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Abstract—The Chernoff information was originally introduced
for bounding the probability of error of the Bayesian decision rule
in binary hypothesis testing. Nowadays, it is often used as a notion
of symmetric distance in statistical signal processing or as a way to
define a middle distribution in information fusion. Computing the
Chernoff information requires to solve an optimization problem
that is numerically approximated in practice. We consider the
Chernoff distance for distributions belonging to the same expo-
nential family including the Gaussian and multinomial families.
By considering the geometry of the underlying statistical manifold,
we define exactly the solution of the optimization problem as the
unique intersection of a geodesic with a dual hyperplane. Further-
more, we prove analytically that the Chernoff distance amounts to
calculate an equivalent but simpler Bregman divergence defined
on the distribution parameters. It follows a closed-form formula
for the singly-parametric distributions, or an efficient geodesic
bisection search for multiparametric distributions. Finally, based
on this information-geometric characterization, we propose three
novel information-theoretic symmetric distances and middle
distributions, from which two of them admit always closed-form
expressions.

Index Terms—Bregman divergence, Chernoff information, ex-
ponential families, information fusion, information geometry.

I. INTRODUCTION

L ET be a measurable space with and
a -algebra on the set . The Chernoff information
between two probability measures and , with

and denoting their Radon-Nikodym densities with respect to
a dominating measure1 , is defined as [2], [3]:

(1)

This notion of information was first introduced by Chernoff
[2] (1952) for bounding the probability of error of a binary
classification task. Namely, the Chernoff information is well-
known in information theory as the best achievable exponent
for a Bayesian probability of error in binary hypothesis testing
(see [3], Chapter 11). Nowadays, the Chernoff information is
often used as a statistical distance for various applications of
signal processing ranging from sensor networks [4] to image
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1We use the measure-theoretic framework [1] to handle both continuous dis-
tributions (eg., Gaussians, Beta, etc.) and discrete distributions (eg., Bernoulli,
Poisson, multinomial, etc.).

processing tasks like image segmentation [5] or edge detec-
tion [6]. In fact, this notion of Chernoff distance can be under-
stood as a generalization of the former Bhattacharrya distance
[7], [8] (1943): Let

denote the -Chernoff coefficient of similarity general-
izing the Bhattacharrya coefficient (obtained for ).
The -Chernoff divergence2:

(2)

generalizes the symmetric Bhattacharrya distance
. Thus we can interpret the Chernoff information

as a maximization of the -Chernoff divergence over the
range : .
By construction, the Chernoff distance is symmetric:

making it attractive
for information retrieval (IR). In information fusion [4], the
Chernoff information (where de-
notes the optimal value) is used to define a middle distribution

with density .
Merging probability distributions allows one to efficiently
“compress” statistical models (e.g., simplify mixtures [10]).
This letter is organized as follows: Section II considers

distributions belonging to the same exponential family, re-
ports a closed-form formula for the -Chernoff divergences,
and shows that Chernoff information amounts to compute
an equivalent Bregman divergence. Section III gives a geo-
metric interpretation of the Chernoff distribution (achieving the
Chernoff information) as the intersection of a primal geodesic
with a dual hyperplane. Section IV presents three other types
of Chernoff information and Chernoff middle distributions,
with two of them admitting closed-form expressions. Finally,
Section V concludes this work.

II. CHERNOFF INFORMATION AS A BREGMAN DIVERGENCE

A. Basics of Exponential Families

Let denote the inner product for that is taken
as the scalar product for vector spaces : . An
exponential family [1] is a set of probability measures

dominated by a measure having their Radon-Nikodym
densities expressed canonically as:

(3)

2In information geometry [9], the -Chernoff divergence is related
also to Amari -divergence:

or Rényi
divergences.
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for belonging to the natural parameter space:
. Since ,

it follows that:

(4)

For full regular families [1], it can be proved that function
is strictly convex and differentiable over the open convex set .
Function characterizes the family, and bears different names
in the literature (partition function, log-normalizer or cumu-
lant function) and parameter (natural parameter) defines the
member of the family . Let denote the di-
mension of , the order of the family. Themap is
an auxiliary function defining a carrier measure with

. In practice, we often consider the Lebesgue mea-
sure defined over the Borel -algebra of for
continuous distributions (e.g., Gaussian), or the counting mea-
sure defined on the power set -algebra for dis-
crete distributions (e.g., Poisson or multinomial families). The
term is a measure mapping called the sufficient statistic
[1]. Many usual families of distributions are
exponential families [1] in disguise once an invertible mapping

is elucidated and the density written in the canon-
ical form of (3). We refer to [1] for such decompositions for
the Poisson, Gaussian, multinomial, distributions. Besides
those well-known distributions, exponential families provide a
generic framework in statistics. Indeed, any smooth density can
be arbitrary approximated by amember of an exponential family
[11], although the cumulant function may be defined implic-
itly only (using (4)).

B. Chernoff -Distance for Exponential Family Members

For distributions and of the same exponential family
, indexed with respective natural parameter and , the
-Chernoff coefficient can be expressed analytically [12] as:

(5)

where is a skew Jensen divergence defined for
on the natural parameter space as:

(6)

where , with .

C. Chernoff Distance for Exponential Family Members

It follows that maximizing the -Chernoff divergence
amounts equivalently to maximizing the skew Jensen di-
vergence with respect to . The directional derivative of
at with direction is defined (see [13], page 213) as

. Since by defi-
nition for all , the limit always exist and
is Gâteaux differentiable with:

(7)

Therefore, we have:

Thus we need to find such that:

(8)

Since the Hessian of the cumulant function is positive definite
[1] , it follows that the second derivative of the skew
Jensen divergence is always negative
for . Therefore there is a unique solution for provided
members are distinct (if not, the Chernoff distance is obviously
0).

D. Chernoff Distance as a Bregman Divergence

Our first result states that the Chernoff information between
any two distributions belonging to the same exponential family
amounts to calculate equivalently a Bregman divergence de-
fined on the natural parameter space, where the Bregman diver-
gence [14] between and is defined by setting the generator
to the log-normalizer of the exponential family as:

(9)

Theorem 1: The Chernoff distance between two distinct dis-
tributions and of the same exponential family, with re-
spective natural parameters and , amounts to calculate a
Bregman divergence: , where
is the unique value satisfying

, and .
Proof: Once the optimal value has been computed, we

calculate the Chernoff distance using (2) that reduces for ex-
ponential families to a skew Jensen divergence

. This skew Jensen di-
vergence for the optimal value of yields, in turn, a Bregman
divergence:

(10)

Indeed, from the definition of the Bregman divergence and the
fact that , it follows that

.
Furthermore, since ,
it follows that

.
Note that for singly-parametric distributions, we get a

closed-form expression of the Chernoff distance since

. To illustrate the formula,
consider the Poisson exponential family with probability mass
functions that can be decomposed canonically
following (3) with ,
and (and and
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the counting measure). The generic closed-form
formula agrees3 with the specific Poisson Chernoff information
reported in [15]:

where .
Although we do not have an analytic expression of the Cher-

noff distance for higher-order exponential families ,
we can nevertheless characterize it exactly using information
geometry [9], as described in the following section.

III. CHERNOFF DISTRIBUTION AND CHERNOFF POINT

Consider the parametric family of probability distributions
as a smooth manifold . This sec-

tion concisely reviews the dually flat geometry of the statis-
tical manifold induced by an exponential family. We refer to
the textbook [9] for further details. A point denotes
a distribution with parameter in the natural coordinate
system. It follows from the Legendre transformation4

that point can also be indexed as
using a dual coordinate system, called the expectation param-
eter, with (and ). Let

denote the expectation parameter space. Thus,
. In the -coordinate system, we have

, and in the dual -coordinate system, we have
for a random variable (with

for ), hence its name (expec-
tation parameter). Two points can be connected
using two kinds of geodesics: The linear mixture geodesic (or
-geodesic) yielding the mixture family:

(11)

(linear interpolation in the expectation parameter), and the ex-
ponential mixture geodesic (or -geodesic) yielding:

(12)

(linear interpolation in the natural parameters), with distribution

of the form , where plays the role

of the normalizing coefficient so that .

The Chernoff distribution is the distribution
(with density ) belonging to the -geodesic for

. This distribution corresponds on the sta-
tistical manifold to the Chernoff point with coordinates

3http://www.informationgeometry.org/ChernoffInformation/ for Java codes.
4In convex analysis [13], each strictly convex and differentiable function

is associated with a dual convex conjugate by the Legendre-Fenchel trans-
formation: . The maximum is obtained for

(and is unique since ). The transformation is an involu-
tion , and the gradients are reciprocally inverse: .

. Since the Kullback-Leibler (KL)
divergence for
members and of the same exponential family amounts
to compute a Bregman divergence on the swapped
natural parameters [14], it follows from (10) that we have:

(13)

(14)

This shows that Chernoff distribution belongs to a bisector. The
Chernoff distribution is commonly used in information fusion
[4] for defining an average (or mean) distributions.

A. Geometric Characterization of the Chernoff Distribution

We prove that although the Chernoff distribution may not
be available analytically, it can always be exactly characterized
geometrically as a unique intersection point:
Theorem 2: The Chernoff distribution of two distribu-

tions and belonging to the same exponential family is the
unique point on the exponential family manifold that belongs
to both the -geodesic and the -bisector:

.
Proof: Since maximizing the -Chernoff coefficient

amounts to maximize the equivalent skew Jensen divergence
defined on the natural parameters using linear interpolation

, we deduce that the Chernoff distribution belongs to the
exponential geodesic . Furthermore, the Bregman
equi-divergence constraint of (13) indicates that the Chernoff
point should also belong to a Bregman bisector
(that was implicitly revealed in (8)), where is
defined as:
, or equivalently using the -coordinate system as

.
This bisector is a hyperplane in the coordinate
system [16] (but a hypersurface in the -coordinate system),
hence its name -bisector . It follows that

.
Recall that in information fusion [4], the Chernoff distribu-

tion defines the middle distribution obtained after merging
the two distributions and .

B. A Simple Geodesic Bisection Search

To approximate the Chernoff distribution , we
bisect the exponential mixture geodesic . Using the
-coordinate system, let initially with
and . Compute the -midpoint
with . If recurse
on interval , otherwise recurse on interval . At
each stage we split the -range in the -coordinate system thus
yielding convergence to . The bisection search can also be
implemented using the dual -coordinate system. Let initially

with and . We compute the
-midpoint and let .
If recurse on interval , other-
wise recurse on interval . We can also alternate between
those dual coordinate systems, yielding a primal-dual-coordi-
nate exponential mixture geodesic bisection search.
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IV. THREE NOVEL POINTS AND DIVERGENCES

The Chernoff point (or Chernoff distribution) can also be
interpreted as defining the “middle” of the -geodesic:

(15)

where the notion of middle is defined as the point that realizes
the equi-divergence from the midpoint to the extremities. A dif-
ferent notion of half-way can be obtained by taking the equi-di-
vergence from the extremities to the midpoint:

(16)

This half-way distribution is geometrically interpreted
as the unique intersection point
of the -geodesic with the -bisector:

(17)

that is expressed in the -coordinate system as:

(18)

In the -coordinate system, this Chernoff point
of type II is the intersection of a line segment with a

hyperplane, and can therefore be computed exactly. Similarly,
we can also cut the -geodesic with the equi-divergence
principle, yielding thus a total of four particular points:

(19)

(20)

(21)

(22)

The following theorem states that two of those points (and
associated symmetric distance) can always be calculated in
closed-form:
Theorem 3: Let and be two distributions

of the same exponential family. Chernoff distributions
(type II) and (type III) can be exactly

computed, with and
, where and

.
Proof: Points and (Chernoff middle distributions

of type II and III) are intersection (of a straight line geodesic
with a hyperplane either in the -coordinate or -coordinate
systems), and thus admit closed-form expressions.5 Wlog., con-
sider parameterized by .
Plugging in bisector (18), we
find that .

5http://www.informationgeometry.org/ChernoffInformation/ for Java codes.

That is, . Note that
since .
Chernoff distributions of type I and IV can be arbitrarily ap-

proximated using geodesic bisection searches (Section III.B).
For 1D exponential families, since geodesics and co-
incide, we have only two distinct Chernoff points (
and ). Note that for the special case of the isotropic
Gaussian family (i.e., fixed covariance matrix with

), those four Chernoff points coincide since the
-coordinate and -coordinate systems are equivalent.

V. CONCLUSION

We characterized geometrically the optimal Chernoff distri-
bution (inducing the Chernoff distance between two members
of the same exponential family) in the statistical manifold
as the unique intersection point of the exponential mixture
geodesic with the mixture bisector. It follows an exact analytic
expression for the Chernoff distance for singly-parametric
distributions, or an efficient geodesic bisection algorithm for
higher-order exponential families. Furthermore, we defined
three novel “Chernoff points” as the intersection of expo-
nential/mixture geodesics with exponential/mixture bisectors.
Interestingly, two of those points can always be exactly calcu-
lated using closed-form formula.
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