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Introduction: Euclidean Smallest Enclosing Balls
Given d-dimensional P = {p1, ..., pn}, find the “smallest”
(with respect to the volume = radius = inclusion)
ball B = Ball(c, r) fully covering P:

c* = min max | c — pil|
 ceRd i=1 Pill-

» unique Euclidean circumcenter c*, SEB [19].

» optimization problem non-differentiable [10]

c* lie on the farthest Voronoi diagram
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Euclidean smallest enclosing balls (SEBs)

» 1857: d =2, Smallest Enclosing Ball? of P = {p1,..., pn}
(Sylvester [16])

» Randomized expected linear time algorithm [19, 5] in fixed
dimension (but hidden constant exponential in d)

» Core-set [3] approximation: (1 + €)- approximation in
( 2)-time in arbitrary dimension, O(% + 5 log 1) [7]

» Many other algorithms and heuristics [14, 9, 17], etc.

SEB also known as Minimum Enclosing Ball (MEB), minimax
center, 1-center, bounding (hyper)sphere, etc.

— Applications in computer graphics (collision detection with ball
cover proxies [15]), in machine learning (Core Vector
Machines [18]), etc.
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Optimization and core-sets [3]

Let c(P) denote the circumcenter of the SEB and r(P) its radius

Given € > 0, e-core-set C C P, such that

[P C Ball(c(0), (1 + Or(C))]

< Expanding SEB(C) by 1 + € fully covers P

Core-set of optimal size [1], independent of the dimension d,
and n. Note that combinatorial basis for SEB is from 2 to
d+1[19].

— Core-sets find many applications for problems in
large-dimensions.
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Euclidean SEBs from core-sets [2]

Badoiu-Clarkson algorithm based on core-sets [2, 3]:
BCA:
» Initialize the center ¢; € P = {pa, ..., pn}, and

> lteratively update the current center using the rule

fi—ci
i+1

Ci+1 < G +

where f; denotes the farthest point of P to ¢;:

fi=ps, s=argmaxj_[c; — pjl

= gradient-descent method
= (1 + €)-approximation after [5] iterations: O(%2) time
= Core-set: fi,...,fj with [ = [}2]
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Euclidean SEBs from core-sets: Rewriting with #
a#t¢b: point (1 —t)a+ tb = a-+ t(b— a) on the line segment [ab].
D(x,y) = |lx = y|[?, D(x, P) = minyep D(x,y)
Algorithm 1: BCA(P, /).

c1 < choose randomly a point in P;

fori=2to/—1do
// farthest point from ¢

si + argmax_; D(cj, pj);

// update the center: walk on the segment [cj,ps]

Cip1 Ci#Tllps,- ;

end

// Return the SEB approximation
return Ball(c;, r> = D(c;, P)) ;

= (1 + €)-approximation after / = [ %] iterations.
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Bregman divergences (incl. squared Euclidean distance)

SEB extended to Bregman divergences Bg(- : -) [13]

Be(c: x) = F(c) — F(x) — (c — x, VF(x)),
Br(c : X) = minyex Be(c : x)

= Bregman divergence = remainder of a first order Taylor
expansion.
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Smallest enclosing Bregman ball [13]

F* = convex conjugate of F with (VF)™! = VF*

Algorithm 2: MBC(P, /).

// Create the gradient point set (7-coordinates)
P+ {VF(p): peP}

g < BCA(P, 1),

return Ball(c; = VF(c(g)),r = Br(c/ : P)) ;

Guaranteed approximation algorithm with approximation factor

depending on e TSZEG but poor in practice

| , (1—|—e)2r/*
Vs, Se(x; VFY(c(g))) < minge |[V2F(x)|

with Sg(c; x) = Be(c : x) + Be(x : ¢)
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Smallest enclosing Bregman ball [13]

A better approximation in practice...
Algorithm 3: BBCA(P, /).

c1 < choose randomly a point in P;

fori=2to/—1do
// farthest point from ¢; wrt. Bf

si < argmax;_; Br(c; : pj);

// update the center: walk on the n-segment
[Ci>ps,-]77

i1 VF_l(VF(c,-)#%VF(pSI.)) ;

end
// Return the SEBB approximation
return Ball(¢;, r = Be(c/ : X)) ;

0-, n-geodesic segments in dually flat geometry.

© 2013-14 Frank Nielsen, Ecole Polytechnique & Sony Computer Science Laboratories 9/39



Basics of Riemannian geometry

v

(M, g): Riemannian manifold

v

(-,+), Riemannian metric tensor g: definite positive bilinear
form on each tangent space T,M (depends smoothly on x)

|- Ilx: [|ull = (u, u)/?: Associated norm in T,M

v

v

p(x,y): metric distance between two points on the manifold
M (length space)

p(x,y)—inf{ | 1501z, ¢ e oum. o(0)=x @(1)—y}

Parallel transport wrt. Levi-Civita metric connection V: Vg = 0.
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Basics of Riemannian geometry: Exponential map

» Local map from the tangent space T,M to the manifold
defined with geodesics (wrt V).

Vx € M,D(x) C TxM : D(x) = {v € T(M :~,(1) is defined}

with 7, maximal (i.e., largest domain) geodesic with
(0) = x and 7, (0) = v.
» Exponential map:

exp, () : D(x)C TuM = M
expy(v) = (1)

D is star-shaped.
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Basics of Riemannian geometry: Geodesics

» Geodesic: smooth path which locally minimizes the distance
between two points. (In general such a curve does not
minimize it globally.)

> Given a vector v € T, M with base point x, there is a unique
geodesic started at x with speed v at time 0: t — exp,(tv) or
t = ye(v).

» Geodesic on [a, b] is minimal if its length is less or equal to
others. For complete M (i.e., exp,(v)), taking x,y € M, there
exists a minimal geodesic from x to y in time 1.

v.(x,y) : [0,1] = M, t — 7¢(x, y) with the conditions
Yo(x,y) = x and n(x,y) =y.

» U C M is convex if for any x,y € U, there exists a unique
minimal geodesic 7.(x,y) in M from x to y. Geodesic fully
lies in U and depends smoothly on x, y, t.
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Basics of Riemannian geometry: Geodesics

v

Geodesic y(x, y): locally minimizing curves linking x to y

v

Speed vector +/(t) parallel along ~:

Dv'(t)
T = V«/(t)’Y’(t) =0

v

When manifold M embedded in RY, acceleration is normal to

tangent plane:
’}//(t) 1 T,y(t)M

v

|7/ (t)|| = ¢, a constant (say, unit).

=- Parameterization of curves with constant speed...
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Basics of Riemannian geometry: Geodesics

Constant speed geodesic y(t) so that y(0) = x and y(p(x,y)) =y
(constant speed 1, the unit of length).

[ xtey = m=(t) : p, m) = t X p(x, y)]

For example, in the Euclidean space:

x#y=1—-t)x+ty=x+t(y—x)=m

pe(x; m) = [ty = x)[| = tlly — x|l = t x p(x,y),t € [0,1]

= m interpreted as a mean (barycenter) between x and y.
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Basics of Riemannian geometry: Injectivity radius

Diffeomorphism from the tangent space to the manifold

» Injectivity radius inj(M): largest r > 0 such that for all
x € M, the map exp,(+) restricted to the open ball in T,M
with radius r is an embedding.

» Global injectivity radius: infimum of the injectivity radius over
all points of the manifold.
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Basics of Riemannian geometry: Sectional curvature

Given x € M, u, v two non collinear vectors in T, M, the sectional
curvature Sect(u, v) = K is a number which gives information on
how the geodesics issued from x behave near x.

More precisely, the image by exp,(-) of the circle centered at 0 of
radius r > 0 in Span(u, v) has length

21SK(r) +o(r}) as r—0

with VR
sin(V'Kr) .
UK if K >0,
Sk(r) = r if K=0,
St KD if - K <.

positive, zero or negative curvatures...
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Basics of Riemannian geometry: Alexandrov’s theorem

Given an upper bound o for sectional curvatures, compare
geodesic triangles by Alexandrov theorem:
Let x1,x0,x3 € M satisfy x3 # x2, x1 # x3 and

. @
p(x1, x2) + p(x2, x3) + p(x3,x1) < 2min {an(M)v E}

where o > 0 is such that o is an upper bound of sectional
curvatures. Let the minimizing geodesic from x; to x and the
minimizing geodesic from x; to x3 make an angle 8 at x;.
Denoting by 522 the 2-dimensional sphere of constant curvature
a? (hence of radius 1/) and j the distance in S2,, we consider
points X1, Xo, X3 € 5§2 such that p(x1, x2) = (X1, X2),

p(x1,x3) = p(X1,X3). Assume that the minimizing geodesic from
X1 to X» and the minimizing geodesic from X; to X3 also make an
angle 6 at X;.

Then we have: ‘p(Xz,Xg,) > p(Xo, X3) ‘
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Basics of Riemannian geometry: Topogonov’s theorem

Assume 3 > 0 is such that —/32 is a lower bound for sectional
curvatures in M. Let xq,xp,x3 € M satisfy x; # x», x1 7# x3. Let
the minimizing geodesic from x; to x» and the minimizing geodesic
from x; to x3 make an angle 8 at x;. Denoting by HEﬂZ the
hyperbolic 2-dimensional space of constant curvature —32 and
p the distance in HEﬂZ, we consider points X1, Xp, X3 € Hiﬁz such
that p(x1, x2) = p(%1, %), p(x1,x3) = p(X1,X3). Assume that the
minimizing geodesic from X; to X» and the minimizing geodesic
from X; to X3 also make an angle 6 at X;.

Then we have: | p(x2, x3) < (X2, X3) |
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Basics of Riemannian geometry: First law of cosines

In spherical /hyperbolic geometries:

> If 01,05, 03 are the angles of a triangle in 522 and Iy, b, I3 are
the lengths of the opposite sides, then

cos(alz) — cos(aly) cos(ark)
sin(ah) sin(ah)

cosf3 =

> If 01,05, 03 are the angles of a triangle in Hzﬁz and i, b,
are the lengths of the opposite sides, then

cosh(8h) cosh(5hk) — cosh(813)
sinh(8h) sinh(Bh)

cos b3 =
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Now ready for the “Smallest enclosing Riemannian ball”

(M, g): complete Riemannian manifold
v: probability measure on M
p(x,y): Riemannian metric distance

Assume the measure support supp(v) C in a geodesic ball
B(o, R).

f : M — R: measurable function
[fllteewy = inf{a>0, v({y € M, [f(y)| > a})=0}.

a > 0 such that o upper bounds the sectional curvatures in M.

Ry = % min {inj(/\/l), g}

inj(M): injectivity radius
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Riemannian SEB: Existence and uniqueness [1]

Assume
R < R,

Consider farthest point map:
H : M—]0,00]
x = [lp(x, Y oo (v) (1)

c € B(o,R).
— ¢ C CH(supp(v)) [1] (convex hull)

= center: notion of centrality of the measure
= point set: discrete measure, center — circumcenter
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Example of Riemannian manifold: SPD space

Space of Symmetric Positive Definite (SPD) matrices with

» Riemannian distance:

p(P.Q) = |log(P*Q)|IF =

where )\; are the eigenvalues of matrix P71Q.

» Non-compact Riemannian symmetric space of non-positive
curvature (aka. Cartan-Hadamard manifold).

> Any measure v with bounded support satisfies R < R,
(choose o > 0).

=> Minimizer c of farthest point map H exists and is unique:
1-center or minimax center of v.
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Generalizing BCA to Riemannian manifolds

GeoA:

» Initialize the center with ¢; € P, and

> lteratively update the current minimax center as

) 1
ci+1 = Geodesic (c;, fi, I—I——1>

where f; denotes the farthest point of P to ¢;, and
Geodesic(p, g, t) denotes the intermediate point m on
the geodesic passing through p and g such that

p(p,m) =t x p(p,q).
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Generalizing BCA to Riemannian manifolds

a#Mb: point v(t) on the geodesic line segment [ab] wrt M.

Algorithm 4: GeoA

c1 < choose randomly a point in P;

for i=2to / do
// farthest point from ¢

si + argmax/_; p(Ci, pj);

// update the center: walk on the geodesic line
segment [cj, ps;]

Ciy1 < Ci#li\%l)sl';

end
// Return the SEB approximation
return Ball(¢/, rr = p(¢;, P)) ;
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Proof sketch

Assume supp(v) C B(o, R) and
1 g ™
R <R, = 5 min {mJ(I\/I), a}

with o > 0 such that a? is an upper bound for the sectional
curvatures in M.

Lemma
There exists T > 0 such that for all x € B(o, R),

H(x) — H(c) > 7p*(x, c)
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Stochastic approximation for measures

For x € B(o,R), t — 7¢(v(x,v)) a unit speed geodesic from
Yo(v(x,v)) = x to one point y = vy, (v(x,v)) in supp(r) which
realizes the maximum of the distance from x to supp(v).

1 -1
VZHQﬁmXU)

RieA:
Fix some § > 0.
» Step 1 Choose a starting point xp € supp(v) and let
k=0

» Step 2 Choose a step size tx41 € (0,9] and let

Xk4+1 = Veeor (V(Xk, v)), then do again step 2 with
k+ k+1.

© 2013-14 Frank Nielsen, Ecole Polytechnique & Sony Computer Science Laboratories 26/39



Convergence theorem for RieA

a A b: minimum operator a A b = min(a, b).

R.— R R
N —.
2 2
Assume o, 3 > 0 are such that —32 is a lower bound and o2 an

upper bound of the sectional curvatures in M. If the step sizes
(tk)kZI satisfy

Ro =

Ry 2
0 < 70 A Barctanh (tanh(BRy/2) cos(aR) tan(aRy/4)) ,
klim t, =0, E ty = +oo and E t,f < 0.
—00
k=1 k=1

then the sequence (xx)k>1 generated by the algorithm satisfies

lim p(xk,c) =0
k—ro0
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Case study |: Hyperbolic planar manifold

In Klein disk (projective model), geodesics are straight (euclidean)
lines [11].

1-p'q
(1-p'P)(1—-q'q)

where arccosh(x) = log(x + vx2 — 1).
Here, we choose non-constant speed curve parameterization (not
constant-speed geodesic):

o(p,q) = arccosh\/

;)q/t(p7 q) = (1 - t)p +1tq, te [07 1]

= Implement a dichotomy on 7:(p, q) to get #;.
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Fourth iteration after 104 iterations

http://www.sonycsl.co.jp/person/nielsen/infogeo/RiemannMinimax/
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Performance

Klein distance between current center and minimax center Radius of the smallest enclosing Klein ball anchored at current center
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a b
Convergence ra(te)of the GeoA algorithm for the(h}?perbolic disk for
the first 200 iterations. Horizontal axis: number of iterations
Vertical axis: (a) the relative Klein distance between the current
center and the optimal 1-center, (b) the radius of the smallest
enclosing ball anchored at the current center.

e
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Case study II: Space of SPD matrices

» d x d matrix M Symmetric Positive Definite (SPD) <
M = M7 and that for all x # 0, x" Mx > 0.

» The set of d x d SPD matrices: manifold of dimension
d(d2+1) [8]

» The geodesic linking (matrix) point P to point Q:

7(P,Q) = P} (P3Qp~1) P}

where the matrix function h(M) is computed from the
singular value decomposition M = UDV'" (with U and V
unitary matrices and D = diag(\q, ..., \y) a diagonal matrix
of eigenvalues) as h(M) = Udiag(h(\1), ..., h(Ag))V . For
example, the square root function of a matrix is computed as

Mz = U diag(v/Aq, ..., VAg) V.
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SPD space: Splitting the geodesic for operator #;

In this case, finding t such that

Hog(PTQ)*IIE = rlllog P71 QIIZ, (2)

where || - || denotes the Frobenius norm yields to t = r. Indeed,
consider Ay, ..., \y the eigenvalues of P71 Q, then

p(P, Q) = ||log(P71Q)||F = 1/, log? A\; amounts to find

d d d
Z log? \f = 2 Z log? \j = r? Z log? \;.
i=1 i=1 i=1

Thatis t=r.

© 2013-14 Frank Nielsen, Ecole Polytechnique & Sony Computer Science Laboratories 32/39



Case study |I: Performance

Riemannian distance between current SPD center and minimax SPD center Radius of the smallest enclosing Riemannian ball anchored at current SPD center
0.7

"expSPDL1.dat" using 1:2 —— 16 “expSPD1.dat" using 1:3 —+—
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a b
Convergence ra(te)of the GeoA algorithm for the (Slz’D Riemannian
manifold (dimension 5) for the first 200 iterations.
Horizontal axis: number of iterations i
Vertical axis:

» (a) the relative Riemannian distance between the current

center ¢; and the optimal 1-center c* (—p(cr**’c"))

» (b) the radius r; of the smallest enclosing SPD ball anchored
at the current center.
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Remark on SPD spaces and hyperbolic geometry

» 2D SPD(2) matrix space has dimension d = 3: A positive
cone.

{(a,b,c):a>0, ab—c2>0}

» Can be peeled into sheets of dimension 2, each sheet
corresponding to a constant value of the determinant of the
elements [4]

SPD(2) = SSPD(2) x R,

where SSPD(2) = {a,b,c =1 —ab):a>0,ab— c?> =1}
» Map to (xg = 252 2 1,x = Tb,xz = ¢) in hyperboloid

model [12], and z = 2242 in Poincaré disk [12].
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Conclusion: Smallest Riemannian Enclosing Ball

» Generalize Euclidean 1-center algorithm of [2] to Riemannian
geometry

» Proved the convergence under mild assumptions (for
measures/point sets)

» Existence of Riemannian core-sets for optimization
» 1-center building block for k-center clustering [6]

> can be extended to sets of Riemannian (geodesic) balls

Reproducible research codes with interactive demos:

http://www.sonycsl.co.jp/person/nielsen/infogeo/RiemannMinimax/
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