euclidean distance)

SEB extended to Bregman divergences BF (· : ·) [13]

BF (c : x) = F (c)− F (x)− 〈c − x ,∇F (x)〉,
BF (c : X ) = minx∈X BF (c : x)

F

q p

p̂

q̂
Hq

H ′

q

BF (p, q) = Hq − H ′

q

⇒ Bregman divergence = remainder of a first order Taylor
expansion.
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Smallest enclosing Bregman ball [13]

F ∗ = convex conjugate of F with (∇F )−1 = ∇F ∗

Algorithm 2: MBC(P, l).
// Create the gradient point set (η-coordinates)

P ′ ← {∇F (p) : p ∈ P};
g ← BCA(P ′, l);

return Ball(cl = ∇F−1(c(g)), rl = BF (cl : P)) ;
Guaranteed approximation algorithm with approximation factor
depending on 1

minx∈X ‖∇2F (x)‖ , ... but poor in practice

∀s, SF (x ;∇F−1(c(g))) ≤ (1 + ǫ)2r ′∗

minx∈X ‖∇2F (x)‖
with SF (c ; x) = BF (c : x) + BF (x : c)
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Smallest enclosing Bregman ball [13]

A better approximation in practice...

Algorithm 3: BBCA(P, l).
c1 ← choose randomly a point in P ;
for i = 2 to l − 1 do

// farthest point from ci wrt. BF

si ← argmaxnj=1BF (ci : pj);

// update the center: walk on the η-segment
[ci , psi ]η

ci+1 ← ∇F−1(∇F (ci )# 1
i+1
∇F (psi )) ;

end

// Return the SEBB approximation

return Ball(cl , rl = BF (cl : X )) ;

θ-, η-geodesic segments in dually flat geometry.
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Basics of Riemannian geometry

◮ (M, g): Riemannian manifold

◮ 〈·, ·〉, Riemannian metric tensor g : definite positive bilinear
form on each tangent space TxM (depends smoothly on x)

◮ ‖ · ‖x : ‖u‖ = 〈u, u〉1/2: Associated norm in TxM

◮ ρ(x , y): metric distance between two points on the manifold
M (length space)

ρ(x , y) = inf

{
∫ 1

0

‖ϕ̇(t)‖ dt, ϕ ∈ C 1([0, 1],M), ϕ(0) = x , ϕ(1) = y

}

Parallel transport wrt. Levi-Civita metric connection ∇: ∇g = 0.
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Basics of Riemannian geometry: Exponential map

◮ Local map from the tangent space TxM to the manifold
defined with geodesics (wrt ∇).

∀x ∈ M,D(x) ⊂ TxM : D(x) = {v ∈ TxM : γv (1) is defined}

with γv maximal (i.e., largest domain) geodesic with
γv (0) = x and γ′v (0) = v .

◮ Exponential map:

expx(·) : D(x) ⊆ TxM → M

expx(v) = γv (1)

D is star-shaped.

c© 2013-14 Frank Nielsen, École Polytechnique & Sony Computer Science Laboratories 11/39



Basics of Riemannian geometry: Geodesics

◮ Geodesic: smooth path which locally minimizes the distance
between two points. (In general such a curve does not
minimize it globally.)

◮ Given a vector v ∈ TxM with base point x , there is a unique
geodesic started at x with speed v at time 0: t 7→ expx(tv) or
t 7→ γt(v).

◮ Geodesic on [a, b] is minimal if its length is less or equal to
others. For complete M (i.e., expx(v)), taking x , y ∈ M, there
exists a minimal geodesic from x to y in time 1.
γ·(x , y) : [0, 1]→ M, t 7→ γt(x , y) with the conditions
γ0(x , y) = x and γ1(x , y) = y .

◮ U ⊆ M is convex if for any x , y ∈ U, there exists a unique
minimal geodesic γ·(x , y) in M from x to y . Geodesic fully
lies in U and depends smoothly on x , y , t.
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Basics of Riemannian geometry: Geodesics

◮ Geodesic γ(x , y): locally minimizing curves linking x to y

◮ Speed vector γ′(t) parallel along γ:

Dγ′(t)
dt

= ∇γ′(t)γ
′(t) = 0

◮ When manifold M embedded in R
d , acceleration is normal to

tangent plane:
γ′′(t) ⊥ Tγ(t)M

◮ ‖γ′(t)‖ = c , a constant (say, unit).

⇒ Parameterization of curves with constant speed...
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Basics of Riemannian geometry: Geodesics

Constant speed geodesic γ(t) so that γ(0) = x and γ(ρ(x , y)) = y
(constant speed 1, the unit of length).

x#ty = m = γ(t) : ρ(x ,m) = t × ρ(x , y)

For example, in the Euclidean space:

x#ty = (1− t)x + ty = x + t(y − x) = m

ρE (x ,m) = ‖t(y − x)‖ = t‖y − x‖ = t × ρ(x , y), t ∈ [0, 1]

⇒ m interpreted as a mean (barycenter) between x and y .

c© 2013-14 Frank Nielsen, École Polytechnique & Sony Computer Science Laboratories 14/39



Basics of Riemannian geometry: Injectivity radius

Diffeomorphism from the tangent space to the manifold

◮ Injectivity radius inj(M): largest r > 0 such that for all
x ∈ M, the map expx(·) restricted to the open ball in TxM
with radius r is an embedding.

◮ Global injectivity radius: infimum of the injectivity radius over
all points of the manifold.
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Basics of Riemannian geometry: Sectional curvature

Given x ∈ M, u, v two non collinear vectors in TxM, the sectional
curvature Sect(u, v) = K is a number which gives information on
how the geodesics issued from x behave near x .
More precisely, the image by expx(·) of the circle centered at 0 of
radius r > 0 in Span(u, v) has length

2πSK (r) + o(r3) as r → 0

with

SK (r) =















sin(
√
Kr)√
K

if K > 0,

r if K = 0,
sinh(

√
−Kr)√

−K
if K < 0.

positive, zero or negative curvatures...
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Basics of Riemannian geometry: Alexandrov’s theorem

Given an upper bound α2 for sectional curvatures, compare
geodesic triangles by Alexandrov theorem:
Let x1, x2, x3 ∈ M satisfy x1 6= x2, x1 6= x3 and

ρ(x1, x2) + ρ(x2, x3) + ρ(x3, x1) < 2min
{

inj(M),
π

α

}

where α > 0 is such that α2 is an upper bound of sectional
curvatures. Let the minimizing geodesic from x1 to x2 and the
minimizing geodesic from x1 to x3 make an angle θ at x1.
Denoting by S2

α2 the 2-dimensional sphere of constant curvature
α2 (hence of radius 1/α) and ρ̃ the distance in S2

α2 , we consider
points x̃1, x̃2, x̃3 ∈ S2

α2 such that ρ(x1, x2) = ρ̃(x̃1, x̃2),
ρ(x1, x3) = ρ̃(x̃1, x̃3). Assume that the minimizing geodesic from
x̃1 to x̃2 and the minimizing geodesic from x̃1 to x̃3 also make an
angle θ at x̃1.

Then we have: ρ(x2, x3) ≥ ρ̃(x̃2, x̃3) .
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Basics of Riemannian geometry: Topogonov’s theorem

Assume β > 0 is such that −β2 is a lower bound for sectional
curvatures in M. Let x1, x2, x3 ∈ M satisfy x1 6= x2, x1 6= x3. Let
the minimizing geodesic from x1 to x2 and the minimizing geodesic
from x1 to x3 make an angle θ at x1. Denoting by H2

−β2 the

hyperbolic 2-dimensional space of constant curvature −β2 and
ρ̃ the distance in H2

−β2 , we consider points x̃1, x̃2, x̃3 ∈ H2
−β2 such

that ρ(x1, x2) = ρ̃(x̃1, x̃2), ρ(x1, x3) = ρ̃(x̃1, x̃3). Assume that the
minimizing geodesic from x̃1 to x̃2 and the minimizing geodesic
from x̃1 to x̃3 also make an angle θ at x̃1.

Then we have: ρ(x2, x3) ≤ ρ̃(x̃2, x̃3) .
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Basics of Riemannian geometry: First law of cosines

In spherical/hyperbolic geometries:

◮ If θ1, θ2, θ3 are the angles of a triangle in S2
α2 and l1, l2, l3 are

the lengths of the opposite sides, then

cos θ3 =
cos(αl3)− cos(αl1) cos(αl2)

sin(αl1) sin(αl2)

◮ If θ1, θ2, θ3 are the angles of a triangle in H2
−β2 and l1, l2, l3

are the lengths of the opposite sides, then

cos θ3 =
cosh(βl1) cosh(βl2)− cosh(βl3)

sinh(βl1) sinh(βl2)
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Now ready for the “Smallest enclosing Riemannian ball”

(M, g): complete Riemannian manifold
ν: probability measure on M
ρ(x , y): Riemannian metric distance

Assume the measure support supp(ν) ⊆ in a geodesic ball

B(o,R).

f : M → R: measurable function

‖f ‖L∞(ν) = inf {a > 0, ν ({y ∈ M, |f (y)| > a}) = 0} .

α > 0 such that α2 upper bounds the sectional curvatures in M.

Rα =
1

2
min

{

inj(M),
π

α

}

inj(M): injectivity radius
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Riemannian SEB: Existence and uniqueness [1]

Assume
R < Rα

Consider farthest point map:

H : M → [0,∞]

x 7→ ‖ρ(x , ·)‖L∞(ν) (1)

c ∈ B(o,R).
→ c ⊂ CH(supp(ν)) [1] (convex hull)

⇒ center: notion of centrality of the measure
⇒ point set: discrete measure, center → circumcenter
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Example of Riemannian manifold: SPD space

Space of Symmetric Positive Definite (SPD) matrices with

◮ Riemannian distance:

ρ(P ,Q) = ‖ log(P−1Q)‖F =

√

√

√

√

d
∑

i=1

log2 λi

where λi are the eigenvalues of matrix P−1Q.

◮ Non-compact Riemannian symmetric space of non-positive
curvature (aka. Cartan-Hadamard manifold).

◮ Any measure ν with bounded support satisfies R < Rα

(choose α > 0).

⇒ Minimizer c of farthest point map H exists and is unique:
1-center or minimax center of ν.
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Generalizing BCA to Riemannian manifolds

GeoA:

◮ Initialize the center with c1 ∈ P, and
◮ Iteratively update the current minimax center as

ci+1 = Geodesic

(

ci , fi ,
1

i + 1

)

where fi denotes the farthest point of P to ci , and
Geodesic(p, q, t) denotes the intermediate point m on
the geodesic passing through p and q such that
ρ(p,m) = t × ρ(p, q).
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Generalizing BCA to Riemannian manifolds

a#M
t b: point γ(t) on the geodesic line segment [ab] wrt M.

Algorithm 4: GeoA

c1 ← choose randomly a point in P ;
for i = 2 to l do

// farthest point from ci

si ← argmaxnj=1ρ(ci , pj );

// update the center: walk on the geodesic line

segment [ci , psi ]

ci+1 ← ci#
M
1

i+1

psi ;

end

// Return the SEB approximation

return Ball(cl , rl = ρ(cl ,P)) ;
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Proof sketch

Assume supp(ν) ⊂ B(o,R) and

R < Rα =
1

2
min

{

inj(M),
π

α

}

with α > 0 such that α2 is an upper bound for the sectional
curvatures in M.

Lemma
There exists τ > 0 such that for all x ∈ B(o,R),

H(x) − H(c) ≥ τρ2(x , c)
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Stochastic approximation for measures
For x ∈ B(o,R), t 7→ γt(v(x , ν)) a unit speed geodesic from
γ0(v(x , ν)) = x to one point y = γH(x)(v(x , ν)) in supp(ν) which
realizes the maximum of the distance from x to supp(ν).

v =
1

H(x)
exp−1

x (y)

RieA:
Fix some δ > 0.

◮ Step 1 Choose a starting point x0 ∈ supp(ν) and let
k = 0

◮ Step 2 Choose a step size tk+1 ∈ (0, δ] and let
xk+1 = γtk+1

(v(xk , ν)), then do again step 2 with
k ← k + 1.
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Convergence theorem for RieA
a ∧ b: minimum operator a ∧ b = min(a, b).

R0 =
Rα − R

2
∧ R

2
.

Assume α, β > 0 are such that −β2 is a lower bound and α2 an
upper bound of the sectional curvatures in M. If the step sizes
(tk)k≥1 satisfy

δ ≤ R0

2
∧ 2

β
arctanh (tanh(βR0/2) cos(αR) tan(αR0/4)) ,

lim
k→∞

tk = 0,
∞
∑

k=1

tk = +∞ and
∞
∑

k=1

t2k <∞.

then the sequence (xk)k≥1 generated by the algorithm satisfies

lim
k→∞

ρ(xk , c) = 0
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Case study I: Hyperbolic planar manifold

In Klein disk (projective model), geodesics are straight (euclidean)
lines [11].

ρ(p, q) = arccosh
1− p⊤q

√

(1− p⊤p)(1− q⊤q)

where arccosh(x) = log(x +
√
x2 − 1).

Here, we choose non-constant speed curve parameterization (not
constant-speed geodesic):

γ̃t(p, q) = (1− t)p + tq, t ∈ [0, 1].

⇒ Implement a dichotomy on γ̃t(p, q) to get #t .
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Initialization First iteration

Second iteration Third iteration

Fourth iteration after 104 iterations

http://www.sonycsl.co.jp/person/nielsen/infogeo/RiemannMinimax/
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Performance
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Convergence rate of the GeoA algorithm for the hyperbolic disk for
the first 200 iterations. Horizontal axis: number of iterations
Vertical axis: (a) the relative Klein distance between the current
center and the optimal 1-center, (b) the radius of the smallest
enclosing ball anchored at the current center.
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Case study II: Space of SPD matrices

◮ d × d matrix M Symmetric Positive Definite (SPD) ⇔
M = M⊤ and that for all x 6= 0, x⊤Mx > 0.

◮ The set of d × d SPD matrices: manifold of dimension
d(d+1)

2 [8]

◮ The geodesic linking (matrix) point P to point Q:

γt(P ,Q) = P
1
2

(

P− 1
2QP− 1

2

)t
P

1
2

where the matrix function h(M) is computed from the
singular value decomposition M = UDV⊤ (with U and V
unitary matrices and D = diag(λ1, ..., λd ) a diagonal matrix
of eigenvalues) as h(M) = Udiag(h(λ1), ..., h(λd ))V

⊤. For
example, the square root function of a matrix is computed as

M
1
2 = U diag(

√
λ1, ...,

√
λd ) V

⊤.
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SPD space: Splitting the geodesic for operator #t

In this case, finding t such that

‖ log(P−1Q)t‖2F = r‖ logP−1Q‖2F , (2)

where ‖ · ‖F denotes the Fröbenius norm yields to t = r . Indeed,
consider λ1, ..., λd the eigenvalues of P−1Q, then

ρ(P ,Q) = ‖ log(P−1Q)‖F =
√

∑

i log
2 λi amounts to find

d
∑

i=1

log2 λt
i = t2

d
∑

i=1

log2 λi = r2
d
∑

i=1

log2 λi .

That is t = r .
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Case study II: Performance
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Remark on SPD spaces and hyperbolic geometry

◮ 2D SPD(2) matrix space has dimension d = 3: A positive
cone.

{

(a, b, c) : a > 0, ab − c2 > 0
}

◮ Can be peeled into sheets of dimension 2, each sheet
corresponding to a constant value of the determinant of the
elements [4]

SPD(2) = SSPD(2)× R
+,

where SSPD(2) = {a, b, c =
√
1− ab) : a > 0, ab − c2 = 1}

◮ Map to (x0 =
a+b
2 ≥ 1, x1 = a−b

2 , x2 = c) in hyperboloid

model [12], and z = a−b+2ic
2+a+b in Poincaré disk [12].
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Conclusion: Smallest Riemannian Enclosing Ball

◮ Generalize Euclidean 1-center algorithm of [2] to Riemannian
geometry

◮ Proved the convergence under mild assumptions (for
measures/point sets)

◮ Existence of Riemannian core-sets for optimization

◮ 1-center building block for k-center clustering [6]

◮ can be extended to sets of Riemannian (geodesic) balls

Reproducible research codes with interactive demos:

http://www.sonycsl.co.jp/person/nielsen/infogeo/RiemannMinimax/
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The smallest enclosing ball of balls: combinatorial structure and algorithms.

Int. J. Comput. Geometry Appl., 14(4-5):341–378, 2004.

Teofilo F. Gonzalez.

Clustering to minimize the maximum intercluster distance.

Theoretical Computer Science, 38(0):293 – 306, 1985.
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