Bag-of-components: an online algorithm for batch learning of mixture models

Olivier Schwander Frank Nielsen

Université Pierre et Marie Curie, Paris, France École polytechnique, Palaiseau, France

October 29, 2015

Exponential families

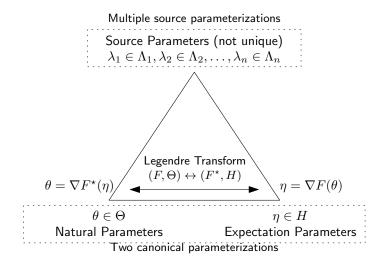
Exponential families

Definition

$$p(x; \lambda) = p_F(x; \theta) = \exp(\langle t(x) | \theta \rangle - F(\theta) + k(x))$$

- \blacktriangleright λ source parameter
- t(x) sufficient statistic
- \triangleright θ natural parameter
- \blacktriangleright $F(\theta)$ log-normalizer
- \blacktriangleright k(x) carrier measure
- F is a stricly convex and differentiable function $\langle \cdot | \cdot \rangle$ is a scalar product

Multiple parameterizations: dual parameter spaces



Bregman divergences

Definition and properties

$$B_F(x||y) = F(x) - F(y) - \langle x - y, \nabla F(y) \rangle$$

- ► F is a stricly convex and differentiable function
- No symmetry!

Contains a lot of common divergences

 Squared Euclidean, Mahalanobis, Kullback-Leibler, Itakura-Saito...

Exponential families Bregman divergences Mixture models

Bregman centroids

Left-sided centroid

Right-sided centroid

$$\min_{c}\sum_{i}\omega_{i}B_{F}(c\|x_{i})$$

$$\min_{c}\sum_{i}\omega_{i}B_{F}\left(x_{i}\|c\right)$$

Closed-form

$$c^{L} = \nabla F^{*}\left(\sum_{i} \omega_{i} \nabla F(x_{i})\right)$$

$$c^R = \sum_i \omega_i x_i$$

Exponential families Bregman divergences Mixture models

Link with exponential families [Banerjee 2005]

Bijection with exponential families

$$\log p_F(x|\theta) = -B_{F^*}\left(t(x)\|\eta\right) + F^*(t(x)) + k(x)$$

Kullback-Leibler between exponential families

between members of the same exponential family

$$\mathsf{KL}(\mathsf{p}_{\mathsf{F}}(x,\theta_1),\mathsf{p}_{\mathsf{F}}(x,\theta_2))=\mathsf{B}_{\mathsf{F}}(\theta_2\|\theta_1)=\mathsf{B}_{\mathsf{F}^\star}(\eta_1\|\eta_2)$$

Kullback-Leibler centroids

In closed-form through the Bregman divergence

Exponential families Bregman divergences Mixture models

Maximum likelihood estimator

A Bregman centroid

$$\hat{\eta} = \arg \max_{\eta} \sum_{i} \log p_{F}(x_{i}, \eta)$$

$$= \arg \min_{\eta} \sum_{i} B_{F^{*}}(t(x_{i}) || \eta) \underbrace{-F^{*}(t(x_{i})) - k(x_{i})}_{\text{does not depend on } \eta}$$

$$= \arg \min_{\eta} \sum_{i} B_{F^{*}}(t(x_{i}) || \eta)$$

$$= \sum_{i} t(x_{i})$$

And $\hat{\theta} = \nabla F^{\star}(\hat{\eta})$

Exponential families Bregman divergence Mixture models

Mixtures of exponential families

$$m(x; \omega, \theta) = \sum_{1 \le i \le k} \omega_i p_F(x; \theta_i)$$

Fixed

- Family of the components P_F
- Number of components k (model selection techniques to choose)

Learning a mixture

- ▶ Input: observations *x*₁,...,*x*_N
- Output: ω_i and θ_i

Parameters

- Weights $\sum_i \omega_i = 1$
- Component parameters θ_i

Bregman Soft Clustering: EM for exponential families [Banerjee 2005]

E-step

$$p(i,j) = rac{\omega_j p_F(x_i, heta_j)}{m(x_i)}$$

M-step

$$\eta_{j} = \arg \max_{\eta} \sum_{i} p(i,j) \log p_{F}(x_{i},\theta_{j})$$

$$= \arg \min_{\eta} \sum_{i} p(i,j) \left(B_{F^{*}}(t(x_{i}) \| \eta) \underbrace{-F^{*}(t(x_{i})) - k(x_{i})}_{\text{does not depend on } \eta} \right)$$

$$= \sum_{i} \frac{p(i,j)}{\sum_{u} p(u,j)} t(x_{u})$$

Joint estimation of mixture models

Exploit shared information between multiple pointsets

- to improve quality
- to improve speed

Inspiration

- Dictionary methods
- Transfer learning

Efficient algorithms

- Building
- Comparing

Co-Mixtures

Sharing components of all the mixtures

$$m_1(x|\omega^{(1)},\eta) = \sum_{i=1}^k \omega_i^{(1)} p_F(x|\eta_j)$$

...
$$m_S(x|\omega^{(S)},\eta) = \sum_{i=1}^k \omega_i^{(S)} p_F(x|\eta_j)$$

- Same $\eta_1 \ldots \eta_k$ everywhere
- Different weights $\omega^{(I)}$

Motivation Algorithms Applications

co-Expectation-Maximization

Maximize the mean of the likelihoods on each mixtures

- E-step
 - A posterior matrix for each dataset

$$p^{(I)}(i,j) = rac{\omega_j^{(I)} p_F(x_i, heta_j)}{m(x_i^{(I)} | \omega^{(I)}, \eta)}$$

M-step

Maximization on each dataset

$$\eta_j^{(l)} = \sum_i \frac{p(i,j)}{\sum_u p^{(l)}(u,j)} t(x_u^{(l)})$$

Aggregation

$$\eta_j = \frac{1}{S} \sum_{l=1}^S \eta_j^{(l)}$$

Variational approximation of Kullback-Leibler [Hershey Olsen 2007]

$$\widetilde{\mathrm{KL}}_{\mathrm{Variationnal}}(m_1, m_2) = \sum_{i=1}^{K} \omega_i^{(1)} \log \frac{\sum_j \omega_j^{(1)} e^{-\mathrm{KL}(p_F(\cdot; \theta_i) \| p_F(\cdot; \theta_j))}}{\sum_j \omega_j^{(2)} e^{-\mathrm{KL}(p_F(\cdot; \theta_i) \| p_F(\cdot; \theta_j))}}$$

With shared parameters

• Precompute
$$D_{ij} = e^{-\mathrm{KL}(p_F(\cdot|\eta_i), p_F(\cdot|\eta_j))}$$

Fast version

$$\operatorname{KL}_{\mathsf{var}}(m_1 \| m_2) = \sum_i \omega_i^{(1)} \log \frac{\sum_j \omega_j^{(1)} e^{-D_{ij}}}{\sum_j \omega_j^{(2)} e^{-D_{ij}}}$$

Information Geometry for mixtures Co-Mixture Models Applications

co-Segmentation

Segmentation from 5D RGBxy mixtures

Co-EM

Transfer learning

Increase the quality of one particular mixture of interest

- ▶ First image: only 1% of the points
- Two other images: full set of points

Not enough points for EM

Bag of Components

Training step

- Comix on some training set
- Keep the parameters
- Costly but offline

$$\mathcal{D} = \{\theta_1, \ldots, \theta_K\}$$

Online learning of mixtures

- For a new pointset
- For each observation arriving:

$$rg\max_{ heta\in\mathcal{D}}p_{\mathcal{F}}(x_j, heta) \quad ext{ or } \quad rg\min_{ heta\in\mathcal{D}}B_{\mathcal{F}}(t(x_j), heta)$$

Nearest neighbor search

Naive version

- Linear search
- ► O(number of samples × number of components)
- Same order of magnitude as one step of EM

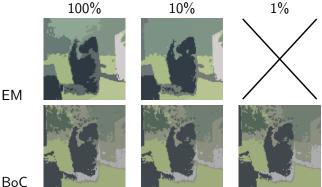
Improvement

- Computational Bregman Geometry to speed-up the search
- Bregman Ball Trees
- Hierarchical clustering
- Approximate nearest neighbor

Experiments

Image segmentation

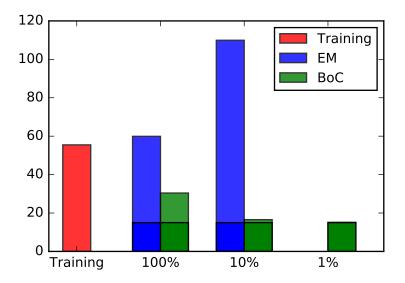
Segmentation on a random subset of the pixels



BoC

Algorithm Experiments

Computation times



Summary

Comix

- Mixtures with shared components
- Compact description of a lot of mixtures
- Fast KL approximations
- Dictionary-like methods

Bag of Components

- Online method
- Predictable time (no iteration)
- Works with only a few points
- Fast