Bag-of-components: an online algorithm for batch learning of mixture models

Olivier Schwander Frank Nielsen
Université Pierre et Marie Curie, Paris, France École polytechnique, Palaiseau, France

October 29, 2015

Exponential families

Definition

$$
p(x ; \lambda)=p_{F}(x ; \theta)=\exp (\langle t(x) \mid \theta\rangle-F(\theta)+k(x))
$$

- λ source parameter
- $t(x)$ sufficient statistic
- θ natural parameter
- $F(\theta)$ log-normalizer
- $k(x)$ carrier measure
F is a stricly convex and differentiable function
$\langle\cdot \mid \cdot\rangle$ is a scalar product

Multiple parameterizations: dual parameter spaces

Multiple source parameterizations
Source Parameters (not unique)
$\lambda_{1} \in \Lambda_{1}, \lambda_{2} \in \Lambda_{2}, \ldots, \lambda_{n} \in \Lambda_{n}$

$\theta \in \Theta$
Natural Parameters
Two canónical paraméterizations

Bregman divergences

Definition and properties

$$
B_{F}(x \| y)=F(x)-F(y)-\langle x-y, \nabla F(y)\rangle
$$

- F is a stricly convex and differentiable function
- No symmetry!

Contains a lot of common divergences

- Squared Euclidean, Mahalanobis, Kullback-Leibler, Itakura-Saito. . .

Bregman centroids

Left-sided centroid

$$
\min _{c} \sum_{i} \omega_{i} B_{F}\left(c \| x_{i}\right)
$$

Closed-form

$$
c^{L}=\nabla F^{*}\left(\sum_{i} \omega_{i} \nabla F\left(x_{i}\right)\right)
$$

Right-sided centroid

$$
\min _{c} \sum_{i} \omega_{i} B_{F}\left(x_{i} \| c\right)
$$

$$
c^{R}=\sum_{i} \omega_{i} x_{i}
$$

Link with exponential families

[Banerjee 2005]
Bijection with exponential families

$$
\log p_{F}(x \mid \theta)=-B_{F^{*}}(t(x) \| \eta)+F^{*}(t(x))+k(x)
$$

Kullback-Leibler between exponential families

- between members of the same exponential family

$$
K L\left(p_{F}\left(x, \theta_{1}\right), p_{F}\left(x, \theta_{2}\right)\right)=B_{F}\left(\theta_{2} \| \theta_{1}\right)=B_{F^{\star}}\left(\eta_{1} \| \eta_{2}\right)
$$

Kullback-Leibler centroids

- In closed-form through the Bregman divergence

Maximum likelihood estimator

A Bregman centroid

$$
\begin{aligned}
\hat{\eta} & =\arg \max _{\eta} \sum_{i} \log p_{F}\left(x_{i}, \eta\right) \\
& =\arg \min _{\eta} \sum_{i} B_{F^{*}}\left(t\left(x_{i}\right) \| \eta\right) \underbrace{-F^{*}\left(t\left(x_{i}\right)\right)-k\left(x_{i}\right)}_{\text {does not depend on } \eta} \\
& =\arg \min _{\eta} \sum_{i} B_{F^{*}}\left(t\left(x_{i}\right) \| \eta\right) \\
& =\sum_{i} t\left(x_{i}\right)
\end{aligned}
$$

And $\hat{\theta}=\nabla F^{\star}(\hat{\eta})$

Mixtures of exponential families

$$
m(x ; \omega, \theta)=\sum_{1 \leq i \leq k} \omega_{i} p_{F}\left(x ; \theta_{i}\right)
$$

Fixed

- Family of the components P_{F}
- Number of components k (model selection techniques to choose)

Learning a mixture

- Input: observations x_{1}, \ldots, x_{N}
- Output: ω_{i} and θ_{i}

Parameters

- Weights $\sum_{i} \omega_{i}=1$
- Component parameters θ_{i}

Bregman Soft Clustering: EM for exponential families

[Banerjee 2005]

E-step

$$
p(i, j)=\frac{\omega_{j} p_{F}\left(x_{i}, \theta_{j}\right)}{m\left(x_{i}\right)}
$$

M-step

$$
\begin{aligned}
\eta_{j} & =\arg \max _{\eta} \sum_{i} p(i, j) \log p_{F}\left(x_{i}, \theta_{j}\right) \\
& =\arg \min _{\eta} \sum_{i} p(i, j)(B_{F^{*}}\left(t\left(x_{i}\right) \| \eta\right) \underbrace{-F^{*}\left(t\left(x_{i}\right)\right)-k\left(x_{i}\right)}_{\text {does not depend on } \eta}) \\
& =\sum_{i} \frac{p(i, j)}{\sum_{u} p(u, j)} t\left(x_{u}\right)
\end{aligned}
$$

Joint estimation of mixture models

Exploit shared information between multiple pointsets

- to improve quality
- to improve speed

Inspiration

- Dictionary methods
- Transfer learning

Efficient algorithms

- Building
- Comparing

Co-Mixtures

Sharing components of all the mixtures

$$
\begin{aligned}
& m_{1}\left(x \mid \omega^{(1)}, \eta\right)=\sum_{i=1}^{k} \omega_{i}^{(1)} p_{F}\left(x \mid \eta_{j}\right) \\
& \ldots \\
& m_{S}\left(x \mid \omega^{(S)}, \eta\right)=\sum_{i=1}^{k} \omega_{i}^{(S)} p_{F}\left(x \mid \eta_{j}\right)
\end{aligned}
$$

- Same $\eta_{1} \ldots \eta_{k}$ everywhere
- Different weights $\omega^{(/)}$

co-Expectation-Maximization

Maximize the mean of the likelihoods on each mixtures

E-step

- A posterior matrix for each dataset

$$
p^{(I)}(i, j)=\frac{\omega_{j}^{(I)} p_{F}\left(x_{i}, \theta_{j}\right)}{m\left(x_{i}^{(I)} \mid \omega^{(I)}, \eta\right)}
$$

M-step

- Maximization on each dataset

$$
\eta_{j}^{(I)}=\sum_{i} \frac{p(i, j)}{\sum_{u} p^{(I)}(u, j)} t\left(x_{u}^{(I)}\right)
$$

- Aggregation

$$
\eta_{j}=\frac{1}{S} \sum_{l=1}^{S} \eta_{j}^{(I)}
$$

Variational approximation of Kullback-Leibler

[Hershey Olsen 2007]
$\widetilde{\mathrm{KL}}_{\text {Variationnal }}\left(m_{1}, m_{2}\right)=\sum_{i=1}^{K} \omega_{i}^{(1)} \log \frac{\sum_{j} \omega_{j}^{(1)} e^{-K L\left(p_{F}\left(; \theta_{i}\right) \| p_{F}\left(; \theta_{j}\right)\right)}}{\sum_{j} \omega_{j}^{(2)} e^{-K L\left(p_{F}\left(; \theta_{i}\right) \| p_{F}\left(; \theta_{j}\right)\right)}}$
With shared parameters

- Precompute $D_{i j}=e^{-K L\left(p_{F}\left(\cdot \mid \eta_{i}\right), p_{F}\left(\cdot \mid \eta_{j}\right)\right)}$

Fast version

$$
\mathrm{KL}_{\mathrm{var}}\left(m_{1} \| m_{2}\right)=\sum_{i} \omega_{i}^{(1)} \log \frac{\sum_{j} \omega_{j}^{(1)} e^{-D_{i j}}}{\sum_{j} \omega_{j}^{(2)} e^{-D_{i j}}}
$$

co-Segmentation

Segmentation from 5D RGBxy mixtures

Original

EM

Co-EM

Transfer learning

Increase the quality of one particular mixture of interest

- First image: only 1% of the points
- Two other images: full set of points

- Not enough points for EM

Bag of Components

Training step

- Comix on some training set
- Keep the parameters
- Costly but offline

$$
\mathcal{D}=\left\{\theta_{1}, \ldots, \theta_{K}\right\}
$$

Online learning of mixtures

- For a new pointset
- For each observation arriving:

$$
\arg \max _{\theta \in \mathcal{D}} p_{F}\left(x_{j}, \theta\right) \quad \text { or } \quad \arg \min _{\theta \in \mathcal{D}} B_{F}\left(t\left(x_{j}\right), \theta\right)
$$

Nearest neighbor search

Naive version

- Linear search
- O(number of samples \times number of components)
- Same order of magnitude as one step of EM

Improvement

- Computational Bregman Geometry to speed-up the search
- Bregman Ball Trees
- Hierarchical clustering
- Approximate nearest neighbor

Image segmentation

Segmentation on a random subset of the pixels

Computation times

Summary

Comix

- Mixtures with shared components
- Compact description of a lot of mixtures
- Fast KL approximations
- Dictionary-like methods

Bag of Components

- Online method
- Predictable time (no iteration)
- Works with only a few points
- Fast

