Legendre transformation and information geometry

CIG-MEMO #2, vl

Frank Nielsen
Ecole Polytechnique
Sony Computer Science Laboratorie, Inc
http://www.informationgeometry.org

September 2010

Abstract

We explain geometrically the Legendre transformation for a strictly convex function
x € X — F(x), by first “plotting” its graph, and then reinterpreting this graph as the
intersection of its supporting half-spaces. A supporting half-space is parameterized by
a dual “slope” parameter y = VF(x) € ), and the set of supporting half-spaces yields
a convex conjugate function F*(y) such that F*(y) = max, {27y — F(x)}, maximized
for x = VF(y): F*(y) = VF(y)'y — F(VF(y)). Convex conjugates encode dually the
same shape. It follows from the Legendre-Fenchel inequality, a family of non-metric
distances Bp p+(7,y) = F(x) + F*(y) — 2Ty > 0 Vz € X,y € Y that plays the role of
canonical divergences of flat spaces in information geometry. Properties of the Legendre
transformation are finally briefly listed.

Legendre transformation is at the heart of the duality principle of flat information geome-
tries [1]. Let us explain intuitively this transformation using geometric reasoning. (We shall
skip proofs and concentrate on the essence of the transformation instead.) Consider a strictly
convex function F(x) for x € X, and let us plot its graph F = {(z, F((x)) | x € X'}. For
d-variate functions F(zy,...,z4) with = (21, ...,74) € X C R, the epigraph is the (d + 1)-
dimensional convex object O = {(x,2) | v € X,z > F(x)}. Now let us forget for a while
about the z-coordinate system, and “look” at the convex object O encoding the function.
How can we describe (i.e., parameterize) its boundary representation 0O (see Figure 1)7
Well, we may obviously choose for a point P € 0O the z-coordinate system provided by the
orthogonal projection: x(P) = xp and zp = F(xp) = F(x(P)) so that P has coordinates
(xp, zp) in the z-coordinate system.

We write VF(x) = (g—gi, o g—f;) for the gradient of F' evaluated at z (for univariate
function VF(x) = dlsf) is the derivative.). Let us consider the tangent hyperplane Hp

to 00 at P of equation Hp : 2 = (z — xp)'VF(xp) + F(zp), where VF(zp) denote the
slope parameters of the hyperplane. Let H;} denote the corresponding upper half-space
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Dual coordinate systems:

p=1"
Hp:yPZVF(LEP)

0/ Hg:z=(x—120)'VF(p) + F(zg)
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Hp:z=(z—xp)IVF(xp)+ F(zp)

P:(x,F(x))

Tp g

(0, F(zp) —2pVF(xp) = —F*(yp))

Figure 1: Illustration the Legendre transformation of a strictly convex function: A point
P on the boundary of O can either be parameterized by using the z-coordinate system,
or by using the dual slope y = VF(x) coordinate system. For a point P € 00 with z-
coordinate xp, and tangent parameter yp = VF(xp), the Legendre conjugate F*(y) reads as
the intersection of the hyperplane Hp with the the z-axis. The object O is either interpreted
as the convex hull of the points, or dually as the intersection of the supporting half-spaces.



z > (x —zp)'VF(zp) + F(xp). Now, the key to understand Legendre transformation is
to observe that for a “slope” y = VF(x), there is only a unique point of JO that admits
a tangent hyperplane of that slope. Indeed, since F'(.) is strictly convex function, we have
V2F(x) = 0 (i.e., positive definite Hessian), and therefore its gradient VF(z) is strictly
monotonous increasing: Vi € {1, ...,d}, g—fi . Thus, we may describe as well the boundary
of O using this alternative slope parameter y = VF(x). The point P is also described
by the unique point that admits the tangent hyperplane with slope y = y(P) = VF(xp).
Therefore we can identify a point P € 00, either by its x-coordinates or its y-coordinates
(with y = VF(z)): Namely, we have exhibited a dual coordinate system.

How can we write the boundary 0O of O in the y-coordinate system? Any hyperplane
of a given slope y passing through a point of 9O has a unique point on the z-axis. Indeed,
those hyperplanes of fixed slope y are parallel to each others and of generic equation:

Hy:z=(z—x0) y+ F(xq) (1)

Among those parallel hyperplanes, Hp is the unique hyperplane which minimizes its z-
intersection: z = —xLVF(xp) + F(zp). That is,

_ : _.T — T,
P = arg min {—zqy + F(zq)} = arg max{xgy — F(zq)} (2)

Thus we can read the “function shape” 0O using another function GG parameterized by
the slope y = VF(z) € Y-

Gly) = max{a"y — F(2)}, 3)

This defines the Legendre transformation. G is called the convexr conjugate of F'. The
right-hand side of Eq. 3 is a strictly concave minimization optimization (sum of an affine
term 27y with a strictly concave function —F') with unique maximum z* found by setting
the derivatives to zero: V,G(y) = y—VF(z*) = 0. That is, y = VF(z*), the dual parameter
z* = (VF) '(y) as expected.

In short, the Legendre-Fenchel transformation encodes the “function shape” equivalently
in the dual coordinate systems. Let F* = G, then it can be shown that F™ is also strictly
convex, and that moreover the conjugation is involutive: F** = F. The convex conjugate
pair (F, F™*) is related by the functional equality VF* = (VF)™!, or equivalently by VF =
(VEF*)~!: convex conjugates are reciprocal inverse of each other. Thus a simple rule of
thumb for calculating the Legendre-Fenchel transformation consists in first computing the
derivate F', then take its functional inverse VF', and finally compute the anti-derivative of
(VF)~! by integration. We get F* = [(VF)~'. We can bypass the anti-derivative step by
plugging »* = VF(y) in Eq. 3:

F(y) = (VF) ' (y)"y — F(VF) "\ (y)), (4)

(Unfortunately, we may not always compute the function inverse in closed-form, so that
it may be required sometimes to use numerical root solver to approximate F™*.)



Thus we have shown that convex object O defined as the epigraph of (x, F'(x)) can also be
equivalently defined as the intersection of all supporting half-spaces H} : 2z > 2Typ — F*(yp)
with yp = VF(zp): O = capyp—vr@mHp.

For example, consider F'(z) = xlog x, Shannon information. We have F'(x) = 14logz =
y, F'1(y) = exp(y—1) = (F*)'(y), and therefore F*(y) = exp(y —1). Observe that domains
X =R} and Y = R do not coincide. Note that minimizing the convex function F' amounts
to set its gradient to zero: min, F(x) = VF(z) =0 x = (VF)71(0) = (VF)*(0). That is,
the minimum of a convex optimization problem writes simply as the gradient of the convex
conjugate evaluated at zero. For Shannon information, we have max,cp o) F'(z) = xvlogz =
(F*)'(0) = e ~ 0.367879... We check that F*(y) = yexp(y — 1) —exp(y — 1)(y — 1) =
exp(y — 1).

One can check that the Legendre conjugate of F(z) = log(1+e*) is F*(y) = ylogy+ (1—
y)log(1 — y). Some convex functions are Legendre self-dual: F(z) = z? or F(z) = —logx
(onx € X = (0,00)).

The strict convexity of the conjugate F* follows from V2F*(y) = (V2*F)~'(z) with

= VF*(y) (the inverse of a positive definite matrix being positive definite). That is,
V2F*(VF(z)) = (V*F) ().

Legendre transformation is at the very heart of information geometry from the Fenchel-
Young inequality. The z-coordinate of the point P, can either be obtained as z = F(zp)
or as z = ypr, — F*(yp) with yp = VF(zp). That is, z = F(xp) = yprp — F*(yp). This
equality becomes an inequality if yp # VF(zp) :

F(z)+ F*(y) > 2"y (5)

which holds with equality if and only if y = * = VF(z). This inequality allows to define
the canonical form of Bregman divergences fully characterizing dually flat spaces [1]:

XxY — Rt (6)
Brp-(v:y) = F(x)+ F*(y)— 2"y >0. (7)

The Fenchel Young inequality can also be easily proved geometrically as follows:
Let F(x fo VF(t)dt and F*(y fo VF*(t)dt with VEF* = (VF)~!. Since both VF
and (VF ) are monotomcally 1ncreasmg, we have

/VF dt+/V

F)7'(tydt > (z,y), (8)
z)+ F*(y )Z< ) 9)

1 Properties

The Legendre-Fenchel transformation enjoys many properties that we concisely list below:



Scaling.

F(z) = M\G(z) = F*(y) = \G* (%) , (10)
F(z) = GOa)= F*(y) =G" (%) (11)
Translation.
F(z) = Gz)+ A= F*(y) =G"(y) — A (12)
F(z) = G@+z0) = F(y) =G (y) —y x (13)
Inversion. .
F(z) = G™(a) = F*(y) = —yG" (5)

Infimal convolution. Let the infimal convolution of two functions F' and G be defined as

(F st G)(@) = inf{F(z — ) + G(t) | t € X} (14)

Then the Legendre conjugate of the infimal convolution of two functions is equal to
the elementary Legendre convex conjugates:

(F *inf G)* = I +G*

2 Historical notes

The conjugation transformation is named after French scholar Adrien-Marie Legendre (1752-
1833) and in honor of German mathematician Werner Fenchel (1905-1988) for its extension
to arbitrary dimensions. The Fenchel-Young inequality originates from its connection to
Young inequality: ab < % + % for a,b,p,q > 0 and }% + % = 1 (with equality for a? = b9).
Indeed, Fenchel inequality f(a) + f*(b) > ab includes Young inequality for f(a) = a?/p
and its Legendre convex conjugate f*(b) = b?/q for % + % = 1. William Young (1863-1942)
was an English mathematician who made significant contributions to functions of complex
variables. Besides information geometry, Legendre transformation plays a fundamental role
in formulating problems of thermodynamics, and in Hamilton-Lagrange mechanics.

The Legendre transformation can be extended to arbitrary element types using a corre-
sponding inner product:

Fly) = max (z,y) — F(x)

For example, the inner product of complex matrices is defined as the Hilbert-Schmidt inner
product: (X,Y) = Tr(X* x Y), where X* denote the matrix conjugate.

Legendre transformation has also been extended to non-convex functions and non-trivial
topology domain X (eg., X being a circle).
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