Code name: SD
Argument type: PSD matrix

1 Stein divergence

Stein loss introduced in 1961¹ is a square matrix symmetric divergence. Let D denote the number of rows/colums of positive definite matrices $\Sigma_1 \succ 0$ and $\Sigma_2 \succ 0$.

Then Stein $loss^2$ also called S-divergence³ or Jensen-Bregman $LogDet^4$ is defined by:

$$S(\Sigma_1; \Sigma_2) = \operatorname{tr}(\Sigma_1^{-1} \Sigma_2) - \log \det(\Sigma_1^{-1} \Sigma_2) - D = S(\Sigma_2; \Sigma_1)$$
(1)

It is a matrix Jensen-Bregman divergence for the convex matrix generator $F(X) = -\log \det(X)$, hence its name Jensen-Bregman LogDet divergence⁵.

2 Properties

- The square root $\sqrt{S(\Sigma_1; \Sigma_2)}$ of Stein divergence is a metric.
- Stein divergence is invariant to affine transformations: $S(A\Sigma_1 B; A\Sigma_2 B) = S(\Sigma_1; \Sigma_2)$, for $A, B \in GL(D)$.
- Stein divergence is invariant to inverse transformations: $S\left(\Sigma_1^{-1}; \Sigma_2^{-1}\right) = S\left(\Sigma_1; \Sigma_2\right)$.
- Stein divergence may not be convex⁶
- The matrix gradient $\nabla_X S(X;Y) = (X+Y)^{-1} \frac{1}{2}X^{-1}$

¹William James and Charles Stein. "Estimation with quadratic loss". In: *Proceedings of the fourth Berkeley symposium on mathematical statistics and probability*. Vol. 1. 1961. 1961, pp. 361–379.

²James and Stein, "Estimation with quadratic loss".

³Suvrit Sra. "Positive definite matrices and the S-divergence". In: arXiv preprint arXiv:1110.1773 (2011).

⁴Anoop Cherian et al. "Jensen-Bregman LogDet divergence with application to efficient similarity search for covariance matrices". In: *IEEE transactions on pattern analysis and machine intelligence* 35.9 (2013), pp. 2161–2174.

⁵Cherian et al., "Jensen-Bregman LogDet divergence with application to efficient similarity search for covariance matrices".

⁶Frank Nielsen and Richard Nock. "Skew Jensen-Bregman Voronoi diagrams". In: *Transactions on Computational Science XIV*. Springer, 2011, pp. 102–128; Cherian et al., "Jensen-Bregman LogDet divergence with application to efficient similarity search for covariance matrices".