On the Smallest Enclosing Riemannian Balls
 - On Approximating the Riemannian 1-Center -
 http://www.sonycsl.co.jp/person/nielsen/infogeo/RiemannMinimax/

Marc Arnaudon ${ }^{1}$ Frank Nielsen ${ }^{2}$

${ }^{1}$ Université de Bordeaux, France
2École Polytechnique \& Sony CSL
e-mail: Frank.Nielsen@acm.org

Computational Geometry 46(1): 93-104 (2013) arXiv 1101.4718

Introduction: Euclidean Smallest Enclosing Balls

Given d-dimensional $\mathcal{P}=\left\{p_{1}, \ldots, p_{n}\right\}$, find the "smallest" (with respect to the volume \equiv radius \equiv inclusion)
ball $B=\operatorname{Ball}(c, r)$ fully covering \mathcal{P} :

$$
c^{*}=\min _{c \in \mathbb{R}^{d}} \max _{i=1}^{n}\left\|c-p_{i}\right\| .
$$

- unique Euclidean circumcenter c^{*}, SEB [19].
- optimization problem non-differentiable [10] c^{*} lie on the farthest Voronoi diagram

Euclidean smallest enclosing balls (SEBs)

- 1857: $d=2$, Smallest Enclosing Ball? of $P=\left\{p_{1}, \ldots, p_{n}\right\}$ (Sylvester [16])
- Randomized expected linear time algorithm [19, 5] in fixed dimension (but hidden constant exponential in d)
- Core-set [3] approximation: $(1+\epsilon)$-approximation in $O\left(\frac{d n}{\epsilon^{2}}\right)$-time in arbitrary dimension, $O\left(\frac{d n}{\epsilon}+\frac{1}{\epsilon^{4.5}} \log \frac{1}{\epsilon}\right)$ [7]
- Many other algorithms and heuristics [14, 9, 17], etc.

SEB also known as Minimum Enclosing Ball (MEB), minimax center, 1-center, bounding (hyper)sphere, etc.
\rightarrow Applications in computer graphics (collision detection with ball cover proxies [15]), in machine learning (Core Vector Machines [18]), etc.

Optimization and core-sets [3]

Let $c(\mathcal{P})$ denote the circumcenter of the SEB and $r(\mathcal{P})$ its radius Given $\epsilon>0, \epsilon$-core-set $\mathcal{C} \subset \mathcal{P}$, such that

$$
\mathcal{P} \subseteq \operatorname{Ball}(c(\mathcal{C}),(1+\epsilon) r(\mathcal{C}))
$$

\Leftrightarrow Expanding $\operatorname{SEB}(\mathcal{C})$ by $1+\epsilon$ fully covers \mathcal{P}
Core-set of optimal size $\left\lceil\frac{1}{\epsilon}\right\rceil$, independent of the dimension d, and n. Note that combinatorial basis for SEB is from 2 to $d+1$ [19].
\rightarrow Core-sets find many applications for problems in large-dimensions.

Euclidean SEBs from core-sets [2]

Bădoiu-Clarkson algorithm based on core-sets [2, 3]:
BCA:

- Initialize the center $c_{1} \in \mathcal{P}=\left\{p_{1}, \ldots, p_{n}\right\}$, and
- Iteratively update the current center using the rule

$$
c_{i+1} \leftarrow c_{i}+\frac{f_{i}-c_{i}}{i+1}
$$

where f_{i} denotes the farthest point of \mathcal{P} to c_{i} :

$$
f_{i}=p_{s}, \quad s=\arg \max _{j=1}^{n}\left\|c_{i}-p_{j}\right\|
$$

\Rightarrow gradient-descent method
$\Rightarrow(1+\epsilon)$-approximation after $\left\lceil\frac{1}{\epsilon^{2}}\right\rceil$ iterations: $O\left(\frac{d n}{\epsilon^{2}}\right)$ time
\Rightarrow Core-set: f_{1}, \ldots, f_{l} with $I=\left\lceil\frac{1}{\epsilon^{2}}\right\rceil$

Euclidean SEBs from core-sets: Rewriting with \#

$a \#_{t} b$: point $(1-t) a+t b=a+t(b-a)$ on the line segment $[a b]$.
$D(x, y)=\|x-y\|^{2}, D(x, P)=\min _{y \in \mathcal{P}} D(x, y)$

Algorithm 1: $\operatorname{BCA}(\mathcal{P}, I)$.

$c_{1} \leftarrow$ choose randomly a point in \mathcal{P};
for $i=2$ to $I-1$ do
// farthest point from c_{i}

$$
s_{i} \leftarrow \arg \max _{j=1}^{n} D\left(c_{i}, p_{j}\right) ;
$$

// update the center: walk on the segment $\left[c_{i}, p_{s_{i}}\right]$

$$
c_{i+1} \leftarrow c_{i} \#_{\frac{1}{i+1}} p_{s_{i}}
$$

end
// Return the SEB approximation
return $\operatorname{Ball}\left(c_{l}, r_{l}^{2}=D\left(c_{l}, \mathcal{P}\right)\right)$;
$\Rightarrow(1+\epsilon)$-approximation after $I=\left\lceil\frac{1}{\epsilon^{2}}\right\rceil$ iterations.

Bregman divergences (incl. squared Euclidean distance)

SEB extended to Bregman divergences $B_{F}(\cdot: \cdot)$ [13]
$B_{F}(c: x)=F(c)-F(x)-\langle c-x, \nabla F(x)\rangle$,
$B_{F}(c: X)=\min _{x \in X} B_{F}(c: x)$

\Rightarrow Bregman divergence $=$ remainder of a first order Taylor expansion.

Smallest enclosing Bregman ball [13]

$F^{*}=$ convex conjugate of F with $(\nabla F)^{-1}=\nabla F^{*}$
Algorithm 2: $\operatorname{MBC}(\mathcal{P}, I)$.
// Create the gradient point set (η-coordinates)
$\mathcal{P}^{\prime} \leftarrow\{\nabla F(p): p \in \mathcal{P}\} ;$
$g \leftarrow \operatorname{BCA}\left(\mathcal{P}^{\prime}, I\right)$;
return $\operatorname{Ball}\left(c_{l}=\nabla F^{-1}(c(g)), r_{l}=B_{F}\left(c_{l}: \mathcal{P}\right)\right)$;
Guaranteed approximation algorithm with approximation factor depending on $\frac{1}{\min _{x \in \mathcal{X}}\left\|\nabla^{2} F(x)\right\|}, \ldots$ but poor in practice

$$
\forall s, S_{F}\left(x ; \nabla F^{-1}(c(g))\right) \leq \frac{(1+\epsilon)^{2} r^{\prime *}}{\min _{x \in \mathcal{X}}\left\|\nabla^{2} F(x)\right\|}
$$

with $S_{F}(c ; x)=B_{F}(c: x)+B_{F}(x: c)$

Smallest enclosing Bregman ball [13]

A better approximation in practice...
Algorithm 3: $\operatorname{BBCA}(\mathcal{P}, I)$.
$c_{1} \leftarrow$ choose randomly a point in \mathcal{P};
for $i=2$ to $/-1$ do
// farthest point from c_{i} wrt. B_{F}
$s_{i} \leftarrow \arg \max _{j=1}^{n} B_{F}\left(c_{i}: p_{j}\right) ;$
// update the center: walk on the η-segment $\left[c_{i}, p_{s_{i}}\right]_{\eta}$

$$
c_{i+1} \leftarrow \nabla F^{-1}\left(\nabla F\left(c_{i}\right) \#_{\frac{1}{i+1}} \nabla F\left(p_{s_{i}}\right)\right) ;
$$

end
// Return the SEBB approximation
return $\operatorname{Ball}\left(c_{l}, r_{l}=B_{F}\left(c_{l}: X\right)\right)$;
$\theta-, \eta$-geodesic segments in dually flat geometry.

Basics of Riemannian geometry

- (M, g) : Riemannian manifold
- $\langle\cdot, \cdot\rangle$, Riemannian metric tensor g : definite positive bilinear form on each tangent space $T_{x} M$ (depends smoothly on x)
- $\|\cdot\|_{x}:\|u\|=\langle u, u\rangle^{1 / 2}$: Associated norm in $T_{x} M$
- $\rho(x, y)$: metric distance between two points on the manifold M (length space)

$$
\rho(x, y)=\inf \left\{\int_{0}^{1}\|\dot{\varphi}(t)\| \mathrm{d} t, \quad \varphi \in C^{1}([0,1], M), \quad \varphi(0)=x, \quad \varphi(1)=y\right\}
$$

Parallel transport wrt. Levi-Civita metric connection $\nabla: \nabla g=0$.

Basics of Riemannian geometry: Exponential map

- Local map from the tangent space $T_{x} M$ to the manifold defined with geodesics (wrt ∇).
$\forall x \in M, D(x) \subset T_{x} M: D(x)=\left\{v \in T_{x} M: \gamma_{v}(1)\right.$ is defined $\}$
with γ_{v} maximal (i.e., largest domain) geodesic with $\gamma_{v}(0)=x$ and $\gamma_{v}^{\prime}(0)=v$.
- Exponential map:

$$
\begin{aligned}
\exp _{x}(\cdot): & D(x) \subseteq T_{x} M \rightarrow M \\
& \exp _{x}(v)=\gamma_{v}(1)
\end{aligned}
$$

D is star-shaped.

Basics of Riemannian geometry: Geodesics

- Geodesic: smooth path which locally minimizes the distance between two points. (In general such a curve does not minimize it globally.)
- Given a vector $v \in T_{x} M$ with base point x, there is a unique geodesic started at x with speed v at time 0: $t \mapsto \exp _{x}(t v)$ or $t \mapsto \gamma_{t}(v)$.
- Geodesic on $[a, b]$ is minimal if its length is less or equal to others. For complete M (i.e., $\exp _{x}(v)$), taking $x, y \in M$, there exists a minimal geodesic from x to y in time 1 .
$\gamma .(x, y):[0,1] \rightarrow M, t \mapsto \gamma_{t}(x, y)$ with the conditions $\gamma_{0}(x, y)=x$ and $\gamma_{1}(x, y)=y$.
- $U \subseteq M$ is convex if for any $x, y \in U$, there exists a unique minimal geodesic γ. (x, y) in M from x to y. Geodesic fully lies in U and depends smoothly on x, y, t.

Basics of Riemannian geometry: Geodesics

- Geodesic $\gamma(x, y)$: locally minimizing curves linking x to y
- Speed vector $\gamma^{\prime}(t)$ parallel along γ :

$$
\frac{D \gamma^{\prime}(t)}{\mathrm{d} t}=\nabla_{\gamma^{\prime}(t)} \gamma^{\prime}(t)=0
$$

- When manifold M embedded in \mathbb{R}^{d}, acceleration is normal to tangent plane:

$$
\gamma^{\prime \prime}(t) \perp T_{\gamma(t)} M
$$

- $\left\|\gamma^{\prime}(t)\right\|=c$, a constant (say, unit).
\Rightarrow Parameterization of curves with constant speed...

Basics of Riemannian geometry: Geodesics

Constant speed geodesic $\gamma(t)$ so that $\gamma(0)=x$ and $\gamma(\rho(x, y))=y$ (constant speed 1 , the unit of length).

$$
x \#_{t} y=m=\gamma(t): \rho(x, m)=t \times \rho(x, y)
$$

For example, in the Euclidean space:

$$
x \#_{t} y=(1-t) x+t y=x+t(y-x)=m
$$

$$
\rho_{E}(x, m)=\|t(y-x)\|=t\|y-x\|=t \times \rho(x, y), t \in[0,1]
$$

$\Rightarrow m$ interpreted as a mean (barycenter) between x and y.

Basics of Riemannian geometry: Injectivity radius

Diffeomorphism from the tangent space to the manifold

- Injectivity radius $\operatorname{inj}(M)$: largest $r>0$ such that for all $x \in M$, the map $\exp _{x}(\cdot)$ restricted to the open ball in $T_{x} M$ with radius r is an embedding.
- Global injectivity radius: infimum of the injectivity radius over all points of the manifold.

Basics of Riemannian geometry: Sectional curvature

Given $x \in M, u, v$ two non collinear vectors in $T_{x} M$, the sectional curvature $\operatorname{Sect}(u, v)=K$ is a number which gives information on how the geodesics issued from x behave near x.
More precisely, the image by $\exp _{x}(\cdot)$ of the circle centered at 0 of radius $r>0$ in $\operatorname{Span}(u, v)$ has length

$$
2 \pi S_{K}(r)+o\left(r^{3}\right) \quad \text { as } \quad r \rightarrow 0
$$

with

$$
S_{K}(r)=\left\{\begin{array}{ccc}
\frac{\sin (\sqrt{K} r)}{\sqrt{K}} & \text { if } & K>0 \\
r & \text { if } & K=0 \\
\frac{\sinh (\sqrt{-K} r)}{\sqrt{-K}} & \text { if } & K<0
\end{array}\right.
$$

positive, zero or negative curvatures...

Basics of Riemannian geometry: Alexandrov's theorem

Given an upper bound α^{2} for sectional curvatures, compare geodesic triangles by Alexandrov theorem:
Let $x_{1}, x_{2}, x_{3} \in M$ satisfy $x_{1} \neq x_{2}, x_{1} \neq x_{3}$ and

$$
\rho\left(x_{1}, x_{2}\right)+\rho\left(x_{2}, x_{3}\right)+\rho\left(x_{3}, x_{1}\right)<2 \min \left\{\operatorname{inj}(M), \frac{\pi}{\alpha}\right\}
$$

where $\alpha>0$ is such that α^{2} is an upper bound of sectional curvatures. Let the minimizing geodesic from x_{1} to x_{2} and the minimizing geodesic from x_{1} to x_{3} make an angle θ at x_{1}. Denoting by $S_{\alpha^{2}}^{2}$ the 2-dimensional sphere of constant curvature α^{2} (hence of radius $1 / \alpha$) and $\tilde{\rho}$ the distance in $S_{\alpha^{2}}^{2}$, we consider points $\tilde{x}_{1}, \tilde{x}_{2}, \tilde{x}_{3} \in S_{\alpha^{2}}^{2}$ such that $\rho\left(x_{1}, x_{2}\right)=\tilde{\rho}\left(\tilde{x}_{1}, \tilde{x}_{2}\right)$, $\rho\left(x_{1}, x_{3}\right)=\tilde{\rho}\left(\tilde{x}_{1}, \tilde{x}_{3}\right)$. Assume that the minimizing geodesic from \tilde{x}_{1} to \tilde{x}_{2} and the minimizing geodesic from \tilde{x}_{1} to \tilde{x}_{3} also make an angle θ at \tilde{x}_{1}.
Then we have: $\rho\left(x_{2}, x_{3}\right) \geq \tilde{\rho}\left(\tilde{x}_{2}, \tilde{x}_{3}\right)$.

Basics of Riemannian geometry: Topogonov's theorem

Assume $\beta>0$ is such that $-\beta^{2}$ is a lower bound for sectional curvatures in M. Let $x_{1}, x_{2}, x_{3} \in M$ satisfy $x_{1} \neq x_{2}, x_{1} \neq x_{3}$. Let the minimizing geodesic from x_{1} to x_{2} and the minimizing geodesic from x_{1} to x_{3} make an angle θ at x_{1}. Denoting by $H_{-\beta^{2}}^{2}$ the hyperbolic 2-dimensional space of constant curvature $-\beta^{2}$ and $\tilde{\rho}$ the distance in $H_{-\beta^{2}}^{2}$, we consider points $\tilde{x}_{1}, \tilde{x}_{2}, \tilde{x}_{3} \in H_{-\beta^{2}}^{2}$ such that $\rho\left(x_{1}, x_{2}\right)=\tilde{\rho}\left(\tilde{x}_{1}, \tilde{x}_{2}\right), \rho\left(x_{1}, x_{3}\right)=\tilde{\rho}\left(\tilde{x}_{1}, \tilde{x}_{3}\right)$. Assume that the minimizing geodesic from \tilde{x}_{1} to \tilde{x}_{2} and the minimizing geodesic from \tilde{x}_{1} to \tilde{x}_{3} also make an angle θ at \tilde{x}_{1}.
Then we have: $\rho\left(x_{2}, x_{3}\right) \leq \tilde{\rho}\left(\tilde{x}_{2}, \tilde{x}_{3}\right)$.

Basics of Riemannian geometry: First law of cosines

In spherical/hyperbolic geometries:

- If $\theta_{1}, \theta_{2}, \theta_{3}$ are the angles of a triangle in $S_{\alpha^{2}}^{2}$ and I_{1}, l_{2}, l_{3} are the lengths of the opposite sides, then

$$
\cos \theta_{3}=\frac{\cos \left(\alpha /_{3}\right)-\cos \left(\alpha I_{1}\right) \cos (\alpha / 2)}{\sin \left(\alpha I_{1}\right) \sin \left(\alpha I_{2}\right)}
$$

- If $\theta_{1}, \theta_{2}, \theta_{3}$ are the angles of a triangle in $H_{-\beta^{2}}^{2}$ and I_{1}, I_{2}, l_{3} are the lengths of the opposite sides, then

$$
\cos \theta_{3}=\frac{\cosh \left(\beta I_{1}\right) \cosh \left(\beta I_{2}\right)-\cosh \left(\beta I_{3}\right)}{\sinh \left(\beta I_{1}\right) \sinh \left(\beta I_{2}\right)}
$$

Now ready for the "Smallest enclosing Riemannian ball"

(M, g): complete Riemannian manifold
ν : probability measure on M
$\rho(x, y)$: Riemannian metric distance
Assume the measure support $\operatorname{supp}(\nu) \subseteq$ in a geodesic ball $B(o, R)$.
$f: M \rightarrow \mathbb{R}$: measurable function

$$
\|f\|_{L^{\infty}(\nu)}=\inf \{a>0, \quad \nu(\{y \in M,|f(y)|>a\})=0\}
$$

$\alpha>0$ such that α^{2} upper bounds the sectional curvatures in M.

$$
R_{\alpha}=\frac{1}{2} \min \left\{\operatorname{inj}(M), \frac{\pi}{\alpha}\right\}
$$

$\operatorname{inj}(M)$: injectivity radius

Riemannian SEB: Existence and uniqueness [1]

Assume

$$
R<R_{\alpha}
$$

Consider farthest point map:

$$
\begin{align*}
H: & M \rightarrow[0, \infty] \\
& x \mapsto\|\rho(x, \cdot)\|_{L^{\infty}(\nu)} \tag{1}
\end{align*}
$$

$c \in B(o, R)$.
$\rightarrow c \subset \mathrm{CH}(\operatorname{supp}(\nu))[1]$ (convex hull)
\Rightarrow center: notion of centrality of the measure
\Rightarrow point set: discrete measure, center \rightarrow circumcenter

Example of Riemannian manifold: SPD space

Space of Symmetric Positive Definite (SPD) matrices with

- Riemannian distance:

$$
\rho(P, Q)=\left\|\log \left(P^{-1} Q\right)\right\|_{F}=\sqrt{\sum_{i=1}^{d} \log ^{2} \lambda_{i}}
$$

where λ_{i} are the eigenvalues of matrix $P^{-1} Q$.

- Non-compact Riemannian symmetric space of non-positive curvature (aka. Cartan-Hadamard manifold).
- Any measure ν with bounded support satisfies $R<R_{\alpha}$ (choose $\alpha>0$).
\Rightarrow Minimizer c of farthest point map H exists and is unique:
1-center or minimax center of ν.

Generalizing BCA to Riemannian manifolds

GeoA:

- Initialize the center with $c_{1} \in \mathcal{P}$, and
- Iteratively update the current minimax center as

$$
c_{i+1}=\operatorname{Geodesic}\left(c_{i}, f_{i}, \frac{1}{i+1}\right)
$$

where f_{i} denotes the farthest point of \mathcal{P} to c_{i}, and $\operatorname{Geodesic}(p, q, t)$ denotes the intermediate point m on the geodesic passing through p and q such that $\rho(p, m)=t \times \rho(p, q)$.

Generalizing BCA to Riemannian manifolds

$a \#_{t}^{M} b$: point $\gamma(t)$ on the geodesic line segment [ab] wrt M.

Algorithm 4: GeoA

$c_{1} \leftarrow$ choose randomly a point in \mathcal{P};
for $i=2$ to $/$ do
// farthest point from c_{i}
$s_{i} \leftarrow \arg \max _{j=1}^{n} \rho\left(c_{i}, p_{j}\right) ;$
// update the center: walk on the geodesic line segment $\left[c_{i}, p_{s_{i}}\right]$
$c_{i+1} \leftarrow c_{i} \#_{\frac{1}{i+1}}^{M} p_{s_{i}} ;$
end
// Return the SEB approximation
return $\operatorname{Ball}\left(c_{l}, r_{l}=\rho\left(c_{l}, \mathcal{P}\right)\right)$;

Proof sketch

Assume $\operatorname{supp}(\nu) \subset B(o, R)$ and

$$
R<R_{\alpha}=\frac{1}{2} \min \left\{\operatorname{inj}(M), \frac{\pi}{\alpha}\right\}
$$

with $\alpha>0$ such that α^{2} is an upper bound for the sectional curvatures in M.

Lemma
There exists $\tau>0$ such that for all $x \in B(o, R)$,

$$
H(x)-H(c) \geq \tau \rho^{2}(x, c)
$$

Stochastic approximation for measures

For $x \in B(o, R), t \mapsto \gamma_{t}(v(x, \nu))$ a unit speed geodesic from $\gamma_{0}(v(x, \nu))=x$ to one point $y=\gamma_{H(x)}(v(x, \nu))$ in $\operatorname{supp}(\nu)$ which realizes the maximum of the distance from x to $\operatorname{supp}(\nu)$.

$$
v=\frac{1}{H(x)} \exp _{x}^{-1}(y)
$$

RieA:
Fix some $\delta>0$.

- Step 1 Choose a starting point $x_{0} \in \operatorname{supp}(\nu)$ and let $k=0$
- Step 2 Choose a step size $t_{k+1} \in(0, \delta]$ and let $x_{k+1}=\gamma_{t_{k+1}}\left(v\left(x_{k}, \nu\right)\right)$, then do again step 2 with $k \leftarrow k+1$.

Convergence theorem for RieA

$a \wedge b:$ minimum operator $a \wedge b=\min (a, b)$.

$$
R_{0}=\frac{R_{\alpha}-R}{2} \wedge \frac{R}{2}
$$

Assume $\alpha, \beta>0$ are such that $-\beta^{2}$ is a lower bound and α^{2} an upper bound of the sectional curvatures in M. If the step sizes $\left(t_{k}\right)_{k \geq 1}$ satisfy

$$
\begin{aligned}
& \delta \leq \frac{R_{0}}{2} \wedge \frac{2}{\beta} \operatorname{arctanh}\left(\tanh \left(\beta R_{0} / 2\right) \cos (\alpha R) \tan \left(\alpha R_{0} / 4\right)\right) \\
& \lim _{k \rightarrow \infty} t_{k}=0, \quad \sum_{k=1}^{\infty} t_{k}=+\infty \quad \text { and } \quad \sum_{k=1}^{\infty} t_{k}^{2}<\infty
\end{aligned}
$$

then the sequence $\left(x_{k}\right)_{k \geq 1}$ generated by the algorithm satisfies

$$
\lim _{k \rightarrow \infty} \rho\left(x_{k}, c\right)=0
$$

Case study I: Hyperbolic planar manifold

In Klein disk (projective model), geodesics are straight (euclidean) lines [11].

$$
\rho(p, q)=\operatorname{arccosh} \frac{1-p^{\top} q}{\sqrt{\left(1-p^{\top} p\right)\left(1-q^{\top} q\right)}}
$$

where $\operatorname{arccosh}(x)=\log \left(x+\sqrt{x^{2}-1}\right)$.
Here, we choose non-constant speed curve parameterization (not constant-speed geodesic):

$$
\tilde{\gamma}_{t}(p, q)=(1-t) p+t q, t \in[0,1] .
$$

\Rightarrow Implement a dichotomy on $\tilde{\gamma}_{t}(p, q)$ to get $\#_{t}$.

Performance

(a)

(b)

Convergence rate of the GeoA algorithm for the hyperbolic disk for the first 200 iterations. Horizontal axis: number of iterations Vertical axis: (a) the relative Klein distance between the current center and the optimal 1-center, (b) the radius of the smallest enclosing ball anchored at the current center.

Case study II: Space of SPD matrices

- $d \times d$ matrix M Symmetric Positive Definite (SPD) \Leftrightarrow $M=M^{\top}$ and that for all $x \neq 0, x^{\top} M x>0$.
- The set of $d \times d$ SPD matrices: manifold of dimension $\frac{d(d+1)}{2}$ [8]
- The geodesic linking (matrix) point P to point Q :

$$
\gamma_{t}(P, Q)=P^{\frac{1}{2}}\left(P^{-\frac{1}{2}} Q P^{-\frac{1}{2}}\right)^{t} P^{\frac{1}{2}}
$$

where the matrix function $h(M)$ is computed from the singular value decomposition $M=U D V^{\top}$ (with U and V unitary matrices and $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{d}\right)$ a diagonal matrix of eigenvalues) as $h(M)=U \operatorname{diag}\left(h\left(\lambda_{1}\right), \ldots, h\left(\lambda_{d}\right)\right) V^{\top}$. For example, the square root function of a matrix is computed as $M^{\frac{1}{2}}=U \operatorname{diag}\left(\sqrt{\lambda_{1}}, \ldots, \sqrt{\lambda_{d}}\right) V^{\top}$.

SPD space: Splitting the geodesic for operator $\#_{t}$

In this case, finding t such that

$$
\begin{equation*}
\left\|\log \left(P^{-1} Q\right)^{t}\right\|_{F}^{2}=r\left\|\log P^{-1} Q\right\|_{F}^{2} \tag{2}
\end{equation*}
$$

where $\|\cdot\|_{F}$ denotes the Fröbenius norm yields to $t=r$. Indeed, consider $\lambda_{1}, \ldots, \lambda_{d}$ the eigenvalues of $P^{-1} Q$, then $\rho(P, Q)=\left\|\log \left(P^{-1} Q\right)\right\|_{F}=\sqrt{\sum_{i} \log ^{2} \lambda_{i}}$ amounts to find

$$
\sum_{i=1}^{d} \log ^{2} \lambda_{i}^{t}=t^{2} \sum_{i=1}^{d} \log ^{2} \lambda_{i}=r^{2} \sum_{i=1}^{d} \log ^{2} \lambda_{i}
$$

That is $t=r$.

Case study II: Performance

(a)

Radius of the smallest enclosing Riemannian ball anchored at current SPD center

(b)

Convergence rate of the GeoA algorithm for the SPD Riemannian manifold (dimension 5) for the first 200 iterations.
Horizontal axis: number of iterations i
Vertical axis:

- (a) the relative Riemannian distance between the current center c_{i} and the optimal 1-center $c^{*}\left(\frac{\rho\left(c *, c_{i}\right)}{r^{*}}\right)$
- (b) the radius r_{i} of the smallest enclosing SPD ball anchored at the current center.

Remark on SPD spaces and hyperbolic geometry

- 2D $\operatorname{SPD}(2)$ matrix space has dimension $d=3$: A positive cone.

$$
\left\{(a, b, c): a>0, \quad a b-c^{2}>0\right\}
$$

- Can be peeled into sheets of dimension 2, each sheet corresponding to a constant value of the determinant of the elements [4]

$$
\operatorname{SPD}(2)=\operatorname{SSPD}(2) \times \mathbb{R}^{+},
$$

where $\left.\operatorname{SSPD}(2)=\{a, b, c=\sqrt{1-a b}): a>0, a b-c^{2}=1\right\}$

- Map to ($x_{0}=\frac{a+b}{2} \geq 1, x_{1}=\frac{a-b}{2}, x_{2}=c$) in hyperboloid model [12], and $z=\frac{a-b+2 i c}{2+a+b}$ in Poincaré disk [12].

Conclusion: Smallest Riemannian Enclosing Ball

- Generalize Euclidean 1-center algorithm of [2] to Riemannian geometry
- Proved the convergence under mild assumptions (for measures/point sets)
- Existence of Riemannian core-sets for optimization
- 1-center building block for k-center clustering [6]
- can be extended to sets of Riemannian (geodesic) balls

Reproducible research codes with interactive demos:
http://www.sonycsl.co.jp/person/nielsen/infogeo/RiemannMinimax/

Bibliographic references I

Bijan Afsari.
Riemannian L^{p} center of mass : existence, uniqueness, and convexity.
Proceedings of the American Mathematical Society, 139:655-674, February 2011.
Mihai Bădoiu and Kenneth L. Clarkson.
Smaller core-sets for balls.
In SODA '03: Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms, pages 801-802, Philadelphia, PA, USA, 2003. Society for Industrial and Applied Mathematics.

Mihai Bădoiu and Kenneth L. Clarkson.
Optimal core-sets for balls.
Computational Geometry: Theory and Applications, 40:14-22, May 2008.
Pascal Chossat and Olivier P. Faugeras.
Hyperbolic planforms in relation to visual edges and textures perception.
PLoS Computational Biology, 5(12), 2009.
Kaspar Fischer and Bernd Gärtner.
The smallest enclosing ball of balls: combinatorial structure and algorithms.
Int. J. Comput. Geometry Appl., 14(4-5):341-378, 2004.
Teofilo F. Gonzalez.
Clustering to minimize the maximum intercluster distance.
Theoretical Computer Science, 38(0):293-306, 1985.

Bibliographic references II

```
Piyush Kumar, Joseph S. B. Mitchell, and E. Alper Yildirim.
Approximate minimum enclosing balls in high dimensions using core-sets.
ACM Journal of Experimental Algorithmics, 8, }2003
Serge Lang.
Fundamentals of differential geometry, volume 191 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 1999.
Thomas Larsson.
Fast and tight fitting bounding spheres.
In Proceedings of the Annual SIGRAD Conference, Stockholm, }2008
Frank Nielsen and Richard Nock.
Approximating smallest enclosing balls with applications to machine learning.
Int. J. Comput. Geometry Appl., 19(5):389-414, }2009
Frank Nielsen and Richard Nock.
Hyperbolic Voronoi diagrams made easy.
In International Conference on Computational Science and its Applications (ICCSA), volume 1, pages
74-80, Los Alamitos, CA, USA, march 2010. IEEE Computer Society.
```


Bibliographic references III

Frank Nielsen and Richard Nock.
Visualizing hyperbolic Voronoi diagrams.
In Proceedings of the Thirtieth Annual Symposium on Computational Geometry, SOCG'14, pages 90:90-90:91, New York, NY, USA, 2014. ACM.

Richard Nock and Frank Nielsen.
Fitting the smallest enclosing bregman balls.
In 16th European Conference on Machine Learning (ECML), pages 649-656, October 2005.
Jack Ritter.
An efficient bounding sphere.
In Graphics gems, pages 301-303. Academic Press Professional, Inc., 1990.
Jonas Spillmann, Markus Becker, and Matthias Teschner.
Efficient updates of bounding sphere hierarchies for geometrically deformable models.
Journal of Visual Communication and Image Representation, 18(2):101-108, 2007.
J. J. Sylvester.

A question in the geometry of situation.
Quarterly Journal of Pure and Applied Mathematics, 1:79, 1857.
Bo Tian.
Bouncing Bubble: A fast algorithm for Minimal Enclosing Ball problem.
2012.

Bibliographic references IV

Ivor W. Tsang, Andras Kocsor, and James T. Kwok.
Simpler core vector machines with enclosing balls.
In Proceedings of the 24th International Conference on Machine Learning (ICML), pages 911-918, New York, NY, USA, 2007. ACM.

Emo Welzl.
Smallest enclosing disks (balls and ellipsoids).
In H. Maurer, editor, New Results and New Trends in Computer Science, LNCS. Springer, 1991.

